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Abstract

To achieve state-of-the-art performance, one001
still needs to train NER models on large-scale,002
high-quality annotated data, an asset that is003
both costly and time-intensive to accumulate.004
In contrast, real-world applications often resort005
to massive low-quality labeled data through006
non-expert annotators via crowdsourcing and007
external knowledge bases via distant supervi-008
sion as a cost-effective alternative. However,009
these annotation methods result in noisy labels,010
which in turn lead to a notable decline in per-011
formance. Hence, we propose to denoise the012
noisy NER data with guidance from a small set013
of clean instances. Along with the main NER014
model we train a discriminator model and use015
its outputs to recalibrate the sample weights.016
The discriminator is capable of detecting both017
span and category errors with different discrim-018
inative prompts. Results on public crowdsourc-019
ing and distant supervision datasets show that020
the proposed method can consistently improve021
performance with a small guidance set.022

1 Introduction023

Deep learning methods have notably improved the024

performance of named entity recognition (NER),025

but need large-scale high-quality labeled data (Lam-026

ple et al., 2016; Devlin et al., 2018). In practice, col-027

lecting large-scale labeled data via crowdsourcing028

(Rodrigues and Pereira, 2018; Finin et al., 2010) or029

distant supervision (Liang et al., 2020) is far more030

cost-effective. However, such data is usually too031

noisy for direct use without further treatment (Hed-032

derich et al., 2021; Liang et al., 2020; Chu et al.,033

2020).034

Extensive efforts have been dedicated to develop035

data denoising techniques and learning strategies036

specifically tailored for noisy NER data. Liang et al.037

(2020) suggested fine-tuning pre-trained language038

models (PLMs) on such data, employing early stop-039

ping and self-training techniques to mitigate over-040

fitting induced by noisy labels. Meng et al. (2021)041

extended the approach by using a frozen PLM to 042

generate augmented pseudo labels for self-training. 043

Liu et al. (2021a) further eliminated self-training 044

labels with low estimated label confidence. Yet 045

these denoising methods do not have a mechanism 046

to guide error correction, thus suffer from confir- 047

mation bias (Tarvainen and Valpola, 2017; Arazo 048

et al., 2020), where the learner struggles to correct 049

its own mistakes. 050
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Figure 1: Illustration of the Guided Denoising Frame-
work. The initial noisy label, Arizona-LOC, presents
a deviation from the patterns observed in the guid-
ance set, where geographical names preceding the term
University are appropriately categorized into an orga-
nization entity (e.g., New York University-ORG). The
depicted process of guided denoising (highlighted in
green) ensures the retention of the accurately supervised
label, McGill hockey team-ORG, thereby facilitating
the acquisition of correct entity recognition patterns.

One natural idea to improve the performance of 051

NER models trained on noisy data is to incorpo- 052

rate a small set of clean instances, which can be 053

obtained at an acceptable cost. For example, one 054

can let a financial professional manually label a 055

subset of financial named entities and use them to 056

guide the learning process on a larger, distantly- 057

supervised financial NER dataset. We refer to the 058

small clean set as the guidance set. There are a 059

number of possibilities of how to effectively uti- 060

lize the guidance set. The most straightforward 061

method is to further fine-tune the model trained 062

on the noisy NER data on the guidance set; we 063
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treat this approach as a baseline to compare against.064

