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Abstract

As fine-tuning (FT) becomes increasingly impractical at
scale, probing is emerging as the preferred evaluation pro-
tocol for self-supervised learning (SSL). Yet, the standard
linear probing (LP) fails to adequately reflect the potential
of models trained with Masked Image Modeling (MIM), due
to the distributed nature of patch tokens. This motivates the
need for attentive probing, an alternative that uses atten-
tion to selectively aggregate patch-level features. Despite
its growing adoption, attentive probing remains underex-
plored, with existing methods suffering from excessive pa-
rameterization and poor computational efficiency.

In this work, we revisit attentive probing through the
lens of the accuracy—efficiency trade-off. We conduct a sys-
tematic study of existing methods, analyzing their mech-
anisms and benchmarking their performance. We intro-
duce efficient probing (EP), a multi-query cross-attention
mechanism that eliminates redundant projections, reduces
the number of trainable parameters, and achieves up to a
10x speed-up over conventional multi-head attention. De-
spite its simplicity, EP outperforms LP and prior atten-
tive probing approaches across seven benchmarks, gener-
alizes well beyond MIM to diverse pretraining paradigms,
produces interpretable attention maps, and achieves strong
gains in low-shot and layer-wise settings. Code available
at https:// github.com/billpsomas/ efficient-probing.

1. Introduction

Self-supervised learning (SSL) [7, 10, 17, 27, 58] has
emerged as a powerful paradigm for learning visual repre-
sentations without labeled data, significantly reducing the
reliance on costly human annotations. Recent advances in
SSL can be broadly categorized into two families: joint em-
bedding architectures JEA) [3, 7, 10, 17] and masked im-
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Figure 1. We introduce efficient probing (EP), a lightweight atten-
tion mechanism improving efficiency without compromising per-
formance. We benchmark attentive probing and attentive pooling
methods to evaluate frozen models pretrained with Masked Im-
age Modeling (MIM). Here: accuracy vs. number of parameters
for different methods on CIFAR-100 [30] using MAE ViT-B [19].
[cLs]: linear probing; GAP: global average pooling of patch to-
kens; VviT: default transformer block [14]; EPys: efficient probing
with M learnable queries; D;, D,: input, output dimensionality.

age modeling MIM) [1, 11, 12, 19, 27, 38, 48, 58]. JEA
methods learn global representations by contrasting or clus-
tering different augmentations of the same image, often
pooling patch-level features or relying on a dedicated [CLS]
token. In contrast, MIM approaches reconstruct masked im-
age regions and thus yield distributed representations with
fine-grained spatial information.

To evaluate self-supervised pre-training, common pro-
tocols include k-NN evaluation, linear probing (LP), and
full fine-tuning (FT). While k-NN and LP assess the qual-
ity of the learned representations under a frozen backbone,
FT measures the utility of pre-training as initialization for
downstream tasks. Although FT achieves the highest per-
formance, it is increasingly viewed as unsustainable and
prohibitive at scale. As a result, probing is emerging as
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the preferred evaluation strategy [4, 12, 15, 37]. How-
ever, MIM models often lack a discriminative global rep-
resentation [40], making standard LP inappropriate to re-
flect their true capabilities [19]. Since valuable infor-
mation is distributed across patch tokens, attentive prob-
ing [4, 11, 12, 15] has emerged as an alternative, using
attention mechanisms to selectively aggregate patch-level
features.

Despite its increasing adoption, attentive probing re-
mains underexplored. Existing methods vary significantly
in design, are often over-parameterized or inefficient, and
lack a systematic framework for comparison. In this work,
we address these limitations by conducting the first com-
prehensive study of attentive probing, revisiting its design
through the lens of the accuracy—efficiency trade-off. We in-
troduce a unified framework that encompasses a wide range
of attention-based aggregation methods—including those
proposed for probing [4, 11, 12, 15] and others from un-
related tasks [11, 36, 41, 43, 53].

Through this framework, we identify key design simpli-
fications that lead to a new method, efficient probing (EP):
a conceptually simple multiquery cross-attention mecha-
nism that eliminates redundant projections, reduces param-
eter count and computational cost, and achieves up to 10x
speed-up over conventional multi-head attention—while
matching or surpassing prior state-of-the-art performance
(Figure 1). EP effectively balances accuracy, model size,
and efficiency, providing a lightweight yet expressive alter-
native for probing frozen models.

A central component of both existing methods and EP is
the use of multiple independent attention predictors (e.g.,
heads or learnable queries). We establish a connection be-
tween the contribution of each predictor to the classification
accuracy and its localization quality. Our analysis shows
that, rather than resorting to shortcut learning, e.g., lever-
aging background cues like water to classify a fish, EP pro-
duces attention maps that effectively focus on foreground
objects, enhancing interpretability, robustness, and perfor-
mance. Notably, each attention predictor in EP specializes
in distinct object regions, ensuring complementary feature
extraction and a more structured representation.

We validate our findings through extensive experiments
on seven classification benchmarks, across four MIM
frameworks, using backbones of varying size. Beyond
its original motivation for MIM, EP generalizes well to
other pre-training paradigms, as shown by results on joint-
embedding, hybrid, and vision-language models.

Our contributions are summarized as follows:

1. We conduct the first systematic benchmark and analysis
of attentive probing methods, comparing their accuracy,
efficiency, and design choices.

2. We derive a new probing mechanism, efficient probing
(EP), which is on par with the state-of-the-art, while

bringing spectacular gains in compute, memory, and pa-
rameter efficiency.

3. We uncover a correlation between spatial localization
and predictive performance, and show that EP yields in-
terpretable attention maps.

