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Abstract

Reinforcement Learning, a computational approach to learning whereby an agent
tries to maximize the total amount of reward it receives while interacting with
a complex and uncertain environment. And it has quite a few applications in
playing game or controlling a robot after exploration and exploitation. Our project
is aimed at designing an efficient robot autonomous exploration algorithm based
on reinforcement learning. Our work is based on the HouseExpo dataset and
we developed reinforcement learning algorithm on it, showing that the robot can
efficiently explore uncertain environments with a smart behaviour. Our work
is based on Double DQN with proportional prioritization[7], and we improve
the algorithm by encoding history observation, adding global explored map and
desigining external reward via Artificial Potential Field. The video is in video link.
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1 Introduction

An extremely significant part of the SLAM task is to require the robot to traverse the environment
autonomously and build a map. Due to the environments is different, the robot’s exploration strategies
probably be completely different. For example, the exploration of ruins after disasters requires robots
to explore areas with high risks and alive targets as much as possible. Besides, some exploration
missions require exploration to have high overlap and precision. Therefore, it is difficult to provide
a sliver bullet algorithm using traditional planning methods. However, if the robot’s motion policy
system is based on reinforcement learning, it can use methods like transfer learning to achieve an
acceptable result by modifying the reward function or observing retraining.

This article uses the HouseExpo data set [3] for training indoor robot exploration task. The data
set is collected from indoor areas such as office or school which contains many rooms and corners.
The task requires the robot navigation strategy have relatively high area coverage. The traditional
strategy is to select an unknown area nearby through greedy algorithm, and then navigate from the
current location to the target location. Such algorithms will cause the robot to ignore the value of the
unknown area. Therefore, the aforementioned requirement of cannot be met.

This article proposes a method based on DQN with information gain and artificial potential field
assistant reward. We have done several experiments to prove that our proposed method has better
results than traditional methods. Moreover, Another contribution of this paper is the discovery that in
the exploration task of complex environment, the exploration rate reward is too sparse, which leads to
the problem that the training is difficult to converge.
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Figure 1: HouseExpo Dataset

2 Related Work

In traditional methods, the robot exploration problem can be divided into two parts: optimal target
determination and trajectory navigation.

2.1 Optimal Target Determination

FrBdkric Bourgault et al.[1] firstly used Shannon information entropy to define the optimal target in
robot exploration. After that, Pimentel, Jhielson et al.[5] raised an algorithm based on frontier and
mutual information. The algorithm predicts the information entropy for each frontier from unknown
area, and then computes the mutual information between the current action sequence and the possible
next action. Therefore, the robot navigation policy can explore more unknown areas in a short time.
In 2019, Rakesh Shrestha et al.[6] proposed a method called Learned Map Prediction Based Robot
Exploration. This paper uses the Learned map to guide reinforcement learning, so that the algorithm
can converge in a short period.

2.2 Trajectory navigation

For the trajectory planning algorithms, the artificial potential field method proposed by Khatib et
al.[4] calculates the gravitational field of obstacles so that the trajectories can reach an approximate
global optimum. Since the artificial potential field method has high computational complexity when
facing on complex obstacles, Steven M. LaValle et al.[2] proposed the Rapidly-Exploring Random
Trees method. The algorithm can quickly plan the trajectory between the current position and the
target position through random sampling and collision detection.

Overall, The method based on reinforcement learning used in this article can merge the two parts into
a single policy. The algorithms planning the trajectories while obtaining a better target position.

3 Problem Definition

The object of our autonomous exploration problem is to find an optimal path ξ∗ to explore the
whole target area. For grid-map based planning, the path ξ is decomposed into a set of way points
F = {x1, ..., xT } and the goal is thus transformed into finding an optimal point set F ∗. This
optimization can be formalized as follows

F ∗ = max
x1:T

T∑
i=1

I(xi|x1:i−1)− λL(xi, xi−1) (1)

where I(xi|x1:i−1) means the information gain in way point xI given explored points x1:i−1, and
L(xi, xi−1) means the length between point xI and xi−1. The formulation means that we want to
explore as large as possible areas in as few as possible steps.

Transforming this optimization problem into a reinforcement learning task, we first denote ot as
a local map with the size of (64,64) at time t, and the action space at is discretized as three bins,
containing forward,left and right. Besides, the reward function is defined as follows

R(at, st) = I(at|st) (2)
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Figure 2: Robot Autonomous Exploration

where the term I(at|st) is information gain with action at given the state st. And we constraint the
maximum steps of one episode as 200, so as to force the agent explore more areas within a given
time. Therefore, the Reinforcement learning object now is formalized as follows

