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Abstract

StyleGAN is one of the most versatile generative models that have emerged in recent times.
However, when it is trained continually on a stream of data (potentially previously unseen
distributions), it tends to forget the distribution it has learned, as is the case with any
other generative model, due to catastrophic forgetting. Recent studies have shown that the
latent space of StyleGAN is very versatile, as data from a variety of distributions can be
inverted onto it. In this paper, we propose StyleCL, a method that leverages this property
to enable lifelong learning in StyleGAN without forgetting. Specifically, given a StyleGAN
trained on a certain task (dataset), we propose to learn a latent subspace characterized by
a set of dictionary vectors in its latent space, one for each novel, unseen task (or dataset).
We also learn a relatively small set of parameters (feature adaptors) in the weight space
to complement the dictionary learning in the latent space. Furthermore, we introduce a
method that utilizes the similarity between tasks to effectively reuse the feature adaptor
parameters from the previous tasks, aiding in the learning process for the current task at
hand. Our approach guarantees that the parameters from previous tasks are reused only if
they contribute to a beneficial forward transfer of knowledge. Remarkably, StyleCL avoids
catastrophic forgetting because the set of dictionary and the feature adaptor parameters are
unique for each task. We demonstrate that our method, StyleCL, achieves better generation
quality on multiple datasets with significantly fewer additional parameters per task compared
to previous methods. This is a consequence of learning task-specific dictionaries in the latent
space, which has a much lower dimensionality compared to the weight space. Code for this
work is available at link

1 Introduction

Continual learning (CL) is a fundamental machine learning paradigm that focuses on the model’s ability to learn
and adapt to new tasks or evolving data streams over time while ensuring that previously acquired knowledge
remains intact. Extensive research has explored continual learning within the context of discriminative models
De Lange et al. (2022), but relatively less attention has been devoted to the application of this paradigm in
the realm of generative models. However, recent progress in the field of generative modelling has brought
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them to the forefront of application domains. Specifically, models such as Generative Adversarial Networks
(GANs) Goodfellow et al. (2014) and denoising diffusion models Ho et al. (2020) have found their utility in a
wide variety of tasks such as semantic editing Ling et al. (2021), image in-painting, Yu et al. (2018) etc. Thus,
it is imperative to consider the problem of continual learning in the context of generative models Lesort et al.
(2019).

It is essential to note that Diffusion models offer remarkable generation quality enhancements, albeit with
a trade-off of increased inference time. On the other hand, GANs excel in efficiency, requiring only a
single forward pass for generation. Furthermore, the introduction of GigaGAN, Kang et al. (2023) and
StyleGAN-T Sauer et al. (2023) have illustrated their ability to provide competitive generation quality while
maintaining faster inference speeds in text-conditioned image generation tasks. Given these advantages, we
turn our attention to continual learning in GANs for unconditional generation. Also, recently many recent
state-of-the-art GANs for various tasks, as seen in works like Kang et al. (2023); Sauer et al. (2023); Fu
et al. (2022), employ StyleGAN- based architectures. This inspires our investigation into StyleGAN-based
architectures for continual learning.

We hypothesize, that StyleGAN is suited for generative continual learning because of its versatility, in that,
a large variety of datasets can be inverted onto its extended latent space (W+) as observed in Abdal et al.
(2019). Motivated by these observations, we investigate whether the latent space of StyleGAN can be exploited
to generate data from a stream of datasets without forgetting. Towards that end, we propose a method titled
StyleCL to learn a per-task, style-wise dictionary of vectors that define a subspace in the latent space of
StyleGAN. In addition to latent dictionary learning, we also learn a set of parameters in the weight space, to
accommodate a richer knowledge in tandem with the learned latent subspace.

Knowledge transfer, a cornerstone of continual learning, assumes a central role in StyleCL. StyleCL utilizes
the latent space to identify the most similar task unlike GAN Memory Cong et al. (2020) and CAM-GAN
Varshney et al. (2021) where the most similar task is characterized using the most recent task or the task with
high Fisher information respectively. We also determine the nature of forward knowledge transfer (positive or
negative) by measuring the cosine similarity of dictionary vectors to its projection onto the latent subspace of
the most similar task which is then used to prevent negative forward transfer.

