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Abstract

Discrete audio tokens are compact representations that aim to preserve perceptual quality,
phonetic content, and speaker characteristics while enabling efficient storage and inference,
as well as competitive performance across diverse downstream tasks. They provide a prac-
tical alternative to continuous features, enabling the integration of speech and audio into
modern large language models (LLMs). As interest in token-based audio processing grows,
various tokenization methods have emerged, and several surveys have reviewed the latest
progress in the field. However, existing studies often focus on specific domains or tasks
and lack a unified comparison across various benchmarks. This paper presents a system-
atic review and benchmark of discrete audio tokenizers, covering three domains: speech,
music, and general audio. We propose a taxonomy of tokenization approaches based on
encoder-decoder, quantization techniques, training paradigm, streamability, and application
domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream
performance, and acoustic language modeling, and analyze trade-offs through controlled
ablation studies. Our findings highlight key limitations, practical considerations, and open
challenges, providing insight and guidance for future research in this rapidly evolving area.
For more information, including our main results and tokenizer database, please refer to our
website: https://poonehmousavi.github.io/dates-website/.

1 Introduction

Audio compression has been a well-established research topic since the foundations of digital commu-
nication (Shannon, 1948; Nyquist, 1928). Traditional audio codecs, such as linear predictive coding
(LPC) (Itakura, 1968; Atal, 1970), modified discrete cosine transform (MDCT) (Wang & Vilermo, 2003),
and Code Excited Linear Prediction (CELP) (Schroeder & Atal, 1985; Jage & Upadhya, 2016), were de-
signed to reduce redundancy and remove perceptually irrelevant information. These models have been
effective in compressing raw audio signals into compact bitstreams (encoding) and then restoring them to
the original signal domain (decoding). Codecs like USAC (Quackenbush, 2013), Opus (Valin et al., 2012),
and EVS (Dietz et al., 2015) combine these techniques to support a range of content types, bitrates, and
sampling rates while ensuring low latency for real-time communication. These approaches rely heavily on
domain knowledge, combining signal processing pipelines with hand-crafted components to achieve efficient
but lossy compression.

Traditional codecs are efficient and optimized for perceptual quality, but their design requires substantial
manual effort, including parameter tuning and subjective listening tests (Valin et al., 2012; Dietz et al.,
2015). This has motivated a shift toward data-driven approaches with deep learning, known as neural
codecs. Neural codecs consist of an encoder, decoder, and a quantization module, closely resembling standard
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autoencoders. The key difference is that neural codecs produce discrete representations (audio tokens)
instead of continuous ones. The discretization is performed by a differentiable quantizer, such as residual
vector quantization (RVQ) (Zeghidour et al., 2021), which enables end-to-end training by allowing gradients
to propagate through the quantization step. Neural codecs are often trained using a combination of losses.
For example, reconstruction losses in the time and frequency domains (Kankanahalli, 2018), optionally
combined with psychoacoustic calibration (Zhen et al., 2020), direct guide signal reconstruction. Adversarial
losses (Zeghidour et al., 2021) and generative models (Kleijn et al., 2018; Valin & Skoglund, 2019b; Gârbacea
et al., 2019) indirectly improve the perceptual quality of the reconstructed signal. Finally, auxiliary losses are
often introduced to improve the learning process and often act as regularizers or encode inductive bias (Zhang
et al., 2024a; Défossez et al., 2024; Har-Tuv et al., 2025).

Discrete tokens have several useful properties. As they are normally compact, audio tokens enable more
efficient storage and transmission than continuous embeddings. They also simplify audio generation by
converting tasks that involve modeling continuous distributions, such as regression, into discrete classification
problems (Wu et al., 2024f; Mousavi et al., 2024a). More importantly, they help bridge the gap between text
and audio processing, making them a natural choice for multimodal models and a core component of many
recent multimodal LLMs (Peng et al., 2024; Cui et al., 2024; Ji et al., 2024a; Latif et al., 2023; Liu et al.,
2023; Wu et al., 2024a; Tian et al., 2025). Driven by these advantages, discrete audio tokens have already
been adopted as an alternative to continuous features in a wide range of downstream tasks: automatic speech
recognition (Chang et al., 2023; Du et al., 2023), speech-to-speech translation (Popuri et al., 2022; Inaguma
et al., 2023; Wu et al., 2023a; Chang et al., 2024), voice conversion (Maimon & Adi, 2023; Wang et al.,
2024d), text-to-speech synthesis (Ju et al., 2024; Chen et al., 2025a; Hayashi & Watanabe, 2020), speech
enhancement (Wang et al., 2024e; Yang et al., 2024f; Xue et al., 2024), and source separation (Shi et al.,
2021c; Erdogan et al., 2023; Mousavi et al., 2024b; Bie et al., 2025; Yip et al., 2024). Discrete tokens are also
used in music and general audio tasks, including music generation (Copet et al., 2023; Chen et al., 2024a),
environmental sound synthesis (Yang et al., 2023b; Kreuk et al., 2023), and multimodal generation (Borsos
et al., 2023b; Liu et al., 2023; Ziv et al., 2024; Rubenstein et al., 2023; Wang et al., 2024b).

Recent studies have introduced a variety of tokenization methods, often grouped into two main categories:
acoustic and semantic1 (Borsos et al., 2023b; Zhang et al., 2024a; Har-Tuv et al., 2025; Guo et al., 2025b).
Acoustic tokens are typically learned through encoder-decoder architectures optimized for waveform recon-
struction (Zeghidour et al., 2021; Défossez et al., 2023; Kumar et al., 2023; Yang et al., 2023a). Semantic
tokens are derived from pretrained self-supervised learning (SSL) models (Lakhotia et al., 2021; Mousavi
et al., 2024b), which are trained on raw audio without labels by solving proxy tasks (e.g., masked prediction)
to learn transferable representations to downstream tasks, or encoders trained in a supervised manner (Du
et al., 2024b) designed to capture phonetic or linguistic content for discriminative tasks such as speech
recognition and translation. Some recent approaches aim to combine both types, introducing hybrid tok-
enizers (Zhang et al., 2024a; Défossez et al., 2024) that balance acoustic and phonetic properties.

We argue the common division of discrete tokens into acoustic and semantic categories has notable limita-
tions. Acoustic tokenizers can capture semantic information (Défossez et al., 2024; Du et al., 2023; Zhang
et al., 2024a; Bai et al., 2024), while semantic tokenizers have been effectively used in generative tasks (Polyak
et al., 2021; Wang et al., 2024e; Nguyen et al., 2025; Lakhotia et al., 2021; Maimon et al., 2025a; Hassid et al.,
2023; Mousavi et al., 2024b; Wu et al., 2025). This overlap blurs the boundary between the two categories
and suggests that the acoustic-semantic distinction alone is insufficient. Moreover, as tokenization methods
continue to evolve, traditional classifications fail to capture key architectural differences and practical trade-
offs. To address this limitation, we introduce a refined taxonomy that captures key design choices, including
encoder-decoder, quantization techniques, training paradigms, streamability, and application domains.

Another notable gap in the literature is that existing surveys and benchmark papers have primarily focused on
speech applications (Cui et al., 2024; Kim & Skoglund, 2024; Ji et al., 2024a; Anees, 2024; Guo et al., 2025b;

1It is important to clarify that the term “semantic” in the speech context does not align with its conventional linguistic
meaning. In the speech context, these discrete tokens are more accurately described as phonetic units (Sicherman & Adi, 2023;
Choi et al., 2024) and typically do not carry semantic content (Arora et al., 2025). In this paper, to maintain consistency across
different domains (speech, audio, music) and with established terminology such as “semantic distillation,” we consistently use
the term “semantic.”
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Figure 1: Overview of our empirical study, covering three domains: speech, music, and general audio,
with four evaluation components: Downstream Evaluation (Section 3.2) using the DASB benchmark, Re-
constructed Audio Evaluation (Section 3.1) using Codec-SUPERB and Versa, Acoustic LLM Evaluation
(Section 3.3) using SALMon and the Zero-Resource benchmark, Tokenizer Training Ablation Study (Section
4) using ESPnet-Codec.

Arora et al., 2025; Vashishth et al., 2024), often overlooking tokenization methods for music and general audio.
As a result, the current literature lacks a unified study that covers multiple domains and diverse evaluation
criteria. Moreover, rather than providing a holistic comparison, most existing works focus on a single aspect,
such as reconstruction quality in Codec-SUPERB (Wu et al., 2024c;b), downstream task performance in
DASB (Mousavi et al., 2024a), controlled evaluation settings in ESPnet-Codec (Shi et al., 2024c), or audio
language modeling in SALMon (Maimon et al., 2025c). These limitations persist even in the latest surveys.
For example, Guo et al. (2025b) focuses on reconstruction and voice conversion, while Cui et al. (2024); Peng
et al. (2024) explores integration with LLMs. To help bridge this gap, we present a comprehensive benchmark
of discrete audio tokenizers. Our benchmark covers three audio domains: speech, music, and general audio.
It considers multiple evaluation criteria, including signal reconstruction, downstream task performance, and
acoustic language modeling. These aspects are analyzed jointly to provide a more robust and comprehensive
assessment. An additional issue in current benchmarks is that tokenizers are often trained under inconsistent
conditions, such as different datasets, domains, or sampling rates. These inconsistencies make direct and
fair comparisons difficult. To ensure fair comparisons, we support our analysis with ablation studies that
examine different quantization methods under controlled experimental settings.

Our contribution is organized into three core studies, as illustrated in Figures 1 and 3:

• Study 1: Audio Tokenizer Taxonomy (Section 2). We propose a comprehensive taxonomy of
discrete audio tokenization methods based on key architectural and functional criteria.
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Figure 2: Overall architecture of a standard audio tokenizer. The input signal x is encoded into a latent
representation zt, which is then discretized by a quantizer Q(·). The decoder reconstructs the signal x̂
from the quantized representations ẑt. Training typically involves a combination of reconstruction (LRecon),
adversarial (LGAN, LFeats), and vector quantization losses (LV Q).

• Study 2: Benchmark Evaluation (Section 3). We evaluate existing tokenizers using multiple
benchmarks. Codec-SUPERB2 and VERSA3 (Shi et al., 2025) are used for reconstruction. DASB4 is
used for downstream tasks. SALMon5 and the Zero-resource speech benchmark6 (Nguyen et al., 2020)
are used for acoustic language modeling. All evaluations are conducted under consistent conditions.

• Study 3: Ablation Studies (Section 4). We perform controlled experiments to isolate the effects
of specific design choices for training audio tokenizers, including sampling rate and single-domain versus
multi-domain training using ESPnet-Code7 (Shi et al., 2024c).

This survey provides a unified and practical perspective on discrete audio tokenization and its role in speech,
music, and general audio processing. We aim to clarify key design trade-offs, highlight current limitations,
and offer guidance for future research in this evolving field.

2 Literature Review and Proposed Taxonomy

2.1 Overall architecture

As shown in Figure 2, audio tokenizers typically comprise three components:

• An encoder that converts the input waveform x into a sequence of frame-wise embeddings Z =
{zt}T

t=1 using an encoder function fe, such that, Z = fe(x), where each zt ∈ RD is a continuous
embedding at time step t.

• A quantization module that maps each embedding zt to a quantized vector ẑt and a set of discrete
indices qt = [q1,t, . . . , qM,t] using a quantization function Q, i.e. (ẑt, qt) = Q(zt). Here, M denotes
the number of codebooks used in the quantizer. The full sequence of quantized embeddings is
denoted as Ẑ = {ẑt}T

t=1.
2https://codecsuperb.github.io/
3https://github.com/wavlab-speech/versa/tree/main/egs/survey.
4https://poonehmousavi.github.io/DASB-website/
5https://pages.cs.huji.ac.il/adiyoss-lab/salmon/
6https://github.com/zerospeech/zerospeech2021_baseline
7https://github.com/espnet/espnet
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• A decoder that reconstructs the waveform from the sequence of quantized embeddings using a
decoder function fd, i.e., x̂ = fd(ẑ), where x̂ is the reconstructed waveform.

To address the taxonomy issues outlined in the introduction, this section proposes a refined taxonomy based
on three core dimensions: the quantization method, the encoder-decoder architecture, and the training
paradigm (e.g., joint or end-to-end training, and the use of auxiliary components). We also provide more
fine-grained categories, including streamability and the target domain of each tokenizer. The proposed
taxonomy is illustrated in Figure 3 and the classification of existing audio tokenizers according to this
taxonomy is shown in Table 1. The following subsection summarizes the most popular methods according
to the proposed categorization.
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Figure 3: Taxonomy of audio tokenizers based on: encoder-decoder architecture (Section 2.3), quantization
method (Section 2.2), training paradigm (Section 2.4), and target domain and streamability (Section 2.5).
CNN denotes Convolutional networks, T represents Transformer models, and RNN refers to any recurrent
neural network including LSTM and GRU. RVQ stands for Residual Vector Quantization, GVQ for Group
Vector Quantization, SVQ for Single Vector Quantization, MSRVQ stands for Multi-Scale Residual Vector
Quantization, CSRVQ stands for Cross-Scale Residual Vector Quantization, PQ stands for Product Quan-
tization, FSQ for Finite Scalar Quantization. K-Means signifies that the tokenizer is trained independently
of the encoder and the decoder pipeline. Objectives include adversarial learning (GAN), diffusion-based
generation (Diff), and masked prediction (MP) as a generative training strategy, feature matching loss
(Feats), and reconstruction loss (Recon). The interactive version of this figure can be accessed through
https://dates-tokens.github.io/taxonomy_interactive.html

2.2 Quantization Method

Quantization is a key component of the tokenization pipeline, transforming continuous frame-wise features
(vectors) zt ∈ RD into discrete tokens qt = [q1,t, . . . , qM,t] and corresponding quantized vectors ẑt ∈ RD.
More formally, quantization maps data into a smaller representation space with lower cardinality. It is
defined as a two-step procedure involving encoding and decoding, which are distinct from the encoder and
decoder modules described in Figure 2. The encoder of the quantizer, denoted Eq : RD → {1, . . . , K}M ,
maps a continuous embedding zt to a tuple of discrete indices qt, where each qm,t ∈ Im = {1, 2, . . . , K}
corresponds to a quantization layer (codebook) m. These indices refer to entries in a set of M codebooks
C = {C1, . . . , CM}, where each codebook Cm contains K learnable D dimensional continuous vectors. The
decoder of the quantizer, Dq : {1, . . . , K}M → RD, reconstructs the quantized embedding ẑt by retrieving
the selected codewords from the codebooks and combining them, typically via averaging or summation.
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Table 1: Comprehensive overview of audio tokenizers, organized alphabetically by tokenizer name. The
table covers core design choices across five major dimensions: application domains (Speech, Music, Au-
dio), encoder-decoder architecture (including encoder/decoder type and feature representation), quantiza-
tion (technique and bitrate strategy), training paradigms (objective, auxiliary loss, and joint optimization),
and streaming capability.

Tokenizer Domain Frame Encoder-Decoder Quantization Training Stream

S M A Rate Architecture Rep. Tech. Bit. Objective(s) Aux. Joint

Encoder Decoder

APCodec (Ai et al., 2024) ✓ 150 CNN CNN T-F RVQ F GAN, Feat, Rec, VQ - ✓ ✓

AudioDec (Wu et al., 2023b) ✓ 160 CNN CNN T RVQ F GAN, Feat, Rec, VQ - ✓ ✓

Best-RQ (Chiu et al., 2022) ✓ 25 CNN+T - T-F PQ F MP - ✓

BigCodec (Xin et al., 2024) ✓ 80 CNN+RNN CNN+RNN T SVQ F GAN, Feat, Rec, VQ - ✓

DAC (Kumar et al., 2023) ✓ ✓ ✓ 75 CNN CNN T RVQ F GAN, Feat, Rec, VQ - ✓

Discrete SSL (Mousavi et al., 2024b) ✓ 50 CNN+T T T K-means F GAN, Feat, Rec, MP -

Disen-TF-Codec (Jiang et al., 2023) ✓ 19 CNN+RNN CNN T-F GRVQ A GAN, Feat, Rec, (Pred) Dis ✓ ✓

dMel (Bai et al., 2024) ✓ 40 - CNN T-F SVQ F GAN, Feat, Rec, VQ - ✓

EnCodec (Défossez et al., 2023) ✓ ✓ ✓ 75, 150 CNN+RNN CNN T RVQ F GAN, Feat, Rec, VQ - ✓ ✓

ESC (Gu & Diao, 2024) ✓ 150 T T T-F CSRVQ F Rec, VQ - ✓

FACodec (Ju et al., 2024) ✓ 80 CNN+RNN CNN+RNN T GRVQ F GAN, Feat, Rec, VQ Dis ✓

FunCodec (Du et al., 2023) ✓ 1.25, 25, 50 CNN+RNN CNN+RNN T-F RVQ F GAN, Feat, Rec, VQ SD ✓

HARP-Net (Petermann et al., 2021) ✓ 44100 CNN CNN T FSQ A Rec - ✓

HiFi-Codec (Yang et al., 2023a) ✓ 50, 75, 100 CNN+RNN CNN+RNN T GRVQ F GAN, Feat, Rec, VQ - ✓

HILCodec (Ahn et al., 2024) ✓ ✓ ✓ 75 CNN CNN T RVQ F GAN, Feat, Rec, VQ - ✓ ✓

LaDiffCodec (Yang et al., 2024e) ✓ 50 CNN CNN T RVQ F Diff - ✓

Language Codec (Ji et al., 2024b) ✓ 75 CNN+RNN CNN T,T-F RVQ F GAN, Feat, Rec, VQ - ✓

LFSC (Casanova et al., 2025) ✓ 21.5 CNN CNN T FSQ F GAN, Feat, Rec SD ✓

LLMCodec (Yang et al., 2024b) ✓ ✓ 57 CNN+T CNN+T T MS-RVQ F GAN, Rec SD ✓

LSCodec (Guo et al., 2025a) ✓ 25, 50 CNN CNN T SVQ F GAN, Feat, Rec Dis, SD

MDCTCodec (Jiang et al., 2024) ✓ 150 CNN CNN T-F RVQ F GAN, Feat, Rec, VQ ✓

Mimi (Défossez et al., 2024) ✓ 12.5 CNN+T CNN+T T RVQ F GAN, Feat, Rec, VQ SD ✓ ✓

