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Abstract—Neural network (NN) operators are widely recog-
nized for providing a constructive approach to approximate given
class of functions. In this paper, we study the convergence of
a family of semi-discrete NN operators, known as Durrmeyer
type NN operators, in the general framework of Orlicz spaces
on [a, b](⊂ R), denoted by Lϕ([a, b]). The Orlicz space consists
of various function spaces, including classical Lebesgue spaces,
Exponential spaces, Zygmund spaces, for different choices of
ϕ−functions. Hence this note presents a unified approximation
procedure for these operators across various function spaces.
We establish the boundedness of Durrmeyer type NN opera-
tors within Lϕ([a, b]). Further, modular convergence theorem
is deduced for these NN operators in general setting of Orlicz
spaces. Lastly, we enclose some graphical representations and
error-estimates to demonstrate the approximation process.

Index Terms—Function approximation; Neural networks op-
erators; Orlicz space; Sigmoidal Function.

I. INTRODUCTION

Sampling and reconstruction play a pivotal role in approx-
imation theory, serving as fundamental tools for accurately
representing functions through discrete data points. An impor-
tant result in this direction, attributed to Whittaker-Kotelnikov-
Shannon (see [26]), states that any signal f : R → C, band-
limited to [−πw, πw] for some w > 0, that is, the Fourier
transform of f is compactly supported in [−πw, πw], can
be completely reconstructed from its uniform sample values
(f(k/w))k∈Z by the formula

f(x) =
∑
k∈Z

f

(
k

w

)
sinπ(wx− k)

π(wx− k)
, x ∈ R.

Some notable developments associated with the WKS sam-
pling formula and its generalizations can be found in [19].

It is established through rigorous mathematical proofs that
feedforward neural networks (FNNs) serve the role of univer-
sal approximators (see [24]). The capability of neural networks
in approximating the given function has made remarkable
contributions in the field of approximation theory, signal
analysis, image processing [9], [21].
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In general, the mathematical representation of FNN is given
as follows:

Kn(x̄) :=
n∑

k=0

ckσ(⟨wk, x̄⟩+ βk), n ∈ N

where 0 ≤ k ≤ n, x̄ ∈ Rn, βk ∈ R are thresholds, ck ∈ R
are the coefficients and wk ∈ Rn are the connection weights.
Here σ is the activation function and ⟨wk, x⟩ represents the
inner product of wk and x.

The theoretical studies on approximation properties of
FNNs have been carried out extensively over the years. The
seminal work of Cybenko [8] and Funahasi [17] introduced
mathematical study of approximation process using FNNs and
established the approximation results for continuous (even
measurable) functions using the Hahn-Banach theorem. For
further significant contributions in this area, we refer the reader
to [18], [24].

The constructive approximation procedure was first
recorded in the seminal work of Cardaliaguet and Euvrard
[11]. Since then, several NN operators were constructed.
Anastassiou [1], [2] contributed significantly to this domain
by establishing quantitative approximation results for NN
operators based on different activation functions. Costarelli
and Spigler [12] initiated the study of NN operators based on
general class of activation functions, establishing significant
convergence results. For some notable advancements in this
direction, we refer to [1], [3], [4], [14].

Recently, Coroianu [10] introduced a family of semi-
discrete NN operators, referred to as Durrmeyer type NN
operators, defined as

(Dnf)(x) :=

⌊nb⌋−1∑
k=⌈na⌉

ϕρ(nx− k) n

∫ b

a

χ(nt− k)f(t) dt

⌊nb⌋−1∑
k=⌈na⌉

ϕρ(nx− k) n

∫ b

a

χ(nt− k) dt

.

In [10], some notable approximation properties for (Dnf)
are established under appropriate assumptions on ϕρ and χ.
The name Durrmeyer-type operators is due to the classical
Durrmeyer’s modification of Bernstein polynomials (see [15]).



The theory of Orlicz space, which naturally generalizes
Lebesgue spaces, was established by W. Orlicz in [23]. Al-
though the origins of Orlicz spaces can be linked to [20],
the concrete theory of Orlicz spaces was presented by Rao
and Ren in [25]. The family of function spaces generated by
Orlicz spaces has demonstrated substantial utility in various
contexts within functional analysis and operator theory, see
[16], [22]. Furthermore, several important developments on
utility of Orlicz spaces in approximation theory can be found
in [13].