Jiang et al. (2021) augmented the noisy labels with065

a confidence score according to their probability of066

being correct given the clean data. Their heuristic-067

based approach is not tailored to the noisy NER068

problem, and as a result, it fails to identify particu-069

lar types of noise in NER, such as span errors. We070

present a complementary approach that is effective071

in correcting NER-specific errors.072

We propose a Guided Denoising Framework073

(shown in Figure 1) to better utilize the guidance074

data by eliminating noisy labels that conflict with075

the patterns in the guidance set. In this frame-076

work, in addition to the NER model, we also use a077

discriminator specifically designed to detect such078

conflicts.This discriminator is responsible for eval-079

uating the accuracy of assigned labels and is trained080

in a few-shot manner (Brown et al., 2020; Liu081

et al., 2021b) with the small guidance set. Based082

on the analysis of real-world noisy NER datasets,083

we equip the discriminator, by designing different084

prompts, with the ability to detect two error types:085

span error and category error. The outputs of the086

discriminator are used to reweight the samples for087

the NER model’s training. We also design a co-088

training strategy to improve the discriminator and089

the NER model in a collaborative manner. In short,090

we make the following contributions:091

• We propose Self-Cleaning, a generic guided de-092

noising framework for improving NER learning093

on noisy data with a small guidance set. To the094

best of our knowledge, this is the first instance of095

a denoising framework making use of an auxil-096

iary model to correct noise in the data.097

• We design a prompt-based discriminator to detect098

noisy NER labels. The discriminator is capable099

of identifying both span errors and category er-100

rors in the noisy NER data using distinct prompts.101

• We report extensive experiments and ablation102

studies on NER benchmarks with crowdsourcing103

and distant supervision NER data. Results show104

that our approach boosts the performance.105

2 Background106

2.1 Named Entity Recognition107

NER is the task of identifying named entities in108

plain text and classifying them into pre-defined109

entity categories, such as person, organizations, lo-110

cations, etc (Li et al., 2020). Formally, we denote a111

sentence consisting of n tokens as x = [x1, ..., xn] 112

and their corresponding labels as y = [y1, ..., yn]. 113

We define D = {(xi,yi)}
|D|
i=1 to be a labeled set. 114

We use the BIO schema (Ramshaw and Marcus, 115

1999), where the first token of an entity with type 116

X is labeled as B-X; the consecutive tokens of the 117

entity are labeled as I-X; the non-entity tokens are 118

labeled as O. An NER model ŷ = f(x;θ) takes a 119

sentence x as input and outputs a predicted label 120

sequence ŷ, where θ is its parameter set. We train 121

the NER model by minimizing the following loss, 122

L =
1

|D|

|D|∑
i=1

ℓ(yi, f(xi;θ)), (1) 123

where ℓ(·, ·) can be the cross-entropy loss for token- 124

wise classification model or negative likelihood for 125

CRF model (Lafferty et al., 2001; Chu et al., 2019). 126

Following Meng et al. (2021), we build the NER 127

model upon the RoBERTa model (Liu et al., 2019) 128

by adding prediction heads. Specifically, we set 129

an entity head fe to predict whether a given to- 130

ken belongs to an entity and also a classification 131

head f c to predict the class of a given token. Both 132

heads take the contextualized representations from 133

a RoBERTa encoder. We decompose the original 134

label sequence y into a sequence of binary span 135

labels e and a sequence of category labels c. The 136

span labels are obtained by transforming B-X and 137

I-X into positive labels (denoted as E), and O labels 138

are remained as negative labels. In c, only non- 139

empty tokens have category labels (i.e., B-X and 140

I-X). The entity head fe is trained on e with the 141

binary cross-entropy loss, while the classification 142

head f c is trained on c with the cross-entropy loss. 143

This model design allows us to handle span and cat- 144

egory errors with distinct treatments, further details 145

of which will be provided in Section 3.3. 146

In inference, entities are first identified based on 147

the outputs from the entity head, which are then 148

classified using the classification head. The proce- 149

dure is formalized as, 150

ŷ =

{
O, fe(x) ≤ t

argmax f c(x), fe(x) > t
, (2) 151

where t is the threshold for entity identification, 152

which is set to 0.5 by default. 153

2.2 NER with Noisy Data 154

In the noisy NER setting, the labels in D are typi- 155

cally collected via crowdsourcing (Rodrigues and 156
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(a) Crowdsourcing. (b) Distant supervision.

Figure 2: Confusion matrices of CoNLL03 with crowd-
sourcing labels and distant supervisions. The x-axis
refers to noisy labels while the y-axis are ground-truth
labels. The value of each entry is the frequency of this
confusion pair (e.g., mistakenly label B-LOC as B-ORG).

Pereira, 2018; Finin et al., 2010) or with distant157

supervisions from knowledge bases (Liang et al.,158

2020), which wrongly recognize many entities and159

often provide wrong categories for entities. Inter-160

artive self-training has proven effective in improv-161

ing NER performance when learning from noisy162

data (Liang et al., 2020; Meng et al., 2021): the163

predicted label sequence ŷi from the current model164

iteration serves as pseudo labels for the subsequent165

iteration,166

LSelf =
1

|D|

|D|∑
i=1

ℓ(ŷi, f(xi;θ)). (3)167

In this paper, we also require a small guidance set168

C, the labels of which are examined by domain169

experts to ensure high quality. Typically, we only170

require |C| ≪ |D|. It is both affordable and practi-171

cal to obtain a small set of high-quality data while172

collecting large-scale noisy data via crowdsourc-173

ing or distant supervision. In Section 3, we will174

introduce our Self-Cleaning framework to guide175

the noisy NER learning with the guidance set.176

2.3 Noise Pattern Analysis177

We investigate the noise patterns on the CoNLL03178

dataset with crowdsouring labels collected by Ro-179

drigues et al. (2014) and distant supervisions col-180

lected by Liang et al. (2020). We find two types181

of errors: (1) Span error, where the span of the182

entity is not correctly recognized. For example,183

an error would occur if only Arizona was recog-184

nized in Arizona State University. The wrong185

entity span could either be shorter or longer than186

the span of the ground-truth entity. (2) Category187

error, where the entity is assigned an incorrect188

category.1 An example of this would be labeling189

1In the rest of the paper, we use the terms class and cate-
gory interchangeably.

Arizona State University as a location. 190

We first calculated the proportion of entity spans 191

that overlap with but do not perfectly match the 192

ground-truth entity: it is 11.0% for the crowdsourc- 193

ing dataset and 12.8% for the distant supervision 194

dataset, a considerable amount of error that is likely 195

to affect the resulting model. To analyze category 196

errors, we present the confusion matrices on two 197

datasets in Figure 2.2 In the crowdsourcing dataset, 198

ORG is often mislabeled as LOC, because the CoNLL 199

dataset contains sports news in which team home 200

cities or countries (locations) are also used as the 201

name of the team (organizations), which easily con- 202

fuses naive annotators. And due to the entity ambi- 203

guity in knowledge bases, all the classes could be 204

mislabeled as PER in the distant supervision dataset, 205

especially ORG. 206

Finally, a substantial proportion of ground-truth 207

entities, 28.9% and 25.3%, are missing from the 208

crowdsourcing and distant supervision datasets re- 209

spectively. This finding underscores the impor- 210

tance of self-training, a crucial technique in pre- 211

vious noisy NER learning methods (Meng et al., 212

2021; Liu et al., 2021a; Liang et al., 2020), as it al- 213

lows pseudo labels to recover these missing entities. 214

However, in the absence of appropriate guidance, 215

these pseudo labels may perpetuate both span and 216

category errors. These errors, in turn, could be 217

amplified due to the confirmation bias (Tarvainen 218

and Valpola, 2017; Arazo et al., 2020; Chen et al., 219

2019), leading to a decline in performance. 220

3 Method: Self-Cleaning 221

In this section, we introduce Self-Cleaning in detail. 222

We begin with the key component of Self-Cleaning: 223

the prompt-based discriminator, explained in Sec- 224

tion 3.1. We then present the training procedure (as 225

shown in Figure 3), which consists of three stages: 226

Stage I: Demonstrative self-training. In this 227

stage, high-confidence predictions from the NER 228

model are used as pseudo labels to iteratively refine 229

itself, a process often referred to as self-training 230

(Liang et al., 2020; Meng et al., 2021). To enhance 231

the robustness of the pseudo labels, we propose a 232

mechanism called clean demonstration, in which 233

entities from the guidance set serve as demonstra- 234

tions to elicit robust predictions from the NER 235

2The values of diagonal entries corresponding to correct
labels are set to 0, otherwise the noise patterns in the non-
diagonal entries are invisible. There are several crowdsourced
annotations for each token, so we aggregate them into one
label using majority voting.
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Encoder

Entity head CLS head
Discriminator

The train is from Bangkok to Chiang Mai

[X]. Bangkok is a [MASK] entity.
[X]. Bangkok is a [MASK] location entity.
[X]. Chiang Mai is a [MASK] entity.
[X]. Chiang Mai is a [MASK] person entity.