The following is a summary of our contributions:

• Latent subspace learning for StyleGAN: We propose a latent subspace learning approach that
enables learning without forgetting for StyleGAN.

• Improved generation quality: By harnessing the versatility of the latent space of StyleGAN,
our method outperforms contemporary approaches like CAM-GAN and GAN Memory in terms of
generation quality, all while employing fewer parameters (28.95% reduction) and FLOPs (11.6%
reduction).

• Prevention of negative forward transfer: We further propose a simple way to identify the most
similar previous task and also characterize the nature of forward transfer between any two tasks to
prevent negative forward transfer. To the best of our knowledge, StyleCL stands out as the sole
method capable of averting negative forward transfer.

2 Related Work

Generative Continual Learning: Continual Learning methods are broadly categorized into three categories:
replay-based, regularization-based and parameter isolation-based methods. These categorizations are defined
for a discriminative continual setting but they can be applied to generative continual learning as well.

Chenshen et al. (2018) introduces MerGAN, a replay-based GAN that combines generated samples from
previous tasks with new task data to form an extended training dataset. They also introduce a replay-
alignment loss to ensure consistent generation for previous tasks as the number of tasks increases. Zhai. et al.,
presents Lifelong GAN for continual image-conditioned image generation, employing knowledge distillation
and auxiliary data generation by creating patch montages from training batches to mitigate catastrophic
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forgetting. However, replay-based approaches face scalability issues due to cumulative inaccuracies when a
single generator is incrementally updated.

Parameter isolation techniques like PiggybackGAN Zhai et al. (2020) freeze old task parameters and
introduce smaller new parameters for learning without forgetting. GAN memory Cong et al. (2020) employs
normalization parameters to adapt the generator’s weights to incoming data streams. CAM-GAN Varshney
et al. (2021) introduces adaptation modules via group-wise convolutions at the output of each convolution
layer in the base network. Similar to CAM-GAN Verma et al. (2021), proposes efficient feature transformation
enabling continual learning with minimal parameter expansion for both generative and discriminative tasks.
Recently, Seo et al. (2023) proposed LFS-GAN for continual learning in a few-shot setting. This is achieved by
learning an efficient task-specific modulator on top of a pre-trained StyleGAN and utilizing these task-specific
modulators for generating from each of the tasks during inference. Contrary to all these methods, StyleCL
takes a different approach by learning a latent subspace alongside shared weight space parameters, facilitating
continual learning rather than solely relying on efficient feature transformations.

Even though few regularisation-based approaches like Liang et al. (2018) and Seff et al. (2017) use regulari-
sations to enable continual learning, their generation quality still degrades over time and thus parameter
isolation methods appear to be a better choice and have been receiving more attention.

Knowledge transfer in continual learning: Knowledge transfer is a crucial aspect of continual learning,
predicated on the notion that similar tasks inherently possess shared knowledge that can be effectively
transferred between them. However, previous approaches, like MerGAN Chenshen et al. (2018), Lifelong
GAN Zhai et al. (2019), and Piggyback GAN Zhai et al. (2020), often lack explicit mechanisms to facilitate
this positive knowledge transfer. While GAN Memory Cong et al. (2020) demonstrates promise in enabling
knowledge transfer, it relies on the assumption that the most recent task is invariably the most similar,
a notion that does not consistently hold. In contrast, CAM-GAN Varshney et al. (2021) quantifies task
similarity by approximating the Fischer information matrix (FIM) and posits that initializing the current
task with parameters from the most similar task would consistently yields positive forward transfer which
may not always hold true. StyleCL distinguishes itself by characterizing both the most similar task and the
nature of forward transfer using the latent space, thus effectively capturing the state of the generator while
identifying the most similar task and elucidating the nature of the forward knowledge transfer.

3 Proposed Method: StyleCL

3.1 Problem Setting

We introduce a model for learning from a sequence of datasets, where each dataset is identified by a unique
task ID and is presented sequentially for training. Let {X t}Tt=1 denote these datasets, with X t comprising N
instances {xti}Ni=1, each sampled from the task-specific distribution pt. Our challenge is to obtain a Generative
Adversarial Network (GAN) that generates samples from the current task distribution without forgetting the
distributions from previous tasks.