2. Related Work

Evaluation protocols in SSL Self-supervised learning
(SSL) has transformed visual representation learning, with
evaluation typically performed via (i) k-NN on frozen fea-
tures, (ii) linear probing (LP) using a shallow classifier on
a frozen encoder, or (iii) fine-tuning (FT) the entire model.
Although FT achieves the highest accuracy, it is computa-
tionally expensive.

Two dominant SSL paradigms are joint embedding ar-
chitectures (JEA) and masked image modeling (MIM).
JEA methods (e.g., DINO [7], SimCLR [9]) contrast or
cluster augmentations to learn global representations via a
[cLs] token or pooled features. In contrast, MIM meth-
ods (e.g., MAE [19], SimMIM [51], BEiTv2 [38]) recon-
struct masked regions, yielding localized representations
distributed across patch tokens.

This global vs. local distinction affects evaluation: LP is
effective for JEA [7] but underperforms for MIM [19, 40],
where discriminative information is not concentrated in a
single token. Consequently, FT remains the preferred strat-
egy for MIM [19, 51]. To overcome this, recent work ex-
plores attentive probing [4, 11, 12, 15], where attention is
used to aggregate patch tokens into informative descriptors.
While methods like AIM [15], CAE [11], and V-JEPA [4]
adopt this idea, no unified evaluation exists. We fill this gap
with a comprehensive benchmark and introduce a novel at-
tention mechanism achieving a strong accuracy—efficiency
trade-off.

Pooling in vision models Pooling reduces spatial resolu-
tion while retaining semantic information. In CNNss, fixed
pooling (e.g., global average pooling [18, 33]) is standard;
in vision transformers (ViTs) [14], the [CLS] token aggre-
gates features via self-attention.

Recent work proposes attention-based pooling to en-
hance representation quality. SimPool [41] replaces global
average pooling using trainable attention in both CNNs
and ViTs. Vision-language models such as CLIP [42],
SigLIP [49], and CoCa [53] use attentive pooling or cross-
attention to fuse modalities. V-JEPA [4] applies cross-
attention pooling for probing pretrained representations. In
image retrieval, DELF [36] and DOLG [52] use spatial at-
tention to focus on salient regions. CaiT [45] improves
class-token attention, AbMILP [43] uses single-query pool-
ing for multiple-instance learning, and CBAM [50] com-
bines channel and spatial attention to recalibrate features.
Although these poolings are originally introduced in diverse



contexts, we repurpose them for probing frozen models, en-
abling a fair and comprehensive benchmark.

Additional related works are presented in the supplemen-
tary material.

3. Method

3.1. Preliminaries

Let X € RP:*N be the feature matrix obtained from a pre-
trained and frozen ViT backbone, where D; is the number
of feature channels and N = W x H the number of features,
one per image patch across the spatial dimensions W x H.
Given the input features X, the goal is to generate an output
image-level feature y € RP by applying an attentive pool-
ing mechanism. The output feature is used to train a C-way
linear classifier with D,(C' + 1) parameters.

3.2. Attentive Pooling

We consider M attention predictors, to be discussed in
subsection 3.3. For each predictor j € {1,..., M}, let
a; € RY be the ¢;-normalized attention vector it gener-
ates. Each vector, reshaped to W x H, is an attention map
indicating the locations on which the predictor focuses. Let
V € RP-*N be the value features, commonly obtained by
a linear transformation V = Wy X, where Wy, € RPoxDi
is a learnable projection matrix.

Let the output feature y, value features V' and projection
matrix Wy, be partitioned into M subvectors / submatrices
according to

Y1 Wi Wy,

Yy Vi Wy,
with y; € R%, V; € RN Wy, € R%*Pi and d, =
D,

T
The attentive pooling operation is then given by

y; =Vja; = Wy, Xa;. (2)

Each attention predictor is responsible for the weighted
pooling of N features into a d,-dimensional subspace of
the final representation space. In the following, we explore
existing and novel ways for designing these attention pre-
dictors. We focus on the number of additional parameters
to be learnt on top of the frozen backbone and the computa-
tional complexity of the pooling operation.

3.3. Attention Predictors

Multi-Head Cross-Attention (MHCA) A standard ap-
proach is to perform multi-head cross-attention between the
input features and an input vector u € RP: where each
head corresponds to a separate attention predictor. The

query feature q € RP+ and key features K € RP«*N are
obtained by linear transformations q = Wou, K = Wi X
with projection matrices Wg, Wi € RP«*Pi (Figure 2).
Let the query feature q and projection matrix W, be par-
titioned into M subvectors / submatrices according to

a1 WQl
q=| : |, Wg= : ; 3)
am WQM
with q; = Wo,u € R%, Wy, € R%*Piand d, = L=
Similarly, let the key features K and projection matrix W
be partitioned according to

K, Wk,
K=|: | owe=]| : | )
Ky WKM

with K; = Wk, X € R%*N and W, € R%*D:,
The attention vector for head j is then given by

a; = softmax(a;) ®)

with

That is, the input features X and input vector u are pro-
jected to d,-dimensional subspaces where attention subvec-
tors are computed via dot product followed by softmax nor-
malization over patches. This attention predictor requires
D, (2D; + 1) parameters and has complexity O(N D, D).
As discussed in subsection 3.4, there are several existing
methods that fit within this generic framework with little or
no differences.

MHCA with a learnable query If we consider input vec-
tor u to be learnable, then there is no need for the projection
matrix Wg in (6). Instead, we can set the query feature q to
be learnable, thus absorbing W, and u:

aj = Wk, X) q; = X Wg q; Q)

where the query feature q; € R is learnable.

We observe that W}(rj maps q; to the D;-dimensional
space of input features to compute the attention vector.
Thus, standard MHCA ensures that each query subvector
is interacting with the full representation space of the in-
put features, despite being defined in a smaller dimensional
space. Using a learnable query feature directly simplifies
the architecture, reduces the amount of computations and
the number of parameters to D, (D; + 1).