MMM (Shi et al., 2024b) ✓ 50 CNN+T CNN T K-means F GAN, Feat, Rec, MP -

NAST (Messica & Adi, 2024) ✓ 50 CNN+T CNN+T T FSQ F Rec, VQ, MP SD ✓

NDVQ (Niu et al., 2024) ✓ 75 CNN+RNN CNN+RNN T RVQ F GAN, Feat, Rec, VQ - ✓

PAST (Har-Tuv et al., 2025) ✓ 75 CNN+T CNN T RVQ F GAN, Feat, Rec, VQ SST ✓ ✓

PQ-VAE (Guo et al., 2024b) ✓ 75 CNN CNN T-F PQ F Rec, VQ - ✓

Prompt Codec (Pan et al., 2024) ✓ 75 CNN+RNN CNN+RNN T-F GRVQ F GAN, Feat, Rec, VQ - ✓

RepCodec (Huang et al., 2024) ✓ 50 CNN CNN T SVQ F Rec, VQ , MP - ✓

S-TFNet (Jiang et al., 2022a) ✓ - CNN+RNN CNN T-F CSRVQ F GAN, Rec, VQ - ✓

S3 (Du et al., 2024a) ✓ - T T T SVQ F Dif SST

SD-Codec (Bie et al., 2025) ✓ ✓ ✓ 50 CNN CNN T RVQ F GAN, Rec,Feat, VQ Dis ✓

SemantiCodec (Liu et al., 2024a) ✓ ✓ ✓ 50 CNN+T T T RVQ F Dif, VQ SD ✓

Single Codec (Li et al., 2024) ✓ 23 CNN+RNN CNN+RNN T-F SVQ F GAN, Rec, VQ - ✓

SingOMD (Tang et al., 2024b) ✓ 50 CNN+T CNN T K-Means F GAN, Feat, Rec, MP -

SNAC (Siuzdak et al., 2024) ✓ ✓ ✓ Variable CNN+RNN CNN T MS-RVQ F GAN, Feat, Rec, VQ - ✓

SOCODEC (Guo et al., 2024a) ✓ 20 CNN CNN T-F PQ F GAN, Rec, VQ Dis ✓

SoundStream (Zeghidour et al., 2021) ✓ ✓ 75 CNN CNN T RVQ F GAN, Rec,Feat - ✓ ✓

Spectral Codecs (Langman et al., 2024) ✓ 86.1 CNN CNN T-F FSQ F GAN, Feat, Rec - ✓

SpeechTokenizer (Zhang et al., 2024a) ✓ 50 CNN+RNN CNN T RVQ F GAN, Rec,Feat, VQ SD ✓

SQ-Codec (Yang et al., 2024d) ✓ 50 CNN CNN T FSQ F GAN, Rec - ✓

TAAE (Parker et al., 2025) ✓ 25 CNN+T CNN+T T FSQ F GAN, Feat, Rec SD ✓ ✓

TFNet (Jiang et al., 2022b) ✓ 120 CNN+RNN CNN T-F GRVQ F Rec, VQ - ✓

Ti-Codec (Ren et al., 2024b) ✓ 75 CNN+RNN CNN+RNN T RVQ F GAN, Feat, Rec, V Dis ✓

TS3-Codec (Wu et al., 2024d) ✓ 40, 50 T T T SVQ F GAN, Feat, Rec, V - ✓ ✓

USM (Zhang et al., 2023) ✓ 25 CNN+T - T-F PQ F MP -

Vocos (Siuzdak, 2024) ✓ 50 CNN CNN T-F RVQ F GAN, Feat, Rec - ✓

WavTokenizer (Ji et al., 2024c) ✓ ✓ ✓ 40, 75 CNN+T CNN+T T SVQ F GAN, Feat, Rec, V - ✓

Wav2Vec-BERT (Chung et al., 2021) ✓ 25 CNN+T - T PQ F MP - ✓

WMCodec (Zhou et al., 2024) ✓ 75 CNN+T CNN T RVQ F GAN, Feat, Rec - ✓

X-Codec (Ye et al., 2025) ✓ ✓ ✓ 50 CNN CNN T RVQ F GAN, Rec, V SD ✓

XEUS (Chen et al., 2024b) ✓ 50 CNN+T - T K-means F MP -
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Depending on the design choices, quantization methods vary along two important axes: (1) the specific
quantization algorithm used to convert continuous features into discrete tokens, such as k-means, product
quantization, or residual vector quantization (RVQ), (2) whether the bitrate is fixed or adaptive. These
aspects are described in the following subsections.

2.2.1 Quantization Algorithm

K-means. K-means clustering is frequently used for post-training quantization. While many recent codec-
based acoustic tokenizers tend to adopt the joint-training quantization techniques, k-means is still prevalent
in extracting tokens from SSL models (Mousavi et al., 2024b; Chang et al., 2023; Polyak et al., 2021;
Wang et al., 2024e). Typically, a layer or multiple layers from a pretrained SSL model are selected, and
representations are clustered using offline trained k-means to create discrete tokens. Such tokenizers natively
lack a built-in decoder, as they are primarily used for discriminative tasks like ASR. Nevertheless, recent
studies have investigated training separate decoders to reconstruct speech from discrete representations, such
as employing a modified HiFi-GAN (Yang et al., 2023a). Additionally, Mousavi et al. (2024b) introduced
a multi-layer training strategy with dropout mechanisms, enabling the decoder to flexibly handle varying
bitrates during inference. The assignment of each embedding zt to its nearest centroid ck is performed using
the standard K-means rule:

qt = arg min
k∈{1,...,K}

∥zt − ck∥2 (1)

Here, zt ∈ RD denotes the continuous embedding at time step t from a frozen SSL model, ck is the k-th
cluster centroid, and qt ∈ {1, . . . , K} is the resulting discrete token index.

Residual Vector Quantization (RVQ). RVQ maps each frame-wise feature to the closest entry in a
codebook and then refines this process by computing the residual after quantization. The remaining residual
is compressed by sequentially applying a series of quantizers, each refining the residuals left by the previous
one. The first neural network-based RVQ method was first introduced in SoundStream (Zeghidour et al.,
2021) and has since been widely adopted in other models (Kumar et al., 2023; Défossez et al., 2023; 2024;
Zhang et al., 2024a). Many approaches (Kumar et al., 2023; Défossez et al., 2023) also incorporate bitrate
scalability by performing variable bandwidth training, where the number of codebooks is randomly selected
during training to support different bandwidths during inference. A variant of RVQ, called Residual Normal
Distribution Vector Quantization (RNDVQ), is used in (Niu et al., 2024). Unlike standard RVQ, which
selects the nearest neighbor deterministically, RNDVQ formulates quantization as a probabilistic selection
problem. This addresses issues such as low codebook utilization and sensitivity to noise, making the model
more robust to minor variations in input data. The procedure is defined recursively as:

Algorithm 1 Residual Vector Quantization (RVQ)

1: Input: Embedding zt, Codebooks {C(m)}M
m=1

2: Initialize residual: r
(1)
t ← zt

3: for m = 1 to M do
4: q

(m)
t ← arg mink

∥∥∥r
(m)
t − c

(m)
k

∥∥∥2

5: ẑ
(m)
t ← c

(m)
q

(m)
t

6: r
(m+1)
t ← r

(m)
t − ẑ

(m)
t

7: end for
8: Output: ẑt ←

∑M
m=1 ẑ

(m)
t

Here, zt is the input embedding at time t, q
(m)
t is the discrete index selected from the m-th codebook, and

ẑt is the final quantized vector produced by summing the quantized outputs from each residual stage.
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Single Vector Quantization (SVQ). SVQ uses a single codebook for quantization, where each frame-
wise embedding is mapped to a single code, unlike RVQ, which uses multiple codes. SVQ can be viewed as a
simplified form of RVQ with a single codebook (i.e., M=1), without iterative residual refinement, similar to
VQ-VAE (Gârbacea et al., 2019). It has gained popularity due to the architectural complexity introduced
by multiple codebooks in acoustic language models, such as managing multiple codebook streams. SVQ, by
contrast, is simpler and particularly useful for training acoustic language models. To compensate for the
potential loss of information caused by using a single codebook, some SVQ-based codec models adopt larger
codebook sizes. Examples of SVQ-based codecs include BigCodec (Xin et al., 2024), TS3-Codec (Wu et al.,
2024d), WavTokenizer (Ji et al., 2024c).

Group Vector Quantization (GVQ). One limitation of RVQ is that most of the information tends
to be captured in the first-layer codebook, with later codebooks contributing minimally. To address this,
GVQ (Yang et al., 2023a) increases capacity at the first quantization stage by dividing the latent feature
vector zt ∈ RD into G non-overlapping groups:

zt =
[
z

(1)
t ∥ z

(2)
t ∥ . . . ∥ z

(G)
t

]
, (2)

where each z
(g)
t ∈ RD/G represents a segment of the input feature, and ∥ denotes concatenation. Each group

is quantized independently using a separate RVQ module, producing a group-wise quantized embedding ẑ
(g)
t .

The final quantized vector is formed by concatenating the quantized outputs from all groups:

ẑt =
[
ẑ

(1)
t ∥ ẑ

(2)
t ∥ . . . ∥ ẑ

(G)
t

]
. (3)

This grouped structure improves performance while reducing the number of required codebooks.

Finite Scalar Quantization (FSQ). Unlike traditional vector quantization, FSQ maps each dimension
of a feature vector to a fixed set of scalar values (Mentzer et al., 2024). Specifically, each feature value zt

is first squashed into the range [−1, 1] using a non-linear function such as tanh, and then quantized into a
scalar latent space by computing round(zt · S)/S, where S is a hyperparameter controlling the quantization
resolution. This procedure results in 2S + 1 distinct scalar values per dimension, ensuring uniform coverage
of the latent space. FSQ has been adopted in various recent models. SQ-Codec (Yang et al., 2024d)
achieves this by creating a scalar latent space, while Spectral Codecs (Langman et al., 2024) use FSQ to
encode mel-spectrogram features into a flat codebook. FSQ is often used with diffusion models for high-
quality audio generation. HARP-Net (Petermann et al., 2021) similarly applies FSQ but directly maps
bottleneck features i.e., single scalar values rather than vectors, to a set of learned scalar bins. Unlike other
approaches, HARP-Net maintains the original input frame rate (44.1 kHz) by avoiding temporal decimation,
instead expanding the feature dimension in intermediate layers before collapsing to scalar quantization.
FocalCodec (Della Libera et al., 2025) instead uses a variant of FSQ called Binary Spherical Quantization
(BSQ), which relies on two scalar values.

Multi-Scale RVQ (MSRVQ). MSRVQ (Siuzdak et al., 2024) extends standard RVQ by applying quan-
tizers at different temporal resolutions. This hierarchical structure enables the model to efficiently capture
both coarse and fine-grained details. The initial VQ layers operate at higher frame rates to encode fine
details, while later layers work at lower temporal resolutions to refine the residuals using fewer tokens. At
each stage i, the residual r

(i)
t is downsampled by a factor Wi, quantized, and then upsampled back to length

T :
ẑ

(i)
t = Upsample

(
Q(i)

(
Downsample(r(i)

t , Wi)
))

(4)

This strategy reduces the number of tokens while preserving essential information in the representation.

Cross-Scale RVQ (CSRVQ). CSRVQ (Gu & Diao, 2024; Jiang et al., 2022a) extends RVQ by integrating
multi-scale features that progressively encode coarse-to-fine information. Unlike conventional RVQ, which
applies residual quantization only at a single and lowest-resolution layer, CSRVQ encodes residuals between
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encoder and decoder features at multiple hierarchical levels. During decoding, each level is conditioned on
quantized residuals from coarser scales, allowing the model to refine reconstructions in a coarse-to-fine man-
ner. This structure enables the preservation of low-level detail often lost in high-level-only representations.
In practice, CSRVQ can include quantization modules across different decoder layers, with each layer incor-
porating its own quantizer. ESC (Gu & Diao, 2024) adopts this design via hierarchical transformers and
stepwise decoding, progressively improving reconstruction fidelity without requiring extra fusion networks
between encoder and decoder.

Product Quantization (PQ). Product quantization is commonly used in self-supervised learning (SSL)
models to discretize continuous speech representations. PQ can be viewed as a group of independent vector
quantization modules (Chung et al., 2021; Guo et al., 2024a), partitioning embeddings into smaller sub-
vectors and quantizing each separately. The quantized sub-vectors are then concatenated to form the final
output. Other variations include Random-Projection Quantization, as seen in models like Best-RQ and
USM (Chiu et al., 2022; Zhang et al., 2023). This method maps speech signals into discrete labels using
a randomly initialized projection matrix. Unlike other quantization methods, most PQ-based approaches
do not have a built-in decoder, as they are primarily designed for SSL models rather than direct waveform
reconstruction.

2.2.2 Fixed vs. Adaptive Bitrate

Depending on the system design, the bitrate of quantized representations can be either fixed or adaptive. In
fixed-allocation schemes, such as those based on codebooks, the bitrate is determined by the number of bits
required to represent each code index, irrespective of the actual token distribution. In contrast, adaptive
bitrate refers to entropy-based coding schemes that assign variable-length codes based on the statistical fre-
quency of tokens (Agustsson et al., 2017; Kankanahalli, 2018). More frequent tokens are encoded using fewer
bits, while rarer tokens require more, leading to improved compression efficiency. Standard methods such as
Huffman coding or arithmetic coding are commonly employed to exploit this redundancy. Importantly, any
quantization method, regardless of its original design, can benefit from post-hoc entropy coding to further
reduce the effective bitrate. It is also important to distinguish between adaptive bitrate and scalable bitrate.
Adaptive bitrate dynamically adjusts the number of bits per token according to the token distribution (e.g.,
via entropy coding (Jiang et al., 2023; Petermann et al., 2021)). In contrast, scalable bitrate refers to systems
capable of operating at multiple fixed bitrates, typically achieved by varying the number of active codebooks.
This bitrate level is selected manually or defined as a hyperparameter, but it remains fixed per run and does
not adapt token-wise at runtime. For instance, Encodec (Défossez et al., 2023) enables scalable bitrate by
employing a codebook dropout strategy during training.

2.3 Encoder-Decoder

This section describes the main encoder and decoder architectures, along with the encoder input and decoder
output representations used across different designs.

2.3.1 Architecture

Convolutional (CNN). CNN extracts and downsamples audio waveforms into lower frame-rate features
using CNN layers. CNN is the most widely applied architecture among early neural codecs (Kumar et al.,
2023; Zeghidour et al., 2021). CNN models are generally more compact, thus can be readily integrated
with different system sizes and are especially useful in resource-constrained environments. However, CNN
tokenizers cannot capture long-range dependencies.

Convolutional + RNN (CNN+RNN). Some tokenizers (Défossez et al., 2023; Xin et al., 2024) combine
CNN-based feature extraction with LSTMs or GRUs for sequential modeling. RNN provides a mechanism
for longer-range dependency than CNN, although it can still suffer from memory loss when the sequences
reach a certain length. RNNs can easily add algorithm and system complexity to both training and inference.
Therefore, the number of RNN layers used in tokenizers is usually small, and they are combined with CNN
modules.
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Transformer (T). This category refers to the fully transformer-based models without convolutional com-
ponents (Wu et al., 2024d). This type of tokenizer is less common than others. They may achieve impressive
compression and reconstruction performance, but they generally demand a large amount of training data
and much heavier computational resources, which limit their practicality in tokenization.

Convolutional + Transformer (CNN+T). This group of tokenizers (Mousavi et al., 2024b; Chiu et al.,
2022; Yang et al., 2024b) uses CNN-based feature extraction followed by attention mechanisms to capture
long-range dependencies. Transformers have recently started to appear in audio tokenizers, as a replacement
for RNN, due to their effectiveness in capturing long-range dependencies.

2.3.2 Input and Output Representations

Encoders can process audio inputs in either the time domain or the frequency domain. In the time domain
approach, raw waveforms are directly passed to the encoder. In the frequency-domain approach, precomputed
mel-spectrograms or other spectral features are used as inputs. The output representation can follow two
approaches: (1) time domain waveforms, where the decoder directly upsamples the discrete representation
into waveforms (Défossez et al., 2023); or (2) time-frequency domain features, where the decoder outputs
time-frequency domain features (Siuzdak, 2024), and the Inverse Short-Time Fourier Transform (ISTFT) is
applied for upsampling. In this case, the decoded features typically have a frame rate similar to that of the
codec tokens. Siuzdak (2024) argues that assigning the upsampling to the ISTFT reduces the burden on the
decoder and leads to better performance.

2.4 Training Paradigm

In this section, we discuss three key dimensions of audio tokenizer training: the training strategy, the main
training objectives used to optimize the model, and the auxiliary components that further enhance the
learned representations.

2.4.1 Training Strategies

Training strategies for audio tokenizers can be categorized into two broad approaches: separate (post-training)
and joint (end-to-end training). These differ in how the encoder, quantizer, and decoder modules are
optimized in relation to each other. In both cases, the encoder may be randomly initialized or initialized
using a pretrained model, such an SSL model (e.g., wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu et al.,
2021), WavLM (Chen et al., 2022)) or an ASR model (Radford et al., 2023)).

Separate (Post-Training). In this approach, the encoder and decoder are optimized independently from
the quantization module. This is common in semantic tokenizers and earlier neural codecs. The encoder
is often initialized from a pretrained SSL model such as wav2vec 2.0 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), or WavLM (Chen et al., 2022), and typically kept frozen during quantizer training (Lakhotia
et al., 2021; Mousavi et al., 2024b; Shi et al., 2024b). The quantizer is trained offline using methods
such as k-means clustering on latent representations. Discrete SSL (Lakhotia et al., 2021; Mousavi et al.,
2024b; Shi et al., 2024b), for example, uses k-means clustering to quantize the latent semantic features after
pretraining. LPCNet-based codecs8 (Valin & Skoglund, 2019a;b; Yang et al., 2023c) use a combination of
scalar quantization and a multi-stage vector residual quantization on the pre-extracted features (pitch and
cepstra) with k-means, involving different levels of feature predictions. LAST (Turetzky & Adi, 2024) uses
VQ to quantize adapted SSL features, with the objective of improving SpeechLM, and then separately trains
a HiFi-GAN based vocoder. µ-law is also a popular quantization technique used in earlier autoregressive
vocoders (van den Oord et al., 2016), and some neural audio codecs (Kleijn et al., 2018). Decoders are
then trained independently to reconstruct waveforms or features from discrete tokens, often using HiFi-
GAN (Polyak et al., 2021; Kong et al., 2020) or diffusion models (Du et al., 2024b; Zeng et al., 2024).