Our method starts by training a GAN as in (Karras et al., 2020a) on the first (or base) dataset (task),
denoted by G1. The parameters of G1 are denoted by ϕ1 and are shared by all the subsequent tasks. For each
subsequent dataset X t(t > 1), we learn a latent subspace characterized by Ut and bt on the latent space of
G1 as detailed in Sec. 3.2. Next, we determine the most similar previous task to the current task, designated
as task k by leveraging bt. We further elaborate this process in Sec. 3.3.1. Upon identifying the task k, we
acquire its corresponding generator, denoted by Gk. We then evaluate whether the parameters from task
k are advantageous for learning the present task t as elaborated in Sec. 3.3.2. When the parameters from
task k are beneficial, we learn subspace Ut and feature adaptors ϕt within the latent and weight space of Gk,
otherwise, we shift this training to the latent and weight spaces of the base generator G1, as described in
Sec. 3.4. Fig. 1 presents an overview of our method, which we name ‘StyleCL’.
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Figure 1: Overview of StyleCL: Fig. (a) illustrates the generative continual learning problem, where a
continuous stream of data arrives, and the objective is to generate samples from both current and past data
without forgetting. At time t, the framework begins by learning the parameters Ut and bt in the latent
space of the generator G1 using the dataset X t, as shown in Fig. (b). Task similarity is then evaluated
to identify the most similar previous task k, along with its corresponding generator Gk, and the degree of
forward transfer is computed. As demonstrated in Fig. (c), the feature adaptor block ϕtm, along with the
parameters of Skm, is used to obtain the activation map f tm. If negative forward transfer occurs, k is set to 1,
meaning only the style blocks from G1 (S1

m) are used to generate f tm.

3.2 Latent Dictionary Learning

We employ StyleGAN2 Karras et al. (2020a) architecture for the generators G that contains M style blocks
and for simplicity of discussion, we assume each of these style blocks comprises just 1 layer. The first stage of
our method is to learn a set of dictionaries on the extended latent space

(
W+ space) of the StyleGAN. Given

a dataset X t, a dictionary Ut
m = {utm1, . . . ,utmi, . . . ,utmK},utmi ∈ Rd, containing K vectors are learned for

each of the m = 1, 2, ..,M style blocks of the generator along with a bias vector btm. Note that the elements
of Ut

m define a latent subspace within the
(
W+)

space of StyleGAN while the learned bias vector btm serves
to translate this subspace. Consequently, btm characterizes the position of the latent subspace with respect to
the origin.

During the training, the parameters of Ut
m are initialized randomly. First, a batch of vectors is stochastically

sampled from each dictionary Ut
m as follows:

wt
m = zm1 utm1 + zm2 utm2 . . .+ zmK utmK + btm (1)
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where zm = [zm1, . . . , zmK ] ∼ N (0, I). Further, each wt
m corresponding to every style block is concatenated

to form wt as:
wt = [wt

1, . . . ,wt
M ],wt ∈ W+ (2)

Finally, wt is passed as the input to the corresponding generator to generate images from pt(xt).

3.3 Forward Transfer

3.3.1 Choosing the most similar previous task

This section outlines a method for identifying the task k that is most similar to the current task t. Determining
the closest prior task enables the transfer of knowledge from that task to the current task, a concept parallel
to forward transfer in continual learning literature Chen & Liu (2018). In order to find the task that is most
similar to an incoming task, it is necessary to characterize both the previous as well as the current task in
the latent space. We characterize the current task t by learning Ut

m and bt using the base generator G1. It is
important to mention that Um and bm are already learned for the previous tasks from 2 to t− 1.

For a given task t, we define the most similar task k as the task whose latent subspace is closest to the
subspace of task t. This assumption is based on the observation that the latent vectors of similar tasks tend
to be close in proximity, while those of dissimilar tasks are farther apart, as illustrated in Fig. 5. The bias
vector btm represents the extent to which the latent subspace Ut

m is shifted, and we can use the Euclidean
distance between bias vectors to quantify the similarity between subspaces across tasks. To motivate the
comparison of bias vectors as a measure of subspace similarity, consider a simplified scenario where the
dictionary consists of a single vector along with a bias term. In this case, the latent vectors lie within an
affine subspace, represented as b+αu1, where b is the bias and u1 is the dictionary vector. Similarly, we could
define a latent space for another dataset as b′ + α′u′

1. To measure this similarity, we begin by computing
the Euclidean distance between the bias vectors b and b′. This distance provides a measure of how closely
the subspaces are aligned in the feature space. Furthermore, to assess the alignment between the subspaces
more comprehensively, we define a similarity metric sim(t, k) that captures the orientation and overlap of the
subspaces defined by the corresponding dictionaries.