The paper is structured as follows: In Section II, we
record basic definitions and some auxiliary results which will
be required throughout the paper. Further, the boundedness
and convergence of proposed operator (Dnf) in Lϕ([a, b])
is established in Section III. At the end, we provide some
numerical illustrations of the presented theory through graphs
and error-tables by using particular sigmoidal functions, in
Section IV.

II. PRELIMINARIES

To begin with, we record the fundamental definitions of
Orlicz spaces and modular functional.

Definition II.1. [25] A convex function ϕ : [0,∞) → [0,∞]
is known as an Orlicz function if it satisfies the following
conditions:

1) ϕ is left continuous and ϕ(0) = 0;
2) ϕ is non-decreasing and lim

u→∞
ϕ(u) = ∞.

To establish the modular convergence within Orlicz spaces,
the modular functional Iϕ : M([a, b]) → R is defined as

Iϕ[f ] =

∫ b

a

ϕ(|f(x)|)dx .

Orlicz space is a natural generalization of the classical
Lebesgue space Lp, for p ≥ 1. The Orlicz space corresponding
to ϕ is defined as

Lϕ([a, b]) = {f ∈ M([a, b]) : Iϕ[λf ] < ∞ for some λ > 0 } .

Moreover, the space Lϕ([a, b]) forms a normed linear space
with the Luxemburg norm given by

∥f∥ϕ := inf{λ > 0 : Iϕ[λf ] ≤ 1}.

A net of functions (fk)k>0 ⊂ Lϕ([a, b]) is said to be
modularly convergent to a function f ∈ Lϕ([a, b]) if there
is a λ > 0 such that

lim
k→∞

Iϕ[λ(fk − f)] = 0.

Next we discuss the basic definitions and fundamental prop-
erties of sigmoidal functions.

Definition II.2. [8] A measurable function ρ : R → R
is known as sigmoidal function if it satisfies the following
assumptions:

lim
x→−∞

ρ(x) = 0 and lim
x→∞

ρ(x) = 1.

Moreover, any sigmoidal function ρ is non-decreasing and
fulfills the following conditions: ρ(x)− 1

2 is an odd function,
ρ ∈ C2(R) is concave for all x ≥ 0 and for some α > 0, we
have ρ(x) = O(|x|−α) as x → −∞.

Now, we proceed to introduce non-negative density func-
tions by constructing a finite linear combination of sigmoidal
function ρ:

Ψρ(x) := ρ (x+ 1/2)− ρ (x− 1/2) , x ∈ R.

We will utilize the aforementioned density functions as a
kernel in our proposed operator. The following lemma presents
several important properties of Ψρ, as demonstrated in [12].

Lemma II.3. The function Ψρ, corresponding to the sigmoidal
function ρ, has the following properties:
(i) For all n ∈ N satisfying ⌊nb⌋ − 1 ≥ ⌈na⌉, we have

⌊nb⌋−1∑
k=⌈na⌉

Ψρ(nx− k) ≥ Ψρ(2) > 0

where x ∈ [a, b].

(ii) For x ∈ R,
∑
k∈Z

Ψρ(x − k) = 1. Moreover, the series∑
k∈Z

Ψρ(x− k) converges on [a, b] ⊂ R.

Remark II.4. [12] In view of these properties, one can
conclude that 0 ≤ ρ′(x) ≤ ρ′(0), x ∈ R. Furthermore, as
x → ±∞, we have Ψρ(x) = O(|x|−α), where α > 0.
Consequently, it follows that Ψρ ∈ L1(R) for α > 1, and∫

R
Ψρ(t) dt = 1.

III. SEMI-DISCRETE TYPE NN OPERATORS IN ORLICZ
SPACES.

Consider a bounded and locally integrable function χ : R →
[0,+∞) such that ∫ 1

0

χ(y) dy := M > 0.

The discrete absolute moments for χ and Ψρ of order ν ≥ 0
are defined as follows:

Kν(χ) := sup
u∈R

∑
k∈Z

χ(u− k)|u− k|ν

and
Kν(Ψρ) := sup

u∈R

∑
k∈Z

Ψρ(u− k)|u− k|ν .

Under the stated conditions on ρ and χ, one can observe that
Kν(Ψρ) < +∞ and Kν(χ) < +∞ for 0 ≤ ν < α− 1.

