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ABSTRACT

Large Language Models (LLMs) deliver strong capabilities but incur high inference
costs due to dense computation and memory access. Training-free activation
sparsity is a promising approach for efficient LLM inference, leveraging its data
adaptation and low computational overhead. However, existing methods typically
only rely on activation information and a uniform sparsity ratio, overlooking the
critical interplay with weights and inter-block sensitivity variation, which leads to
suboptimal performance. In this paper, we examine these limitations and identify
two key phenomena in modern LLMs: 1) less significant activations may align
with highly important weights, and 2) sparsity sensitivity varies non-monotonically
across model blocks. To address these issues, we propose a novel Weight-aware
Mixed-Granularity Training-free Activation Sparsity (WiSparse) method that
leverages both activation and weight information and enables adaptive sparsity
allocation across different granularities. Specifically, we introduce a weight-aware
activation sparsification mechanism that integrates activation magnitudes with
precomputed weight norms to more accurately identify salient channels. This is
combined with a mixed-granularity sparsity allocation scheme featuring a coarse-
to-fine strategy: a global sparsity budget is first distributed across blocks via
evolutionary search to protect sensitive regions, and subsequently refined at finer
granularities within each block to minimize reconstruction error. We improve
existing sparse kernels and demonstrate the effectiveness of the proposed method
via extensive experiments conducted on three representative models. Notably, at
50% sparsity, WiSparse preserves 97% of Llama3.1’s dense model performance,
surpassing the strongest baseline by 2.23 percentage points while achieving a 21.4%
acceleration in end-to-end inference speed. Our research contributes to advancing
the performance limits of training-free approaches for efficient LLM inference,
effectively pushing the boundaries of achievable speedup without training.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language processing tasks, making them fundamental components of modern AI applications
(Zhao et al., 2025). However, the extensive parameter of LLMs results in significant computational
and memory I/O demands, which severely constrains their inference efficiency. To mitigate this
issue, network sparsification has emerged as a promising technique, primarily categorized into weight
sparsity and activation sparsity (Wan et al., 2023). Weight sparsity operates in a data-independent
manner, where the importance of weights is determined based solely on their intrinsic characteristics,
often leading to suboptimal performance in specific scenarios. Consequently, recent research has
increasingly focused on data-dependent activation sparsity (Liu et al., 2023; Zhang et al., 2025; Lee
et al., 2024; Chen et al., 2025; Liu et al., 2025), which has shown superior performance and better
scalability across diverse tasks.

Training-based activation sparsity methods (Song et al., 2024; Wang et al., 2024) improve sparsity
through architectural modifications and fine-tuning, yet such methods require substantial computa-
tional resources and are highly sensitive to training configurations. These limitations have motivated
the development of training-free methods (Lee et al., 2024; Liu et al., 2025; Zhang et al., 2025), which
employ lightweight runtime criteria to identify and bypass less important computations, preserving
the original weights. However, existing training-free sparsity methods predominantly depend on
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activation-only importance indicators and apply a uniform sparsity ratio across the blocks in the
model, thereby neglecting the critical role of weight-activation interactions and the varying sensitivity
across different blocks, failing to realize the full potential of activation sparsity.

In this work, we aim to enhance the performance of training-free activation sparsity methods. To
this end, we begin by investigating the inherent characteristics of LLMs and identify two central
challenges in activation sparsity: (1) less important activations correspond to critical weights, and
(2) sparsity sensitivity varies significantly across different blocks, shown in Sec. 4.1.

To address these challenges, we propose a novel Weight-aware Mixed-Granularity Training-free
Activation Sparsity (WiSparse) method (see Fig. 1). This approach leverages the joint importance
of both weights and activations to guide sparsification, while assigning sparsity ratios according
to sensitivity at both the block and layer levels. Specifically, we first propose a weight-aware
activation sparsification mechanism to effectively capture and leverage the interactions between
weights and activations for computation reduction. To balance the contributions of activation and
weight in importance estimation, we introduce a layer-wise exponent parameter, whose optimal
value is automatically determined through a lightweight search process tailored to each layer’s
characteristics. Furthermore, we introduce a mixed-granularity sparsity allocation scheme that
progressively assigns sparsity ratios from coarse (block-level) to fine (layer-level) granularities. This
is implemented through a two-stage search algorithm: a coarse-grained search first determines the
global sparsity distribution across blocks, which is then refined by a fine-grained search that iteratively
optimizes layer-level sparsity ratios by minimizing output reconstruction error. Extensive experiments
demonstrate that our method outperforms existing baselines, achieving state-of-the-art performance.