The most similar task k is then identified as the task whose bias vector br is closest to the bias vector bt of
task t. Formally, this is expressed as:

k = argmin
r:r∈{2,...,t−1}

∥bt − br∥2 (3)

Intuitively, equation equation 3 quantifies the discrepancy in how the subspaces of task t are translated
relative to the subspaces of previous tasks. This choice is grounded in the assumption that subspaces of
similar tasks should be closer in the latent space, as evidenced by the empirical results shown in Fig. 5.

3.3.2 Preventing negative forward transfer

Choosing the most similar task facilitates selecting a task with a similar set of features as that of the current
task, although this may result in negative forward transfer. This situation arises because two subspaces Ut

m

and Uk
m might be orthogonal to each other despite being translated by the same bias vector. To alleviate

this problem, we estimate the nature of forward transfer (positive or negative) by computing the cosine
similarity of dictionary vectors of the current task to its projection onto the latent subspace of the most
similar task k. To compute the task similarity, both set of latent vectors Ut and Vk should be in the same
latent space. We learn Ut in the latent space of Gk to facilitate this before computing the task-similarity.
Let Vk

m = {vkm1, . . . ,vkmj , . . . ,vkmK},vkmj ∈ Rd correspond to the orthonormal vectors obtained using the
Gram-Schmidt orthogonalization procedure on the dictionary vectors Uk. The projection of utmi onto the
latent subspace characterized by the orthonormal vectors Vk

m for a style block m is defined as:
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ptkmi =
K∑
j=1

⟨utmi · vkmj⟩vkmj (4)

Subsequently, the nature of forward transfer is estimated as follows :

sim(t, k) = 1
M

M∑
m=1

K∑
i=1

cos
(
utmi,ptkmi

)
= 1
M

M∑
m=1

K∑
i=1

utmi · ptkmi
∥utmi∥

∥∥ptkmi
∥∥

(5)

The value of sim(t, k) lies in the range [−1, 1], indicating the degree of forward transfer. Specifically,
sim(t, k) > 0 signifies potential positive forward transfer. We do not reuse the parameters from the most
similar task when sim(t, k) ≤ 0 to prevent negative forward transfer.Intuitively, sim(t, k) quantifies the
similarity or alignment between the latent subspaces of tasks. sim(t, k) ≤ 0 denotes orthogonality or higher
degree of misalignment between the latent subspaces of the current task t and the most similar task k, where
feature reuse could be detrimental to the performance. Conversely, higher values of sim(t, k) suggest a strong
alignment of these subspaces, which may lead to more effective positive knowledge transfer.

3.4 Feature Adaptors in the Weight Space

We observed empirically that learning Ut
m alone may not be fully sufficient to model pt(xt). Therefore, we also

introduce additional feature adaptor blocks on the weight space of the generator to obtain Gt. Since the latent
subspace would have already captured some characteristics of the datasets, the number of feature adaptor
parameters to be learned would be lesser (Tab. 2). Theoretically, the necessity of feature adaptors arises from
the limitation of dictionary learning alone in generating all possible task subspaces. Specifically, dictionary
learning may not be sufficient to capture the full range of task-specific features, as the base generator may
lack the required features that can be modulated to represent the target features of semantically distinct
tasks. By introducing feature adaptors, we extend the capacity of the base generator to learn additional
features that are not present or cannot be obtained through modulation of the dictionary features alone.