8https://github.com/xiph/LPCNet
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Joint (End-to-End Training). In joint training, the encoder, quantizer, and decoder are optimized
simultaneously within a unified end-to-end framework. This approach is commonly adopted by acoustic
tokenizers (Zeghidour et al., 2021; Défossez et al., 2023). The full model is optimized using a combination
of reconstruction losses (e.g., MSE) and often adversarial losses (Goodfellow et al., 2020) to promote both
signal fidelity and perceptual quality. To address the non-differentiability of quantization, several gradient
approximation techniques are used: (1) straight-through estimators (van den Oord et al., 2017), which
copy gradients across the quantizer; (2) soft-to-hard quantization with annealing (Agustsson et al., 2017;
Kankanahalli, 2018); and (3) Gumbel-softmax relaxation (Jang et al., 2017; Maddison et al., 2017). Joint
training also allows for incorporating auxiliary objectives (see Section 2.4.3) to improve downstream task
utility, robustness, or bitrate flexibility (Niu et al., 2024; Kumar et al., 2023).

2.4.2 Main Training Objectives

Audio tokenizers are optimized using different main objectives, depending on the targeted application, as
depicted in Figure 2.

Reconstruction (Recon). The most common objective for training audio tokenizers is to reconstruct the
original audio input from discrete tokens. This is achieved using a regression loss, such as the mean squared
error (MSE) or mean absolute error (MAE) between the input x and the reconstructed output x̂ (Défossez
et al., 2023; Zeghidour et al., 2021):

LRecon =
T∑

t=1
∥xt − x̂t∥2

. (5)

Vector Quantization (VQ). In the straight-through estimator (van den Oord et al., 2017) used for vector
quantization, gradients bypass the codebook, requiring additional losses to align the embeddings with the
encoder outputs. One example is the soft-to-hard scheme (Agustsson et al., 2017), where a quantization loss
is applied during training to encourage the softmax-based quantization approximation to closely match the
original continuous representation z:

LV Q = ∥z − ẑ∥, ẑ =
M∑

m=1
αm ∗ cm, (6)

where M denotes the total number of codebooks, cm is the continuous representation that corresponds to
the m’th codebook (as defined in Section 2.2), and αm are their corresponding softmax weights.

Another example is the commitment loss, which encourages the encoder outputs to align with the selected
codebook embeddings. The loss is computed between each residual z

(m)
t and its quantized counterpart ẑ

(m)
t

from the m-th codebook, with gradients blocked from flowing through the quantized values:

LVQ =
T∑

t=1

M∑
m=1

∥∥∥z
(m)
t − sg

[
ẑ

(m)
t

]∥∥∥2
, (7)

where sg[·] denotes the stop-gradient operator. This loss penalizes discrepancies between the encoder outputs
and their corresponding quantized embeddings while ensuring that gradients do not update the codebook
entries directly. Modern approaches often replace this loss with Exponential Moving Average (EMA) updates
for the codebook, which improve training stability and mitigate codebook collapse. This collapse occurs
when the model selects only a few code vectors, leaving the rest inactive and unupdated (Dhariwal et al.,
2020; Kumar et al., 2023). As a result, the effective codebook size decreases, lowering the target bitrate
and degrading reconstruction quality. To address this issue, researchers have proposed several strategies to
improve codebook utilization. Some models (Dhariwal et al., 2020; Zeghidour et al., 2021) apply codebook
expiration, periodically reinitializing inactive code vectors. Others (Kumar et al., 2023; Yang et al., 2024d;
Défossez et al., 2023) use factorized quantization and L2 normalization to encourage more balanced usage
across the codebook. Techniques like ESC (Gu & Diao, 2024) and NDVQ (Niu et al., 2024)introduce
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Euclidean normalization or represent codebooks as distributions, using margin-based or probabilistic losses
to prevent collapse and promote diverse activation. Additional solutions introduce auxiliary constraints,
such as entropy penalties or code balancing losses. For example, Enhanced Residual Vector Quantization
(ERVQ) Zheng et al. (2025) uses intra-codebook optimization via online clustering and a code balancing loss
to reactivate unused vectors, while inter-codebook optimization minimizes redundancy between adjacent
quantizers through a structural similarity loss, enhancing expressiveness and overall utilization.

Adversarial (GAN). Acoustic tokenizers often apply adversarial losses to improve perceptual quality. A
discriminator network D is trained to distinguish between real signals x and reconstructed signals x̂, while
the tokenizer (generator) is optimized to fool the discriminator. The adversarial loss is defined as a hinge
loss over the logits of the discriminator, averaged over multiple discriminators and over time.

The generator loss is:

LG = 1
K

K∑
k=1

max(1−Dk(x̂), 0) (8)

The discriminator loss is:

LD = 1
K

K∑
k=1

[max(1−Dk(x), 0) + max(1 + Dk(x̂), 0)] (9)

where Dk(·) denotes the output of the k-th discriminator. Following VQGAN Esser et al. (2021), the subse-
quent audio neural vocoders commonly include multiple discriminators with a specific focus on the frequency-
level rebuilding to enhance the perceptual quality (Kong et al., 2020; Défossez et al., 2023; Zeghidour et al.,
2021). Specifically, these multi-scale discriminators take the stack of multi-resolution or multi-scale complex-
valued short-time Fourier transform (STFT) with the real and imaginary parts concatenated as input, e.g.,
5 different scales with STFT window lengths of [2048, 1024, 512, 256, 128], for capturing different structures
in audio signals.

Feature Matching (Feat). To encourage the original and reconstructed signals to exhibit similar ab-
stractions (or to align closely in the latent space), stabilize adversarial training, and encourage more natural
reconstructions, a feature-matching loss is often applied. This loss compares intermediate activations from
the discriminator for real and reconstructed signals. It is defined as:

LFeats = 1
KL

K∑
k=1

L∑
l=1

∥Dl
k(x)−Dl

k(x̂)∥1

mean(∥Dl
k(x)∥1)

, (10)

where K is the number of discriminators, L is the number of layers in each discriminator, and Dl
k(·) denotes

the output of the l-th layer of the k-th discriminator. Feature matching encourages the generator to match
higher-level statistics of real signals, improving stability and perceptual quality.

Diffusion (Diff). Diffusion loss is used when the decoder is modeled as a conditional denoising diffusion
process. A diffusion model (Rombach et al., 2022) progressively adds noise ϵt to the latent representation
zt during the forward process. A conditioned neural network, parameterized by θ, is trained to predict the
noise at each timestep. The training objective minimizes the expected difference between the true noise ϵt

and the network prediction ϵθ(zt, t, zq), conditioned on the discrete tokens zq:

Ldiffusion = Ez0,t,zq
[∥ϵt − ϵθ(zt, t, zq)∥] , (11)

where zq represents the discrete conditioning tokens provided during both training and generation. This
approach enables the model to recover acoustic features directly from discrete tokens (Yang et al., 2024e;
San Roman et al., 2023; Du et al., 2024b).
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Masked Prediction (MP). Masked prediction loss is commonly used in tokenizers where the encoder
and decoder are trained separately. The encoder is trained to predict masked portions of the input sequence,
typically capturing phonetic information rather than reconstructing the full waveform. Following the masked
language modeling (MLM) paradigm (Devlin et al., 2019), a portion of the input is randomly masked, and
the model is optimized to predict the masked frames from the surrounding context. Formally, given an input
sequence of frame-level features X = {x1, x2, . . . , xT }, a binary mask M ∈ {0, 1}T is applied, where Mt = 1
indicates a masked position. The masked input is denoted as Xmask, where xmask

t = [MASK] if Mt = 1,
and xmask

t = xt otherwise. The encoder processes this masked input to produce latent representations
Z = fe(Xmask), and the model is trained to minimize prediction loss.

LMP =
T∑

t=1
Mt · ℓ(Zt, xt)

where fe is the encoder network and ℓ(·, ·) is the cross-entropy loss. This approach is widely used in speech
pretraining models such as HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2022) and is adopted in
several semantic tokenizer designs (Lakhotia et al., 2021; Mousavi et al., 2024b)

2.4.3 Auxiliary Components

Beyond the main training objectives, neural audio tokenizers often combine auxiliary components to enhance
generalization, improve representation learning, and refine specific features. These auxiliary components fall
into three categories: disentanglement, semantic distillation, and supervised semantic tokenization9.

Disentanglement. Disentanglement methods separate different speech attributes into distinct represen-
tations, reducing redundancy while allowing independent control over acoustic properties and simplifying
downstream tasks. One type of disentanglement in the codec focuses on separating speech and background
audio embedding space, enabling better bitrate, entropy control (Yang et al., 2021) or speech enhance-
ment (Omran et al., 2023). Those models normally aim to find a latent space where two ideally orthogonal
components Z1 and Z2 can be conveniently separated, F(x) = Z1⊗Z2, with ⊗ representing straightforward
operations such as splitting along the channel (Yang et al., 2021).

Another type separates the conceptual and fundamental components of speech, where each component is
typically extracted by its specific encoder. Zk = Fk(x). Early attempts obtained efficient and low-bitrate
speech coding through speaker and phoneme disentanglement, utilizing separate training (Polyak et al.,
2021) or joint training (Jiang et al., 2023). More recently, TiCodec (Ren et al., 2024b) minimizes token
usage by separately quantizing time-invariant global embeddings (e.g., timbre) and time-varying features
(e.g., phonetic information). FACodec (Ju et al., 2024) decomposes speech into subspaces such as content,
prosody, timbre, and acoustic details through supervised techniques. The timbre extractor in FACodec is
optimized with a speaker classification loss, while distinct RVQ modules process other components before
supervised decoupling. LSCodec (Guo et al., 2025a) introduces a low-bitrate, speaker-decoupled speech codec
using a three-stage training framework with speaker perturbation. A VQ layer is applied after a VAE that
disentangles speaker attributes in a continuous space, followed by training a token vocoder on the quantized
codes. Unlike most acoustic tokens that redundantly encode speaker timbre across time steps, LSCodec
minimizes this inefficiency by isolating timbre from content and prosody. SoCodec (Guo et al., 2024a)
employs multi-stream phonetic sequences and ordered product quantization to encode speech into phonetic
and time-variant token sequences using HuBERT as a pretrained SSL model. An ECAPA-TDNN-based
encoder (Desplanques et al., 2020) extracts an utterance-level global embedding to retain time-invariant
information, such as speaker identity, global speaking style, and acoustic environment. SD-Codec (Bie et al.,
2025) integrates audio coding with source separation by assigning different audio domains (such as speech,
music, and sound effects) to distinct codebooks using multiple parallel RVQ modules.

9We here inherit the original terminology from the referenced papers (i.e., semantic distillation, and supervised semantic
tokenization) . However, it is important to note that both methods typically extract or learn information from SSL features,
which predominantly encode phonetic information.
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Semantic Distillation. Semantic distillation enhances codec representations by incorporating phonetic
information into specific codebooks. Various approaches have been explored to distill phonetic knowledge
into tokenization while maintaining good reconstruction. Pretrained model guidance is a common approach,
where models like SpeechTokenizer (Zhang et al., 2024a), X-Codec (Ye et al., 2025), and Mimi (Défossez
et al., 2024) use SSL features to guide specific RVQ layers to learn information from such SSL features.
This distillation is implemented by applying regression or classification loss on the first RVQ output to align
it with continuous SSL embeddings or discrete SSL tokens. In this way, the first RVQ layers are trained
to learn more phonetic information, while later layers focus on acoustic details. Another method injects
semantic knowledge directly into the quantizer codebook. LLM-Codec (Yang et al., 2024b) follows this
approach by initializing codebooks with token embeddings from LLaMa2 (Touvron et al., 2023) and keeping
them frozen during training. This strengthens the ability of the codec to encode meaningful linguistic
representations. Some models integrate semantic features into the encoder-quantizer pipeline by combining
pretrained SSL representations with acoustic features through concatenation. SemantiCodec (Liu et al.,
2024a) and X-Codec (Ye et al., 2025) adopt a dual-encoder-decoder architecture to process SSL semantic
tokens independently from acoustic features.

Supervised Semantic Tokenization. Some tokenizers explicitly capture phonetic detail through super-
vised training. For example, Supervised Semantic Speech (S3) (Du et al., 2024a;b) employ a single-codebook
VQ layer and FSQ, positioned between two transformer encoder modules. Recently, Har-Tuv et al. (2025)
proposed adding phonetic classification auxiliary loss over the first codebook of the RVQ. These models op-
timize representations using an automatic speech recognition (ASR) loss. Additionally, they utilize optimal-
transport conditional flow matching (OT-CFM) (Tong et al., 2024) to model and generate Mel spectrogram
distributions conditioned on the produced discrete speech tokens. These supervised approaches produce
discrete tokens that effectively preserve phonetic information, making them more aligned with content in-
formation and suitable for understanding tasks in speech LMs (Zeng et al., 2024).

2.5 Streamability and Domain Categorization

Beyond architecture and training paradigms, audio tokenizers also differ in their support for streaming and
their domain of application.

Streamability. Streamability refers to the ability of a tokenizer to process and generate audio in real-time
with minimal latency, using little or no future context. This property is critical for low-latency applications
such as real-time communication or streaming. Latency can be analyzed from two main perspectives:

• Algorithmic latency, determined by the look-ahead window—i.e., how much future information
is needed to compute the current frame. CNN-based models (Défossez et al., 2023) support stream-
ability via causal convolutions, while Transformer-based (Wu et al., 2024d) models require causal
attention mechanisms.

• Computational complexity, which becomes especially important when deploying models on
resource-constrained systems like mobile or edge devices. Traditional and early neural audio codecs
generally maintain low complexity for real-time feasibility. For instance, LPCNet (Valin & Skoglund,
2019b) achieves real-time performance with fewer than 2M parameters at 1.6 kbps. In contrast, more
recent models like Encodec scale up to ∼14M parameters to support 1.5 kbps, while BigCodec pushes
further to 159M parameters at just 1.04 kbps to improve quality at low bitrates.

Many SSL-based tokenizers rely on non-causal encoders, which limits their use in real-time settings. Thus,
achieving streamability with high-quality and efficient causal architectures remains an open research chal-
lenge.

Target Domain. Some models (Xin et al., 2024; Zhang et al., 2024a; Mousavi et al., 2024b; Défossez
et al., 2024) are specifically designed for speech tasks such as ASR and TTS. Others are optimized for mu-
sic (Petermann et al., 2021; Tang et al., 2024b) generation and enhancement, capturing tonal and harmonic
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Table 2: Audio tokenizers, their characteristics, and abbreviations used throughout the study. As abbrevia-
tions, we denote tokenizers as [name]-[domain(s)]-[sample rate].

Tokenizer Abbreviations Domain | SR Frame #Codes Params MACs Link

Speech Music Audio (kHz) Rate (Mil) (G)

EnCodec
Enc-SMA-24 ✓ ✓ ✓ 24 75 1024 14.9 6.1 Link

Enc-M-32 ✓ 32 50 2048 56.9 14.4 Link
Enc-A-16 ✓ 16 50 2048 56.8 14.0 Link

DAC
DAC-SMA-44 ✓ ✓ ✓ 44 86 1024 76.7 147.0 Link
DAC-SMA-24 ✓ ✓ ✓ 24 75 1024 74.7 83.4 Link
DAC-SMA-16 ✓ ✓ ✓ 16 50 1024 74.1 55.6 Link

SpeechTokenizer ST-S-16 ✓ 16 50 1024 103.7 17.1 Link

Mimi Mimi-S-24 ✓ 24 12.5 2048 79.3 8.1 Link

Discrete-WavLM DWavL-S-16 ✓ 16 50 1000 331.9 21.1 Link

SQ-Codec SQ-SMA-16 ✓ ✓ ✓ 16 50 19683 23.5 14.7 Link

WavTokenizer
WT-SMA-24 ✓ ✓ ✓ 24 75 4096 80.6 6.3 Link

WT-S-24 ✓ 24 40 4096 80.9 3.4 Link

structures. Some tokenizers (Yang et al., 2024b) are designed for general audio, including environmental
sounds and non-speech signals. A few models (Ji et al., 2024c; Défossez et al., 2023; Kumar et al., 2023) are
trained to handle multiple domains.

3 Benchmark Evaluation

Given the wide range of available tokenizers, researchers and practitioners may wonder which existing to-
kenizers are best suited for a given use case. This depends not only on the expected performance for a
given task but also on computational efficiency and, in some cases, additional factors such as streamability
or the ability to generalize across diverse domains. Several benchmarks have been proposed to evaluate
audio tokenizers, offering some guidance on which tokenizers are best suited for different applications and
tasks (Wu et al., 2024c; Mousavi et al., 2024a; Shi et al., 2024c; Maimon et al., 2025c).

Nevertheless, drawing solid insights from current benchmarks is challenging, as each focuses on a specific
aspect or domain and a holistic comparison of audio tokenizers is missing. Furthermore, while each existing
benchmark is internally consistent in its evaluation protocol, they differ significantly in the set of tokenizers
they consider, some focus exclusively on acoustic models, while others evaluate semantic tokenizers or even
different configurations of the same model (e.g., EnCodec-16k vs. EnCodec-24k). This lack of alignment
makes it difficult to derive unified or comparable conclusions across studies. This section contributes to filling
this gap by considering a diverse set of publicly available, pre-trained tokenizers across speech, music, and
general audio tasks. Unlike previous benchmarks, we perform a joint evaluation across multiple dimensions:

1. Reconstruction Evaluation and Complexity Analysis. We assess the quality of resynthesized au-
dio using the original decoder trained for each tokenizer, following protocols from CodecSUPERB
and VERSA. We also evaluate the computational efficiency of each tokenizer based on model size
(parameters), frame rate, token rate, and multiply-accumulate operations (MACs).

2. Downstream Evaluation. We assess the effectiveness of tokenized representations when used directly
as input to lightweight models for both discriminative and generative tasks using DASB benchmark.

3. Acoustic Language Modeling. We analyze the effectiveness of each tokenizer in training acoustic
language models, using the SALMon and Zero-resource benchmarks.
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Table 3: Summary of evaluation metrics on resynthesized audio.