π(at|st) = arg max
at

T∑
m=t

γm−tR(at, st) (3)

s.t.T <= 200

4 Proposed Approach

4.1 Baseline: Double DQN with proportional prioritization

The algorithm is shown as Alg.1. For reinforcement learning, building the replay memory is a general
approach to store millions of transition pairs and is used for stochastic gradient descent. Basically,
the transitions are selected uniform randomly for gradient descent. However, picking the transitions
of the replay memory in a good order can lead to exponential speed-ups over uniform choice. While
prioritizing with TD error is an alternating approach in online RL algorithms, such prioritizing
method can suffers from pool estimation of TD error in some circumstances, e.g. when rewards are
noisy, resulting in unsampling some worthwhile transitions. In [7], a stochastic sampling method was
introduced that interpolates between pure greedy prioritization and uniform random sampling. The
intrinsic idea is that the probability of being sampled is monotonic in a transition’s priority, while a
non-zero probability even for the lowest-priority transition is guaranteed. Concretely, the probability
of sampling transition i is defined as

P (i) =
pαi

Σkpαk
(4)

4.2 Global Observation

As illustrated above, our observation space only contain a local map with the size of (64,64) like
Figure 2. However, if the robot can only observe the local map in current frame, it’s a common case
that the robot may not be able to find a good path to leave if it gets stuck in the corner. Adversely, if
the robot can receive a sequence of the observation in last several frames, it would be aware of its
situation and leave the corner instead of repeating previous action and moving in circles. Therefore,
to make the robot aware of past state, the last 4 frames of local map is stacked and reshaped as a
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Algorithm 1 Double DQN with proportional prioritization

Input:
minibatch k, step-size η, replay period K and size N , exponents α and β, budget T .

1: Initialize replay memoryH = Φ,∆ = 0, pi = 1
2: Observe S0and choose A0 ∼ πθ(S0)
3: for t = 1 to T do
4: Observe St, Rt, γt
5: Store transitions (St−1, At−1, Rt, γt, St)inH with maximal priority pt = maxi<tpi
6: if t ≡ 0 mod K then
7: for j=1 to k do
8: Sample transition j ∼ P (j) = pαj /Σip

α
i

9: Compute importance sampling weight wj = (N(j))
−β
/maxiwi

10: Compute TD-error δj = Rj + γjQtarget(Sj , argmaxaQ(Sj , a))−Q(Sj−1, Aj−1)
11: Update transition priority pj ← |δj |
12: Accumulate weight-change ∆← ∆ + wj · δj · 5θQ(Sj−1, Aj−1)
13: end for
14: Update weights θ ← θ + η ·∆,reset ∆ = 0
15: From time to time copy weights into target network θtarget ← θ
16: end if
17: Choose action At ∼ πθ(St)
18: end for=0

array of (4,64,64) as for the modified observation space of the robot. Figure 3 shows the modified
observation space.

Another observation is that the explored map, called the global observation, could greatly help
navigate the robot for exploration. Firstly we define frontiers as the boundary between explored free
space and the unexplored space, which means that the robot can only gain more information if it
moves to the frontiers. The worst problem occurs when there aren’t any frontiers shown in the local
map and the robot couldn’t decide which direction to go. To overcome this issue, the simplest strategy
is that we add the global explored map into the robot’s observation space as a global observation. To
keep the same dimension, we first generate the frontiers, obstacles and the pose of the robot in the
image and resize it as (64,64), then it’s stacked into the observation space. In this case, the size of our
observation space is (5,64,64), consisting of 4 last frames of local map and current frame of global
explored map. Figure 4 illustrates the procedure we generate the global explored map.

4.3 Reward Design

4.3.1 Information Gain

From section 3, our original reward is defined as information gain I(at|st), where I(at|st) =
−H(st+1|at, st) + H(st). Since the transition probability is deterministic, st+1 =
δ(P (st+1|at, st) ≡ 1). H(st) is defined as the entropy of the whole map, where H(st) =
−Σ(x,y)p(x, y)log(p(x, y)). And p(x, y) is defined as

p(x, y) =

{
1 explored

0.5 unexplored
(5)

In this case, if an unexplored area is explored after action at, then the information gain will be
proportional to the size of the area, otherwise the information entropy won’t change. From this point
of view, the reward function aims to decrease the information entropy of the whole map so as to
determine the structure of the map. The final reward is simplified as the area of newly explored space
since it’s directly proportional to the information gain.

4.3.2 Artificial Potential Field

Artificial Potential Field(APF) is a general approach in path planning. In our project, we introduce
APF to serve as a external reward so as to navigate the robot when it gets stuck in local corner.
APF consists of Attractive Field and Repulsive Field, which are generated by the goal and obstacle
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Figure 3: Sequence of Observation Space

correspondingly. Firstly, we denote pt as the pose of the robot at time t, and E(pt) as the energy at
point pt in APF, where E(pt) = Eatt(pt) + Erep(pt). Eatt(pt), Erep(pt) represent the energy at
point pt in Attractive Field and Repulsive Field separately. And the formula of Eatt(pt), Erep(pt) is
as below.

Eatt = θd2(pt, pgoal) (6)

Erep =
β

d2(pt, pobs) + ξ
(7)

where d(p1, p2) means the distance between p1 and p2, θ, β are the hyperparameters determining the
shape of the APM, and ξ is a small number to avoid the denominator to be 0.