Let Stm denote the mth style block within the generator Gt for task t. We present an approach to compute
the activation map f tm, which essentially corresponds to the output of the style block Stm. Following Sec. 3.3,
we obtain the most similar task k and assess the potential negative forward transfer when considering the
utilization of parameters from task k to learn the parameters of the current task. Let Gk represent the
generator corresponding to task k. The computation of activation map f tm varies depending on whether the
task k leads to positive forward transfer or not. Let us consider the scenario in which task k results in a
negative forward transfer. In such instances, we refrain from using the parameters of task k, and the activation
map f tm corresponding to task t is obtained using only styleblocks of G1 as in equation 6. Alternatively, in
case of negative transfer, one could resort to identifying the next most similar task, estimate its nature of
forward transfer and use its parameters for facilitating forward transfer subject to computational and time
constraints.

f tm = S1
m(f tm−1) + αtm × ϕtm(f tm−1) (6)

Here, ϕtm corresponds to the trainable feature adaptor which is a 1 × 1 Convolution layer. Both ϕtm and
scaling coefficient αtm are learnable and jointly learned with the latent dictionary.

When task k results in a positive forward transfer, we utilize the parameters of task k to determine the
activation map f tm through the following process :

f tm = Skm(f t−1
m ) + αtm × ϕtm(f tm−1) (7)
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where

Skm(f t−1
m ) = f1

m + · · ·︸︷︷︸
activations from
similar tasks of k

(if any)

+αkm · ϕkm(f tm−1)

In this scenario, the feature adaptor block ϕtm is designed to acquire additional information that is not
present in Gk. By adopting this approach to obtain feature activation maps, we ensure that the relevant
parameters are reused for the current task, while any irrelevant parameters are discarded. Additionally, given
the recursive nature of the computation, it ensures that the parameters of the tasks similar to task k are also
employed in obtaining the feature activation maps for the current task t.

We follow the training paradigm in Karras et al. (2020a), which includes adversarial loss L1. We also utilize
the Perceptual Path Regularizer (PPL) Karras et al. (2020b) and R1 regularization Mescheder et al. (2018)
as in Karras et al. (2020b) to ensure smoothness and facilitate better convergence.

L1(Dψ,G) = Ex∼pt(xt)[logDψ(x)]
+ Ez1,...,zM ∼N (0,I)[1 − logDψ(G(wt))]

(8)

We provide a comprehensive overview of the StyleCL training process in Algorithm 1.

Algorithm 1 StyleCL: Training Procedure
Input: {X t}Tt=1: Stream of T datasets.
Output: Learned parameters: {Ut,bt}Tt=2, generator G1, and adaptors {ϕt}Tt=2

1: Train StyleGAN2 with dataset X 1 to obtain G1

2: for t = 2 to T do
3: Initialize discriminator ψ, Ut, bt
4: Optimize Ut and bt using L1(Dψ,G1) as in equation 8
5: Determine most similar task k using equation 3 to get Gk
6: for each training iteration do
7: Sample latent vector wt using equation 1 and equation 2
8: Optimize Ut and bt using L1(Dψ,Gk) as in equation 8
9: end for

10: Calculate task similarity sim(t, k) using equation 5
11: Initialize feature adaptor parameters ϕt and αt
12: if sim(t, k) > 0 then
13: Obtain f tm of Gt using equation 7
14: Initialise Ut, bt using weights from step 8
15: else
16: Obtain f tm of Gt using equation 6
17: Initialise Ut, bt using weights from step 4
18: end if
19: Optimize Ut, bt, and ϕt using L1(Dψ,Gt) as in equation 8
20: end for

4 Experiments and Results

4.1 Baselines and Metrics

We employ StyleGAN2 Karras et al. (2020a) as the base architecture for all experiments. StyleCL is compared
to GAN Memory, CAM-GAN with task similarity learning, and MerGAN. We implemented all the baselines
with the StyleGAN2 backbone to ensure a fair comparison. Evaluation metrics include the Fréchet Inception
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Figure 2: Qualitative Evaluation: Generated Images by StyleCL compared against various baselines across
six distinct tasks, including the initial base task. Each row showcases results from a different generative
method, while each column displays the progression of generated samples, illustrating the model’s capacity to
retain and refine image quality throughout the sequence of tasks. This visual representation highlights the
competence of StyleCL in maintaining high-fidelity generation across diverse datasets.

Distance (FID) Heusel et al. (2017), Density, and Coverage Naeem et al. (2020), which are pivotal for assessing
the quality and diversity of generated images. Additionally, we examine the computational and memory
overhead using FLOPs and parameter count Dehghani et al. (2022), essential for evaluating the scalability
of continual learning approaches. As pointed out in Dehghani et al. (2022), data from major cloud service
providers indicate that 85-90% of ML workload is in inference processing, considering this we measure FLOPs
during inference stage using fvcore package1.