Metric Functionality Range Domain

Speech Music Audio

Signal-level

SDR Signal-to-distortion Ratio (-inf, inf) ✓ ✓ ✓

SI-SNR Scale-invariant signal-to-noise ratio (-inf, inf) ✓ ✓ ✓

PESQ Perceptual Evaluation of Speech Quality [1, 5] ✓

UTMOS UTokyo-SaruLab System for VoiceMOS 2022 [1, 5] ✓

DNSMOS P808 Deep Noise Suppression MOS Score of P.808 [1, 5] ✓

DNSMOS P835 Deep Noise Suppression MOS Score of P.835 [1, 5] ✓

PLCMOS Packet Loss Concealment-focus MOS [1, 5] ✓

STOI Short-Time Objective Intelligibility [0, 1] ✓

VISQOL Virtual Speech Quality Objective Listener [1, 5] ✓ ✓

SingMOS Singing voice MOS [1, 5] ✓ ✓

Application-level

WER Word Error Rate (beam=5) [0, inf) ✓

Spk Sim Speaker Similarity [-1, 1] ✓

A summary of all tokenizers included in the benchmark evaluation is provided in Table 2. We select these
tokenizers based on several factors: (1) We prioritize open-source models with accessible checkpoints and
code to ensure reproducibility; (2) we include tokenizers representing a diverse range of quantization strate-
gies—including RVQ (EnCodec, DAC), SVQ (WavTokenizer), FSQ (SQ-Codec), KMeans (Discrete WavLM),
and semantically distilled methods (SpeechTokenizer, Mimi); and (3) we aim to cover multiple domains such
as speech, music, and general audio, favoring multi-domain tokenizers where available. The impact of single-
versus multi-domain tokenizers is further discussed in Section 4. We utilize pre-trained checkpoints released
by the original authors. An overview of our benchmark evaluation pipeline is illustrated in Figure 1.

3.1 Evaluation for Reconstructed Audio Quality and Complexity

Background. We evaluate audio reconstruction quality and examine key properties of audio tokenizers,
such as computational complexity, bitrate, and token rate. Reconstruction quality is particularly important
for applications like transmission, where preserving signal fidelity is crucial. Moreover, high reconstruction
quality might be a useful proxy for selecting effective tokenizers for downstream tasks, especially those that
rely directly on the decoder for audio generation, such as speech enhancement and source separation. In
such cases, the reconstruction performance of the tokenizer can impact the overall task performance.

Experimental Setup. The input audio is first compressed using an audio tokenizer and then resynthe-
sized through its corresponding decoder. The resynthesized audio is assessed from both signal-level and
application-level perspectives, providing insights into how well each tokenizer preserves information. To
ensure a comprehensive analysis, we integrate the evaluation scripts from Codec-SUPERB and VERSA (Wu
et al., 2024c;b; Shi et al., 2024c; 2025). We extend the evaluation across three domains (music, general audio,
and speech) to examine how different tokenizers perform in diverse acoustic scenarios.

Dataset. For speech evaluation, we use the LibriSpeech test-clean set (Panayotov et al., 2015). For music,
we use the MUSDB dataset (Rafii et al., 2017), which consists of approximately 10 hours of full-length and
professionally-recorded musical tracks at 44.1kHz. Lastly, for general audio we opt for the Audioset (Gem-
meke et al., 2017) test-set, which accounts for approximately 55 hours of audio clips extracted from YouTube.
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Table 4: Reconstruction performance of audio tokenizers (speech).

Tokenizer #Q kbps Token SDR SI- PESQ UTMOS DNSMOS DNSMOS PLCMOS STOI WER Spk
rate ↑ SNR↑ ↑ ↑ P808↑ P835↑ ↑ ↑ ↓ Sim↑

Ground truth - - - 290.16 55.92 4.64 4.09 3.84 3.18 4.16 1.00 2.83 1.00

Enc-SMA-24
2 1.5 150 0.82 −1.53 1.56 1.58 3.21 2.39 3.44 0.85 5.44 0.42
8 6 600 6.50 4.83 2.77 3.09 3.57 2.96 4.08 0.94 2.78 0.72
32 24 2400 9.75 7.90 3.71 3.74 3.74 3.19 4.29 0.97 2.77 0.78

DAC-SMA-24
2 1.5 150 -0.57 −8.40 1.48 1.68 3.24 2.61 3.27 0.83 9.59 0.45
8 6 600 1.79 −9.51 3.40 3.60 3.69 3.16 4.15 0.95 3.53 0.73
32 24 2400 2.20 −9.47 4.45 4.05 3.78 3.20 4.40 0.99 2.72 0.80

ST-S-16
2 1 100 -7.10 −14.46 1.21 2.32 3.37 2.78 2.96 0.77 4.20 0.35
8 4 400 3.01 0.53 2.62 3.84 3.77 3.17 4.00 0.92 2.41 0.86

Mimi-S-24
8 1.1 100 3.43 1.19 2.22 3.60 3.68 3.17 4.27 0.90 3.72 0.70
32 4.4 400 9.32 7.45 3.38 3.92 3.74 3.18 4.40 0.96 2.96 0.85

DWavL-S-16
2 1 100 -13.96 −37.23 1.13 3.32 3.68 3.13 3.86 0.75 4.97 0.33
6 3 300 -12.69 −35.43 1.19 3.32 3.72 3.13 4.05 0.75 4.34 0.35

SQ-SMA-16 4 3 200 1.91 −8.61 3.31 3.90 3.83 3.28 4.13 0.96 2.37 0.87

WT-SMA-24 1 .98 75 2.02 −0.79 1.88 3.77 3.76 3.18 4.41 0.87 8.10 0.60
WT-S-24 1 .52 40 0.17 −3.16 2.05 3.89 3.82 3.27 4.38 0.89 8.91 0.61

Evaluation Setup. Table 3 reports the reconstruction metrics for resynthesized audio. Beyond quality, it
is important to jointly consider factors often overlooked in the literature, such as computational efficiency
and tokenizer properties. To address this, we also include these metrics as Table 2: (1). Model parameters
(Params): The total number of parameters in the audio tokenizer. (2). Computational complexity (MACs):
Number of arithmetic operations performed by a tokenizer. MACs are computed for a one-second audio
sample using PyFlops10. For components incompatible with PyFlops, such as streaming self-attention, dot
product, calculations are performed manually. (3). Bitrate: The number of bits per second, representing a
balance between audio quality and compression efficiency. (4). Frame rate: The number of temporal frames
used to encode one second of audio. (5). Token rate: Number of tokens required to encode one second of
audio, an important factor for acoustic language modeling applications.

Results and Discussion.

Speech. From Table 4, we make the following observations: (1) For both EnCodec and DAC, the
reconstruction quality consistently degrades as the bitrate decreases from 24k to 6k and 1.5k. This trend
confirms that higher bitrates better preserve acoustic detail, resulting in improved reconstruction quality
across all evaluated metrics. (2) For SpeechTokenizer (4k vs. 1k) and Mimi (4.4k vs. 1.1k), which both
apply semantic distillation to the first codebook, all objective metrics decline at lower bitrates. However,
the WER does not drop as drastically, indicating that semantic distillation effectively preserves linguistic
content even when the overall reconstruction quality decreases. (3) Discrete WavLM exhibits significantly
lower SDR, SI-SNR, PESQ, STOI, and Spk-Sim scores. Since these metrics rely on reference ground truth
signals, the poor performance indicates these models are not optimized for precise waveform reconstruction.
Metrics such as UTMOS, DNSMOS, and PLCMOS, however, remain reasonable, suggesting these tokenizers
still preserve speech quality. This discrepancy indicates that discrete tokenizers focus more on high-level
representations than on exact waveform reconstruction. (4) SQ-SMA-16 performs comparable or even better
than large bitrate codec models (e.g., Mimi-S-24 4.4kbps, and DAC-SMA-24 6kbps). (5) Finally, we find
that SDR and SI-SNR are less reliable indicators. A possible reason is that the signal is over-compressed, the
generation of neural codec (especially in low-bitrate), usually have less consistency in the local sample-level
information. It is likely due to non-linear shifts or amplitude variations.

10https://github.com/sovrasov/flops-counter.pytorch/tree/master
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Table 5: Reconstruction performance of audio tokenizers for both general audio and music experiments.

Audio Music

Tokenizer #Q kbps Token SDR CI- SI- VISQOL Sing SDR CI- SI- VISQOL Sing
rate ↑ SDR↑ SNR↑ ↑ MOS↑ ↑ SDR↑ SNR↑ ↑ MOS↑

Ground truth - - - 252.75 84.90 57.96 4.73 2.70 254.24 87.26 60.26 4.73 2.79

Enc-SMA-24
2 1.5 150 −1.29 −1.28 −4.31 3.94 2.59 2.16 2.13 0.46 4.05 2.67
8 6 600 4.28 4.10 2.33 4.25 2.60 7.32 7.17 5.87 4.38 2.66
32 24 2400 7.72 7.33 5.64 4.36 2.60 11.04 10.75 9.19 4.50 2.66

DAC-SMA-24
2 1.5 150 −2.60 −2.55 −11.55 3.99 2.59 1.75 1.71 −2.21 3.94 2.70
8 6 600 1.35 1.22 −10.28 4.35 2.61 4.82 4.67 −1.25 4.30 2.68
32 24 2400 2.45 2.22 −9.91 4.59 2.60 5.56 5.37 −1.16 4.56 2.66

SQ-SMA-16 4 3 200 −2.33 −2.33 −10.50 4.32 2.62 3.44 3.39 −0.38 4.34 2.68

WT-SMA-24 1 .98 75 −4.55 −4.45 9.78 3.96 2.56 −14.30 −14.28 −23.09 3.64 2.60
WT-S-24 1 .52 40 −11.00 −10.85 −20.91 3.85 2.53 −19.91 −19.89 −45.55 3.33 2.42

General Audio and Music. Table 5 summarizes the reconstruction results for the general audio and
music domains. As in the speech domain, reconstruction quality generally decreases with lower bitrates. The
results also reveal notable trends related to both the training domain and optimization objectives for each
tokenizer. EnCodec achieves the best overall reconstruction performance across SDR, SI-SNR, and perceptual
metrics (VISQOL and SingMOS), particularly at higher bitrates. In contrast, DAC shows surprisingly poor
performance in time-domain metrics, with negative SI-SNR values in most settings. This suggests that DAC
relies on adversarial or perceptual optimization strategies that do not prioritize time-domain reconstruction
loss. Nonetheless, despite poor time-domain fidelity, DAC maintains strong VISQOL and SingMOS scores,
indicating its reconstructions remain perceptually plausible.

Similar to DAC, WavTokenizer is not explicitly optimized with a time-domain waveform reconstruction loss,
resulting in poor SDR and SI-SNR scores. However, its perceptual metrics (VISQOL and SingMOS) remain
relatively strong. This further highlights the limitations of time-domain metrics in evaluating token-based
representations, as previously observed in the speech reconstruction results. Among the two WavTokenizer
variants, WT-S-24 and WT-SMA-24, only WT-S-24 is fully out-of-domain, having been trained exclusively
on speech data. Both models exhibit poor performance across objective metrics such as SDR and SI-SNR, as
well as perceptual metrics (VISQOL and SingMOS). This degradation stems from a combination of factors:
the domain mismatch in WT-S-24, the use of the lowest bitrate among all models, and the absence of explicit
waveform reconstruction losses during training.

Summary. Overall, these results underscore the importance of evaluating audio tokenizers beyond tradi-
tional waveform fidelity measures. Models optimized for perceptual or downstream tasks may exhibit low
signal reconstruction performance, yet still produce subjectively high-quality audio reconstructions.

3.2 Downstream Evaluation

Background. Evaluating token quality solely based on reconstruction performance raises an important
question: how much task-relevant information is preserved in the tokens, independent of the decoder’s ca-
pacity? This distinction is critical in multimodal language modeling settings, where audio tokens are used
directly as input to large language models. These models must perform both discriminative tasks (e.g., ASR,
emotion recognition) that map audio to text, and generative tasks (e.g., speech synthesis, speech-to-speech
translation) that output audio.

Experimental Setup. We evaluate discrete audio tokenizers using the DASB benchmark (Mousavi et al.,
2024a), built on the SpeechBrain toolkit (Ravanelli et al., 2024), which isolates the representational quality
of the tokens for downstream modeling. For each task, the encoder is frozen, and a task-specific classification
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Table 6: Datasets, metrics, and downstream models for the DASB evaluation.

Task Dataset Architecture Metric(s) Data Link

Speech (Discriminative)

ASR (En) LibriSpeech (Korvas et al., 2014) Branchformer WER Link
ASR (Low-resource) CommonVoice 17.0 (Ardila et al., 2020) BiLSTM WER Link
Speaker ID / Verification VoxCeleb1 (Nagrani et al., 2017) ECAPA-TDNN Accuracy / EER Link
Emotion Recognition IEMOCAP (Busso et al., 2008) ECAPA-TDNN Accuracy Link
Keyword Spotting Speech Commands (Warden, 2018) ECAPA-TDNN Accuracy Link
Intent Classification SLURP (Bastianelli et al., 2020) BiLSTM+Linear Accuracy Link

Speech (Generative)

Speech Enhancement VoiceBank (Valentini-Botinhao et al., 2016) Conformer DNSMOS / dWER Link
Speech Separation Libri2Mix (Cosentino et al., 2020) Conformer DNSMOS / dWER / SpkSim Link

Music

Music Genre Classification GTZAN (Tzanetakis & Cook, 2002) ECAPA-TDNN Accuracy Link
Music Source Separation MUSDB (Rafii et al., 2017) Conformer SDR / SIR / SAR Link

General Audio

Sound Event Classification ESC-50 (Piczak, 2015) ECAPA-TDNN Accuracy Link
Audio Separation FUSS (Wisdom et al., 2021) Conformer SDR Link

head is trained. We use lightweight classification heads to avoid hiding weaknesses in the token representa-
tions. Generative tasks additionally use the frozen decoder. All token embeddings are projected to a fixed
dimensionality of 1024 to ensure consistency across models. This value corresponds to the largest embedding
size among the tokenizers in our benchmark. For tokenizers with multiple codebooks, a weighted sum of
codebook embeddings is computed, with weights learned jointly with the downstream head (Chen et al.,
2022; Zaiem et al., 2023). For SQ-Codec, which uses scalar quantization and group vector quantization,
we apply a ternary matrix-based embedding and concatenate four 256-dimensional group vectors to match
the 1024-dimensional standard. Each tokenizer is evaluated across multiple bitrate settings (low, high, and
recommended). We tune the most relevant hyperparameters, such as learning rate and model capacity, using
the Tree-structured Parzen Estimator (TPE) (Bouthillier et al., 2022) with 20 trials. To obtain a more robust
performance estimate, we average the results of each tokenizer over three downstream training runs with
different random seeds. For ASR tasks, both character-level and byte pair encoding (BPE) segmentations are
considered, and the better-performing configuration is reported. Table 6 summarizes the benchmark tasks
and their corresponding downstream models. When multiple-domain tokenizer checkpoints are available, we
use the multi-domain version for consistency. The impact of domain-specific vs. multi-domain training is
further analyzed in our ablation study (Section 4). Additional implementation details are provided in the
DASB paper (Mousavi et al., 2024a).

Dataset. We evaluate audio tokenizers across diverse tasks and domains, including speech discriminative
tasks such as ASR, low-resource ASR (L-R ASR), speaker identification and verification (SID, SV), emotion
recognition (ER), intent classification (IC), and keyword spotting (KS). For generative tasks, we include
speech enhancement (SE) and speech separation (SS). In the music and general audio domains, we evaluate
music genre classification (MG), music source separation (MSS), general sound separation (ASS), and sound
event classification (SEC). A full summary of datasets and tasks is provided in Table 6.

Evaluation Setup For continuous baselines, we follow Zaiem et al. (2023) by using a weighted sum of
WavLM-large layers as input across most tasks. To ensure a fair comparison between discrete and continuous
representations, we adopt identical downstream architectures for both settings. While neither WavLM nor
the chosen downstream architecture may represent the state-of-the-art for every task, using a consistent
setup across all experiments allows us to isolate the effect of representation quality. For instance, in speech
separation, well-established baselines such as Conv-TasNet (Luo & Mesgarani, 2019) and Transformer-based
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models (Saijo et al., 2024) are excluded. Libri2Mix has become a saturated benchmark, with many ap-
proaches reaching near-ceiling performance, and adding stronger backbones would not yield meaningful
insights. Instead, our focus is on isolating the effects of discrete versus continuous representations under a
shared architecture. There are two exceptions: for music and general audio separation, tasks that remain
more challenging, we use stronger, task-specific architectures for the continuous baselines. Specifically, we
adopt DEMUCS (Rouard et al., 2023) for music source separation and TDCN++ (Kavalerov et al., 2019) for
general sound separation, as these models are better suited to the complexity of these domains. We evaluate
each task using standard, task-specific metrics (Table 6): ASR is evaluated using Word Error Rate (WER);
SV uses Equal Error Rate (EER); classification tasks including ER, SID, IC, MG, and SEC are evaluated
using classification accuracy (ACC). For SE and SS, we report DNSMOS (Reddy et al., 2022) for perceptual
audio quality, differential WER (dWER) using Whisper (Radford et al., 2023) for intelligibility, and speaker
similarity (SpkSim) based on cosine similarity of WavLM-derived embeddings. Music source separation is
evaluated using signal-to-distortion ratio (SDR), signal-to-artifact ratio (SAR), and signal-to-interference
ratio (SIR) via the BSSEval toolkit (Vincent et al., 2006), while general sound separation is assessed using
SDR on FUSS (Wisdom et al., 2021). All results are averaged over three runs with different random seeds
to ensure robustness.

Results and Discussion Tables 7, 8, and 9 summarize performance across discriminative and generative
tasks for speech, music, and general audio. Below, we outline key findings from our experiments.

Speech Tasks. Discrete WavLM consistently performs best in discriminative tasks, likely due to its strong
ability to preserve phonetic content. SpeechTokenizer, which uses semantic distillation, ranks second. In
speaker recognition, however, DAC achieves the best results, suggesting that reconstruction-based objectives
help preserve speaker identity. For speech separation and enhancement, WavLM performs well at low and
medium bitrates but shows poor results in speaker similarity metrics. This aligns with previous findings (van
Niekerk et al., 2022) that SSL-based tokenizers tend to lose speaker-related information. Another notable
observation is that in many cases, the reconstructed DNSMOS score, representing the upper bound set by
the codec alone without any separation, does not surpass the score obtained by using the raw mixture as
the estimate (i.e., the lower bound), suggesting that limitations in reconstruction quality may constrain
downstream performance, particularly for high-fidelity tasks like speech separation.