We simplify the architecture by removing the key trans-
formation. By letting Wi be fixed to the identity matrix,
(7) becomes

a =X/ q ®)
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Figure 2. Comparison of multi-head cross attention (MHCA, left) vs. our transformation-free cross-attention (right), i.e. the mechanism of
EP. MHCA uses a learnable input vector u projected into query space and interacts with key features K in two separate subspaces, each
corresponding to an attention predictor. Attention predictor outputs a; are used to aggregate value features V' into sub-vectors y;, forming
the final output y. In contrast, EP employs two learnable queries q;, one per attention predictor, to compute attention with input features
directly in the full representation space. Attention predictor outputs a; are used as in MHCA to perform the aggregation.

where the feature matrix X is partitioned into M submatri-
ces according to
X1

X=1:1, ©)
Xur

with X; € R%*N and d; = 2. We thus observe that the
query feature only interacts with a d;-dimensional subspace
of the input features. This is a limitation that we experimen-
tally verify to perform poorly. In the following, we suggest
a new way to design attention predictors that have less pa-
rameters, require less compute and overcome this limita-
tion, making them perform better.

Transformation-free Cross-Attention with multiple
learnable queries Instead of using the key subma-
trices Wy, to project the query subvectors q; to the
D;-dimensional input feature space, we propose to learn M
query features u; € RPi in that space directly (Figure 2).
Thus, u; absorbs WK], and q; and attention prediction
becomes

a =Xy (10)

forj € {1,..., M}. As aresult, there are no projection ma-
trices and there are no parameters other than the learnable
query features u;.

This choice reduces the number of additional parameters
to be learned and saves from one more matrix-vector multi-
plication. In particular, it requires D; M parameters for the
attention compared to D, (D; + 1) for (6), while the number
of operations drops to N.D; M compared to ND,(D; + 1).
Typically, M is one to two orders of magnitude smaller than
D; and D,, which are commonly equal to each other, mak-
ing the proposed approach more efficient in terms of both
parameters and operations.

There is a connection between EP and slot attention [34],
where slots are also multiple vectors in the input feature

space. To derive EP from slot attention, one needs to per-
form only a single iteration; remove LayerNorm, GRU and
MLP; make slot vectors learnable rather than initialized at
random; and concatenate the output features into a global
representation of appropriate dimension. Thus, EP can be
seen as a lightweight counterpart of slot attention, where
the absence of interactions is compensated by the query fea-
tures being learned.

3.4. Existing variants

We analyze existing methods as instances of the presented
framework, and examine common variants, considering
their relationship to the framework despite slight deviations.

AbDMILP Attention-based Multiple Instance Learning
Pooling [43] is the simplest variant. It fixes Wy to identity
and is equivalent to MHCA with a learnable query feature
framework in (7), with a single head (M = 1). It can also
be seen as a special case of our proposed method in (10)
with one learnable query feature, i.e. M = 1. AbMILP re-
quires only D, parameters and computes attention with a
single matrix-vector multiplication, but its performance is
limited by the single head/query.

AIM AIM [15] is an instance of MHCA with a learnable
query feature. It deviates from the generic framework by
applying batch normalization on the input features. It does
follow (2) and (7) with M heads and D, = D; = D,,
but replaces X by BN(X). Batch normalization introduces
additional parameters and a slight computational overhead
compared to the default variant of the framework.

DELF We establish an useful relation with DELF [36],
although it was not introduced in the context of attentive
pooling for SSL. DELF feeds each of the N input features
to a two-layer MLP whose output is a scalar attention value



in [0, 1]. It can be viewed as an instance of the MHCA with
a learnable query feature and M = 1 with the following
two modifications. A non-linearity is introduced in equa-
tion (7) by & = ReLU(WgX)'q, where subscript j is
skipped due to M = 1, and softmax in (5) is replaced by
element-wise softplus, a = softplus(a). In the context of
DELEF, the query feature g can be seen as the parameter of
a1 x 1 convolutional layer. DELF does not introduce any
additional parameters and has the same complexity as the
default variant of the framework.

SimPool SimPool [41] can be seen as an instance of
MHCA with a single head (M = 1) but it has a data-
dependent query vector, Wy fixed to identity, and layer
normalization on the input features. Specifically, the query
feature is obtained as the average of the input features,
q = +X "1, and X is replaced by LN(X). Compared
to the default variant of the framework, SimPool saves D;
parameters and has the same complexity.

V-JEPA The first part of V-JEPA [4] is identical to the
MHCA framework but applies layer normalization on the
input features, like SimPool. Its second part is an MLP with
GeLU [21] activation and residual connections, making the
overall process equivalent to a transformer block.

Additional methods considered in experiments like
CLIP [42] and CoCa [53] are further variants of the MHCA
framework with slight differences compared to the variants
presented above. For brevity, we present these in the sup-
plementary material.

4. Experiments

4.1. Experimental setup

Datasets We evaluate attentive probing across diverse im-
age classification benchmarks, including ImageNet-1k [13],
CIFAR-100 [30], Places365 [57], CUB-200 [47], FGVC
Aircraft [35], Stanford Cars [29], and Food-101 [6]. Full
dataset details are provided in the supplementary material.

SSL methods We conduct attentive probing experiments
using frozen self-supervised learning methods, including
MAE [19], SimMIM [51], BEiTv2 [38], and CAPI [12].
We evaluate MAE using ViT-S, ViT-B, and ViT-L, SimMIM
and BEiTv2 using ViT-B, and CAPI using ViT-L.