In summary, our main contributions are as follows.

• In this work, we identify two critical phenomena in modern LLMs that limit training-free
activation sparsity: (1) less significant activations may align with highly important weights,
and (2) sparsity sensitivity exhibits non-monotonic variation across different blocks.

• We propose WiSparse, a fully training-free framework that introduces a weight-aware
importance score combining both activation and weight information to guide sparsification
more accurately. WiSparse further employs a coarse-to-fine search algorithm to optimize
sparsity ratios across mixed granularities, adapting to varying sensitivity patterns throughout
the model.

• Extensive experiments on diverse LLMs (including Llama3.1, Qwen2.5, and Mistral) demon-
strate that WiSparse achieves a superior accuracy-efficiency trade-off. At 50% sparsity, our
method not only outperforms representative training-free baselines in accuracy but also
accelerates end-to-end inference speed by up to 21.4%.

2 RELATED WORK

LLM Sparsification. Sparsification has emerged as a mainstream strategy to accelerate LLM
inference by reducing the amount of computation required at run time. Early work focused on
pruning model parameters to induce weight sparsity (Frantar & Alistarh, 2023; Sun et al., 2023).
Although weight pruning can substantially reduce FLOPs, practical speedups depend on sparse
kernel support, memory bandwidth, and sparsity structure. A complementary line of work achieves
conditional computation through Mixture-of-Experts (MoE) architectures, which instantiate sparsity
by activating only a small subset of experts per token (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022). More recently, contextual sparsity has been proposed to skip neuron computations
dynamically based on the input context. DejaVu (Liu et al., 2023) exploits the observation that,
for ReLU-based networks, many MLP neurons are exactly inactive for a given context and can
be predicted cheaply and skipped at run time. However, this approach relies on hard-thresholding
properties of ReLU and is not directly applicable to modern LLMs that predominantly adopt smooth
activations such as GELU or SwiGLU, where activations are rarely exactly zero.

Training-based activation sparsity. To bridge this gap, training-based activation sparsity methods
“relufy” or otherwise modify/fine-tune models to encourage sparse activations under smooth non-
linearities. Representative approaches include TurboSparse (Song et al., 2024), ProSparse (Song
et al., 2025), and Q-Sparse (Wang et al., 2024), modify models by introducing architectural changes,
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Figure 1: The overall framework of WiSparse. The process starts by calculating importance scores
for each layer based on activation values and weight norms. These scores generate sparsity masks
to prune less important channels. Block-level sparsity is optimized via an evolutionary search on a
small calibration dataset, followed by refinement of layer-level sparsities using a greedy allocation
strategy. The final configuration is applied during inference to improve computational efficiency by
reducing unnecessary operations.

applying sparsity-inducing regularizers, or using specialized fine-tuning. While effective, these
methods require nontrivial compute and data to train. Furthermore, their performance is sensitive
to the training recipes, and the resulting sparsity-accuracy trade-off may degrade when the model
undergoes continual pretraining or encounters domain shifts.

Training-free activation sparsity. Training-free activation sparsity methods aim to skip low-
importance neuron computations at inference time without any additional fine-tuning, typically
by using lightweight, runtime criteria derived from activations. CATS (Lee et al., 2024) performs
context-aware thresholding over intermediate activations, enabling dynamic sparsification without
modifying model weights or training recipes. It leverages input-dependent statistics to set thresholds
so that low-impact activations are skipped while preserving output quality. TEAL (Liu et al., 2025)
proposes a training-free framework that applies magnitude-based sparsification to hidden states
across layers, together with practical system support to realize real speedups during LLM inference.
R-Sparse (Zhang et al., 2025) decomposes computation into a sparse and a low-rank path based on
runtime activation magnitudes. High-magnitude activations are processed using the original weights,
while the rest are routed through a pre-computed low-rank approximation of the weight matrix.
Overall, these training-free approaches base their decisions primarily on activation-side signals and
do not explicitly incorporate the underlying weight values into the importance estimation or sparsity
scheduling, which may limit their ability to capture weight–activation interactions. WINA (Chen
et al., 2025) made an initial step toward incorporating weights by combining activation magnitudes
with weight column L2-norms. Although an improvement, this method has two key limitations: first,
its use of a simple, static norm is an inadequate proxy for true weight importance, and second, it does
not address how to handle mixed sparsity ratios within a model.