Audio and Music Tasks. For general audio and music tasks, EnCodec consistently outperforms other
tokenizers across all bitrates and domains, while DAC lags behind. Although DAC is known for strong
perceptual quality, its signal-level fidelity is generally lower, which likely impacts its separation performance.
The difficulty of these tasks is evident from the SI-SDR of the unprocessed mixtures, for example, approxi-
mately -16 dB for general audio and -7.7 dB for music. Even the best-performing model (EnCodec at medium
bitrate) only reaches about -7 dB SI-SDR for audio and -5.7 dB for music. We report the performance in
terms of SI-SDR improvement (“SI-SDRi”), not absolute SI-SDR. Thus, the reason we also provide the per-
formance on “unprocessed” mixtures. For instance, for general audio, we report an improvement of 9.53 dB
over the mixture (-16.5 dB). In absolute value, this means that the resulting predictions yield an average of
-7-7 dB performance. While high-bitrate settings have proven to be challenging for downstream tasks, they
perform particularly poorly in music separation, emphasizing that increasing bitrate alone does not improve
separation quality and may even degrade performance. This may be due to the inherently polyphonic and
less sparse nature of music (in contrast to speech and general audio), which results in highly overlapping
sources that are harder to disentangle from detailed but semantically entangled representations.

Impact of Codebook Size. Increasing the number of codebooks (e.g., 2, 8, 32) improves signal recon-
struction but often reduces downstream task performance. This trade-off suggests that while more codebooks
enhance fidelity, they often degrade performance for both discriminative and generative tasks by increasing
output dimensionality and modeling complexity. In RVQ-based models, earlier codebooks capture more pho-
netic information, while later ones often add redundancy, which may explain this trade-off. This highlights
an important design principle for tokenizers: optimizing for reconstruction alone does not guarantee better
performance on downstream tasks. Medium bitrate settings typically provide the best balance between audio
reconstruction quality and task performance.

20



Discrete vs Continuous. While discrete tokens show promise, they face notable limitations in complex
scenarios such as polyphonic music separation or noisy environments. Continuous features consistently out-
perform discrete tokens due to the information loss inherent in quantization, which affects critical attributes
like phonetics, emotion, and speaker identity. These limitations are further exacerbated in low-resource
settings. For instance, although Discrete WavLM performs competitively at low and medium bitrates for
low-resource ASR, it still lags behind the continuous baseline. RVQ-based tokenizers struggle even more,
especially on smaller datasets such as Welsh, ESC-50, and GTZAN, with high bitrate amplifying these issues.
Performance improves with more data: Discrete WavLM, for example, achieves 6.0% WER on LibriSpeech
(960h), 22.0% on Basque (116h), and 58.9% on Welsh (8h) at low bitrate using a BiLSTM head, illustrating
a strong correlation between data scale and ASR accuracy. From the hyperparameter tuning experiments
(not reported here for brevity), we noticed that larger downstream models help improve convergence and
performance, particularly for acoustic tokenizers, which are more sensitive to both data scale and model
capacity. Semantic tokenizers are generally more robust in low-resource settings but still fall short of con-
tinuous representations with extremely limited data. Overall, careful tuning and appropriate scaling of both
data and model are essential for an effective use of discrete representations, especially acoustic tokens.

Summary. Semantic tokenizers (e.g., Discrete WavLM) are generally more robust, especially in low-
resource settings, but still fall short of continuous representations when data is limited. Training downstream
models with semantic (Discrete WavLM) or semantically distilled tokenizers (Mimi and SpeechTokenizer)
tends to be more stable and reliable compared to acoustic tokenizers (EnCodec, DAC, WavTokenizer, and
SQ-Codec), which often require larger datasets and more careful model scaling. Overall, discrete tokenizers
are more sensitive to architectural choices and hyperparameters of the downstream head, whereas continu-
ous features typically yield more consistent performance across configurations. Therefore, careful tuning and
appropriate scaling of both data and model architecture are crucial for effectively leveraging discrete repre-
sentations. While discrete tokens offer advantages in efficiency and modularity, continuous representations
still lead in overall performance. Bridging this gap is essential for the successful integration of audio tokens
into future multimodal language models.

Table 7: DASB results for discriminative tasks (speech).

Tokenizer #Q
ASR-En ASR-LR ER IC KS SI SV

WER↓ WER↓
ACC↑ ACC↑ ACC↑ ACC↑ EER↓

Clean Other Welsh Basque

Continuous – 4.07 6.81 41.77 14.32 63.10 86.10 99.00 99.70 2.10

Enc-SMA-24
2 12.70±0.37 29.09±0.13 90.90±0.32 51.00±0.98 45.50±0.02 42.90±0.16 77.73±3.12 89.81±5.46 18.33±0.26
8 8.43±0.13 21.77± 0.36 84.53±1.90 45.36±0.57 44.73±0.02 40.03±0.29 74.30±1.69 94.26±3.99 13.54±0.57
32 9.95±1.17 23.24± 1.22 97.39±1.19 58.21±0.92 42.96±0.02 33.66±2.65 69.10±3.42 91.12±1.92 10.12±6.66

DAC-SMA-24
2 14.84±0.25 33.88±0.20 95.21±0.84 68.93±0.42 45.20±0.01 29.83±0.19 67.27±1.56 97.88±0.79 21.80±1.00
8 10.73± 0.10 25.39± 0.20 97.20±0.14 62.45±1.40 44.73±0.02 23.97±0.41 65.27±2.82 87.33±10.98 15.86±5.26
32 13.13±0.16 28.47±0.19 98.96±0.18 73.57±1.56 43.20±0.02 44.60±39.19 68.67±2.91 87.69±4.99 17.12 ± 0.76

ST-S-16
2 9.48±0.10 22.68±0.10 71.36±0.32 42.17±0.05 54.86±0.01 56.80±0.08 94.11±0.63 73.16±0.37 24.23±0.29
8 9.06± 0.45 21.72±0.23 68.36±0.44 35.35±0.22 55.00±0.01 53.83±0.05 94.11±0.07 96.78±0.45 10.45±0.43

Mimi-S-24
8 9.73±0.61 22.65±0.41 91.59±0.15 59.18±8.52 51.13±0.02 53.83±0.19 92.18±0.20 79.50±0.43 18.68±0.35
32 10.84±0.56 24.10±0.36 96.89±0.07 58.15±6.90 46.76±0.01 50.73±0.50 91.31±0.19 63.93±13.64 23.91±4.60

DWavL-S-16
2 4.78±0.25 10.58±0.17 58.98±0.15 22.02±0.17 61.53±0.02 76.33±0.17 96.82±0.92 76.57±0.33 22.41±0.19
6 5.07±0.17 9.57±0.20 48.94±0.38 19.66±0.33 63.20±0.01 78.73±0.12 95.89±0.50 92.31±0.09 13.47±0.22

SQ-SMA-16 4 91.57±0.49 92.90±0.41 94.80±0.88 94.24±1.24 41.30±0.06 58.13±0.26 92.74±0.42 97.38±0.03 9.69±0.25
SQ-SMA-16* 4 11.63±0.08 30.91±0.17 – – – – – – –

WT-SMA-24 1 16.11±0.18 35.48±0.35 97.41±0.08 75.82±0.20 43.43±0.02 15.25±0.15 59.13±2.10 85.90±2.48 19.38±0.36

3.3 Acoustic Language Models Evaluation

Following the rise of LLMs, researchers have extended the generative auto-regressive framework beyond text
to discrete representations of speech (Lakhotia et al., 2021), audio (Borsos et al., 2023b), and music (Copet
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Table 8: DASB results for generative tasks (speech).

Models\Tasks #Q
SE SS - Speech

DNSMOS dWER Spk DNSMOS DNSMOS dWER Spk
↑ ↓ Sim↑ Rec↑ Sep↑ ↓ Sim↑

Continuous – 3.49 4.92 0.93 – 3.68 9.97 0.94

Enc-SMA-24
2 3.15±0.01 34.95±0.64 0.86±0.00 3.19 3.13±0.00 80.33±1.77 0.88±0.00
8 3.08±0.01 22.70±1.84 0.88±0.00 3.54 3.08±0.00 53.37±0.65 0.90±0.00
32 2.78±0.01 65.70±6.09 0.80±0.01 3.72 2.97±0.01 92.42±0.97 0.85±0.00

DAC-SMA-24
2 3.26±0.01 54.85±1.82 0.86±0.00 3.16 3.01±0.00 101.19±1.99 0.85±0.00
8 3.51±0.01 29.44±3.93 0.90±0.01 3.67 3.30±0.00 52.77±2.48 0.93±0.00
32 2.93±0.01 30.66±0.97 0.88±0.00 3.76 2.67±0.01 92.07±0.05 0.88±0.01

ST-S-16
2 3.19±0.02 29.98±0.58 0.86±0.00 3.20 3.13±0.00 84.94±0.63 0.87±0.00
8 3.49±0.01 21.65±0.57 0.87±0.00 3.72 3.43±0.01 60.90±0.77 0.91±0.00

Mimi-S-24
8 3.25±0.01 67.56±2.21 0.85±0.00 3.65 3.29±0.00 109.30±3.30 0.87±0.00
32 3.18±0.01 102.61±2.40 0.82±0.00 3.72 3.00±0.00 137.00±2.16 0.82±0.00

DWavL-S-16
2 3.56±0.01 25.88±2.15 0.88±0.00 3.57 3.56±0.00 49.57±0.64 0.85±0.00
6 3.57±0.01 9.43±0.33 0.89±0.00 3.75 3.75±0.01 30.39±0.45 0.91±0.00

SQ-SMA-16 4 3.28±0.01 122.33±8.74 0.83±0.00 3.77 3.19±0.00 136.00±3.58 0.83±0.00

WT-SMA-24 1 3.33±0.01 67.53±10.65 0.85±0.00 3.57 3.42±0.00 118.33±4.50 0.86±0.00

Mixture – – – – – 3.43 – –

Table 9: DASB results for generative and discriminative tasks (music and general audio).

Tokenizer #Q
SS - Audio SS - Music SEC MGC

SI-SDRi↑ SI-SDRi↑ SAR↑ SIR↑ ACC↑ ACC↑
Rec Sep Rec Sep

Continuous – – 15.07 – 13.29 9.56 11.99 92.91 87.00

Enc-SMA-24
2 0.76 7.03±0.49 3.36 1.49±2.04 -2.80±1.68 5.96±1.52 34.83±0.47 70.33±1.70
8 3.87 9.53±0.33 7.99 1.98±0.36 -1.95±0.33 5.26±0.22 37.00±0.73 54.67±3.86
32 5.76 -1.73±0.09 11.10 -11.72±0.35 -15.00±0.02 -0.42±0.01 35.43±1.45 39.67±1.25

DAC-SMA-24
2 0.12 3.84±0.48 2.37 1.01±0.17 -3.59±0.09 5.92±0.28 31.03±1.84 50.00±0.82
8 3.33 5.62±0.21 6.66 -11.77±0.1 -10.62±2.35 -5.52±3.68 28.60±0.79 47.67±3.09
32 4.73 -4.92±0.32 8.54 -11.32±0.12 -12.70±0.17 -2.05±0.41 36.67±0.92 50.00±0.82

SQ-SMA-16 4 3.62 6.54±0.22 5.53 -3.62±0.87 -5.84±0.86 1.42±0.32 31.37±1.37 42.67±0.47

WT-SMA-24 1 -24.05 -16.72±0.08 -2.66 -4.52±0.04 -8.32±0.07 2.65±0.11 34.50±0.82 48.00±1.41

Mixture – – -16.5 – -7.71 50.01 -inf – –

et al., 2023). Acoustic language models refer to models that learn to represent or generate audio signals
(including speech, general audio, and music) using this generative autoregressive framework. This modeling
approach has proven highly effective across domains, enabling powerful generation capabilities (Défossez
et al., 2024). In this section, we begin by examining unconditional speech generation (Speech Language
Models) and text-conditioned generation (text-to-speech (TTS)). We then explore audio generation and
finally turn to the music modality.
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3.3.1 Speech Language Modeling

Background. Speech Language Models (SLMs) have gained significant interest (Arora et al., 2025; Wu
et al., 2024a; Peng et al., 2024; Cui et al., 2024; Ji et al., 2024a; Latif et al., 2023), demonstrating remark-
able performance in traditional speech tasks (Chen et al., 2025a; Elmakies et al., 2025), diverse generative
applications (Yang et al., 2024c;b), and reasoning over speech and audio signals (Chu et al., 2023; Wang
et al., 2025a; Yosha et al., 2025).

SLMs can generally be classified into two main categories: (i) generative SLMs that are conditioned on
previous speech/text tokens and generate speech/text (Défossez et al., 2024; Cuervo et al., 2025; Nguyen
et al., 2025), and (ii) speech-aware LMs that are conditioned on speech/text and generate text (Chu et al.,
2023; Tang et al., 2024a; Mousavi et al., 2025). This work focuses on the first category of SLMs as there
is a growing interest from the research community to study generative SLMs (Nguyen et al., 2025; Maimon
et al., 2025b; Rubenstein et al., 2023).

Several SLMs operate over discrete speech representations derived from a pre-trained SSL model (Nguyen
et al., 2025; Lakhotia et al., 2021; Cuervo et al., 2025). Others employ semantically distilled acoustic
tokenizers (Défossez et al., 2024) or adopt a cascading, mixed-resolution strategy (Borsos et al., 2023b),
modeling speech hierarchically from coarse semantic content to fine acoustic details, using language models
conditioned on previously generated streams. More recently, supervised semantic tokenizers have gained
popularity. These methods typically quantize the output layer of a pre-trained ASR system to produce
discrete tokens (Zeng et al., 2024; 2025). In this study, we analyze the impact of these choices by comparing
SLMs trained under a controlled setup with different audio tokenizers presented in Table 2.

We focus on SLMs that model the joint probability of a sequence of speech tokens q as:

P (q = q1, . . . , qn) =
n∏

i=1
P(qi | q<i), (12)

where qi ∈ Vq, and Vq denotes the vocabulary of speech tokens. These models are typically implemented as
decoder-only transformers (Vaswani et al., 2017) and trained to minimize the negative log-likelihood:

LLM = −
n∑

i=1
P(qi|q<i). (13)

Each token is embedded via a matrix E ∈ R|Vs|×d, where d denotes the embedding dimension. The resulting
sequence is processed by a stack of causal transformer layers, yielding contextual representations c ∈ Rn×d.
A final linear projection U ∈ Rd×|Vs| maps these to logits, which are converted to a probability distribution
over the vocabulary via a softmax: p(qi+1 | ci).

Experimental Setup. Motivated by Maimon et al. (2025a), each SLM is built upon the Qwen-2.5 ar-
chitecture (Yang et al., 2024a) (357M parameters in total, after removing the text embedding tables) and
initialized using TWIST (Hassid et al., 2023). The textual embedding tables are replaced with new audio
embedding tables corresponding to the audio codebooks. The models are trained using the standard cross-
entropy loss reported in Eq. 13. To ensure all SLMs processed a comparable amount of audio during training,
we dynamically adjusted the tokens per batch according to their tokenizer’s frame rate. To accommodate
multiple codebooks, the delay pattern from MusicGen (Copet et al., 2023) is applied across all SLM models.
The models are trained for a total of 50, 000 optimizer steps, with a context length set to 1024. The audio
target batch size is set to include about 2.9 hours of speech per backpropagation step. We used the Adam
optimizer coupled with a linear learning rate scheduler, applying a 1% warmup ratio (corresponding to 500
steps). All input samples are fed to the SLMs using a packing strategy by concatenating all samples together
until having a sequence of the target length. To ensure fairer evaluations across different tokenizers, the num-
ber of codebooks is restricted to a maximum of 8, promoting better alignment between them. All code was
developed using the SpeechBrain toolkit (Ravanelli et al., 2024), and Hugging Face Transformers (Wolf et al.,
2019).
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Table 10: SLM results considering spoken content and acoustic elements using a subset of SALMon tasks.

Tokenizer #Q
Spoken Content Acoustic Consistency Sem.-Ac. Align.

sBLIMP↑ sWUGGY↑ sSC↑ tSC↑ Gender↑ Sent.↑ Spk↑ Sentiment↑

HuBERT 25Hz 1 60.89 70.51 53.23 71.46 69.50 62.50 69.00 53.00

Enc-SMA-24 8 51.14 51.29 50.18 48.20 70.50 56.50 65.00 50.00

DAC-SMA-16 8 51.51 50.73 48.95 51.52 81.00 60.00 77.00 50.00

ST-S-16 8 51.08 56.89 48.42 55.74 66.50 58.00 65.00 49.50
ST-S-16* 8 52.75 63.46 47.56 60.60 67.00 59.50 65.50 50.00

Mimi-S-24 8 52.25 62.21 51.52 54.30 77.50 71.50 78.00 52.00
Mimi-S-24* 8 60.17 67.57 51.68 68.51 76.50 77.00 76.00 52.00

DWavL-S-16 6 53.96 69.10 51.41 62.42 92.00 70.00 86.50 49.00

SQ-SMA-16 4 51.58 51.41 51.79 55.10 83.00 64.00 84.50 50.50

WT-SMA-24 1 51.22 54.60 52.00 52.75 81.50 78.50 69.00 50.50

Dataset. We use the publicly available dataset LibriHeavy (Kang et al., 2024) containing 56k hours of
transcribed speech, and the official validation and test sets of LibriSpeech (Panayotov et al., 2015).

Evaluation Setup. To evaluate our SLMs, we use the ZeroSpeech (Dunbar et al., 2021) sBLIMP and
sWUGGY evaluation. The sBLIMP task assesses model perplexity on pairs of syntactically correct and
incorrect sentences (e.g., the dog sleeps vs. the dogs sleeps). It evaluates the model’s understanding of
core grammatical phenomena in English. Similarly, sWUGGY measures whether the model assigns higher
probability to a real word over a phonologically similar non-word (e.g., “brick” vs. “blick”), thus test-
ing lexical discrimination. We further assess semantic understanding using Spoken Story-Cloze (sSC) and
Topic Story-Cloze (tSC) tasks (Hassid et al., 2023), derived from the spoken variant of the StoryCloze
dataset (Mostafazadeh et al., 2016). In sSC, the model must choose between the correct continuation and a
randomly sampled, semantically incompatible adversarial one. This setup probes the model’s ability to cap-
ture fine-grained causal and temporal commonsense relations. Similarly, in tSC, the adversarial continuation
is taken from a different topic, so success reflects the model’s capacity to maintain topical coherence.