For comprehensive definitions of these metrics, please refer to Appendix B.2.

4.2 Results for perceptually distant tasks

Adhering to protocols established in CAM-GAN and GAN-Memory, our initial model training employs the
CelebA-HQ Karras et al. (2018) dataset. This is followed by sequential training on six datasets that are
significantly varied in visual content, thus ’perceptually distinct’: Oxford 102 Flowers Nilsback & Zisserman
(2008), LSUN Church Yu et al. (2015), LSUN Cats Yu et al. (2015), Brain MRI Cheng et al. (2016), Chest
X-Ray Kermany et al. (2018), and Anime Faces 2. Qualitative comparisons of generated samples (Fig. 2)
demonstrate that StyleCL consistently produces superior image quality compared to the baselines. We provide
additional qualitative results in Appendix B.2 of supplementary materials.

Quantitative results, detailed in Tab. 1, confirm that StyleCL surpasses the baseline methods on most fronts
according to FID, Density, and Coverage metrics. Additionally, Tab. 2 illustrates StyleCL’s reduction in
parameters and the marginal increase in FLOPs, training and inference time for each of the methods. We
provide an expanded version of scalability metrics in Appendix B.2 of supplementary materials. Despite
lacking specific adaptation modules present in methods like CAM-GAN, StyleCL efficiently modulates the
latent space, achieving high-quality generation with fewer parameters. While MerGAN maintains static

1https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md
2https://github.com/jayleicn/animeGAN
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parameters and FLOP counts, it sacrifices generation quality for previous tasks—an issue StyleCL circumvents
with its no-forgetting approach.