Evaluation protocols Attentive probing is performed for
90 epochs. We evaluate top-1 classification accuracy on the
validation set of each dataset. Additionally, we compute
the number of parameters and measure the FLOPs for each
method to assess computational efficiency and scalability.

4.2. Competitors

We compare attentive probing against a diverse set of meth-
ods, covering different paradigms. First, we evaluate at-
tentive poolings originally designed for probing, including
AIM [15], CAE [11], CAPI [12], and V-JEPA [4]. Second,
we include attentive poolings originally proposed in other
contexts but applicable to probing, such as AbMILP [43],
SimPool [41], CLIP [42], SigLIP [49, 54], CoCa [53],
CaiT [45], and DELF [36]. Additionally, we include feature
re-weighting methods like CBAM [50], applying global av-
erage pooling to obtain the global descriptor.

As baselines, we include [CLS], which corresponds to
standard linear probing using the classification token, and
GAP, which serves as the baseline attentive probing ap-
proach with uniform attention over the patch tokens. To
establish a reference, we also evaluate a ViT [14] block as
a probing mechanism, applying global average pooling to
extract the global representation. All methods operate on
the same input features—namely, the patch tokens extracted
from the frozen backbone—ensuring a fair and consistent
comparison. Unless otherwise stated, D, = D; = D,.

4.3. Benchmark

Accuracy vs. parameters In Figure 3, we compare effi-
cient probing (EP) with baseline and competitor methods
using MAE ViT-B, SimMIM ViT-B, BEiTv2 ViT-B, and
CAPI ViT-L on Imagenet-1k, and MAE ViT-B on Food-
101 and Cars-196. We plot top-1 accuracy against the num-
ber of trainable parameters, including both attentive pool-
ing and classifier parameters, and overlay the Pareto frontier
to highlight optimal trade-offs. The two primary baselines,
[CLs] and GAP, are the most parameter-efficient, as they in-
troduce no overhead beyond the classifier parameters, but
yield noticeably lower accuracy. In contrast, methods like
V-JEPA, CaiT, SigLIP, and the reference ViT block employ
significantly more parameters, though within the attentive
probing setting, their increased complexity provides mostly
marginal accuracy improvements. Among the existing at-
tentive probing or pooling methods, SimPool provides mod-
erate accuracy but is not particularly parameter-efficient,
while CAE and CLIP achieve stronger performance at the
cost of higher parameter counts. AbMILP, DELF, AIM, and
CoCa lie on the Pareto frontier, striking the optimal balance.

EP consistently achieves the best accuracy—parameter
trade-off, positioning itself on the left or upper-left region
of the Pareto frontier across self-supervised methods and
datasets. A key factor is its flexibility in controlling the
number of queries M and the output dimensionality D, (be-
cause of Wy, ), allowing adaptation to different parameter
constraints. Notably, on ImageNet-1k with MAE ViT-B,
EPg4 (64 queries) achieves a state-of-the-art top-1 accuracy
of 75.6% with less than 1.4M parameters. EP4g with 48
queries and D, = D,;/8 achieves 70.3% top-1 accuracy,
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Figure 3. Top-1 classification accuracy vs. number of parameters for various self-supervised learning methods (a, b, c, d) across different
datasets (c, d). We evaluate both dedicated probing mechanisms (e.g., V-JEPA) and repurposed attentive pooling methods (e.g., CLIP).
EP variants are marked with different for different output dimensionalities D,. EP,s: efficient probing with M learnable queries.
[cLs]: linear probing using the classification token; GAP: global average pooling over patch tokens; ViT: default transformer block.

while having a little more than 200k parameters, i.e. almost
4x less than linear probing ([CLS]). On ImageNet-1k with
SimMIM ViT-B, the trend is almost consistent, where EPg4
achieves competitive accuracy, while with BEiTv2 ViT-B

and with CAPI ViT-L, EP35 and EPg4 achieve a state-of-the-
art top-1 accuracy of 81.7% and 83.6% respectively. On
Food-101 and Cars-196, we observe that reducing D, even
to D; /16 does not significantly hurt performance.
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Figure 4. Top-1 classification accuracy vs. GFLOPS for MAE
ViT-B with different probings on ImageNet-1k.

Accuracy vs. computational cost In Figure 4, we com-
pare different probing or pooling methods in terms of top-1
accuracy against computational cost, measured in GFLOPS.
Baseline approaches [CLS] and GAP are the most effi-
cient but suffer from lower accuracy. Methods using self-
attention, such as ViT and CLIP, exhibit higher GFLOPs
due to additional attention computations. EP requires only
0.12 GFLOPs for probing, compared to 1.44 GFLOPs for
ViT—comparable to the vanilla MHCA—achieving a more
than 10x reduction in compute. Our EP again lies on the left
or upper-left of the Pareto frontier, demonstrating superior
accuracy-to-compute efficiency. By controlling the clas-
sifier’s output dimensionality D,, we achieve competitive
performance at significantly reduced computational cost.
Notably, reducing D,, (e.g., D, = D;/2) yields efficiency
gains without major accuracy loss, establishing the scalabil-
ity of EP to different computational budgets.

Comparison of pre-training methods Table | compares
various pre-training methods—masked image modeling,
joint embedding, hybrid, and vision-language—under mul-
tiple evaluation protocols on ImageNet-1k. Fine-tuning
(FT) achieves the highest accuracy but is compute-intensive
and unsustainable at scale, making it increasingly rare in
recent evaluations (x). k-NN performs poorly, highlight-
ing the limited discriminative power of raw features. Linear
probing (LP) and efficient probing (EP) offer efficient alter-
natives. EP consistently outperforms LP while remaining
lightweight. It also reveals trends that reverse those seen
in LP and k-NN—for instance, MAE surpasses BYOL and
CAPI outperforms CLIP—suggesting that MIM methods
are stronger than often assumed. While originally moti-
vated by MIM, EP proves broadly applicable and narrows
the performance gap to FT across all paradigms.