To evaluate acoustic modeling such as prosody, speaker identity, and sentiment we adopt the SALMon
evaluation suite (Maimon et al., 2025c). This includes several metrics that test whether the SLM retains
and models key acoustic attributes. We focus on two aspects: (1) acoustic consistency, which evaluates the
model’s sensitivity to changes in speaker, gender, and sentiment; and (2) sentiment-acoustic alignment, which
tests whether the model assigns higher scores to utterances where the acoustic sentiment aligns with the
spoken content. This comprehensive suite allows us to assess both the linguistic and paralinguistic modeling
capacities of our SLMs.

Results and Discussions. The results of the SLM experiments are presented in Table 10. To establish
a clear baseline aligned with the current literature, we train an SLM using the HuBERT 25 Hz tokenizer,
originally introduced in TWIST (Hassid et al., 2023), using the same configuration as previously described.
Following the methodology of Défossez et al. (2024), all hybrid tokenizers marked with an asterisk ("*")
correspond to SLMs trained with a semantic stream overweight factor of 100. This training setup prioritizes
the semantic content over the acoustic content, and could be required for a better disentanglement of the
semantic distillation. We maintain the same weighting strategy during evaluation.

The results reveal significant differences in performance across semantic and acoustic evaluation tasks. On
semantically-oriented benchmarks (sBLIMP, sWUGGY, sSC, and tSC), most tokenizers exhibit limited se-
mantic capacity. The tokenizer achieving the strongest semantic performance is HuBERT, followed by the
semantically distilled weighted tokenizers that demonstrate the second-highest semantic performance. Specif-
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ically, by overweighting the semantic stream, Mimi improves from 52.25% to 60.17% accuracy on sBLIMP.
A similar trend is observed across all semantic evaluations, with an average performance gain of 6.91 accu-
racy points. The same pattern holds when comparing ST-S-16 to ST-S-16*, where the overweighted version
achieves superior semantic results. Since semantic information is not clearly localized in a specific stream,
WavLM is evaluated without any weighting strategy. Despite this, it still ranks second among unweighted
tokenizers, just after HuBERT.

This semantic trend is consistent with our expectations of HuBERT, Mimi, SpeechTokenizer, and WavLM,
since they primarily encode or have specific phonetic streams (via distillation or self-supervised learning ob-
jectives), thereby enhancing performance on linguistic understanding tasks. These results suggest that, when
carefully tuned, semantic distillation approaches can rival SSL-based models like HuBERT, though they still
fall slightly behind on sSC and tSC. Further investigation is needed to determine the optimal weighting be-
tween semantic and acoustic streams. In contrast, purely acoustic tokenizers such as Encodec and DAC show
negligible semantic capability, rendering them unsuitable for this SLM configuration. Similarly, SQCodec
and WavTokenizer offer limited semantic utility. We note that contrary to Encodec and DAC, SQCodec and
WavTokenizer obtained stronger semantic scores. One explanation could be due to the type of quantization
(i.e. RVQ vs. SVQ / FSQ) or the limited number of streams. Overall, the performance varies substantially
across tokenizers, with only Mimi-S-24 approaching HuBERT’s baseline on semantic tasks.

WavLM achieves the best acoustic performance on average, with accuracies of 92.00%, 70.00%, and 86.50%
on gender, sentiment, and speaker consistency, respectively. This indicates that the model effectively captures
and processes acoustic attributes in comparison to other tokenizers. Interestingly, Mimi also shows strong
acoustic performance, outperforming HuBERT on each task. Purely acoustic tokenizers such as DAC and
EnCodec, or SQ-codec and WavTokenizer also outperform HuBERT on acoustic evaluations and achieve
results comparable to the semantically distilled tokenizers. However, no method yields substantial results
on semantic-acoustic alignment, highlighting a limitation of current approaches in jointly modeling and
reasoning over both modalities.

Summary. Our study reveals that semantic and acoustic performance in SLMs varies significantly across
tokenizer types. HuBERT remains the strongest performer on semantic tasks, while WavLM leads in acoustic
consistency. Semantically distilled tokenizers, particularly those with semantic stream overweighting, showed
promising results by narrowing the semantic gap with HuBERT. These gains, however, come with trade-offs,
emphasizing the importance of carefully balancing semantic and acoustic objectives. Overall, our findings
suggest that, for now, there is no single tokenizer that excels across all spoken and acoustic tasks.

3.3.2 Text-to-Speech

Background. Text-to-Speech (TTS) is one of the primary applications of audio tokens. Traditional TTS
systems typically rely on neural networks that predict mel spectrograms from text (Shen et al., 2018; Ren
et al., 2019), followed by neural vocoders (Morise et al., 2016; Kong et al., 2020; van den Oord et al., 2016)
to synthesize waveforms. The introduction of discrete audio tokens offers several advantages. Notably, it
reframes waveform generation as a classification task over a fixed vocabulary, rather than a regression over
continuous values. This shift enables optimization via categorical distributions and negative log-likelihood
loss, which is typically more stable and tractable than regression objectives. Second, off-the-shelf neural
codec decoders can reconstruct waveforms directly from token sequences, removing the need to train separate
vocoders. Third, discrete tokens reduce sequence length, improving inference efficiency compared to µ-law
quantization (van den Oord et al., 2016).

Prior to the adoption of discrete representations, TTS was largely dominated by non-autoregressive (NAR)
models (Ren et al., 2021; 2019; Kim et al., 2021) due to their inference speed and stability relative to
autoregressive (AR) models (Shen et al., 2018). However, the emergence of neural codecs has renewed interest
in AR architectures (Wang et al., 2024c; Chen et al., 2025a; Yang et al., 2024c), which have demonstrated
strong performance in expressive and zero-shot generation settings. Meanwhile, NAR models have also
benefited from discrete token supervision, with recent advances incorporating diffusion- and flow-matching-
based methods (Ju et al., 2024; Yang et al., 2024d) to further enhance synthesis quality.
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Experimental Setup. Our models are based on a customized adaptation of the ESPnet (Tian et al.,
2025) implementation of VALL-E (Chen et al., 2025a). To facilitate convergence, we adopt a staged training
strategy that allows independent optimization of the AR and NAR components. We first perform 10 epochs
of AR-only training, followed by 90 epochs of joint training with both AR and NAR layers to improve
convergence for some tokenizers. All models use a 12-layer architecture for both AR and NAR decoders,
with an attention dimension of 1024 and a dropout rate of 0.2. Following ESPnet conventions, we use looped
nominal epochs, with 50,000 samples per epoch. The approach involves using a fixed number of data samples
per epoch taken sequentially from the dataset until the end of the dataset is reached, at which point training
restarts from the beginning. The epoch achieving the lowest validation dWER is chosen for evaluation.

Dataset. We train our model on the LibriTTS dataset (Zen et al., 2019), using corresponding phoneme
transcriptions obtained from LibriTTS with Forced Alignment dataset (McAuliffe et al., 2017). The model is
trained to generate discrete audio tokens conditioned on phoneme prompts (representing content) and acous-
tic code prompts (capturing target speaker characteristics), enabling it to synthesize speech that matches
both the textual input and the target speaker’s voice.

Evaluation Setup. We evaluate all models on all samples in the test split that fall within the length limit.
To evaluate the speech naturalness of synthesized speech, we use a pretrained UTMOS model (Saeki et al.,
2022). For assessing pronunciation accuracy, we transcribe both the ground-truth and generated utterances
using the Whisper Large model (Radford et al., 2023) with greedy decoding. We compute the degraded Word-
Error-Rate (dWER) by treating the ASR prediction of the ground-truth audio as the reference instead of the
original transcription. We report mean UTMOS scores and micro dWER values; that is, the Levenshtein edit
distance computed over the entire dataset. To measure speaker fidelity, we compute the cosine similarity
(SpkSim) between X-vectors extracted from the generated and reference audio using the base variant of
WavLM (Chen et al., 2022), fine-tuned for speaker verification.

Following ESPnet-Codec, to mitigate the variability of samples arising from using a text-conditioned
sampling-based generative model, we generate 10 samples simultaneously for each prompt and choose the
best one based on the WER calculated with the original label as the ground truth using Whisper Small,
while final dWERs are calculated using the large model. To establish a clear baseline aligned with current
literature, we train VALL-E using ESPNet’s in-distribution retraining of EnCodec11, which is trained on
LibriTTS data only instead of a mix of speech, audio, and music as in the original model.

We perform a grid search over sampling temperature values t ∈ 0.7, 0.8, 1.0, 1.2, 1.3 and top-k values k ∈
10, 20, 30, where t controls the sampling temperature and k limits the number of highest-probability tokens
considered during top-k sampling. The optimal hyperparameters are selected based on the lowest dWER
on a filtered subset of the validation set (67 samples selected from an initial random pool of 100, based on
sequence length). These optimal values are then used for evaluation on the test set.

Results and Discussion. Table 11 presents the performance of various tokenizers on the TTS task.
The highest audio quality is achieved by ESPNet EnCodec (Enc-S-24), which obtains a UTMOS score of
3.77. This model is trained on speech-only data, likely enabling it to better capture fine-grained speaker
characteristics. Notably, the original EnCodec model performs significantly worse, with a UTMOS of only
2.31. We further investigate the impact of training data in Section 4.

The best adherence to the text is achieved with WavLM (Ji et al., 2024c) with a dWER of 4.32, which is
likely attributable to the preservation of higher-level semantic information. It is followed by WavTokenizer
at 4.67, which employs a single codebook with a larger vocabulary. The model also achieves a competitive
audio quality at a UTMOS of 2.85. This result may be attributed to the expressive power of the larger
vocabulary and the simplicity of single-stream generation.

Discrete WavLM6, achieves the second-best audio quality with a UTMOS of 3.42. It should be noted that
during training, this tokenizer showed the most stable and robust results and early convergence, particularly
in low-data regimes, and a reasonable speaker similarity at 0.90. These findings indicate that semantic rep-

11https://huggingface.co/espnet/libritts_encodec_24k
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Table 11: Text-to-Speech synthesis results when using the VALL-E speech language model conditioned on
phoneme annotations.

Tokenizer #Q UTMOS↑ dWER↓ SpkSim↑

Enc-SMA-24 8 2.31 4.77 0.91
Enc-S-24 8 3.77 5.74 0.91

DAC-SMA-24 8 2.47 11.71 0.88

ST-S-16 8 2.91 5.35 0.91

Mimi-S-24 8 2.60 7.93 0.91

DWavL-S-16 6 3.42 4.32 0.90

WT-SMA-24 1 2.85 4.67 0.88

resentations derived from self-supervised models are well-suited for TTS, supporting both natural-sounding
and phonetically faithful speech synthesis.

In contrast, general-purpose acoustic tokenizers such as EnCodec (Enc-SMA-24) and DAC (DAC-SMA-24)
result in decreased audio quality, and occasionally, as in the case of the latter, decreased pronunciation
fidelity as well. These models likely require the TTS model to learn high-level speech abstractions from
raw acoustic features, adding complexity to the generation process. Another possible contributing factor
is that these tokenizers were trained on multi-domain audio data, whereas all other tokenizers evaluated
were trained exclusively on speech. Finally, SQ-Codec, originally designed for diffusion-based generation
with a large vocabulary (∼ 20k), failed to converge in our AR/NAR setup, likely due to the challenges of
modeling such a large token space in an autoregressive setting. All models achieve comparable levels of
speaker similarity (ranging from 0.88 to 0.91).

Summary. Overall, achieving strong TTS performance with discrete tokenizers remains challenging, es-
pecially under constrained training conditions. Training with semantic tokenizers leads to more robust and
effective TTS performance compared to acoustic or semantically distilled tokenizers; however, in high-data
regimes with deep models, acoustic tokenizers, such as EnCodec, can be competitive with or even outperform
semantic ones, particularly if they are trained on similar speech data, such as shown with Enc-S-24 trained
on the same LibriTTS dataset as the TTS itself.

3.3.3 Audio Generation

Background. Generating realistic audio is a long-standing goal in generative AI, with applications in
media, accessibility, and human-computer interaction. Previous works have explored audio generation under
various conditions, including text (Liu et al., 2024b; Dong et al., 2023; Saito et al., 2024; Kumar et al., 2024),
image (Sheffer & Adi, 2023; Wang et al., 2024a), video (Luo et al., 2023; Pascual et al., 2024; Zhang et al.,
2024b; Wang et al., 2025b), and multimodal inputs (Jeong et al., 2025; Chen et al., 2025b), as well as in
unconditional settings. In this study, we focus on both unconditional and text-conditioned generation, as
these represent the most common and well-benchmarked paradigms.

Audio generation can be very broadly categorized into two main categories: diffusion-based methods (Yang
et al., 2023b; Huang et al., 2023; Liu et al., 2023), and language model based approaches (Kreuk et al., 2023;
Borsos et al., 2023b; Ziv et al., 2024). In this study, we focus on the latter, as the use of discrete audio tokens
is more prevalent in such generation approaches. While both autoregressive (Kreuk et al., 2023; Borsos et al.,
2023b) and non-autoregressive (Ziv et al., 2024) methods have been proposed for audio generation, we focus
on AR models in this study. This choice is motivated by their typically superior generation quality and their
prevalence in recent work, despite the trade-off of slower inference.
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Experimental Setup. We adopt the AudioCraft toolkit (Copet et al., 2023), which provides a training
pipeline for text-to-audio synthesis based on MusicGen (Copet et al., 2023) and AudioGen (Kreuk et al.,
2023). The framework uses a T5 model (Raffel et al., 2020) to encode the text prompt into a latent
conditioning tensor C ∈ RTlen×D. This tensor is passed to a causal decoder Transformer, where each block
consists of a causal self-attention layer over previously generated audio tokens, followed by a cross-attention
layer on the conditioning tensor. Following the original setup, we adopt a delay pattern across streams
and apply Classifier-Free Guidance (CFG). We use the base model configuration with approximately 300M
parameters and T5-Base as the text encoder. This framework is well-established and supports both multi-
stream and single-stream audio tokens. To enable unconditional generation with the same model, we apply
CFG dropout during 10% of training steps, a strategy shown to also enhance robustness in both conditional
and unconditional settings.

We use the same architecture across all tokenizers to ensure a fair comparison. To balance consistency and
computational efficiency, each model is trained for 100,000 steps using a batch size of 128 audio samples (each
10 seconds long), with mix-up augmentation. This corresponds to half the batch size and training steps used
in the original AudioGen, while still achieving competitive performance. Note that the effective number of
tokens and training time may vary depending on the tokenizer’s frame rate and number of codebooks. For
generation, we use fixed sampling parameters across all tokenizers, specifically top-k sampling with k = 250,
without tuning them for individual models. Additional experiments confirm that the observed trends remain
consistent under different sampling hyperparameters, though detailed results are omitted for brevity.

Dataset. We use several audio datasets for training and evaluation, many of which are part of LAION-
AUDIO-630K (Wu et al., 2023c). Specifically, we include AudioCaps (Kim et al., 2019), AudioStock12,
BBC Sound Effects13, EpidemicSound14, FreeSound15, Free to Use Sounds16, MACS (Morato & Mesaros,
2021), and Odeon Sound Effects17. We follow Kreuk et al. (2023) and use the official splits of AudioCaps
for validation and testing. All other datasets are used for training. These datasets vary in sample rate and
format. We resample all audio and convert it to mono to match the input requirements of each tokenizer.
In total, the training data contains approximately 4,050 hours of audio.

Evaluation Setup. We evaluate both text-conditioned generation and audio continuation with a 2.5 sec-
ond audio prompt (and no text condition). We use three objective metrics that provide complementary per-
spectives for evaluation. First, we compute the Fréchet Audio Distance (FAD) using the FadTK toolkit (Gui
et al., 2024) with the VGGish model. This metric is computed similarly to AudioGen (Kreuk et al., 2023),
where FAD is calculated against the AudioCaps test set to measure the overall quality of synthesized audio.
Second, we assess semantic consistency using KL Divergence. Specifically, we follow Yang et al. (2023b) and
compare the output distribution of a pre-trained audio classifier, specifically PASST (Koutini et al., 2022),
on real samples versus model-generated samples for the same conditions. Finally, we evaluate text-audio
alignment using the CLAP score (Wu et al., 2023c; Huang et al., 2023). This measures how well the gen-
erated audio matches the input prompt. All evaluation metrics used here are generative in nature and are
therefore influenced not only by the language model’s ability to predict tokens but also by the quality of the
vocoder used to synthesize audio. As such, poor metric scores may reflect limitations in the vocoder rather
than issues in the encoder or language model.

Results and Discussion. Table 12 summarizes the performance for both text-conditioned generation
and audio continuation. Since all Audio LM evaluations rely on generative outputs, final performance is
often influenced by vocoder quality. As a result, even a language model with strong next-token prediction
capabilities may underperform if paired with a suboptimal vocoder. To better isolate the effect of vocoding,
we report reconstruction quality metrics for each tokenizer without involving any language model training.
These results highlight notable differences across tokenizers. The 44kHz variant of DAC performs particularly

12https://audiostock.net/sfx
13https://sound-effects.bbcrewind.co.uk
14https://www.epidemicsound.com/sound-effects/
15https://freesound.org
16https://www.freetousesounds.com/all-in-one-bundle/
17https://www.paramountmotion.com/odeon-sound-effects
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Table 12: Comparing performance of audio LMs over different tokenizers. We report FAD, KL divergence,
and CLAP score on the AudioCaps test set. We also provide metrics for audio reconstruction. We note that
ground truth audio in AudioCaps gets CLAP= 0.311, proving a topline. For more information about the
tokenizers see Section 2.