Discriminative
Prompts The train is from Bangkok  to  Chiang  Mai

O     O    O   O          E        O        E         E==
B-LOC    B-PER I-PER

O    O O    O     E O E E
0.5  0.5  0.5  0.5 0.8- 0.5 0.9         0.9-

B-LOC  B-PER  I-PER
-0.9- 0.1         0.1--

Guidance setNER
model

Stage II: Co-training

He took the flight from San 
Jose to New York

[SEP] San Jose is a location.

Demonstration

Stage I: Demonstrative Self-training

Self-training with Demo Classical NER Demo Construction Discriminator Data

Figure 3: Overview of Self-Cleaning. In Stage I, we use the entities in the guidance set as clean demonstrations to
augment the NER model’s training. In Stage II, the discriminative prompts is filled with the predictions of the NER
model, and then input into the prompt-based discriminator. The NER model is updated by Eq.(4) with the weights
we and wc provided by the discriminator. Conversely, the high-quality pseudo labels of the NER model are used to
fine-tune the discriminator. In Stage III, we fine-tune the obtained NER model on the guidance set.

model. Details of the clean demonstration mecha-236

nism can be found in Section 3.2.237

Stage II: Co-training. In this stage, we intro-238

duce a co-training strategy to fine-tune the NER239

model and the discriminator in a collaborative man-240

ner. Specifically, the discriminator’s outputs are241

employed to guide the NER model’s training by242

reweighting the training labels, while high-quality243

predictions from the NER model are chosen to aug-244

ment the guidance set used for the discriminator’s245

training. Details of the co-training strategy and the246

criteria for evaluating the quality of predictions are247

provided in Section 3.3.248

Stage III: Fine-tuning. To further improve the249

performance, we fine-tune the obtained NER model250

only with the guidance set.251

3.1 PLM as a Unified Discriminator252

In Self-Cleaning, we use a discriminator g aims to253

evaluate the accuracy of assigned labels to guide254

the NER model’s training. The rationale is that255

labels with low accuracy should be downweighted256

to mitigate their influence during model training,257

while the accurate labels should be retained.258

We identified two error types in the noisy NER259

data in Section 2.3 which can be straightforwardly260

modeled by the descriminaror: span error and cate-261

gory error. Instead of training two separate discrim-262

inators to handle each type of error, we propose263

to train a unified discriminator using error-type-264

specific prompts to elicit different outputs. This265

approach not only saves memory space, but also266

leverages the power of prompt tuning, which has267

been shown to effectively utilize the knowledge em- 268

bedded in the parameters of pre-trained language 269

models (PLMs) (Brown et al., 2020; Li et al., 2020). 270

With prompt tuning, it is possible to learn an ef- 271

fective discriminator with a small guidance set. In 272

the following, we use RoBERTa (Liu et al., 2019) 273

as the backbone model of the discriminator and re- 274

spectivly prepare Masked Language Model (MLM) 275

style prompts. It is important to note that other 276

PLMs, such as generative language models (Rad- 277

ford et al., 2019), could be seamlessly integrated 278

into our framework by modifying the prompts ac- 279

cordingly. We design the following two types of 280

discriminative prompts, 281

• Span: [X]. [Y] is a [MASK] entity. 282

• Category: [X]. [Y] is a [MASK] [Z] entity. 283

[X] is the placeholder for a sentence x, [Y] is the 284

placeholder for an entity e and [Z] is the place- 285

holder for a class c. The discriminator is trained 286

to fill correct in the [MASK] token when the en- 287

tity/class is appropriate given the context sentence, 288

and wrong otherwise. The discriminative score of 289

the evaluated entity or class is given by 290

we(e) = PS(correct|[X] = x, [Y] = e) ,

wc(c) = PC(correct|[X] = x, [Y] = e, [Z] = c) ,
291

where PS and PC represent the probability associ- 292

ated with the span prompt and the category prompt, 293

respectively. Given a sentence and its label se- 294

quence, we extract the entities in it and their corre- 295

sponding classes from contiguous spans with B-X 296
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and I-X labels in the data. For example, given [San297

Jose is a city] and [B-LOC, I-LOC, O, O,298

O], San Jose will be extracted as an entity and its299

class is LOC. We transform LOC and other category300

names into a meaningful word location which301

would fit naturally in a sentence. The details of the302

conversion can be found in Section B.303

We first pre-train the discriminator to ensure a304

good starting point, treating the entities in the guid-305

ance set as positive samples. In this context, we306

will abuse the notation C to denote the set of pos-307

itive samples drawn from the guidance set. We308

create incorrect entities and labels via data augmen-309

tations. Unlike in classification scenarios involving310

noisy label learning (Han et al., 2018), simulating311

noisy NER labels has to also provide negative ex-312

amples for span errors. We investigated the datasets313

used in Section 2.3 and found that around 80%314

span-error entities deviate from the ground-truth315

entities by a single word. Thus, we create negative316

entities by randomly adding or removing a word317

around entities in the guidance set. For example,318

we transform Arizona State University into319

State University as a negative entity. For cate-320

gory errors, we randomly flip the classes of entities321

in the guidance set. We denote the set of nega-322

tive samples as B. The discriminator is trained to323

minimize the following loss function,324

Lw = −Ee,c∼C

[
logwe(e) + logwc(c)