3 PRELIMINARY

Consider a single linear projection layer ℓ in a Transformer block. Let x ∈ Rnℓ and W ∈ Rmℓ×nℓ

denote the input activation and weight matrix, respectively. The output is

y = xW⊤. (1)

Activation sparsity seeks, for each input activation, a binary mask vector m ∈ {0, 1}nℓ that zeroes
out unimportant input channels before the projection:

y =
(
x⊙m

)
W⊤. (2)

3
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Let S = {i ∈ [1 : nℓ] : mi = 1} denote the index of selected channels, and let kℓ = |S| be the
number of such channels. Then only the subvector xS and the corresponding columns W:,S are used:

y = xS

(
W:,S

)⊤
. (3)

This optimization reduces the computational complexity from O(mℓnℓ) to O(mℓkℓ), and proportion-
ally decreases the memory access. The central problem is to construct input-dependent masks m that
achieve a high degree of sparsity with minimal accuracy loss.

4 METHOD: WISPARSE

4.1 MOTIVATING OBSERVATIONS

We begin by presenting two key observations that reveal the inherent limitations of existing training-
free activation sparsity methods and motivate the design of our WiSparse framework.

Activation Weight

Figure 2: Distribution of activation and weight
magnitudes for the self attn.o proj layer
in block 17 of Llama-3.1-8B. The plot shows
that channels with low activation magnitudes can
have high-magnitude weights (e.g., channel 2244),
demonstrating the limitations of using activation-
only metrics to assess channel importance.

Observation 1: Less important activations cor-
respond to critical weights. As shown in Fig. 2,
the variance across input channels of the weight
matrices is significantly higher than that across
output channels, particularly in layers such as
o proj and up proj. This high variance
means that some weight columns have much
larger norms than others, rendering pruning de-
cisions based on activation magnitude alone un-
reliable. For instance, the activation for input
channel 2244 is small, but the column of weights
associated with this channel possesses one of
the highest norms. Consequently, an accurate
saliency score must jointly consider both activa-
tion and weight information, as activation-only
criteria can be misleading.

Observation 2: Sparsity sensitivity varies sig-
nificantly across different blocks. As shown in
Fig. 3, sparsifying certain layers in shallow blocks causes markedly larger degradation, whereas
deeper blocks are less sensitive and can even yield slight improvements. This non-uniform response
demonstrates that blocks have heterogeneous sensitivities. The trend is not strictly monotonic, as
some middle blocks also exhibit high fragility, suggesting that a block’s criticality depends on its spe-
cific functional role and statistical properties rather than just its depth. This observation underscores
the sub-optimality of a uniform sparsity policy and highlights the need for an allocation strategy that
adapts to the unique sensitivity of each block.
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Figure 3: Block-wise sensitivity to sparsification. The plot reports the relative change in validation
perplexity (∆PPL vs the dense model, in %) when sparsifying one block at a time while keeping all
other blocks dense. Curves correspond to 40%, 50%, and 60% sparsity.
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These observations motivate the two core components of our WiSparse framework. To address the
inaccurate saliency estimation from Observation 1, we first propose a weight-aware sparsification
mechanism. To handle the heterogeneous block sensitivities from Observation 2, we then develop a
mixed-granularity allocation strategy. We detail these components in the following subsections.

4.2 WEIGHT-AWARE ACTIVATION SPARSIFICATION

To address the issue of misestimated saliency, we explicitly account for the fact that pruning an
input channel’s impact depends jointly on its activation magnitude and the strength of the corre-
sponding weight column. A simple selection rule is therefore to retain channels with large products∣∣xi

∣∣ ∥∥W:,i

∥∥
2
. To better capture weight–activation interactions while keeping a simple, training-free

score, we introduce a layer-specific exponent that rescales the weight term. Concretely, given an
input x to layer ℓ, we define the weight–aware importance score si for channel i as

si = fs(x;αℓ) =
∣∣xi

∣∣ (gi

)αℓ , (4)

where gi ≜
∥∥W:,i

∥∥
2

is the precomputed L2-norm of the corresponding weight column. Here,
αℓ is a nonnegative, layer-specific exponent tuned on a small calibration set which compresses or
accentuates weight-side variability.