Methods MerGAN GAN Memory CAM-GAN StyleCL
````````````Dataset

Metrics FID ↓ D ↑ Cov ↑ FID ↓ D ↑ Cov ↑ FID D ↑ Cov ↑ FID ↓ D ↑ Cov ↑

Flowers 45.14 0.6 0.49 23.97 0.73 0.71 23.38 0.89 0.71 18.48 0.67 0.77
LSUN Church 31.41 0.56 0.18 37.9 0.30 0.11 24.25 0.20 0.17 17.36 0.59 0.41
LSUN Cat 53.52 1.10 0.20 53.22 0.86 0.32 52.59 0.62 0.22 34.43 1.15 0.41
Brain MRI 78.80 0.16 0.29 45.78 0.32 0.55 31.26 0.18 0.77 29.42 0.38 0.82
Chest X-Ray 58.51 0.13 0.11 58.82 0.23 0.3 24.81 0.36 0.73 25.83 0.55 0.75
Anime 39.83 0.35 0.09 16.20 0.63 0.38 21.52 0.50 0.27 12.38 0.62 0.39

Table 1: Quantitative performance metrics of StyleCL compared with MerGAN, GAN Memory, and CAM-
GAN across six datasets. Fréchet Inception Distance (FID), Density (D), and Coverage (Cov) are used as
evaluation metrics, with the ideal direction of metric improvement indicated in parentheses. The table clearly
demonstrates the superior performance of StyleCL in terms of lower FID scores and higher Density and
Coverage across most datasets, signifying better image quality and greater diversity in generated samples.

Algorithm Params Increase FLOPs Increase Training Time (s) Inference Time (ms)
per Task ↓ (%) ↓ (per iteration) ↓ ↓

GAN Memory 4.21M 15.7 230 7.32
CAM-GAN 1.52M 23.32 180 4.74
StyleCL 1.08M 4.1 110 3.92

Table 2: Comparison of our approach (StyleCL) against the baselines GAN Memory and CAM-GAN regarding
parameter increase per task, percentage increase in FLOPs, training and inference time.

(a) Real data samples
from X 5

(b) Real data samples
from X 3

(c) Generated samples
from X 5

(d) Generated samples
αt

m = 0
(e) Generated samples

αk
m = 0

Figure 3: Qualitative illustration of forward transfer in StyleCL: Fig. 3a and Fig. 3c corresponds to
real and generated samples from current task X 5. StyleCL employs feature adaptors from previous tasks
(samples of which are shown in Fig. 3b) to generate shared features across tasks (Fig. 3d). Meanwhile, it
utilizes newly added feature adaptors exclusively for the unique features of the current tasks (Fig. 3e).

4.3 Results on perceptually similar tasks

In order to evaluate the forward transfer capability of StyleCL, we consider six varieties of butterflies from
ImageNet to create a sequence of perceptually similar generation tasks, X 1 to X 6. We consider 2 scenarios :
(a) StyleCL that enables forward transfer by considering the generator of the most similar previous task, and
(b) StyleCL with parameter sharing only with the base task G1 (without forward transfer). Tab. 3 summarizes
the results for both scenarios. Additional comparisons for more diverse datasets are given in section B.4 of
the supplementary material. We observe improved performance on most datasets for scenario (a) compared
to scenario (b), confirming the benefit of forward transfer, inherent in our method. Also, the amount of
knowledge that could be reused varies (positive or negative forward transfer) which leads to varying degrees
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of improvement. As observed from Tab. 3 in case of X 3, sim(t, k) < 0 indicates potential negative forward
transfer and hence when the model is forced to reuse the most similar task, it results in a performance drop.
This empirically validates our characterization of the nature of forward transfer by using sim(t, k). In such
cases, we prevent negative forward transfer by avoiding parameter reuse from the most similar task.

To qualitatively evaluate the forward transfer capability of our approach, StyleCL, we train it on dataset
X 5 shown in Fig. 3a using the generator of the most similar previous task, X 3 whose samples are shown in
Fig. 3b. The generated samples are illustrated in Fig. 3c. To analyze the individual contribution of current
and previous feature adaptors in StyleCL, we separately disable their individual contribution by setting αtm
and αkm to 0 in equation 7. The corresponding generated samples are illustrated in Fig. 3d and Fig. 3e. Our
results show that ϕ3

m is reused to capture shared characteristics of X 5 and X 3, such as shape and background
(as seen in Fig. 3d), whereas newly introduced feature adaptors ϕ5

m capture features unique to X 5, such
as the orange color of the wings (as seen in Fig. 3e). These findings confirm that StyleCL enables forward
transfer by reusing knowledge from previous tasks.

X 2 X 3 X 4 X 5 X 6

StyleCL without transfer 28.96 35.68 20.90 27.51 31.84
StyleCL with transfer 21.86 37.38 18.87 23.18 31.00
sim(t, k) 0.59 -0.02 0.21 0.35 0.37

Table 3: Comparison of StyleCL with and without forward transfer on a stream of perceptually similar
datasets denoted as X i, 2 ≤ i ≤ 6. Results are reported in terms of FID, where lower values indicate better
performance.

5 Analysis and Ablations

(a) Generated samples
before training

(b) Only Latent
Subspace learning

(c) Only Feature
Adaptor learning

(d) Feature adaptors
disabled on StyleCL

(e) Both Dictionary
and Feature adaptors.

Figure 4: Ablation Study on Feature Adaptors and Latent Dictionary. Fig. 4a shows initial
generations without training. Learning only the latent subspace (Fig. 4b) or the feature adaptors (Fig. 4c)
captures partial data characteristics. The combined approach (Fig. 4e) yields high-quality, artifact-free
samples. Disabling feature adaptors during StyleCL inference (Fig. 4d) still preserves certain data traits, such
as color and background, demonstrating the effectiveness of the latent dictionary in capturing the essence of
the data.

5.1 Analysis of Task-Specific Latent Subspaces

The learned task-specific latent dictionary vectors, denoted as Ut, characterizes the task-specfic latent