]
325

− Eẽ,c̃∼B

[
log(1− we(ẽ)) + log(1− wc(c̃))

]
,326

where 1 − we(ẽ) and 1 − wc(c̃) are essentially327

PS(wrong|·, ẽ) and PC(wrong|·, c̃).328

3.2 Stage I: Demonstrative Self-training329

In this stage, we employ a self-training strategy330

enriched by demonstrations, to improve the perfor-331

mance of the NER model. Prior research (Zhang332

et al., 2022; Lee et al., 2021) has established that333

demonstrations can boost the robustness of PLMs.334

Consequently, we propose to incorporate clean enti-335

ties from the guidance set into the input of the NER336

model to stimulate more robust outputs. These en-337

hanced outputs are then used as pseudo labels for338

self-training, as specified in Eq.(3).339

Technically, we follow the instance-oriented340

method in (Lee et al., 2021) to find demonstrations.341

For each sentence in the noisy training set, we first342

retrieve similar sentences from the guidance set343

using SBERT scores (Reimers and Gurevych, 2019).344

Then, the entities in the retrieved guidance sen-345

tences are used to form the clean demonstrations346

x̃, which are appended as additional tokens to the 347

original training sentence x. The inputs of the NER 348

model become [x; x̃]. For example in Figure 3, San 349

Jose-LOC is used to form the clean demonstration 350

x̃ =[SEP] San Jose is a location. During in- 351

ference, we empirically found that demonstrations 352

did not improve performance, hence we only input 353

the original sentence x into the NER model. 354

3.3 Stage II: Co-training 355

In this stage, we fine-tune the NER model f and 356

the discriminator g in a collaborative manner to 357

improve the performance of both. On the one hand, 358

the discriminator guides the NER model’s training 359

by reweighting the training labels. On the other 360

hand, the high-quality pseudo labels generated by 361

the NER model are used to augment the discrimi- 362

nator’s training. 363

Discriminator-guided training for NER. Even 364

though pseudo labels can effectively improve the 365

performance, they may reproduce the noise present 366

in the noisy training set, leading to confirmation 367

bias (Tarvainen and Valpola, 2017) that impedes 368

further model improvement. Therefore, we pro- 369

pose using the discriminator to guide self-training 370

by reweighting the pseudo labels. As shown in 371

Figure 3, we first extract the pseudo entities and 372

their corresponding classes from the pseudo label 373

sequences, and then insert them into the discrimina- 374

tive prompts. The outputs of the discriminator are 375

used as weights for the pseudo labels, resulting in 376

the following discriminative reweight loss (DRL), 377

Le/c
DRL = − 1

|D|

|D|∑
i=1

n∑
j=1

w
e/c
ij log f

e/c
êij/ĉij

(xij ;θ),

(4) 378

where êij and ĉij denote the pseudo span labels 379

and category labels, respectively, for the j-th token 380

in the i-th sentence; and f
e/c
êij/ĉij

refers to the entry 381

of êij or ĉij in the corresponding probability distri- 382

bution. Note that an entity could consist of several 383

tokens, to which we allocate equivalent weights. 384

We set the weights of negative span labels O to 0.5 385

by default to avoid overfitting on them. 386

Enhancing discriminator with high-quality 387

pseudo labels. Conversely, we use high-quality 388

pseudo labels generated by the NER model to en- 389

hance the discriminator’s training. We assess the 390

quality of pseudo labels based on two criteria: ac- 391

curacy and informativeness. Firstly, We follow 392

Yao et al. (2021) to use Jensen-Shannon divergence 393
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(JSD) as a proxy to evaluate the accuracy of the394

pseudo labels of a token xi,395

q(êi) = 1− JSD
(
fe(xi) ∥ one_hot(ei)

)
,

q(ĉi) = 1− JSD
(
f c(xi) ∥ one_hot(ci)

)
,

396

where êi and ĉi are pseudo span label and category397

label for token xi, while fe(xi) and f c(xi) are their398

corresponding probabilities from the entity head399

and classification head. ei and ci are observed la-400

bels in the training set, which are transformed into401

distributions by one-hot encoding.3 However, the402

mostly correct pseudo labels selected by the above403

metric is not always helpful for the discriminator404

training, as they may not carry new information.405

Intuitively, if the discriminator shows uncertainty406

for its own prediction, that particular pseudo la-407

bel becomes more informative. Similar to active408

learning (Chu and Wang, 2021; Schröder et al.,409

2021), we identify the most informative samples410

using the prediction entropy of the discriminator as411

a measure of uncertainty. The resulting token-level412

selection score s(·) is defined as,413

s(êi) = H
(
we(êi)

)
· q(êi) ,

s(ĉi) = H
(
wc(ĉi)

)
· q(ĉi) ,

414

where H is the entropy function while we(êi) and415

wc(ĉi) are discriminative scores of pseudo labels.416

However, our discriminator works at the entity, not417

token, level. We form the entity-level selection418

score by averaging the token-level scores within an419

entity, 1
L

∑L
i s(êi) and 1

L

∑L
i s(ĉi), where L is the420

number of tokens in the entity. We select top-K421

entities as pseudo positive samples for discrimi-422

nator, where K is set as a hyper-parameter. For423

each pseudo positive samples, we simulate pseudo424

negative samples in the same way as described in425

Section 3.1 to facilitate the discriminator training.426

To improve the few-shot ability of the discriminator427

(Gao et al., 2021), we use the approach described in428

Section 3.2 to generate demonstrations for the dis-429

criminator’s inputs when fine-tuning and utilizing430

the discriminator in the co-training stage.431

Lastly, in Stage III, we further fine-tune the ob-432

tained NER model only with the guidance set, as433

suggested in Jiang et al. (2021).434

4 Experiments435

4.1 Experiment Setup436

Datasets. We conduct the experiments on two437

kinds of noisy English NER datasets:438

3Label smoothing is used to avoid 0 entries.