4.4. Classification vs. localization

We investigate whether the quality of attention maps in
terms of localization contributes positively to classification

Table 1. Comparison of pre-training methods in terms of different
evaluation protocols on ImageNet-1k; (ranking).

Method Pub. Arch. Pretrain k-NN LP EP FT
MAE [19] CVPR22 ViT-B IN-1k 46.1 (10) 67.7 (10) 75.6 (9) 83.6
BEiTv2 [38] arXiv22 ViIiT-B IN-1k 74.8(8) 79.0(6) 81.7(6) 85.0
SimMIM [51] CVPR22 ViT-B IN-1k 15.1 (11) 51.5(11) 65.1 (11) 83.8
CAPI[12] TMLR25 ViT-L IN-1k 76.7(6) 81.5(5) 83.6(4) x
BYOL [17]  NeurIPS20 RN-50 IN-1k 64.8(9) 74.3(9) 75.1(10) 77.7
DINO [7] ICCV21 VIiT-B IN-1k 76.1(7) 78.2(8) 78.7(8) 82.8
iBOT [58] ICLR22 ViT-B IN-1k 77.0(5) 78.7(7) 79.2(7) 84.0
DINOv2 [37] TMLR24 ViT-B LVD 81.8(3) 83.2(3) 84.0(3) x
CLIP [42] PMLR21 ViT-L WIT 77.2(4) 823(4) 834(5 x
SigLIP [54] ICCV23 ViT-L WebLI 83.7(2) 859(2) 86.1(2) x
SigLIP2 [46]  arXiv25 VIiT-L WebLI 84.4 (1) 869 (1) 87.1(1) x

accuracy. Specifically, we evaluate each attention predictor
by comparing its localization quality against its influence
on overall classification performance. To assess localiza-
tion quality, we measure: (i) the sum of attention values
allocated to image patches within the ground-truth bound-
ing box [13], and (ii) the entropy of the attention distribu-
tion. We average these metrics over the validation set. To
quantify each predictor’s importance for classification, we
replace its learned attention distribution with a uniform dis-
tribution and report the resulting accuracy drop.

Figure 5 reveals a strong correlation between the atten-
tion predictors’ localization quality or entropy and their im-
pact on classification accuracy: better localization quality
and lower entropy consistently result in higher influence on
accuracy. This trend holds across various attentive meth-
ods, including EP and its variants with reduced output di-
mensionality D,. As previously observed (Figure 3), lower
D, values generally degrade classification accuracy. Inter-
estingly, Figure 5 (rightmost plot) further suggests that this
decline is not solely due to reduced representational capac-
ity, but also due to diminished attention quality, as indicated
by increased entropy in the attention distributions.

4.5. Visualizations

We visualize the attention maps of EPg. As shown in Fig-
ure 6, different queries consistently focus on distinct object
parts, such as the head, wings, or body, revealing a comple-
mentary decomposition of the object. This suggests that EP
distributes attention effectively across informative regions,
resulting in richer and more structured representations.

4.6. Ablations

Impact of Wi in MHCA Our analysis in subsection 3.3
posits that while a single learnable query q can effectively
absorb the key transformation in single-head attention, the
same does not hold in multi-head. To empirically validate
this, we probe MAE ViT-B with four variants: single-head
vs. multi-head, each with and without Wy . Specifically,
we evaluate single-head AbMILP and AIM with 12 heads
(AIM;5). In single-head attention, removing Wy has min-
imal impact on performance (71.8% — 71.7%), while in
multi-head the drop is noticeable (75.1% — 72.9%).
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Figure 5. Classification accuracy vs. attention quality on ImageNet-1k. Each point corresponds to an attention predictor (head or query).
We measure the classification accuracy drop (A accuracy) when replacing predictor’s attention with a uniform distribution, and relate this
to localization quality (1st and 3rd plots) and entropy (2nd and 4th plots). The first two plots compare different attentive probing methods,

while the latter two vary output dimensionality D, of EP.

Figure 6. Attention maps of efficient probing with 8 queries (EPg). Each query q; learns to focus on distinct and complementary regions,
capturing diverse spatial and semantic information. MAE ViT-B pre-trained on ImageNet-1k, probed with EP.

Impact of Wy, We ablate the effect of the projection ma-
trix Wy, which operates on patch tokens (2), by adding or
removing it across pooling methods. Introducing Wy, to
GAP results in a top-1 accuracy improvement from 66.7% to
68.0%. Conversely, removing Wy, from EP;, degrades per-
formance from 75.1% to 72.1%. A similar accuracy drop is
observed for other methods, such as AIM (75.1% — 72.0%)
and CAE (74.9% — 72.2%), confirming that Wy, is a criti-
cal component in maintaining performance.

Impact of attention predictors, D,,and D, We analyze
the effect of increasing the number M of heads (in MHCA-
based method AIM) and the number M of queries (in EP) on
probing performance. Figure 7 shows that both lead to ac-
curacy improvements. For AIM, increasing the number of
heads incurs no additional cost in terms of parameters, but
its effectiveness heavily depends on the presence of W.
In contrast, EP achieves similar or better performance by
leveraging additional queries, while removing Wx. AIM
introduces an additional attention dimensionality D,,, since
its query is learnable and interacts with W . Lowering D,
reduces the parameters but leads to a greater accuracy drop
(green points), indicating that the learned query formula-
tion benefits from a large attention space. We also eval-
uate the impact of reducing the output dimensionality D,
(blue points). On EP, we observe that lowering D, to D, /2
reduces parameters while maintaining competitive perfor-
mance. Interestingly, this strategy also generalizes well to
AIM, demonstrating that extracting lower-dimensional fea-
tures can achieve comparable accuracy with reduced com-
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Figure 7. Effect of varying the number of heads/queries M, D,
and output dimension D, on probing accuracy. Black: standard
setting (D, = D;); blue: reduced classifier dimension (D, =
D;/2); green: reduced attention dimension (D, = D;/2); half-
blue-half-green: simultaneous reduction of both D, and D,,.

putational cost. In all cases, EP consistently matches or out-
performs AIM, while remaining more parameter efficient.