Tokenizer #Q
Text Cond. Generation Uncond. Generation Reconstruction

FAD↓ KLD↓ CLAP↑ FAD↓ KLD↓ CLAP↑ FAD↓ KLD↓ CLAP↑

Enc-SMA-24 8 3.771 1.555 .279 5.996 1.897 .202 3.806 0.456 .281
Enc-M-32 4 10.110 1.788 .295 13.400 2.840 .175 12.611 1.387 .251
Enc-A-16 4 1.955 1.576 .300 3.548 2.064 .205 1.816 0.419 .273

DAC-SMA-44 9 6.929 1.959 .267 6.732 2.041 .212 2.206 0.242 .299
DAC-SMA-24 9 7.708 1.966 .253 8.196 2.183 .199 4.124 0.446 .281

SQ-SMA-16 4 7.733 3.078 .151 5.977 2.301 .175 3.460 0.460 .268

WT-SMA-24 1 2.594 1.463 .291 4.441 2.224 .193 5.018 0.892 .253

well, reaching quality levels comparable to the version of EnCodec trained specifically on audio. In contrast,
the music-only EnCodec model shows poor reconstruction quality, as expected given its domain-specific
training. Apart from the music-only EnCodec, which was not trained on general audio, WavTokenizer
exhibits the weakest reconstruction performance among all evaluated tokenizers.

The Audio LM trained on the music-only tokenizer (ENC-M-32) shows weak performance, particularly in
terms of FAD. This may be attributed to limitations in the vocoder or the sensitivity of distribution-based
metrics. For example, the model may be effective at next-token prediction and produce acoustically coherent
samples, yet still deviate from the reference waveform distribution. The relatively strong CLAP and KLD
scores for text-conditioned generation support this possibility, even though current evaluation metrics are
insufficient to fully diagnose the cause of the performance drop. In contrast, the general-audio-trained version
of EnCodec achieves the best FAD scores and consistently strong performance across all evaluation settings,
emphasizing the value of domain-specific training for audio tokenizers.

WavTokenizer achieves strong performance in text-to-audio generation, despite its relatively poor recon-
struction quality. One possible explanation is that its single-token stream format simplifies the modeling
task for the language model, potentially enabling faster convergence. This performance gap may narrow
with additional training compute. In contrast, both DAC variants and SQCodec exhibit weaker results in
text-conditioned generation compared to their strong reconstruction performance. For SQCodec, the large
and potentially redundant token vocabulary may make next-token prediction more difficult, reducing gen-
eration quality. Similarly, while the DAC models offer excellent compression, their structure may be more
challenging for autoregressive modeling, resulting in reduced generation performance. This gap may be due
to its higher token rate leading to longer sequences, or modeling difficulties specific to DAC.

Summary. Our findings highlight the critical role of domain-specific training for audio tokenizers. Training
the language model alone on in-domain data is not sufficient: tokenizers must also be trained on the same
domain to ensure strong performance. Our results also show that the best reconstruction performance does
not correlate with the best modeling performance. In the future, we encourage the development of evaluation
metrics that disentangle modeling ability from vocoder performance, as is common in the speech domain.
We also emphasize the need for more robust modeling metrics (Chung et al., 2025).

3.3.4 Music Generation

Background. Music generation is particularly challenging due to the structural complexity of musical
compositions, which involve diverse instrumentation, long-term dependencies, and high expectations for
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both acoustic quality and aesthetic coherence. Recent advances in generative models, especially diffusion-
based approaches and LLM-based architectures, have shown strong potential for producing coherent and
high-quality music, often conditioned on melodic (Borsos et al., 2023b) or text (Huang et al., 2022) prompts.

A dominant paradigm in text-to-music generation involves latent diffusion models that operate over VAE-
derived continuous representations (Evans et al., 2025; Chen et al., 2024a; Lam et al., 2023). In contrast,
the use of autoregressive language models for music generation over discrete tokens remains an evolving
area. Early work such as Jukebox (Dhariwal et al., 2020) employed VQ-VAE (van den Oord et al., 2017)
to obtain quantized features for autoregressive modeling. More recent developments in neural audio codecs
have shown that their latent spaces can serve as compact and expressive discrete representations of music.
Building on this, several studies (Borsos et al., 2023b;a; Rouard et al., 2024) have explored LM-based
music generation using various codec tokenizers and decoding strategies. In this section, we evaluate the
effectiveness of discrete tokenizers in LM-based music generation, considering both text-conditioned synthesis
and unconditional generation (i.e., music continuation).

Experimental Setup. Our experimental setup for text-to-music synthesis largely follows the same con-
figuration described in the audio generation section. We use the AudioCraft toolkit (Copet et al., 2023) with
a decoder-only transformer and cross-attention over a T5-Base (Raffel et al., 2020) text encoder. The model
has approximately 300M parameters and is trained using classifier-free guidance (CFG). Key differences from
the audio setup include the use of a higher CFG dropout rate of 30% (vs. 10% for audio), which allocates
more emphasis to unconditioned (self-conditioned) music generation. Additionally, no mix-up augmentations
are applied, and models are trained for 200,000 steps using 4×A100 40GB GPUs, each with a batch size of
32 samples (10 seconds each). This results in significantly less computing compared to the original MusicGen
configuration (192 samples for 1M steps). As in the audio experiments, we use the same architecture across
all tokenizers to ensure a fair comparison. We adopt autoregressive modeling, which, while less efficient than
masked non-autoregressive methods (Garcia et al., 2023; Ziv et al., 2024), is more widely used and known
to produce better perceptual quality.

Datasets. For training, we use the genre-balanced Free Music Archive (FMA) dataset (Defferrard et al.,
2017), following the setup of stable-audio-open (Evans et al., 2025). All samples are 30 seconds long, and
we follow the official split provided in the dataset repository18. The training set consists of 84,213 samples,
totaling ∼702h hours. We combine artist, album, keywords, genres, and titles from the metadata to build
the text prompt of the model.

For evaluation, we use two datasets: (1)MusicCaps (Agostinelli et al., 2023)19, which contains 5,347 samples
of 10 seconds each, annotated with descriptive text; and (2) the FMA test split, originally containing 11,235
samples of 30 seconds. To reduce evaluation time while preserving genre coverage, we randomly select 10
clips from each of the 156 genres, resulting in a genre-balanced subset of 1,560 samples.

Evaluation Setup. We evaluate music generation models on two tasks: text-conditioned generation and
unconditioned generation, also referred to as continuation, where a 2-second audio clip is used as a prompt
to extend the content in a coherent manner. In addition, we assess the reconstruction performance of each
tokenizer on both test datasets, providing an upper bound on the potential quality of generated outputs.
Our evaluation protocol follows the same setup as in the text-to-audio experiments. Specifically, we use
three objective metrics: FAD(Gui et al., 2024) computed with the VGGish model to assess audio quality,
KLD between PASST classifier outputs(Koutini et al., 2022) for semantic consistency, and CLAP score (Wu
et al., 2023c; Huang et al., 2023) to measure alignment with textual prompts.

Results and Discussion. The evaluation scores on MusicCaps and FMA test set are presented in Table
13. Surprisingly, the evaluation score on the MusicCaps is consistently better than those on the FMA-
test, despite the theoretical similarity between the FMA-test and the FMA training data. Compared to
MusicCaps, the FMA training set only provides very limited text prompts and compromised sound quality.
However, thanks to its large dataset size and publicity, it is a natural choice for open-sourced model training

18https://github.com/mdeff/fma
19https://www.kaggle.com/datasets/googleai/musiccaps
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Table 13: Comparing the performance of text-to-music LMs over different tokenizers on MusicCaps and
FMA-test. The abbreviation of the tokenizer column are shown in Table 2. #Q denotes the number of
quantization layers used in the tokenizer.

Tokenizer #Q
Text Cond. Generation Uncond. Generation Reconstruction

FAD↓ KLD↓ CLAP↑ FAD↓ KLD↓ CLAP↑ FAD↓ KLD↓ CLAP↑

MusicCaps

Enc-SMA-24 8 11.173 2.246 .108 4.632 0.904 .275 2.209 0.259 .358
Enc-M-32 4 4.264 2.006 .150 2.715 0.890 .282 1.995 0.356 .339

DAC-SMA-44 9 8.398 2.214 .119 3.724 0.784 .282 0.927 0.182 .340
DAC-SMA-24 9 9.403 2.127 .093 4.001 0.820 .277 1.335 0.209 .358

SQ-SMA-16 4 14.211 2.810 .064 5.163 0.979 .270 2.078 0.258 .338

WT-SMA-24 1 17.050 2.792 .056 5.550 1.105 .251 1.984 0.414 .336

FMA

Enc-SMA-24 8 15.380 2.161 .059 14.478 1.827 .065 1.013 0.287 .141
Enc-M-32 4 8.871 1.299 .078 8.357 1.006 .079 0.784 0.344 .153

DAC-SMA-44 9 8.115 1.543 .062 6.398 1.100 .075 0.494 0.196 .158
DAC-SMA-24 9 8.789 1.746 .039 7.002 1.405 .043 0.708 0.222 .125

SQ-SMA-16 4 9.426 2.412 .048 4.690 1.592 .070 0.956 0.327 .133

WT-SMA-24 1 16.511 1.881 .030 6.890 1.414 .047 0.631 0.368 .129

(Evans et al., 2025). We observe that models trained on FMA are to some extent adaptable to other datasets.
We believe the quality of the FMA dataset explains the lower evaluation scores on the FMA-test. On this
issue, we also want to call for efforts within this community to make prompt-rich text-to-music datasets
publicly available.

Regarding reconstruction scores, EnCodec-32k tokenizer (despite being trained exclusively on music) does
not consistently produce the highest quality. WavTokenizer achieves the best FAD score for reconstructed
audio. DAC-44k and DAC-24k achieve the lowest KLD scores, indicating strong preservation of acoustic
content. For text consistency, EnCodec-24k and DAC-24k perform best based on CLAP scores. Overall,
DAC tokenizers at both sampling rates show the strongest reconstruction performance across metrics.

For text-conditioned generation, the music-specific tokenizer (EnCodec-32k) demonstrates clear advantages
across all metrics and evaluation datasets. Among the multi-domain tokenizers, DAC-44k consistently out-
performs DAC-24k, EnCodec-24k, and the single-stream WavTokenizer. This performance gap may stem
from DAC-44k’s higher bitrate, which likely enables it to produce a richer and more expressive representation,
an essential factor for effective language modeling in music generation tasks.

For the unconditional generation task, EnCodec-32k and DAC-44k generally produce higher-quality out-
puts. An exception is observed on the FMA dataset, where SQ-Codec achieves better generation quality,
as indicated by the FAD score. Across both datasets, unconditional generation consistently outperforms
text-conditioned generation. We attribute this to the higher CFG dropout rate used during training, which
exposes the models to more unconditioned scenarios and improves their ability to generate coherent con-
tinuations. Additionally, the poor quality of text prompts in the FMA dataset, also evident from its lower
reconstruction scores, likely hinders the models’ performance on text-conditioned tasks.
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Figure 4: Average ranking of audio tokenizers across three domains: speech, general audio, and music.

Summary. For music LM, we observe that tokenizers with higher sample rates and multi-codebook, asso-
ciated with higher bitrates, tend to perform better. This contrasts with audio and speech generation, where
higher bitrate tokenizers were harder to model. We hypothesize that music, with its complex harmonic and
temporal structure, benefits more from detailed representations, whereas such granularity may be excessive
or less critical for general audio tasks. Additionally, unconditional generation consistently outperforms text-
conditioned generation, emphasizing the benefits of providing melody prompts in music generation tasks.

3.4 General Trend

Figure 4 summarizes the overall ranking of audio tokenizers in three domains: speech, general audio, and
music. These rankings are computed by first sorting the performance of each tokenizer per metric within each
task (with rank 1 as worst and rank N as best for N tokenizers), then averaging the ranks across all tasks in
the respective category. For tasks with multiple metrics, rankings are computed separately for each metric
and then averaged. The resulting radar charts illustrate the average rank of each tokenizer across the following
high-level categories, with higher values indicating better performance. For speech, we distinguish between
two types of reconstruction: Reconstruction (Signal), which captures low-level fidelity (e.g., UTMOS), and
Reconstruction (Application), which reflects the performance of resynthesized audio in downstream tasks
(e.g., WER for ASR, speaker similarity for SV). Downstream tasks are categorized as either Discriminative
or Generative. In speech, Discriminative tasks are further split into Content-level, which require higher-level
semantic understanding (e.g., ASR, intent classification, keyword spotting), and Acoustic-level, which depend
more on fine-grained acoustic cues (e.g., emotion recognition, speaker ID, speaker verification). Language
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modeling tasks are grouped into two types: Text-conditioned and Unconditional (i.e., continuation-based
generation). For speech, we include SpeechLM with separate subcategories for phonetic and acoustic metrics.

The radar charts highlight general trends in tokenizer strengths and weaknesses across domains. No tokenizer
consistently outperforms others on all axes. The performance is strongly task- and domain-dependent. Some
models excel at reconstruction but fall short in semantic modeling, while others achieve strong downstream
results despite poorer signal fidelity. These plots are not meant to give strict recommendations, but rather
to provide a high-level overview of performance trends. For real-world applications, we encourage referring
to the full benchmark tables and task-specific analyses to identify the most appropriate tokenizer for the
target use case.

4 Ablation Studies

While the above discussion has extensively evaluated publicly available discrete audio tokens across various
applications, conducting fair comparisons between these codecs remains challenging. The development of
audio tokenizers inherently involves numerous hyperparameters, including codebook setups, quantization
algorithms, and training data composition, all of which significantly influence performance. This variability
in model design and implementation creates substantial obstacles for researchers attempting to make mean-
ingful comparisons, ultimately hindering both a comprehensive understanding of existing approaches and a
systematic exploration of new audio tokenizer designs.

In this section, we aim to mitigate this issue by conducting experiments in a carefully controlled setup.
Specifically, we use ESPnet-Codec (Shi et al., 2024c) as the base training framework to evaluate the effects
of training data, codebook setups, quantization methods, and pre-trained model distillation.

4.1 Experimental Setups

To ensure reproducibility and isolate key variables in our experimental investigation, we establish a method-
ical framework that controls for potential confounding factors. First, we present our training data in various
domains and sampling rates. Next, we establish uniform implementation protocols for model architecture
and hyperparameter configuration, enabling direct performance comparisons across model variants. Building
on this controlled foundation, we present a comprehensive set of experimental models, each systematically
varying only the target parameters under investigation. Finally, we detail our evaluation methodology, in-
cluding metrics and testing environments, to provide a consistent basis for assessing model performance and
drawing meaningful conclusions about codec effectiveness.

Training Dataset. We prepare the dataset in three major domains, including speech, general audio, and
music. All data in the three domains is sourced from the AMUSE dataset discussed in ESPnet-Codec (Shi
et al., 2024c). The AMUSE dataset is a combination of high-quality datasets for codec training purposes. For
speech, it contains DAPS, DNS Challenge 4, Commonvoice, VCTK, AISHELL3, Googlei18n-TTS corpora,
and Mexican endangered languages (Dubey et al., 2024; Kuhn et al., 2014; Yamagishi et al., 2019; Shi
et al., 2021a;b; Amith et al., 2021; Amith & López Francisco, 2022; Amith & Castillo Castillo, 2021; Ardila
et al., 2020; Shi et al., 2021d). For general audio, it contains all data from the AudioSet unbalanced
training set (Gemmeke et al., 2017). For music, it contains MusDB, Jamendo, OpenSinger, StyleSing111,
M4Singer, Kiritan-singing, Oniku Kurumi Utagoe database, Natsume Singing database, Opencpop, ACE-
KiSing (excluding original voices), PJS, and JSUT singing (Rafii et al., 2017; Bogdanov et al., 2019; Huang
et al., 2021; Dai et al., 2023; Zhang et al., 2022; Ogawa & Morise, 2021; Wang et al., 2022; Shi et al., 2024a;
Koguchi et al., 2020; Takamichi et al., 2020). To ensure equal consideration of the three domains and reduce
the effect of unbalanced data distributions, we randomly sample 1k hours of data from each domain over
the AMUSE dataset. The following experiments are conducted in either one of the domain-specific datasets
or a combination of all three subsets. For each set of training data, we provide both 16 kHz version and
44.1 kHz version to consider the effect of different sampling rates.

Model Implementation. For our experiments, we utilize the Descript Audio Codec (DAC) framework
implemented in ESPnet-Codec (Shi et al., 2024c; Kumar et al., 2023) as the foundation for neural-codec
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Table 14: Summary of models used in the ablation study across 16kHz and 44.1kHz setups. Models are
grouped by quantization method, RVQ, SVQ, FSQ, and Unit-based, with all models using the DAC backbone
except D, which adopts Uni-HifiGAN. S, A, and M denote training on speech, general audio, and music,
respectively. The “+” symbol indicates the use of distillation from SSL-based representations. Checkmarks
(✓) indicate domain-specific training data used for each model variant.

Model Base Quantization Distillation
Data Domains

Speech Audio Music

RVQ-S

DAC RVQ

- ✓

RVQ-S+ ✓ ✓

RVQ-A - ✓

RVQ-M - ✓

RVQ-3 - ✓ ✓ ✓

SVQ-S

DAC SVQ

- ✓

SVQ-S+ ✓ ✓

SVQ-A - ✓

SVQ-M - ✓

SVQ-3 - ✓ ✓ ✓

FSQ-S

DAC FSQ

- ✓

FSQ-A - ✓

FSQ-M - ✓

FSQ-3 - ✓ ✓ ✓

K-means-S Unit-HifiGAN K-means - ✓

training. To evaluate discrete SSL approaches, we employ the discrete unit-based HiFiGAN vocoder as
implemented by Yan et al. (2023).

Our ablation studies focus on two key aspects: quantization techniques and semantic distillation. For
quantization, we compare three distinct approaches: RVQ, single-layer VQ, and FSQ. Additionally, following
recent research demonstrating the efficacy of self-supervised learning representations as distillation targets
for quantizer training (see Section 2 for more discussion), we incorporate semantic distillation variants for
both our RVQ and VQ-based models to systematically evaluate its impact.

Summary of Models. Candidate models are summarized in Table 14. For each model listed in the table,
we conduct the training at 16 kHz and 44.1 kHz with the corresponding dataset. Here, we mostly follow the
previous literature discussed in Section 2, where we ignore model setups with no or limited related work,
such as the scenarios of using SSL-based distillation in audio or music domains or the use of Uni-HifiGAN
for higher sampling rates. While we standardize core training parameters across all experimental conditions
to ensure fair comparisons, we implement targeted customization for specific model variants to integrate
different ablation factors. Complete documentation of both the standardized parameters and model-specific
adjustments is available in our released model checkpoints20.

Evaluation Setup. We follow the reconstruction evaluation protocol outlined in Section 3.1, adapting our
methodology to accommodate the specific requirements of different data domains. For evaluation data, we
utilize the LibriSpeech test-clean set (speech), the AudioSet test set (general audio), and the MUSDB test
set (music).