Table 1: Dataset statistics.

Dataset #Types #Train #Test

CoNLL03-C 4 5,985 3,453

CoNLL03 4 14,041 3,453
OntoNotes 18 59,924 8,262
Wikigold 4 1,142 274

Crowdsourcing. We use a crowdsourced NER 439

dataset (Rodrigues and Pereira, 2018) based on 440

CoNLL03, denoted as CoNLL03-C, where 5,985 441

sentences are labeled by 47 non-expert annotators. 442

Redundant crowdsourced annotations for each to- 443

ken are aggregated into a single noisy label using 444

majority voting. 445

Distant supervision. We use three benchmarks for 446

distant supervision datasets including CoNLL03 447

(Sang and De Meulder, 2003), OntoNotes5.0 448

(Weischedel et al., 2013) and Wikigold (Balasuriya 449

et al., 2009). We follow BOND (Liang et al., 2020) 450

to obtain distant supervisions using existing knowl- 451

edge bases. The noise in these datasets is more 452

systematic, as it is mainly caused by entity ambi- 453

guity or missing entities. 454

We randomly sample the small guidance set from 455

the training set with ground-truth labels, ensuring 456

that all types are covered in the guidance set at 457

least
⌊

|C|
#Types

⌋
times. We use guidance sets of 200, 458

500, and 50 sentences on CoNLL03 and CoNLL03- 459

C, OntoNotes5.0, and Wikigold, respectively. For 460

each dataset the guidance sets are less than 5% of 461

the size of the full set. The size of the guidance 462

set C is an important hyperparameter that impacts 463

the final performance, so we further study its in- 464

fluence in Section 4.3. We use roberta-base as 465

the backbone model for both the NER model and 466

the discriminator. More implementation details 467

can be found in Appendix A. We also conduct a 468

comprehensive study of different model designs in 469

Appendix D, including using generative language 470

models (Chung et al., 2022) as discriminator back- 471

bones and different combinations of backbone mod- 472

els for the NER model and the discriminator. 473

Baselines. We compare against two broad classes 474

of related solutions as baselines. The first class of 475

baselines is approaches that only use noisy labels 476

and no clean data whatsoever: 477

• Distant RoBERTa, where a RoBERTa model is 478

fine-tuned using noisy labels. 479
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Table 2: Results on CoNLL03-C.

Methods Pre. Rec. F1

Distant RoBERTa 0.824 0.796 0.805
BOND 0.775 0.806 0.787
RoSTER 0.790 0.822 0.804

Fine-tune RoBERTa 0.695 0.699 0.694
Fine-tune RoSTER 0.778 0.831 0.802
NEEDLE 0.822 0.863 0.842
GLC 0.803 0.791 0.790
Meta-Reweight 0.768 0.835 0.799
Self-Cleaning 0.849 0.876 0.862

• BOND (Liang et al., 2020) fine-tunes a480

RoBERTa model on noisy labels with early-481

stopping, and then self-trains the resulting model.482

• RoSTER (Meng et al., 2021) combines a noise-483

robust loss and ensemble training to improve ro-484

bustness on noisy NER data, and then utilizes a485

language model augmented self-training.486

The second class of baselines covers approaches487

that similar to Self-Cleaning also utilize a guidance488

set when training, but the guidance set is used in489

different ways:490

• Fine-tune RoBERTa, where a RoBERTa model491

is fine-tuned on the guidance set.492

• Fine-tune RoSTER, where the final model of493

RoSTER is fine-tuned on the guidance set.494

• NEEDLE (Jiang et al., 2021) estimates the confi-495

dence scores of pseudo labels in the self-training496

stage using the histogram binning heuristic.497

• GLC (Hendrycks et al., 2018) estimates a class-498

level confusion matrix using the guidance set,499

which is used to calibrate the loss on noisy labels.500

• Meta-Reweight (Wu et al., 2022; Shu et al.,501

2019) uses a bi-level optimization framework502

to learn label weights. It learns the weights of503

pseudo labels by minimizing the meta-loss on the504

guidance set in the upper level and updates the505

NER model with the weights in the lower level.506

4.2 Main results507

We report the results on CoNLL03-C in Table 2508

and three distant supervision datasets in Table 3,509

where Self-Cleaning outperforms all baselines sig-510

nificantly. The performance of the second group511

of methods is generally better than the first group,512

which shows the necessity of the guidance from 513

clean data. GLC and Meta-Reweight are directly 514

borrowed from the Machine Learning community;4 515

both of them fail to improve the performance with 516

the guidance set. GLC estimates a confusion matrix 517

of labels using the guidance set. However, in the 518

NER scenario, label-level confusion is not mean- 519

ingful, e.g., all non-empty labels can be labeled as 520

O due to span error. NEEDLE uses the guidance set 521

to estimate the confidence scores by heuristics. In 522

contrast, informed by the analysis of noise that we 523

presented, we design a discriminator to handle two 524

types of errors in Self-Cleaning, which has shown 525

to be a more effective way to provide guidance 526

in the learning on noisy NER data. Please refer 527

to Appendix E for a detailed case study elucidat- 528

ing the workings of both the NER model and the 529

discriminator in Self-Cleaning. 530

Figure 4: Results with different |C|.

4.3 Influence of |C| 531

The size of the guidance set influences the qual- 532

ity of the discriminator, and thus affects the final 533

performance. We study the performance of Self- 534

Cleaning with different sizes of guidance sets. For 535

each |C|, we randomly sample 3 guidance sets. 536

Due to the space limit, we report the mean and stan- 537

dard deviation of F1 score on CoNLL03, similar 538

observations were also obtained on other datasets. 539

We show the results in Figure 4. With a smaller 540

guidance set, the performance of Self-Cleaning 541

drops as the quality of discriminator gets worse. 542

Also, the performance becomes more unstable with 543

smaller guidance sets, since the pattern distribution 544

in different sets is different. The results show that 545

the selection of the guidance set is crucial to the 546

final performance. If the guidance set is of low 547

quality or too small, the quality of the discriminator 548

will be the bottleneck of the final performance. 549

In additional experiments we find that to reach 550

4GLC on OntoNotes5.0 is not reported due to its poor
performance.
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Table 3: Results on distant supervision NER datasets. p-value is reported to show the statistical significance.