At inference time, we apply dynamic sparsity by generating a binary mask m for each input x. A
channel is kept if its importance score si exceeds a predetermined, layer-specific threshold τℓ:

mi = I[si(x;αℓ) ≥ τℓ] , (5)

This mask is then applied to the activations before the linear projection. Since gi and αℓ are constant
at inference, the per-token overhead is limited to element-wise multiplication, which is negligible
compared to the computational savings from the pruned matrix-vector products.

Tuning Weight Exponents via Block-wise Grid Search The effectiveness of our method hinges
on selecting an optimal weight exponent αℓ for each layer. To this end, we perform a block-wise grid
search as detailed in Alg. 2 in Appendix A.2. For each Transformer block B, which contains a set of
linear layers LB, we search for the optimal exponents {αℓ}ℓ∈LB by minimizing output distortion on
a small, dedicated calibration dataset DB

cal. This dataset consists of input activations to the block B
collected from a few representative examples. The core of the search involves evaluating candidate
exponents α = {αℓ}ℓ∈LB . For each candidate α, we dynamically determine a corresponding set of
sparsity thresholds τ = {τℓ}ℓ∈LB . Each threshold τℓ is calculated to ensure its layer achieves a target
keep ratio rℓ over the block’s calibration data.

Let FB be the original (dense) forward pass of the block and F sparse
B (·;α, τ ) be its sparse counterpart.

Our objective is to find the exponents that minimize the Mean Squared Error (MSE) between the
dense and sparse block outputs, evaluated on the block-specific calibration set:

min
α

ExB∈DB
cal

∥∥∥FB(xB)− F sparse
B

(
xB;α, τ (α)

)∥∥∥2
2
. (6)

During this search, for each αℓ, the threshold τℓ is set as the (1− rℓ)-quantile of the score distribution
and is calculated as:

τℓ(αℓ) = Quantile1−rℓ

({
si(xℓ;αℓ)

})
. (7)

After the grid search identifies the optimal exponents {α∗
ℓ}, we use this same mechanism one final

time to compute the fixed, per-layer thresholds for inference. This procedure yields a single, token-
agnostic threshold τℓ for each layer. However, since the pruning scores si(xℓ;αℓ) depend on the
layer’s input activations xℓ, the resulting sparsity pattern is adaptive for each token.

4.3 MIXED-GRANULARITY SPARSITY ALLOCATION

Our finding that sparsity sensitivity varies significantly across blocks (Sec. 4.1) implies that a uniform
allocation strategy is inherently suboptimal. In theory, an optimal design would assign a tailored
sparsity ratio to every individual layer. However, exhaustively searching for such a configuration is
computationally prohibitive and susceptible to overfitting. To overcome this, we introduce a two-
stage, coarse-to-fine allocation strategy that efficiently approximates the optimal per-layer sparsity
distribution while maintaining search stability and generalization.

5
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Coarse Search: Block-Level Allocation In the first stage, we determine how to distribute a global
target sparsity, ptarget, among the N Transformer blocks of the model. We search for a set of block-
level pruning ratios, p = {p1, . . . , pN}, where pB represents the sparsity assigned to block B. The
allocation is subject to the constraint that the average sparsity across all blocks equals the global
target ptarget.

To find the optimal block-level allocation, we employ an evolutionary algorithm (see Alg. 3 in
Appendix A.2). Inspired by (Sieberling et al.), we ensure the search process is stable by employing
a localized mutation strategy: during a mutation event, the sparsity level of a block can only be
increased or decreased by a single, small step size. Each candidate allocation p is evaluated by
measuring the performance degradation on a small calibration dataset, Dcal. Specifically, we use the
average token-level KL divergence between the output distributions of the sparse and dense models
as our objective function L(p):

L(p) = 1

|Dcal|
∑

x∈Dcal

1

T (x)

T (x)∑
t=1

KL (softmax(fθ(x≤t)) ∥ softmax(fθ,p(x≤t))) (8)

Here, T (x) is the length of the input x, fθ and fθ,p are the logits produced by the dense and
sparse models, respectively, and the divergence is averaged over all the tokens in the calibration set.
The evolutionary algorithm seeks to find the set of block-level sparsities {p∗

B} that minimizes this
objective. For this stage, we temporarily assume that all layers within a given block B share the same
sparsity pB .

Fine Search: Intra-Block Greedy Allocation With the optimal block-level sparsities {p∗B} fixed,
the second stage refines the sparsity allocation within each block. For each block B, we distribute
its assigned sparsity budget p∗B among its individual linear layers (e.g., in the attention and MLP
modules).