5. Conclusion

We revisit evaluation protocols for pre-training methods and
introduce EP, a scalable alternative to the increasingly un-
sustainable fine-tuning. EP is a lightweight attentive prob-
ing method that eliminates redundant projections and lever-
ages multiple learnable queries for efficient and expres-
sive feature aggregation. It produces interpretable attention
maps with strong localization, generalizes well across mod-
els and pretraining paradigms, and consistently outperforms
linear probing, achieving up to +13.6% on ImageNet-1k.
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A. Additional related works

A.1. Parameter-efficient fine-tuning

Parameter-efficient fine-tuning (PEFT) adapts large pre-trained
models to downstream tasks without updating all model param-
eters. PEFT techniques broadly include additive, selective, and
low-rank adaptation methods.

Additive methods introduce small, task-specific modules into
the frozen backbone, leaving the pre-trained weights untouched.
These modules often reside within the transformer blocks and are
trained to specialize the model for a new domain. Notable exam-
ples include AdapterFusion [39], LeTS [16], and TADA [24] in
natural language processing (NLP), VPT [26], AdaptFormer [8],
and Adapter-X [31] in computer vision (CV), and FMA [20],
AiRs [23], and DEFLECT [44] in remote sensing (RS).

Selective methods fine-tune only specific subsets of parame-
ters, typically chosen based on their functional role or estimated
importance. Examples include BitFit [5], which adjusts only the
bias terms, and norm-tuning approaches [55] which update only
the normalization layers. These techniques avoid introducing new
components, making them lightweight, though sometimes at the
expense of performance.

Low-rank adaptation methods like LoRA [22] in NLP as-
sume that parameter updates lie in a low-dimensional subspace.
They inject trainable low-rank matrices into existing layers, yield-
ing strong performance with minimal parameter growth. In the vi-
sion domain, LoRa and its variants have been effectively adapted
to vision transformers (ViTs), often rethinking where and how
low-rank modules are inserted to align with the spatial and hier-
archical nature of visual representations. Notable examples in-
clude structure-aware methods like Serial LoRA [56] and Flat-
LoRA [32], layer-wise extensions such as AdaptFormer [8], and
task specific designs like PETAH [2] and MeLo [59] which adapt
LoRa to mobile inference and medical imaging, respectively. Con-
tinued pretraining approaches such as EXPLoRA [28] further ex-
tend low-rank adaptation to domain-shifted self-supervised set-
tings.

EP naturally fits the additive PEFT family. It introduces a com-
pact learnable query set interacting with frozen tokens via multi-
head attention. Unlike typical prompt-based methods, it avoids
backbone modifications and focuses training on minimal parame-
ters. Thus, EP efficiently combines additive PEFT simplicity with
task-specific attentive pooling.

B. Additional methods

B.1. Existing variants

We present here additional attentive probing or pooling methods
evaluated in our experiments but not detailed in the main paper.
These approaches represent variations of the MHCA framework,
highlighting only their key deviations from the default design.

12

CLIP CLIP [42] differs from MHCA by employing self-
attention rather than cross-attention. Specifically, CLIP prepends
a global average pooled (GAP) token to the layer-normalized in-
put features, treating this token as a global representation. All
tokens, including the GAP token, are augmented with learnable
positional encodings and processed through a single self-attention
block (which includes a query projection matrix Wg). The global
representation is extracted from the output corresponding to the
GAP token. Additionally, CLIP includes a linear projection matrix
Wi after attention aggregation. These modifications enable in-
teractions across all tokens but increase parameter count and com-
putational complexity.

CAIT CAIT [45] adapts MHCA-with-learnable-query formula-
tion by concatenating the learnable query token with the input fea-
tures and applying self-attention rather than cross-attention. It re-
tains the query projection matrix W¢ and includes a linear pro-
jection matrix Wy after attention aggregation, followed by an
MLP block with GELU activations, residual connections, and Lay-
erScale parameters. The global representation is obtained from
the updated query token after these operations, thereby increas-
ing complexity and parameter count relative to the default MHCA
variant.

SigLIP SigLIP [49, 54] remains close to the MHCA-with-
learnable-query formulation but retains the query projection ma-
trix Wgq. After the attention aggregation, SigLIP incorporates
an output projection W, followed by a transformer-style MLP
block with GELU activation and residual connections. Optional
layer normalization can also be applied before the MLP. These
changes add further parameters and computational overhead com-
pared to the baseline MHCA design.

CAE CAE [11] follows the MHCA-with-learnable-query tem-
plate closely but retains the query projection matrix W¢g and ap-
plies separate layer normalization to both input features and the
query token prior to attention. After attention aggregation, it em-
ploys an additional output projection matrix Wpj. These modi-
fications introduce additional parameters and computational com-
plexity.

CoCa CoCa [53] is aligned with the MHCA-with-learnable-
query framework but retains the query projection matrix W¢ and
layer-normalizes the query token before computing attention. At-
tention and value aggregation both occur in a reduced-dimensional
space, with dimension D, = D, < D;. A final linear projection
matrix W is then applied to restore the feature dimension to the
original backbone dimension D;. These choices introduce a con-
trolled amount of additional complexity and parameters.