Methods CoNLL03 OntoNotes5.0 Wikigold
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Distant RoBERTa 0.784 0.756 0.743 0.760 0.715 0.737 0.534 0.623 0.566
BOND 0.849 0.854 0.848 0.740 0.767 0.753 0.541 0.679 0.595
RoSTER 0.856 0.867 0.859 0.759 0.792 0.771 0.581 0.716 0.637

Fine-tune RoBERTa 0.695 0.699 0.694 0.744 0.822 0.779 0.493 0.551 0.509
Fine-tune RoSTER 0.850 0.872 0.860 0.756 0.797 0.773 0.620 0.755 0.675
NEEDLE 0.861 0.877 0.866 0.730 0.782 0.751 0.707 0.777 0.738
GLC 0.866 0.853 0.856 - - - 0.626 0.754 0.679
Meta-Reweight 0.839 0.866 0.851 0.737 0.781 0.755 0.609 0.746 0.665
Self-Cleaning 0.883 0.882 0.882 0.809 0.846 0.826 0.761 0.798 0.778

RoBERTa (Gold) 0.907 0.930 0.918 0.884 0.912 0.897 0.823 0.858 0.839
p-value - - <0.005 - - <0.001 - - <0.001

the compareable performance (an F1 score of551

0.880) as Self-Cleaning (|C| = 200), RoBERTa552

(Gold) needs 1,000 clean instances, five times553

more than Self-Cleaning. Directly fine-tuning a554

RoBERTa model only on the same guidance set C555

results in markedly worse performance as seen in556

Table 3. Noisy labels do effectively improve the557

sample efficiency of clean data.558

4.4 Ablation Study559

To evaluate the individual contributions of different560

components in Self-Cleaning, we conduct an abla-561

tion study and create the following variants: Firstly,562

we remove the span prompts and only reweight the563

category labels. Secondly, we remove the category564

prompts, which means the discriminator can only565

reweight the binary span labels. Thirdly, we re-566

move clean demonstrations. Lastly, we remove the567

co-training strategy, and only use the pre-trained568

discriminator. Additionally, we also report the re-569

sults on Stage I and Stage II.570

We present the results in Table 4. As we dis-571

cussed in Section 2.3, span error is a severe issue572

in the noisy NER data. Without the ability to detect573

span errors, the performance drops considerably.574

Also, without clean demonstrations, the few-shot575

ability of the discriminator is limited and the NER576

model lacks of guidance when generating pseudo577

labels, causing a drop in performance. By com-578

paring the results of Stage I and RoSTER, we also579

observe that utilizing clean demonstrations leads to580

an improvement in the robustness of self-training.581

The co-training strategy is important to improve the582

discriminator, covering more patterns by involving583

pseudo positive labels from the NER model. Lastly,584

the improvement from Stage II to Self-Cleaning585

shows that fine-tuning on the guidance set can fur- 586

ther improve the performance. 587

Table 4: Results of ablation study on CoNLL03.

Methods Pre. Rec. F1

w/o Span Disc. 0.866 0.885 0.874
w/o Cat. Disc. 0.878 0.879 0.877
w/o Demonstration 0.888 0.873 0.878
w/o Co-training 0.882 0.877 0.878

Stage I 0.861 0.888 0.874
Stage II 0.881 0.879 0.880

Self-Cleaning 0.883 0.882 0.882

5 Conclusion 588

In this paper, we study how to improve NER mod- 589

els trained on noisy labeled data with a guidance 590

set consisting of a small number of clean instances. 591

Our research is grounded on the noise pattern anal- 592

ysis on the real-world noisy NER data. We identify 593

two NER-specific error types: span error and cate- 594

gory error. To address these errors, we propose to 595

use a dedicated discriminator to guide the training 596

of the NER model. This discriminator is tailored to 597

detect the aforementioned errors using pre-defined 598

discriminative prompts, and its outputs are used to 599

reweight the samples for training the NER model. 600

We design a three-stage training procedure to un- 601

leash the power of clean instances in guiding noisy 602

NER learning. We evaluate the proposed method 603

on a rich set of NER benchmarks with crowdsourc- 604

ing labels and distant supervisions. The results 605

show that with a few clean instances, the proposed 606

method can boost the performance significantly. 607
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Limitations608

The discriminator is the key part of Self-Cleaning,609

however, it has several limitations. Firstly, the cur-610

rent version is able to handle noise within recog-611

nized entities but it falls short when dealing with612

noise in non-entity labels, i.e., O labels. Secondly,613

since the discriminator works at the entity level, an614

entity with even partially incorrect labels is fully615

downweighted. This approach could lead to the616

discarding of potentially useful labels, especially617

when category labels are very sparse. Future work618

might consider the development of discriminators619

that operate on the token level.620

Additionally, it is also worth noting that in the621

current discriminator design, we did not make ex-622

plicit assumptions about the underlying mecha-623

nisms generating span and categorical errors. The624

negative samples are simulated by randomly mod-625

ifying tokens within entities and flipping their626

classes. Such negative samples may not be informa-627

tive enough to capture the salient patterns needed628

to distinguish correct labels from incorrect ones,629

thereby limiting the final performance. For a more630

comprehensive understanding and identification of631

the root causes of errors in noisy NER data, fu-632

ture work might incorporate more advanced error633

modeling techniques, such as lexical analysis or634

cross-validation against external knowledge bases.635

Ethics Statement636

Learning from noisy NER data diminishes the ne-637

cessity for large-scale, high-quality labeled data,638

thereby facilitating its use in domains where ob-639

taining expert knowledge is costly, such as in legal640

and financial sectors. Our proposed method paves641

the way for achieving a model with reasonable per-642

formance while keeping the cost of expert-labeled643

data within an acceptable range. It has the poten-644

tial to lower the entry barrier for novices who have645

limited data at their disposal.646

However, we should notice our method makes it647

easier to attack the modeling training by poisoning648

the guidance set. Given the limited size of the649

guidance set, a subtle change could drastically alter650

its distribution, potentially leading to the collapse651

of the entire training pipeline.652
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A Implementation Details 838