This is done using a greedy procedure following (Liu et al., 2025). Starting with a fully dense
block, we iteratively add a small, fixed increment of sparsity. At each step, we add the sparsity to
the layer that causes the smallest increase in the block’s output reconstruction error. This process
is repeated until the total sparsity of the block reaches its target budget p∗B . This strategy ensures
that more sparsity is allocated to less sensitive layers. For the pseudocode, please refer to Alg. 4 in
Appendix A.2.

By combining these two stages, our method efficiently determines a well-calibrated, per-layer sparsity
distribution that adheres to a global budget while preserving model accuracy.

Algorithm 1 WiSparse Full Pipeline

1: Input: ModelM, calibration data Dcal, target sparsity ptarget
2: Output: Sparse modelMsparse
3: pblock ← BlockLevelAllocation(M,Dcal, ptarget) ▷ Evolutionary search for block sparsities
4: player ← IntraBlockAllocation(M,pblock,Dcal) ▷ Greedy search for layer sparsities
5: α← SearchAlphaSequences(M,Dcal) ▷ Block-wise grid search for each αℓ

6: Msparse ←M
7: for each layer ℓ inMsparse do
8: ℓ.exponent← α[ℓ] ▷ Set layer exponent αℓ

9: ℓ.set threshold(player[ℓ],Dcal) ▷ Set threshold τℓ using calibration stats
10: end for
11: returnMsparse

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. In our experiments, we evaluate model sparsification performance on three
large language models: Llama-3.1-8B-Instruct (Grattafiori et al., 2024), Mistral-7B-Instruct, Qwen2.5-
7B-Instruct (Team, 2024). Sparsity levels are set to 30%, 40%, and 50%, with the original dense

6
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Table 1: Accuracy comparison of WiSparse with baseline methods on six tasks. The best performance
in each group is shown in bold, while the second-best is underlined.

Model Sparsity Method SIQA GSM8K WiC HumanEval MMLU CSQA Average

Llama-3.1-8B

0 Baseline 43.19 82.87 52.35 67.07 69.07 78.87 65.57

30
R-Sparse 41.40 82.56 51.41 68.90 68.45 78.21 65.16

TEAL 41.71 83.85 51.25 64.63 68.01 78.54 64.67
Ours 43.76 82.26 52.63 67.07 68.22 78.46 65.40

40
R-Sparse 42.68 80.82 50.66 61.59 66.86 77.56 63.36

TEAL 41.71 82.03 50.47 63.41 67.10 78.13 63.81
Ours 42.58 82.41 50.78 66.46 67.88 78.05 64.70

50
R-Sparse 43.04 74.98 52.35 59.76 63.43 74.46 61.34

TEAL 42.73 75.51 37.30 62.20 64.71 75.27 59.62
Ours 43.14 78.77 50.63 65.85 65.23 77.81 63.57

Mistral-7B

0 Baseline 66.48 55.72 58.31 37.80 61.92 73.46 58.95

30
R-Sparse 66.48 54.66 58.46 40.24 61.32 73.79 59.17

TEAL 66.53 54.81 58.15 37.20 61.20 73.05 58.53
Ours 66.79 54.89 58.31 37.80 61.60 73.46 58.76

40
R-Sparse 66.48 52.62 57.05 39.02 60.25 72.65 58.00

TEAL 66.38 51.71 57.52 37.80 60.14 72.89 57.71
Ours 66.22 53.45 57.68 39.63 60.85 73.14 58.54

50
R-Sparse 66.33 47.23 57.21 39.02 58.82 70.43 56.51

TEAL 65.87 50.80 57.21 39.02 58.54 70.93 57.06
Ours 66.22 51.71 57.52 38.41 59.52 72.81 57.70

Qwen-2.5-7B

0 Baseline 41.45 80.67 55.02 79.87 74.26 83.87 69.19

30
R-Sparse 41.25 81.35 54.39 76.82 73.18 82.64 68.27

TEAL 42.12 79.45 55.02 81.10 71.57 81.57 68.47
Ours 41.86 80.74 54.70 79.27 73.76 83.05 68.90

40
R-Sparse 40.69 80.59 53.76 79.27 72.28 82.56 68.19

TEAL 41.35 78.92 53.61 81.32 71.77 81.57 68.09
Ours 41.15 79.15 54.39 81.71 72.78 82.72 68.65