Figure 8 presents a visual comparison of three selected atten-
tive probing or pooling techniques: AbMILP [43], AIM [15], and
V-JEPA [4]. AbMILP (top-left) serves as a lightweight method,
employing a single-head learnable query without additional lin-
ear projection matrices, thus requiring only D; parameters. AIM
(top-right) extends this by adopting multi-head attention, operat-
ing within multiple subspaces. This approach introduces linear
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Figure 8. Visual comparison of three attentive pooling methods. AbMILP (top-left) employs a single-head, learnable query without linear
projections, minimizing complexity. AIM (top-right) extends the approach by introducing multi-head attention, operating in multiple
subspaces, and applies linear projections to keys and values. V-JEPA (bottom) offers a more comprehensive architecture by integrating
multi-head attention with extensive linear projections and an additional MLP block with a residual connection, increasing representational

capacity.

projection matrices for keys and values, increasing the number
of parameters, yet allowing more expressive query-key interac-
tions. V-JEPA (bottom) represents a significantly more complex
and computationally intensive architecture. Beyond multi-head at-
tention and multiple linear projections for queries, keys, and val-
ues, it integrates an additional projection step, followed by a multi-
layer perceptron (MLP) featuring GeLU activation and residual
connections.

C. More experiments
C.1. Setup

Datasets We evaluate attentive probing across diverse image
classification benchmarks. As a large-scale dataset, ImageNet-
1k [13] serves as the primary benchmark, containing 1.28M im-
ages across 1,000 categories. CIFAR-100 [30] provides a smaller
yet challenging 100-class task with 60K images. To assess scene
understanding, we use Places365 [57], comprising 1.8M images
spanning 365 scene types. For fine-grained classification, we
evaluate on CUB-200 [47] (11,788 images, 200 bird species),
FGVC Aircraft [35] (10K images, 100 aircraft models), Stanford
Cars [29] (16K images, 196 car types), and Food-101 [6] (101K
images, 101 food categories).

C.2. Benchmark

We extend our benchmark presented on the main paper to in-
clude additional backbone sizes and datasets. Figure 9 presents the
trade-off between top-1 accuracy and the number of parameters for
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various pooling and probing methods integrated into MAE with
different backbone sizes (ViT-S and ViT-L). The evaluation spans
multiple datasets, including FGVC-Aircraft, CUB200, Places365,
and SUN397.

As shown in Figure 9a and Figure 9a, our proposed EP method
consistently outperforms standard linear probing across MAE ViT-
S and ViT-L backbones respectively. Notably, on MAE ViT-L,
EPjs with D, = D, /2 achieves an accuracy boost of 79.1% sur-
passing linear probing by 3.1% while maintaining the same num-
ber of trainable parameters. Furthermore, EP»s reaches 79.4%,
outperforming SigL.IP, while reducing the number of trainable pa-
rameters by over 11M.

GAP and [CLS], the two primary baselines, exhibit high param-
eter efficiency but low classification accuracy. In contrast, multi-
head attention methods such as SigLIP (54.39%), ViT (54.84%),
and V-JEPA (52.44%) achieve higher accuracy, albeit at the cost
of increasing the number of trainable parameters by up to 100x.
More specifically, in Figure 9¢ we can observe that EP has the
best trade-off between accuracy and parameters, achieving top-1
classification accuracy of 53.7% with just 1M extra trainable pa-
rameters (EPes4). In Figure 9c, our EPy4 variant, for the FGVC-
Aircraft dataset, achieves a remarkable accuracy boost of 61.2%
(+19.5%), while maintaining lower parameter count than linear
probing (41.7%). Similarly, in Figure 9d for the CUB200 dataset,
our EPg4 with D, = D, /4 variant achieves comparable accu-
racy (75.9%) with computationally costly poolings such as SigLIP
(77.8%) with around 7M trainable parameters less.
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Figure 9. Top-1 classification accuracy vs. number of parameters for MAE framework, with backbones of varying size (a, b) and across
various datasets (c, d, e, f). We evaluate attentive probing mechanisms originally designed for probing, alongside attentive pooling methods
cast as probing. EP variants are marked with different for different output dimensionalities D,. EP,s: efficient probing with M
learnable queries. [CLS]: linear probing using the class token; GAP: global average pooling over patch tokens; ViT: default transformer
block. EP consistently achieves better performance than linear probing with up to 4.5x fewer parameters.

of a pre-trained and frozen MAE with ViT-B. While LP exhibits a
clear degradation in performance as we move toward earlier lay-
ers (dropping from 67.7% at layer 12 to just 45.8% at layer 6),

Layer-wise probing Table 2 presents a layer-wise compari-
son between standard linear probing (LP) and efficient probing
(EP) using patch token representations from intermediate layers
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Table 2. Top-1 accuracy on ImageNet-1k for MAE/ViT-B using
patch token representations from intermediate ViT layers. We re-
port results for standard linear probing (LP) and efficient probing
(EP), along with the accuracy gains achieved by EP over LP at each
layer.

Layer LP EP gains
12 67.7 75.6 +7.9
10 66.2 75.9 +9.7

9 64.5 754 +10.9
6 45.8 69.6 +23.8

EP demonstrates remarkable robustness. It maintains high accu-
racy even from lower layers, with performance stabilizing beyond
layer 9. Notably, EP yields a significant relative improvement of
+23.8% at layer 6 over LP, underscoring its ability to extract and
utilize meaningful representations from less semantically enriched
stages of the encoder. These results highlight the effectiveness of
EP in unlocking information from earlier layers that standard LP
fails to exploit.