20https://huggingface.co/collections/espnet/codec-survey-pre-trained-models-67ce8e09568b741d1c4483c8
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Table 15: Ablation experiments on audio tokenizer reconstruction performance (speech domain).

SDR↑ SI-SNR↑ PESQ↑ UTMOS↑ DNSMOS P835↑ WER↓ Spk Sim↑
Model\SR(kHz) 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1

Ground truth - - - - - - 4.09 4.09 3.18 3.18 2.83 2.83 - -

RVQ-S 4.08 8.24 1.15 6.38 2.59 3.24 3.35 3.62 3.16 3.16 2.04 2.63 0.67 0.90
RVQ-S+ 1.63 8.40 -1.77 5.67 2.22 3.30 3.12 3.65 3.12 3.14 2.12 3.17 0.69 0.89
RVQ-A 0.59 6.92 -3.36 4.27 2.02 2.86 1.81 3.15 2.58 3.06 2.47 2.92 0.51 0.73
RVQ-M 2.80 6.74 -0.68 4.61 2.00 2.41 1.64 2.33 2.64 2.68 3.20 2.85 0.44 0.56
RVQ-3 2.46 7.50 -1.12 4.63 2.43 3.06 2.71 3.33 2.96 3.08 2.22 2.66 0.61 0.87

SVQ-S -4.90 0.92 -13.59 -2.04 1.43 1.69 2.19 2.61 3.09 3.10 13.16 8.28 0.35 0.53
SVQ-S+ -4.45 -0.64 -11.74 -3.64 1.42 1.63 2.14 2.40 3.00 3.07 13.71 7.89 0.36 0.52
SVQ-A -11.80 -5.04 -33.46 -9.56 1.19 1.18 1.25 1.26 1.86 1.97 31.40 34.68 0.19 0.14
SVQ-M -5.19 -4.70 -11.17 -7.89 1.20 1.14 1.29 1.24 2.19 1.56 14.88 33.87 0.15 0.11
SVQ-3 -5.90 -3.09 -15.13 -7.12 1.29 1.79 1.44 2.57 3.10 3.01 22.24 6.71 0.26 0.49

FSQ-S 3.89 4.58 1.75 2.47 2.08 2.10 3.29 3.06 3.21 3.12 3.57 4.02 0.48 0.66
FSQ-A 1.14 1.00 -1.89 -1.58 1.94 1.74 2.84 2.41 3.15 2.97 5.12 7.59 0.43 0.39
FSQ-M -1.08 -2.09 -4.39 -4.61 1.39 1.22 1.57 1.26 2.66 2.04 24.46 20.26 0.17 0.16
FSQ-3 2.41 1.29 0.01 -1.28 1.97 1.79 3.06 2.57 3.20 3.01 4.35 6.71 0.44 0.49

K-means-S -18.21 - -42.98 - 1.05 - 2.28 - 2.46 - 6.78 - 0.13 -

Table 16: Ablation experiments on audio tokenizer reconstruction performance (audio and music domain).

Audio Music

SDR↑ CI-SDR↑ SI-SNR↑ VISQOL↑ SingMOS↑ SDR↑ CI-SDR↑ SI-SNR↑ VISQOL↑ SingMOS↑
Model\SR(kHz) 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1

RVQ-S -4.05 2.85 -4.02 2.51 -10.07 -0.02 4.18 3.81 2.59 2.66 0.45 6.80 0.44 6.75 -2.29 4.83 4.21 4.17 2.67 2.60
RVQ-S+ -8.90 2.52 -8.83 2.19 -17.57 -1.14 4.13 3.79 2.57 2.63 -6.73 6.60 -6.70 6.55 -11.10 4.46 4.07 4.24 2.64 2.70
RVQ-A -0.59 3.65 -0.61 3.21 -5.56 0.48 4.22 3.78 2.63 2.65 5.78 8.24 5.70 8.17 2.87 5.97 4.21 4.12 2.71 2.72
RVQ-M 0.65 3.76 0.60 3.35 -4.07 1.06 4.13 3.62 2.63 2.63 6.34 8.33 6.25 8.26 3.82 6.48 4.13 3.99 2.70 2.68
RVQ-3 0.14 3.99 0.11 3.50 -4.47 0.70 4.17 3.83 2.61 2.65 5.75 8.54 5.68 8.46 3.32 6.34 4.12 4.07 2.68 2.72

SVQ-S -14.80 -8.43 -14.72 -8.07 -31.86 -14.73 3.83 3.28 2.55 2.59 -14.25 -4.78 -14.22 -4.76 -27.16 -7.77 3.68 3.64 2.59 2.70
SVQ-S+ -14.74 -9.39 -14.66 -9.00 -30.69 -16.37 3.84 3.23 2.54 2.59 -15.10 -5.24 -15.06 -5.23 -27.69 -8.80 3.69 3.60 2.58 2.68
SVQ-A -13.08 -6.80 -13.00 -6.46 -30.70 -12.80 3.86 3.32 2.56 2.59 -6.54 -0.49 -6.52 -0.40 -14.76 -3.21 3.68 3.52 2.65 2.69
SVQ-M -6.53 -5.50 -6.47 -5.19 -13.43 -10.62 3.94 3.33 2.59 2.58 -0.35 0.52 -0.35 0.52 -2.94 -1.80 3.87 3.33 2.70 2.63
SVQ-3 -9.28 -7.47 -9.21 -7.12 -19.50 -14.32 3.88 3.34 2.52 2.62 -2.75 -1.35 -2.73 -1.35 -6.75 -4.63 3.72 3.54 2.63 2.73

FSQ-S -7.32 -4.26 -7.26 -4.04 -14.22 -8.12 4.05 3.32 2.60 2.63 -5.04 -0.37 -5.02 -0.37 -8.42 -2.84 3.80 3.65 2.69 2.71
FSQ-A -2.79 -2.00 -2.76 -1.00 -7.05 -5.37 4.09 3.53 2.63 2.65 0.90 2.62 0.80 2.60 -1.14 0.49 4.00 3.92 2.70 2.73
FSQ-M -3.37 -3.25 -3.33 -3.05 -8.23 -6.85 4.02 3.41 2.62 2.60 1.54 2.70 1.52 2.77 -0.67 0.66 3.99 3.54 2.71 2.66
FSQ-3 -3.22 -2.36 -3.19 -2.24 -7.86 -6.01 4.06 3.53 2.61 2.62 0.89 2.75 0.88 2.73 -1.38 0.19 3.96 3.74 2.69 2.68

K-means-S -21.01 - -20.89 - -47.37 - 3.14 - 2.78 - -19.53 - -19.49 - -46.03 - 2.82 - 2.87 -

Sampling rate considerations necessitated domain-specific evaluation approaches. For speech reconstruction,
all evaluations are conducted at 16 kHz, even when testing 44.1 kHz neural codecs, to maintain consistency
with the source LibriSpeech dataset. For music evaluation, we use different sampling rates based on model
capabilities: 16 kHz for models designed at that native rate, and 24 kHz for 44.1 kHz neural codecs, reflecting
the upper-frequency limitations in the MUSDB test set. For general audio evaluation, we align the evaluation
with the codec models. These adjustments ensure fair comparisons while respecting both technical constraints
and the inherent characteristics of each dataset.

4.2 Results and Discussion

The results of our ablation study are shown in Table 15 and Table 16. We summarize our findings as follows:
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Data Domains. Domain alignment between training and testing data has emerged as a critical determi-
nant of performance in discrete audio representation modeling. Our experiments confirm that reconstruction
quality consistently peaks when models are evaluated on domains matching their training data. More sig-
nificantly, we observe that even with carefully balanced multi-domain training datasets, models still exhibit
notable performance degradation when assessed on individual domains compared to domain-specific training.
These challenges have become increasingly relevant in light of recent audio foundation models, which aim for
broad generalization across diverse audio types. Our findings highlight the need for two crucial research di-
rections: developing more effective methodologies for balancing domain-specific optimization, and addressing
the fundamental challenges of cross-domain generalization in discrete audio representation learning.

Sampling Rate. While prior research has rarely examined sampling rate effects on discrete audio represen-
tation, this gap is largely due to methodological challenges in creating controlled comparisons across different
rate conditions. Our systematic ablation study addresses this limitation and reveals sampling rate as a sig-
nificant factor in model performance. As shown in Table 15 and Table 16, RVQ-based models consistently
demonstrate performance improvements across multiple evaluation metrics when trained at 44.1 kHz, even
when the reconstructed audio is downsampled to 16 kHz for evaluation. These benefits, however, are not
universal across all quantization approaches. Models utilizing Finite Scalar Quantization (FSQ) actually ex-
hibited performance degradation on several metrics when trained at higher sampling rates. This contrasting
behavior indicates that the relationship between sampling rate and model effectiveness is contingent on the
specific quantization methodology employed. Based on these findings, we recommend that future research
on discrete audio representation should incorporate sampling rate as a critical design parameter, with careful
optimization based on the selected quantization approach and target application domain.

Distillation Effect. Prior studies involving distillation from pre-trained models have frequently demon-
strated that such distillation supports comparable or improved signal reconstruction, while providing sub-
stantial performance benefits for downstream tasks (Du et al., 2023; Défossez et al., 2024; Zhang et al.,
2024a). In our controlled ablation analyses, we similarly observed that incorporating distillation from pre-
trained speech representations can enhance model performance on certain metrics for signal reconstruction,
as demonstrated by our comparison between models trained with and without distillation (e.g., A-S vs.
A-S+). However, it should be noted that the domain-specific nature of the pre-trained model may limit
generalization, especially when applied to broader domains such as general audio or music, as evidenced in
Table 16. This highlights a potential trade-off between achieving high performance in specialized tasks and
maintaining broader generalization capabilities.

Quantization Methods. Our experiments demonstrate that different quantization methods significantly
impact codec performance. The RVQ modeling consistently outperforms other quantization approaches
across most reconstruction metrics. Conversely, SVQ models typically yield the poorest results. An inter-
esting exception emerges with FSQ at 16 kHz, which surpasses RVQ in speech quality metrics measured by
UTMOS and DNSMOS. Generally, RVQ demonstrates a higher potential for audio quality due to its high-
fidelity reconstruction capabilities. However, we caution readers that the performance alignment between
audio reconstruction and downstream applications is not guaranteed. The metrics observed in this study
may not directly translate to broader application performance, and further research is needed to establish
definitive correlations.

5 Conclusion and Future Directions

Discrete units offer several advantages in audio representation. They provide compact, modular, and scalable
abstractions that are particularly well-suited for generative tasks such as speech synthesis, music generation,
and general audio modeling. By converting regression-based waveform modeling into classification tasks,
discrete tokenization simplifies both training and inference. These representations are also more efficient
in terms of storage and transmission, making them advantageous for resource-constrained deployment and
streaming applications. Additionally, discrete tokens align naturally with large language model architectures,
facilitating integration into multimodal systems. While discrete representations may currently underperform
continuous features on certain discriminative tasks, particularly in low-resource or semantically fine-grained
scenarios, recent advances show that they can match or even outperform continuous representations in some
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applications, such as text-to-speech, especially when trained on large-scale data. These trends highlight the
growing promise of discrete audio tokenization and motivate continued research to improve their robustness,
expressiveness, and generalization across diverse downstream tasks.

Based on our comprehensive analysis, we identify several key observations and open challenges in the design,
evaluation, and application of discrete audio tokenizers. These point to promising future research directions:

• Scaling Limitations and Generalizability: While our experiments used moderately sized models
and datasets, this choice was intentional to ensure fair and controlled comparisons across tokenizers.
These settings reflect realistic constraints for many academic and open-source efforts. Importantly,
our key findings, such as the superior performance of semantic over acoustic tokenizers for semantic
tasks, are aligned with trends observed in larger-scale systems, suggesting that these insights are
likely to hold as models and datasets scale up.

• Correlation between Reconstruction and Downstream Performance: We observed a clear
trade-off between high-fidelity signal reconstruction and downstream task performance. Optimizing
tokenizers purely for reconstruction often fails to preserve task-relevant features such as phonetics
or semantic content. This is especially evident in tasks where the decoder is not involved (e.g., ASR
or SLU). Future research should aim to jointly optimize for both signal fidelity and semantic utility,
possibly using multi-task or adversarial training.

• Fair and Consistent Evaluation: Tokenizers vary significantly in training data, sampling rate,
and domain scope (e.g., speech-only vs. multi-domain). These discrepancies complicate bench-
marking. Our study highlights the importance of standardizing evaluation pipelines to allow fair
comparison across tokenizers. Establishing unified benchmarks with consistent experimental settings
remains an urgent need.

• Benchmark vs. Reported Performance Gap: Results reproduced under controlled benchmark
settings often fall short of the originally reported numbers. This indicates that some improvements
reported in prior works may rely on favorable hyperparameter tuning or large-scale resources. There
is a need for reproducibility-focused evaluations and scaling studies to better understand real-world
tokenizer performance.

• Semantic Distillation Beyond Speech: Most existing distillation-based tokenizers focus exclu-
sively on speech. Extending semantic distillation techniques to music and general audio domains
is an underexplored direction that could substantially improve discrete token quality across diverse
audio tasks.

• Discrete vs. Continuous Representations: While discrete tokenizers have shown promising
progress, continuous representations often remain superior for speech-language understanding tasks
that rely on preserving fine-grained acoustic cues such as prosody, emotion, and speaker traits.
However, this performance gap may not be universal. For instance, discrete tokens can be more
suitable in settings involving autoregressive or masked generative modeling, where classification-
based objectives are advantageous. Conversely, models based on score matching or diffusion may still
benefit from continuous conditioning inputs. Bridging these differences remains an open challenge
for integrating audio tokenizers into multimodal LLMs that require semantic richness.

• Toward Unified Tokenizers: Future systems may benefit from unified tokenizers that can support
both generative and discriminative tasks across multiple audio domains. Achieving this will likely
require architectures that balance streamability, semantic alignment, reconstruction quality, and
domain generalization, possibly via modular or hierarchical designs.

• Trustworthiness: Trustworthy concerns such as bias (Ren et al., 2024a) and deepfakes (Wu et al.,
2024e; Du et al., 2025) are required to be considered. Modern discrete-unit-based speech generation
can mimic voices with human-like realism (Chen et al., 2025a), raising risks of misuse by malicious
actors—e.g., generating fake news using a public figure’s voice.
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In summary, while some questions about audio tokens remain open, our evaluation provides a comprehensive
perspective that highlights general trends, key challenges, and guidelines for selecting a tokenizer. We hope
our study offers valuable insights to the research community and helps pave the way for future advancements
in this rapidly progressing field.
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A Additional Evaluation for Reconstructed Audio Quality

Table 17 shows the UTMOS V2 scores for different audio tokenizers.

Table 17: UTMOS V2 scores of audio tokenizers across different bitrates.

Model Bitrate
(kbps)

UTMOS
V2

Enc-SMA-24
1.5 1.40
6.0 2.13

24.0 2.71

DAC-SMA-24
1.5 1.40
6.0 2.46

24.0 3.06

ST-S-16 1.0 1.52
4.0 2.92

Mimi-S-24 1.1 2.12
4.4 2.82

DWavL-S-16 1.0 2.16
3.0 2.33

SQ-SMA-16 3.0 3.19
WT-SMA-24 0.98 2.39
WT-S-24 0.52 3.12

B Computational Setup

Table 18 shows computaional setting for our experiments. Approximate runtimes are provided per run and
may vary slightly between tokenizers depending on token rate, number of token streams, and other factors.
For downstream tasks time is reported per run, runtimes range from 2 hours (e.g., Keyword Spotting) to 48
hours (e.g., ASR), depending on the task complexity.

Table 18: Computational settings for our experiments.

Experimental Name Computational Resource Approx. Time

Downstream Evaluation 1×A100 (80GB) 2–48 hrs
Reconstructed Audio Quality 1×A6000 (48G) 24 hrs
Speech Language Modeling 2×A100 (40GB) 48 hrs
Text-to-Speech 1×A100 (80GB) 96 hrs
Audio Generation 2×A100 (80GB) 48 hrs
Music Generation 4×A100 (40GB) 48 hrs
Ablation Studies 2×GH200 (100GB) 48 hrs

C Dataset

For each experiment, we report the dataset, source, and approximate duration of the corresponding dataset.
A detailed summary is provided in Table 19. For more information, please refer to the "Dataset" subsection
in each benchmark section.
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Table 19: Summary of datasets, their specifications, and approximate number of hours used for all experi-
ments in this survey.

Task Dataset ~Hours Data Link

Reconstruction

Speech LibriSpeech (Korvas et al., 2014) 6 Link
Music MUSDB (Rafii et al., 2017) 10 Link
Audio Audioset (Gemmeke et al., 2017) 56 Link

Downstream

ASR (En) LibriSpeech (Korvas et al., 2014) 1,000 Link
ASR (Welsh) CommonVoice 17.0 (Ardila et al., 2020) 8 Link
ASR (Basque) CommonVoice 17.0 (Ardila et al., 2020) 116 Link
Speaker ID / Verification VoxCeleb1 (Nagrani et al., 2017) 350 Link
Emotion Recognition IEMOCAP (Busso et al., 2008) 7 Link
Keyword Spotting Speech Commands (Warden, 2018) 18 Link
Intent Classification SLURP (Bastianelli et al., 2020) 10 Link
Speech Enhancement VoiceBank (Valentini-Botinhao et al., 2016) 10 Link
Speech Separation Libri2Mix (Cosentino et al., 2020) 400 Link
Music Genre Classification GTZAN (Tzanetakis & Cook, 2002) 8 Link
Music Source Separation MUSDB (Rafii et al., 2017) 10 Link
Sound Event Classification ESC-50 (Piczak, 2015) 2 Link
Audio Separation FUSS (Wisdom et al., 2021) 23 Link

Acoustic LM

Speech Language Modeling LibriHeavy (Kang et al., 2024) 56,000 Link
Text-to-Speech LibriTTS (Zen et al. (2019)) 960 Link
Audio Generation Data Mix (see Sec. 3.3.3 for details) 4050 -
Music Generation

Ablation

Speech Data Mix (see Sec. 4 for details) 1,000 -
Music Data Mix (see Sec. 4 for details) 1,000 -
Audio Data Mix (see Sec. 4 for details) 1,000 -
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