50
R-Sparse 39.82 77.86 52.19 77.44 70.68 81.57 66.59

TEAL 40.12 76.27 49.84 70.73 69.55 79.77 64.38
Ours 40.48 79.00 52.66 78.05 71.87 81.74 67.30

model (0% sparsity) serving as the baseline. The evaluation is conducted using the OpenCompass
benchmark framework (Contributors, 2023), covering six diverse datasets to assess a wide range of
reasoning, commonsense, math, and coding capabilities: SIQA (Sap et al., 2019), GSM8K (Cobbe
et al., 2021), WiC (Pilehvar & Camacho-Collados, 2018), HumanEval (Chen et al., 2021), MMLU
(Hendrycks et al., 2020), and CSQA (Talmor et al., 2018). Performance is reported as accuracy for
all tasks, and average accuracy across these benchmarks is used to assess overall model capability
under different sparsity levels.

Baselines. We compare against two representative training-free sparsification baselines R-Sparse
(Zhang et al., 2025) and TEAL (Liu et al., 2025) under identical target sparsity levels and the same
sparsification scope (all linear layers in the transformer blocks). For fair comparison, no additional
fine-tuning or distillation is performed after sparsification and we sparsify only half of the prefilling
tokens and all the decoding tokens for all tasks.

Calibration and Hyperparameters. We use pile-val (Gao et al., 2020), CodeAlpaca-20k (Chaudhary,
2023) and MetaMathQA (Yu et al., 2023) as the calibration set so that math and code tasks can also
be calibrated. For the weight exponent grid search, we iterate through a grid over [0.0, 1.5] with a
step size of 0.05. For evolutionary search, we initialize all the blocks with the same target sparsity
level. The search runs for 400 iterations, generating 64 offspring in each iteration. Offspring are
generated via mutation only, with no crossover. We mutate with a step size of 0.5%, and only 10% of
the blocks can be mutated each time to stabilize the search process.

5.2 ACCURACY RESULTS

As detailed in Table 1, WiSparse consistently outperforms the training-free baselines, R-Sparse and
TEAL, across most tested models and sparsity levels. The results underscore our method’s ability to
maintain high model accuracy while significantly reducing computational density.
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The benefits of our approach are most evident at high sparsity. On Llama-3.1-8B with 50% sparsity,
WiSparse retains over 97% of the dense model’s average accuracy. This performance significantly
surpasses the strongest baselines, outperforming R-Sparse and TEAL by 2.23 and 3.95 percentage
points, respectively. The advantage is particularly stark on complex reasoning tasks such as GSM8K
and HumanEval, where WiSparse exhibits markedly less accuracy degradation than its counterparts.

This trend of robust performance holds across other models. On Qwen-2.5-7B at 50% sparsity,
WiSparse maintains 97.3% of the original average accuracy and widens its lead over TEAL to nearly
3 percentage points. On Mistral-7B, our method again delivers the highest accuracy among all sparse
methods. We do observe that on the small HumanEval benchmark (164 problems), sparse models,
including ours, can occasionally score higher than the dense baseline. This is likely a statistical artifact
stemming from minor, beneficial changes to computation paths caused by sparsification. WiSparse
is also highly effective at moderate sparsity. At a 30% sparsity level, performance degradation is
negligible, with an average accuracy drop of just 0.22 percentage points across all models. These
comprehensive results validate that WiSparse’s weight-aware importance score and mixed-granularity
allocation strategy are crucial for preserving model capabilities, effectively pushing the accuracy-
efficiency frontier for training-free sparsity.

5.3 EFFICIENCY RESULTS

Beyond accuracy preservation, a key goal of WiSparse is to reduce actual computation. To realize
these efficiency gains, we extended the high-performance sparse kernels from TEAL (Liu et al.,
2025) to incorporate our weight-aware scoring mechanism. We measure efficiency in both theoretical
FLOPs and end-to-end inference speed (tokens/s) on a single H20 GPU, generating 200 tokens
from a 5-token prompt. Fig. 4 (left) reports achieved TFLOPs. As sparsity increases, FLOPs drop
almost linearly, reflecting the skipped activation channels in linear projections. For example, in
Llama-3.1-8B, FLOPs decrease from 1.92 TFLOPs at 0% sparsity to 1.03 TFLOPs at 50% sparsity—a
46% reduction. Mistral-7B and Qwen-2.5-7B show similar proportional savings, confirming that our
sparsification directly reduces computation. Fig. 4 (right) shows the corresponding throughput gains.
For Llama-3.1-8B, speed rises from 153.5 tokens/s (dense) to 179.9 tokens/s (50% sparsity), a 17.2%
improvement. Mistral-7B and Qwen-2.5-7B achieve 21.4% and 21.2% faster inference, respectively.
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Figure 4: Achieved TLOPS (left) and end-to-end inference speed in tokens/s (right) under different
sparsity levels with WiSparse on Llama-3.1-8B, Mistral-7B, and Qwen-2.5-7B.