Low-shot probing Table 3 evaluates the performance of linear
probing (LP), efficient probing (EP), and fine-tuning (FT) under
limited supervision, using only 5% and 10% of the ImageNet-1k
training set, stratified by class. While LP struggles in this low-shot
regime, EP substantially bridges the gap toward FT. Specifically,
EP closes 74.8% and 71.5% of the LP—FT performance gap for
the 5% and 10% subsets, respectively. These improvements are
particularly impressive given that EP remains significantly more
parameter-efficient than FT, with complexity comparable to LP (as
further illustrated in Figure 9). These findings highlight the strong
data efficiency of EP, making it a compelling alternative to fine-
tuning when data or computational resources are limited.

Table 3. Top-1 accuracy on ImageNet-1k with limited training
data for MAE/VIT-B. We report results for linear probing (LP),
efficient probing (EP), and fine-tuning (FT) on 5% and 10% sub-
sets of ImageNet-1k. The last column shows the percentage of the
LP—FT performance gap closed by EP. For reference, the gap
closed by EP on the full training set (100%) is 49.7%.

Subset LP EP FT % gap
5% 49.6 60.9 64.7 74.8%
10% 559 652 68.9 71.5%

C.3. Visualizations

To better understand the behavior of different attentive probing or
pooling methods, we present qualitative visualizations of attention
maps across various configurations.

Figure 10 shows the attention maps obtained from four single-
head attention probing methods (CBAM, AbMILP, DELF, and
SimPool) using an ImageNet-1K pretrained MAE ViT-B model.
Among them, CBAM exhibits poor localization, often failing to
focus on the target object, which is consistent with its low classifi-
cation accuracy across datasets. In contrast, AbMILP, DELF, and
SimPool produce more precise and meaningful attention, high-
lighting relevant object regions while suppressing background
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noise. Due to their single-head nature, these methods are com-
pelled to concentrate all semantic information into a single atten-
tion vector, which encourages a global view of the input image
rather than fine-grained discrimination.

Figure 11 compares attention maps from multi-head probing
methods. Rather than visualizing just the average attention across
heads,which can obscure useful per-head behavior, we show the
minimum, maximum, and standard deviation across attention
heads. The first column contains maps from the [CLS] token of
the pretrained MAE ViT-B model. The remaining columns dis-
play maps from CAE, CaiT, CLIP, CoCa, ViT, V-JEPA, SigLIP,
and AIM, alongside EP using 16 learnable queries (EP1s). No-
tably, EP produces high-quality attention maps that rival the best-
performing methods in both clarity and relevance, while retaining
computational efficiency.

Figure 12 presents the attention maps corresponding to each
individual query in EP. We observe that each query q; attends
to distinct, complementary regions of the object (e.g., head, torso,
boundaries), illustrating how EP distributes attention cooperatively
across salient features without redundancy. This diversity among
queries reveals the model’s capacity to decompose complex ob-
jects into meaningful sub-parts.

Figure 13 explores the effect of varying the number of queries
in EP, visualizing configurations with 1, 2, 4, and more queries.
When only a single query (EP1) is used, the attention map tends to
capture a coarse, global representation of the object. As the num-
ber of queries increases, the attention becomes more fine-grained
and spatially distributed, with each query specializing in distinct
object regions. This highlights the flexibility of EP in controlling
the granularity of attention: fewer queries encourage holistic cov-
erage, while more queries promote detailed, part-based localiza-
tion.

C.4. Implementation details

We evaluate four masked image modeling (MAE, BEiTv2, Sim-
MIM, CAPI), two joint-embedding (BYOL, DINO), two hybrid
(iBOT, DINOV2), and three vision-language pre-training methods
(CLIP, SigLIP, SigLIP2). All models use the ViT-B architecture
unless it is not available; for example, BYOL is implemented with
ResNet-50, and CAPI uses ViT-L. To ensure a fair comparison
of different probing and pooling methods, we use the LARS op-
timizer and perform a learning rate search in the range [0.1, 5.0]
with a step size of 0.1 for each model. For large-scale datasets such
as ImageNet-1k and Places365, we fix the learning rate to 0.1 due
to the computational cost of an exhaustive search. All models are
trained for 90 epochs with 10 warmup epochs, ensuring consistent
training schedules even though many models converge earlier. The
effective batch size is set to 4096 for all datasets except FGVC Air-
craft, where it is reduced to 512 due to the dataset’s smaller size.
All models use standard image pre-processing, including Random-
ResizedCrop, horizontal flipping, and normalization. For vision-
language models, we adopt their official pre-processing pipelines
(e.g., OpenCLIP [25] transforms for CLIP and SigLIP) to ensure
consistency with pre-training distributions. All experiments are
conducted on a cluster of 8 NVIDIA A100 GPUs, each equipped
with 40 GB of VRAM.



SimPool

Figure 10. Attention maps of single-head attention pooling methods. MAE ViT-B pre-trained on ImageNet-1k. Images: ImageNet-1k
validation set.
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SigLIP EPig

Figure 11. Attention maps of multi-head attention pooling methods for different attention predictor aggregators: mean, standard deviation
(std), minimum (min), and maximum (max). MAE ViT-B pre-trained on ImageNet-1K. Images: ImageNet-1k validation set. EPi¢:
efficient probing (EP) with 16 queries.
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Figure 12. Attention maps of efficient probing (EP) with 8 queries. Each query q; learns to focus on distinct and complementary regions,
capturing diverse spatial and semantic information. MAE ViT-B pre-trained on ImageNet-1K, probed with EP. Images: ImageNet-1k
validation set.

original
image

Figure 13. Attention maps of efficient probing (EP) variants grouped by the number of queries (1, 2, etc.). MAE ViT-B pre-trained on
ImageNet-1K, probed with EP. Images: ImageNet-1k validation set.
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