In Self-Cleaning, we use roberta-base as the 839

backbone for both NER model and the discrim- 840

inator. We use AdamW optimizer to optimize both 841

NER model and the discriminator. We pre-train the 842

discriminator with a learning rate 2e−5 and 5e−6 843

during co-training. The training batch size is fixed 844

as 64. To update the NER model, we use learning 845

rate 5e−6 for CoNLL03 and Wikigold, and 5e−7 846

for OntoNotes5.0. During co-training, we choose 847

K = 20 pseudo entities per class to fine-tune the 848

discriminator. We first use the noise-robust loss 849

and ensemble training in Meng et al. (2021) to 850

pre-train the NER model on noisy NER data, and 851

then apply the proposed Self-Cleaning approach 852

on the obtained model. GLC, Meta-Reweight and 853

NEEDLE start with the same pre-trained model as 854

Self-Cleaning. All experiments are repeated with 855

3 random seeds and 3 randomly sampled guidance 856

sets. The averaged metrics are reported. We run our 857

experiments on 2 NVIDIA GeForce RTX 2080Ti 858

GPUs with 12 GB memory. 859

Table 5: Results on synthetic noisy CoNLL03.

Methods Type Noise Rate
0.2 0.4 0.6

RoSTER Span 0.852 0.823 0.462
Cat. 0.886 0.873 0.667

Self-Cleaning Span 0.901 0.897 0.896
Cat. 0.899 0.895 0.864

B Verbalizer 860

We list the mapping between NER labels and words 861

used in our prompt-based discriminator. 862

• CoNLL03: PER - person, LOC - location, ORG - 863

organization, MISC - other. 864

• OntoNotes5.0: WORK_OF_ART - work of art, 865

PRODUCT - product, NORP - affiliation, ORG - or- 866

ganization, FAC - facility, GPE - geo-political, 867

LOC - location, PERSON - person, EVENT - event, 868

LAW - law, LANGUAGE - language, PERCENT - per- 869

cent, ORDINAL - ordinal, QUANTITY - quantity, 870

CARDINAL - cardinal, TIME - time, DATE - date, 871

MONEY - money. 872

• Wikigold: PER - person, LOC - location, ORG - 873

organization, MISC - other. 874
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C Experiments on Synthetic Datasets875

Settings. We also evaluate Self-Cleaning on syn-876

thetic data, where we manually create noisy NER877

data. We create two kinds of datasets based on878

CoNLL03 with span and category errors, respec-879

tively. For each error type, we control the noise880

rates. For the span error, the noise rate controls881

the probability to add or remove a token around882

a ground-truth entity. For the category error, the883

noise rate defines the probability of the class of a884

ground-truth entity to be flipped into a noisy class.885

Results. We present the results in Table 5, where886

we also show the results of RoSTER to study the887

effect of noise rate. We can observe that with larger888

noise rate, the performance of RoSTER decreases889

significantly. But with our dedicated discriminator,890

both types of errors can be detected and down-891

weighted, leading to a robust performance.892

Table 6: Results of various discriminator backbones.

Backbone Pre. Rec. F1

roberta-base 0.883 0.882 0.882
roberta-large 0.885 0.883 0.884

flan-t5-small 0.878 0.873 0.875
flan-t5-base 0.884 0.877 0.878
flan-t5-large 0.889 0.877 0.881