5.4 ABLATION STUDIES AND RESULTS ANALYSIS

Ablation studies. We conducted an ablation study to validate each component of WiSparse, as
shown in Tab. 2. A naive approach using only activation magnitudes for pruning causes a severe
performance drop to 58.64. Incorporating our weight-aware importance score provides the most
significant recovery, boosting accuracy to 61.57 (+2.93). Subsequently, the coarse, block-level search
further improves performance to 62.10 by heterogeneously allocating sparsity. Finally, adding the
fine-grained, layer-wise search achieves the best result of 63.57. These results confirm that each
component is crucial, with the weight-aware importance score providing a strong foundation and the
coarse-to-fine search effectively optimizing the final sparsity distribution.
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Table 2: Ablation studies: the effect of different components proposed in the paper. The experiment
is conducted over Llama-3.1-8B on average metrics.

Method Sparsity SIQA GSM8K WiC HumanEval MMLU CSQA Average

Baseline 0 43.19 82.87 52.35 67.07 69.07 78.87 65.57

Activation only 0.5 42.32 74.07 42.01 56.10 63.04 74.28 58.64
+ Weight importance 0.5 43.60 76.42 50.47 60.98 63.56 74.37 61.57

+ Coarse search 0.5 42.99 76.42 51.10 62.20 64.00 75.84 62.10
+ Fine search 0.5 43.14 78.77 50.63 65.85 65.23 77.81 63.57

Visualization of sparsity allocation. Fig. 5 visualizes the per-block and per-module sparsity
discovered by our coarse-to-fine allocator at a global target of 50% for Llama-3.1-8B and Qwen-2.5-
7B. The resulting distributions are clearly heterogeneous across depth and differ between models,
reflecting distinct sensitivity profiles. Consistent with Observation 2, the allocator tends to assign
lower sparsity to blocks that are empirically fragile and higher sparsity to more robust regions. For
example, in Qwen-2.5-7B (Fig. 3b), Block 10 exhibits pronounced sensitivity at 40–60% sparsity;
correspondingly, our search assigns it a noticeably lower prune ratio in Fig. 5b. Overall, the
learned schedules align with the measured sensitivity landscape (Fig. 3), indicating that the allocator
effectively tailors sparsity to model- and block-specific characteristics rather than enforcing a uniform
policy.
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Figure 5: Per-block and per-module (self-attention and MLP) sparsity distributions for (a) Llama-3.1-
8B and (b) Qwen-2.5-7B, as determined by our search algorithm targeting 50% overall sparsity.

6 CONCLUSION

In this paper, we introduced WiSparse, a novel training-free framework designed to enhance the
efficiency of large language model inference through activation sparsity. Our work is motivated by
two key observations: less significant activations may align with highly important weights, and the
heterogeneous sensitivity of transformer blocks to sparsification. WiSparse addresses these challenges
by incorporating a weight-aware importance score that jointly evaluates activation magnitudes and
weight norms, and by employing a coarse-to-fine allocation strategy that tailors sparsity ratios
at both the block and layer levels. Our methodology requires no model retraining and incurs
negligible runtime overhead. Extensive experiments on models like Llama-3.1-8B and Qwen-2.5-7B
demonstrate that WiSparse consistently outperforms existing training-free baselines, retaining over
97% of dense model accuracy at 50% sparsity while delivering substantial throughput gains.

Limitations and future work. The primary limitation stems from the dynamic, token-dependent
nature of the masks. While this adaptivity is key to preserving accuracy, it can introduce runtime
overhead from mask computation and may complicate efficient implementation for batched inference,
where each sequence can yield a different sparsity pattern. Future research could therefore focus on
optimizing kernels for dynamic structured sparsity, especially in a batch setting. Additionally, the
offline calibration relies on a search procedure; developing more efficient or analytical methods for
this step would enhance the framework’s practicality and reduce setup costs.
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7 ETHICS STATEMENT

This research aims to contribute to societal well-being by developing methods that make LLMs more
computationally efficient, thereby increasing their accessibility and reducing their environmental
impact. The work adheres to high standards of scientific excellence through a transparent methodol-
ogy, comprehensive experiments, and detailed reporting of results to ensure reproducibility. We have
respected the work of others by building upon and citing prior research. All models and datasets used
in this study are publicly available, and their use is consistent with their original licenses, with no
private or sensitive user data being involved. We have strived for honesty and transparency by clearly
outlining our methods, limitations, and the potential impacts of our work, including a disclosure on
the use of LLMs as an editorial tool in the preparation of this manuscript.