subspaces and is pivotal for choosing the most similar task and averting negative forward transfer. We
employ t-SNE visualizations to empirically validate the capacity of these latent subspaces to encapsulate task
semantics. Utilizing equation 1 and equation 2, we sample latent vectors wt from the latent subspaces for a
curated set of tasks, aiming to show that vectors from related tasks congregate, whereas those from unrelated
tasks diverge.
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Specifically, we select two semantically similar Butterfly datasets (refer to Sec. 4.3) and a contrasting Brain-
MRI task (see Sec. 4.2) for visualization. Fig. 5 depicts the t-SNE plots, where one can observe the clustering
of latent vectors within the space; vectors from related tasks (Butterfly 1 in blue, Butterfly 2 in orange) are
proximal, whilst vectors from the unrelated task (Brain MRI in green) are isolated. This spatial distribution
substantiates our hypothesis that the learned latent subspaces indeed reflect task semantic similarities and
supports their utility in identifying similar tasks and discerning the nature of forward transfer.

Dataset Butterfly 1 Butterfly 2 Brain MRI
Butterfly 1 1 0.6 0.14
Butterfly 2 0.6 1 0.15
Brain MRI 0.14 0.15 1

Table 4: Average cosine similarity of dictionary vectors for similar and dissimilar tasks

Butterfly 1

Butterfly 2

Brain MRI

Figure 5: t-SNE visualization of latent vectors: Demonstrating the distinction and proximity of latent
vectors within learned subspaces. Latent vectors from semantically related Butterfly datasets are depicted in
blue and orange, showcasing their clustering, while vectors from the dissimilar Brain-MRI task are in green,
indicating significant separation. This illustrates the latent spaces’ capability to differentiate and group tasks
based on semantic relatedness.

Furthermore, the parameter K, representing the number of dictionary vectors per style block, is a critical
design variable. An in-depth analysis of K’s influence on the generative quality and the selection rationale
behind it is presented in Section C.2 of the supplementary materials.

5.2 Ablation Studies on Latent Dictionary and Feature Adaptors

To dissect the individual contributions of our method’s components, we conduct ablation studies focusing
on the learned latent dictionary and feature adaptors. StyleCL is trained using each module independently,
and the outcomes are qualitatively assessed in Fig. 4. The isolated effects of dictionary learning (Fig. 4b)
and feature adaptor learning (Fig. 4c) yield lower quality generations compared to utilizing both modules in
tandem (Fig. 4e).

Furthermore, we explore the influence of dictionary learning on StyleCL during the inference stage. By
deactivating the current feature adaptor’s output and retaining the rest of the model structure, we observe
that the generated samples (Fig. 4d) retain certain attributes, such as color and background, akin to the
complete StyleCL-generated samples (Fig. 4e). This phenomenon substantiates our hypothesis that StyleCL
can effectively approximate the target data distribution with fewer parameters, primarily attributed to the
integration of dictionary learning. A qualitative comparison is presented in Appendix B.3, complemented by
further qualitative evaluations across additional datasets.
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5.3 Impact of Base task on StyleCL

The generator G1, pivotal for all subsequent tasks, is initially trained on the X 1 dataset. To understand
how different base task affect the efficacy of StyleCL, we conduct experiments with the base task being
Brain MRI and ImageNet datasets. We assess the performance of StyleCL on a data sequence comprising
CelebA-HQ, Flowers, LSUN Church, and Chest X-Ray datasets under these conditions. The results, detailed
in Tab. 5, highlight a notable improvement in performance when the base task is a heterogeneous dataset like
ImageNet-1K, as opposed to starting with a more specialized dataset like Brain MRI. This indicates that
StyleCL significantly benefits from initial training on a dataset with broader diversity. We believe that this
could be attributed to diverse features captured by G1 which is subsequently useful for other tasks.

Base Task CelebA-HQ Flowers LSUN Church Chest X-Ray
Brain-MRI 22.82 31.98 55.45 29.93
ImageNet 15.86 14.25 11.71 23.54

Table 5: Performance of StyleCL with different base task X 1, measured by Fréchet Inception Distance (FID)
across four datasets. Lower FID values indicate better image quality and higher similarity to the target
dataset. ImageNet initialization outperforms Brain-MRI across all datasets, affirming the advantage of diverse
initial training.

6 Conclusions and Future Work

We introduce StyleCL, a novel generative continual learning approach utilizing the latent space of StyleGAN.
This strategy employs task-specific latent subspaces and feature adaptors, circumventing the need for direct
feature or weight modifications and thus minimizing computational and memory demands while boosting
performance. Uniquely, it also prevents negative forward transfer, a previously unexplored aspect in this field.
Future work aims to extend the applicability of StyleCL to various architectures and generative models and
improve continual learning through shared latent dictionaries. We will also focus on refining StyleCL for
use in scenarios without clear task identification, broadening its practical real-world application. Our work
opens new avenues for the efficient and effective training of generative models, with anticipated enhancements
solidifying the role of continual learning in generative model evolution.
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