Lemma III.1. [10] Based on the aforementioned assump-
tions, we have the following inequality

MΨρ(2) ≤
⌊nb⌋−1∑
k=⌈na⌉

Ψρ(nx− k)n

∫ b

a

χ(nu− k) du,

for x ∈ [a, b] and n ∈ N such that n(b− a) ≥ 1.



In the following, we state the pointwise and uniform con-
vergence result for (Dnf).

Lemma III.2. [10] For a bounded and locally integrable
function f : [a, b] → R, then

|Dnf(x0)− f(x0)| < ϵ,

for any point x0 ∈ [a, b], where f is continuous. Furthermore,
if f ∈ C([a, b]), we have

∥Dnf − f∥∞ < ϵ.

In [10], the convergence of semi-discrete neural network
operators was investigated in Lebesgue spaces. Here we extend
this study to a more general framework of Orlicz spaces.

In this direction, first we study the boundedness of (Dnf)
within Orlicz space Lϕ([a, b]).

Theorem III.3. Let f ∈ Lϕ([a, b]), and λ > 0, there holds

Iϕ [λ(Dnf)] ≤
K0(χ)

Ψρ(2)∥χ∥1
Iϕ [λ′∥χ∥1f ] .

Proof. Utilizing Lemma III.1, Jensen’s inequality, and the
Fubini–Tonelli theorem, we establish the boundedness.

To establish the modular convergence in Orlicz spaces, we
begin with following result.

Theorem III.4. Let f : [a, b] → R be continuous. Then for
every ϵ > 0, ∃n ∈ N such that

Iϕ [λ (Dnf − f)] < ϵ,

holds for λ > 0.

Proof. In view of Lemma III.2, it is observe that for any fixed
ϵ > 0, we have

Iϕ [λ (Dnf − f)] =

∫ b

a

ϕ (λ |(Dnf)(x)− f(x)|) dx

≤ (b− a) ϕ (λ∥Dn(f)− f∥∞)

≤ (b− a) ϕ (λϵ) ,

for sufficiently large n ∈ N. Thus, the proof is complete by
the arbitrariness of ϵ > 0.

At this point, we are in a position to establish the conver-
gence of the family of semi-discrete NN operators in Orlicz
space. For this, we will utilize the fact that the space of
continuous function C([a, b]) is modularly dense in Lϕ([a, b]).

Lemma III.5. [5] The space of continuous function C([a, b])
is modularly dense in Lϕ([a, b]), for an Orlicz function ϕ.

Theorem III.6. Let ρ be a sigmoidal function and f ∈
Lϕ([a, b]). Then for every ϵ > 0, ∃n ∈ N such that

Iϕ [λ(Dnf − f)] < ϵ,

for λ > 0.

Proof. Consider f ∈ Lϕ([a, b]) and ϵ > 0. Using Lemma III.5,
there exists g ∈ C([a, b]) such that

Iϕ
(
λ̄(f − g)

)
<

(
K0(χ)

Ψρ(2)∥χ∥1
+ 1

)−1
ϵ

2
. (1)

Consider λ > 0 be fixed in such a way that 3λ (1 + ∥χ∥1) ≤
λ̄. Utilizing (1) along with Theorem III.3 and III.4, we obtain

Iϕ (λ(Dnf − f)) ≤ Iϕ (3λ(g − f)) + Iϕ (3λ(Dnf −Dng))

+ Iϕ (3λ(Dng − g))

<
ϵ

2
+ Iϕ (3λ(Dng − g))

<
ϵ

2
+

ϵ

2
= ϵ,

∀ n ≥ No, for some sufficiently large No ∈ N.

Remark III.7. As observed in Section II, different choices
of ϕ functions generate different spaces. To begin, consider
ϕα,β(x) = xα logβ(e + x) for x ≥ 0, α ≥ 1, and β > 0.
The associated Orlicz space is Lα logβ L, known as Zygmund
space. Following this, the subsequent corollaries can be de-
duced from Theorem III.6, with α = β = 1.

Since the ∆2-condition is satisfied for ϕα,β , it follows that
the modular convergence is equivalent to norm convergence
in this case.

Corollary III.8. Let f ∈ L logL and λ > 0. Then the
following holds

lim
n→+∞

∥Dnf − f∥ϕα,β
= 0.