The original APF algorithm will let the agent move in the direction of the derivative of E(pt) so as
to achieve the goal. Since the information gain will increase only if the robot move to the frontier,
so we choose the center of the closest frontier as the goal. Figure 5 shows the procedure how we
generate the Artificial Potential Field. To interpolate this idea into reward function, we proposed a
novel approach to compute the reward function. Instead of computing the derivative, we compute the
Energy difference between current frame and next frame as ∆(at, st) = E(pt)−E(pt+1|at), which
means ∆(at, st) would be positive only if the energy decreases, so as to navigate the robot to the
closest frontier. To make sure the reward is positive and normalize it, we compute our reward via
softmax.

Re(at, st) =
exp(∆(at, st))

Σatexp(∆(at, st))
(8)

Then the final reward function is a combination of information gain and Artificial Potential Energy
difference. Here λ is a hyparameter to determine the weight of the external reward.

R(at, st) = I(at|st) + λRe(at, st) (9)
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Figure 4: The generation procedure of global observation. (1) shows the local map. (2) shows the
global explored map. (3) shows the processed frontiers,obstacles and pose of robot. (4) shows the
final resized global observation.

5 Experiments

5.1 Experiment Setup

In this section, we report experimental results regarding the question: Whether our reinforcement
learning algorithm can be helpful in accelerating the exploration process? We implement the
autonomous exploration task to answer the question.

In our model, st is l × l m2 rectangular area centred at the robot’s position and its orientation is the
same as robot’s orientation, and at contains three discrete bins as [forward, left, right]. The robot
is equipped with a laser with a range of ll meters and a horizontal field of view la degrees.

5.2 Autonomous Exploration

In this part, we demonstrate the efficiency of our proposed algorithm for autonomous exploration.
Autonomous exploration refers to the process of searching for unknown areas. In our experiment, the
robot is expected to discover as much area as possible to collect more information within a limited time.
We split HouseExpo into training and testing set with 24588 and 10538 maps respectively. The robot
only observes a local rectangular map around it. And its observation is rotation-invariant where the
robot is always facing forward. The results is shown in Fig.6. Fig.6 plots the mean reward in evaluation
time. We run our experiments withBaseline, Baseline+ArtificialPotentialF ieldReward, and
Baseline + GlobalObservation.Generally we can see that after training round 5M steps, the
maximum average reward achieves around 160. Due to lack of GPU devices, we don’t have enough
time to run over all the experiments. Generally we can see that our baseline can achieve good
results and shows the efficiency of RL algorithms, while the APF reward not works quite well. More
importantly, we can see that the evaluation results suffer from a high variance.
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(a) Global Explored Map (b) Attractive Field

(c) Repulsive Field (d) The whole Field

Figure 5: Artificial Potential Field. (a) The global explored map, where the red area is the closest
frontier we choose as the goal and the circle is the center of the goal. (b) Attractive Field generated
by the goal. (c) Repulsive Field generated by the obstacle. (d) The whole artificial potential field.

6 Conclusion and Future Work

In conclusion, our proposed reinforcement learning algorithm illustrates promising prospect in solving
autonomous exploration tasks. Generally, we explore two directions to improve our RL algorithm,
encode history observation and design external reward to guide the policy. To encode the history
observation, we concatenate the global explored map into our observation space, which may lead
the robot to see existing frontiers that not exists in local map. And the external reward is designed
as a guided policy search method to navigate the robot. The reason why these two methods don’t
improve the algorithm a lot may lie in lack of time to finetune the hyperparameters and the overfitting
problem. During our experiments, we find that some RL algorithms are sensitive to hyperparameters
and the performance may occur great variance. Generally, we think that more stable, explainable and
sample efficient RL algorithm should be proposed.

6.1 Future work

The definition of Probability map in this paper is that the probability of unexplored is 0.5 while
probability of explored area is 0 or 1. Calculated by the binary entropy function, the Shannon entropy
of the unexplored area is 1, and the entropy of the explored area is 0. At this time, the formula of
information gain was degenerated to the sum of unexplored pixel. The effectiveness of uncertainty
estimating of the theorem is decreased. Actually, in the information compute method based on
frontier, the map is classified into two class manually. During the future work, we can utilize neural
network to minimize the relative entropy between the probability density function of the current
map and the future map under the premise of the previous search. In this case, the probability of
unexplored area is continuously 0 to 1, not constantly 0.5.
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Figure 6: Evaluation Results

Figure 7: Training without reset

Besides, We did a simple experiment to what will happen training in this environment with out reset
function. As shown in the figure 7., the agent has been in states without any reward for a long period
for the agent has fully explored a sub-area and any actions will be no reward in this case. At the same
time, the current policy with stochastic strategy are difficult to deviate from the current area, which
makes the agent rotates in a area at most of the time. We believes that the curiosity mechanism can
solve this problem. It uses the distilling mechanism to remove the dependence of the policy on the
previous state. When the policy continuously produces bad actions, the algorithm will actively get rid
of this state.
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