D Experiments of different model designs893

D.1 Study of Discriminator Backbones894

To study the effect of different kinds of discrim-895

inators, we also incorporate Self-Cleaning with896

Generative Language Model (GLM) based discrim-897

inator. Specifically, we use Flan-T5, an instruction898

fine-tuned GLM family (Chung et al., 2022). Ac-899

cordingly, we design the following two prompts,900

• Span: [X]. [Y] is an entity. Is it correct?901

• Category: [X]. [Y] is a [Z] entity. Is it correct?902

The GLM-based discriminator is supposed to903

choose an answer from [correct, wrong]. We use904

the same method in Section 3.1 to create create both905

positive and negative samples for the pre-training906

of the discriminator. We consider three Flan-T5907

variants with varying parameter sizes to understand908

the impact of model scaling. Additionally, we in-909

clude results obtained by using roberta-large as910

the backbone of the discriminator.911

In Table 6, we report the results on CoNLL03. 912

We can observe that with a larger backbone model, 913

the final performance is slightly better. Interest- 914

ingly, both MLM-based and GLM-based discrimi- 915

nators achieve similar final performance. The suc- 916

cess of GLM-based discriminators make it possible 917

to introduce more powerful GLMs like the GPT 918

family (Radford et al., 2019) in the future. How- 919

ever, the performance gains from larger models are 920

marginal, suggesting a performance bottleneck. We 921

hypothesize that the randomly generated negative 922

samples may not be sufficiently informative. We 923

leave how to create useful negative samples for the 924

discriminator as an important future work. 925

D.2 Study of Encoder Configurations 926

In Self-Cleaning, we employ two roberta-base 927

models as encoders for the NER model and the 928

discriminator respectively. Additionally, we experi- 929

mented with alternative designs, such as building 930

both the NER model and the discriminator on top 931

of a single roberta-base encoder. In this configu- 932

ration, we added an entity head and a classification 933

head for the NER model, while also incorporat- 934

ing an MLM head for the discriminator. We also 935

conducted similar tests using the roberta-large 936

model and have reported these results as well. 937

The results on CoNLL03 are reported in Table 7. 938

The variants utilizing roberta-large show better 939

performance than those based on roberta-base, 940

owing to the increased power of the backbone 941

model. However, when the NER model and the 942

discriminator share a single encoder, it negatively 943

affects the final performance. Specifically, the 944

RoBERTa encoder, when trained on noisy NER 945

data, tends to propagate its noise to the discrimi- 946

nator, thereby affecting its quality. Therefore, to 947

ensure the isolation between clean and noisy data, 948

we recommend employing separate encoders for 949

the NER model and the discriminator. This design 950

is also more flexible as we are able to use differ- 951

ent backbone models for the NER model and the 952

discriminator, as we did in Section D.1. 953

E Case Study and Analysis 954

E.1 Case Study of the NER model 955

In Table 8, we perform case study to understand the 956

advantage of Self-Cleaning with a concrete exam- 957

ple, by comparing with the best baseline without 958

guidance RoSTER and with guidance NEEDLE. 959

Without the guidance about the span and category 960
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Table 7: Results of different encoder configurations.

Encoder Pre. Rec. F1

one roberta-base 0.881 0.875 0.878
two roberta-base 0.883 0.882 0.882

one roberta-large 0.889 0.879 0.884
two roberta-large 0.897 0.887 0.892

errors, RoSTER fails to detect the correct span of961

Sheffield Shield and classify Bellerive Oval962

even though the span is correct. NEEDLE esti-963

mates the confidence scores according to the NER964

model’s outputs via the histogram binning heuris-965

tic (Zadrozny and Elkan, 2001), which is ineffec-966

tive to handle both span and category errors. Self-967

Cleaning is able to downweight the noisy entities968

with wrong spans and classes, leading to the correct969

recognition of the testing sentence.970

E.2 Case Study of the Discriminator971

We present some example outputs of the discrimi-972

nator in Table 9. Even when the class of an entity973

is incorrectly identified, the discriminator can still974

evaluate the span correctly. For instance, in the first975

example, China is correctly recognized as an entity,976

but is misclassified as ORG. The discriminator accu-977

rately assigns a low score to the category label and978

a high score to the span label. However, if the span979

label is incorrect, the category label will also be980

downweighted by the discriminator. For example,981

in the third case, both the span score and category982

score are low. Intuitively, correct entity recognition983

is a prerequisite for correct classification, making984

it meaningless to preserve the category label if the985

span label is incorrect.986

We also investigate the quality of the discrimi-987

nator in Figure 5. We rank the pseudo entities in988

ascending order based on discriminator scores and989

then report the mean accuracy by comparing these990

pseudo entities with their corresponding ground-991

truth entities. As seen in the figure, entities with992

low discriminator scores exhibit poor quality. For993

instance, the accuracy of the category labels for the994

bottom 10% of entities is approximately 0.4. As we995

incorporate more high-scoring entities, the mean996

accuracy shows a noticeable increase. This trend997

elucidates the discriminator’s role in guiding the998

training of the NER model, primarily by accurately999

downweighting noisy labels.1000

Figure 5: Mean accuracy of accumulated entities with
ascending order of discriminator scores on CoNLL03
with |C| = 200.
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Table 8: Case study of Self-Cleaning and baselines. The sentence is from CoNLL03.

Ground truth Score on the first day of the four-day [Sheffield Shield]MISC match between
[Tasmania]LOC and [Victoria]LOC at [Bellerive Oval]LOC on Friday.

RoSTER Score on the first day of the four-day [Sheffield]MISC Shield match between
[Tasmania]LOC and [Victoria]LOC at [Bellerive Oval]ORG on Friday.

NEEDLE Score on the first day of the four-day [Sheffield]MISC Shield match between
[Tasmania]LOC and [Victoria]LOC at [Bellerive]ORG Oval on Friday.

Self-Cleaning Score on the first day of the four-day [Sheffield Shield]MISC match between
[Tasmania]LOC and [Victoria]LOC at [Bellerive Oval]LOC on Friday.

Table 9: Case study of the discriminator. The sentences are from CoNLL03.

Ground truth
After the defeat of the resolution , drafted by the European Union and the United States , [China]LOC
’s Foreign Ministry thanked 26 countries for backing its motion for " no action " on the document .

After the defeat of the resolution , drafted by the European Union and the United States , China ’s
Foreign Ministry thanked 26 countries for backing its motion for " no action " on the document .
[China] is a <mask> entity . Span score is 0.9999.

After the defeat of the resolution , drafted by the European Union and the United States , China ’s
Foreign Ministry thanked 26 countries for backing its motion for " no action " on the document .
[China] is a <mask> [organization] entity . Category score is 0.0003.

Ground truth
Arafat subsequently cancelled a meeting between Israeli and PLO officials , on civilian affairs ,
at the Allenby Bridge crossing between Jordan and the [West Bank]LOC .

Arafat subsequently cancelled a meeting between Israeli and PLO officials , on civilian affairs ,
at the Allenby Bridge crossing between Jordan and the West Bank . [West Bank] is a <mask>
entity . Span score is 0.9993.

Arafat subsequently cancelled a meeting between Israeli and PLO officials , on civilian affairs ,
at the Allenby Bridge crossing between Jordan and the West Bank . [West Bank] is a <mask>
[organization] entity . Category score is 0.0004.

Ground truth
At a news conference attended by approximately 50 players on Sunday , U.S. [Davis Cup]MISC
player Todd Martin expressed the players ’ outrage at the seedings .

At a news conference attended by approximately 50 players on Sunday , U.S. Davis Cup player
Todd Martin expressed the players ’ outrage at the seedings . [Davis] is a <mask> entity .
Span score is 0.0009.

At a news conference attended by approximately 50 players on Sunday , U.S. Davis Cup player
Todd Martin expressed the players ’ outrage at the seedings . [Davis] is a <mask> [other] entity .
Category score is 0.0346.
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