Another example of Orlicz space is generated by the func-
tion ϕα(x) = ex

α − 1, x ≥ 0 and α > 0, which is known as
an Exponential spaces.

Since ϕα does not fulfill the ∆2-condition, in this case the
modular convergence is not equivalent to norm convergence.
Here we can only establish result related to modular conver-
gence, rather than the norm convergence.

Corollary III.9. Let f ∈ Lϕα([a, b]). For λ > 0, there holds

lim
n→∞

∫ b

a

(exp (λ |(Dnf)(x)− f(x)|)α − 1) dx = 0.

IV. EXAMPLES OF ACTIVATION FUNCTIONS AND
GRAPHICAL REPRESENTATIONS

The activation function plays a pivotal role in the perfor-
mance of an artificial neural network.

Here we discuss several well-known sigmoidal functions ρ
and sutiable choices for kernel χ satisfying the assumptions
of our proposed framework. Moreover, we present examples
of some function insights using graphical representations and
error estimations.

We provide examples of sigmoidal functions that fulfill the
conditions discussed in Section II. To begin, we discuss the
logistic function (see [2]) and the hyperbolic tangent function
[2], which are defined as follows:

ρl(x) = (1 + e−x)−1 and ρh(x) =
1 + tanhx

2
, x ∈ R.



It is important to note that both ρl and ρh exhibit exponential
decay towards zero as x → −∞ (see [2], [12]).

Another significant example of a non-smooth sigmoidal
function is the ramp function, which is defined as (see [12])

ρR(x) =


0, if x < − 3

2 ,
x
3 + 1

2 , if − 3
2 ≤ x ≤ 3

2 ,

1, if x > 3
2 .

One can observe that ρR satisfies all the condition given in
Section II (see [2]). As the density function corresponding to
the ramp function has compact support, it follows that the
absolute moment of any order is finite.

Moreover, the semi-discrete NN operator is also character-
ized by the function χ. For this reason, it is necessary to
illustrate examples of χ for further examination. First example
in this direction is the well-known B-spline of order n ∈ N is
given as (see [7])

Mn(x) :=
1

(n− 1)!

n∑
i=0

(−1)i
(
n

i

)(n
2
+ x− i

)n−1

+
;

where (x)+ := max{x, 0}. For any n ∈ N, the functions Mn

are bounded on R and belong to L1(R), with compact support
contained in [−n/2, n/2].

For instance, the Fejér’s kernel (see [6]) can also be a
suitable choice for χ, which is defined by

F (x) := 2−1 sinc2
(x
2

)
, x ∈ R.

Finally, to conclude we demonstrate the approximation
abilities of operator (Dnf) using some numerical illustrations.
For this purpose, we utilize B-spline and Fejér’s kernel for χ,
and hyperbolic tangent function and logistic function for ρ.

Let g : [−1, 1] → R be a continuous function, defined by
g(x) = xsin(3πx). Fig. 1 will demonstrate approximation
of g by (Dng) based on B-spline of order 2 and hyperbolic
tangent function function.
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Fig. 1. Approximation of g by (Dng) for the choice of χ = M2 and ρ = ρh
.
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Fig. 2. Approximation of f by (Dnf) for the choice of χ = F and ρ = ρl
.

Consider a piecewise integrable function f : [−1, 1] → R,
given by

f(x) =

{
2 cos(3x) for − 1 ≤ x < 0

−3 exp(−x) for 0 ≤ x < 1.

Fig. 2 will demonstrate approximation of f by (Dnf) based
on Fejér’s kernel and logistic function.

CONCLUSION

In this article, we have presented a general paradigm to
study the approximation properties of a family of semi-
discrete (Durrmeyer type) NN operators (Dnf)n∈N in the
general framework of Orlicz spaces. This paper provides a
comprehensive understanding of approximation behaviour of
these Durrmeyer type NN operators across different significant
function spaces with varying norm structures.

In Section III, we have established the boundedness and
modular convergence theorem for (Dnf) in Orlicz space
Lϕ([a, b]). In Section IV, we have demonstrated the approxi-
mation ability of Durrmeyer type NN operators through some
graphical representations (see Fig. 1,2) utilizing particular
sigmoidal functions, and suitable kernels.
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