8 REPRODUCIBILITY STATEMENT

We commit to ensuring the reproducibility of our work. The core components of our method,
including the weight-aware importance score and the mixed-granularity allocation strategy, are
detailed in Sec. 4. Furthermore, Appendix A.2 provides complete pseudocode for the block-wise grid
search, evolutionary block-level allocation , and greedy layer-level allocation. Sec. 5.1 details our
experimental setup, specifying the models, evaluation benchmarks, calibration data, and all necessary
hyperparameters to replicate our results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Throughout the preparation of this manuscript, LLMs were employed as editorial tools. We used
them for tasks such as grammar and style editing, and enhancing clarity and concision. The scientific
concepts, study design, data analysis, and conclusions were conceived and developed exclusively
by the human authors. LLMs were used solely to refine the wording of ideas already established.
We provide this disclosure to maintain transparency and uphold academic integrity and responsible
research practices.

A.2 ALGORITHMS

Algorithm 2 Lightweight Block-Wise Grid Search for Alpha

Input: Block B, linear layers ℓ and weight matrix W , input vector X
Output: Optimal scaling factors α∗

org out← BlockForward(B, X,None) ▷ Original output
score← GetWeightScale(W ) ▷ Weight importance scores
best error← +∞, best ratio← −1, best scales← None
ngrid ← 30, history← [ ] ▷ Grid search resolution
org state dict← B.state dict()
for ratio← 0 to ngrid − 1 do

α← ratio× 1.5/ngrid ▷ Grid point in [0, 1.5]
scales← scoreα.clamp(min = 1e− 4) ▷ Compute scaling factors
out← BlockForward(B, X, scales)
loss← ∥org out− out∥22 ▷ Mean squared error
history.append(loss)
if loss < best error then

best error← loss, best ratio← α, best scales← scales
end if
B.load state dict(org state dict) ▷ Restore original state

end for
return best scales

Algorithm 3 Block-Level Sparsity Allocation (Evolutionary Algorithm)

Input: ModelM with N blocks, target sparsity ptarget, max generation Gmax, step size ϵ
Output: Optimal block sparsities p∗

block = {p∗B : B ∈M}
p← {ptarget : B ∈M} ▷ Initialize uniform block sparsities
for generation← 1 to Gmax do

offspring list← [ ]
while |offspring list| < Noffspring do

p′ ← p.copy()
num flips← ⌊N × 0.1⌋ ▷ Localized mutation
for i← 1 to num flips do

Bincr ← RandomChoice({1, . . . , N})
p′Bincr

← p′Bincr
+ ϵ

end for
while WeightedAverage(p′) > ptarget do ▷ Maintain global constraint

Bdecr ← RandomChoice({1, . . . , N})
p′Bdecr

← p′Bdecr
− ϵ

end while
offspring list.append(p′)

end while
p← argminp′∈offspring list L(p′) ▷ Select best candidate through objective function

end for
return p
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Algorithm 4 Layer-Level Greedy Sparsity Allocation

Input: Block B, target block sparsity p∗B, step size δ,
input activations X, target activations Y

Output: Optimal layer sparsities p∗
layer = {p∗ℓ : ℓ ∈ B}

p← {pℓ : 0.0 for ℓ ∈ B} ▷ Initialize layer sparsities to zero
while EffectiveSparsity(p) < p∗B do

best error← +∞, best layer← None
for ℓ ∈ B do

if pℓ ≥ 1.0 then continue
end if ▷ Skip if fully sparse
p′ ← p.copy()
p′ℓ ← p′ℓ + δ ▷ Increment layer sparsity
SetBlockSparsities(B,p′)
Y′ ← BlockForward(B,X)
error← ∥Y −Y′∥22 ▷ Block output reconstruction error
if error < best error then

best error← error, best layer← ℓ
end if

end for
pbest layer ← pbest layer + δ ▷ Update layer with lowest error

end while
return p
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