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ABSTRACT

Transformer models are increasingly used for solving Partial Differential Equa-
tions (PDEs). However, they lack at least one of several desirable properties of an
ideal surrogate model such as (i) generalization to PDE parameters not seen during
training, (ii) spatial and temporal zero-shot super-resolution, (iii) continuous tem-
poral extrapolation, (iv) applicability to PDEs of different dimensionalities, and
(v) efficient inference for longer temporal rollouts. To address these limitations,
we propose Vectorized Conditional Neural Fields (VCNeFs) which represent the
solution of time-dependent PDEs as neural fields. Contrary to prior methods, VC-
NeFs compute, for a set of multiple spatio-temporal query points, their solutions
in parallel while also modeling their dependencies through attention mechanisms.
Moreover, VCNeF can condition the neural field on both the initial conditions and
the parameters of the PDEs. An extensive set of experiments demonstrates that
VCNeFs are competitive with and often outperform existing ML-based surrogate
models.

1 INTRODUCTION

The simulation of physical systems often involves solving PDEs and Machine Learning (ML) based
surrogate models are increasingly used to address this challenging task (Lu et al., 2019; Li et al.,
2020b; Cao, 2021). Utilizing ML methods for solving PDEs has several advantages such as faster
simulation time than classical numerical PDE solvers, differentiability of the surrogate models
(Takamoto et al., 2022), and their ability to be used even when the underlying PDEs are not known
exactly (Li et al., 2020a).

Transformers (Vaswani et al., 2017) and its variants are successfully used in natural language pro-
cessing (Devlin et al., 2018), speech processing (Gulati et al., 2020), and computer vision (Doso-
vitskiy et al., 2020). Additionally, the use of Transformer models in Scientific Machine Learning
(SciML) to model physical systems (Geneva & Zabaras, 2020) and solve PDEs (Cao, 2021; Li et al.,
2023a;b; McCabe et al., 2023) is steadily increasing. Meanwhile, recent advances in neural networks
for computer graphics tasks have introduced Neural Fields (Xie et al., 2021), which have proven to
be an efficient method to solve PDEs (Sitzmann et al., 2020; Chen et al., 2023b;a; Yin et al., 2023;
Serrano et al., 2023).

Despite these recent advances in neural architectures for PDE solving, current methods lack several
of the characteristics of an ideal PDE solver: (i) generalization to different Initial Conditions (ICs),
(ii) PDE parameters, (iii) applicability to PDEs of different dimensionalities, (iv) stability over long
rollouts, (v) temporal extrapolation, (vi) spatial and temporal super-resolution, all with affordable
cost, high speed, and accuracy.

Towards developing a model that encompasses these ideal characteristics, we propose Vector-
ized Conditional Neural Field (VCNeF), a transformer-based conditional neural field, that solves
PDEs continuously in time endowing the model with temporal as well as spatial Zero-Shot Super-
Resolution (ZSSR) capabilities. The model introduces a new mechanism to condition a neural field

Code available at https://github.com/jhagnberger/vcnef
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Figure 1: Conditional Neural Field (CNeF) vs proposed Vectorized CNeF (VCNeF).

on ICs and PDE parameters to achieve generalization to both ICs and PDE parameter values not seen
during training. While modeling the solution using neural fields such as Physics-Informed Neural
Networks (PINNs) naturally provides temporal and spatial ZSSR, these methods are inefficient since
we need to query them separately for every spatial and temporal location. We achieve faster training
and inference by vectorizing the computations on GPUs. Moreover, the proposed method also ex-
plicitly models dependencies between model queries for different spatial and temporal coordinates.

2 METHOD

In this section, we briefly recall (conditional) neural fields and relate them to solving parametric
PDEs. Furthermore, we propose Vectorized Conditional Neural Fields.

Neural Fields and Conditional Neural Fields. Neural Fields (NeFs; Xie et al. (2021)) learn a
function f which maps the spatial and temporal coordinates (i.e., x ∈ RD, t ∈ R+ respectively) to
a quantity q ∈ Rc. More formally, a neural field can be expressed as a function

fθ : (R+ × RD) → Rc with (t,x) 7→ q (1)
that is parametrized by a neural network with parameters θ. For solving PDEs, the function fθ
models the solution function u and the quantity q represents the solution’s value for the different
channels, each representing a physical quantity (e.g., density). PINNs (Raissi et al., 2017) are a
special case of neural fields with a physics-aware loss function, modeling the solution u as

fθ : (R+ × RD) → Rc with (t,x) 7→ u(t,x) (2)
where fθ denotes the neural field that maps the input spatial and temporal locations to the solution
of the PDE. Conditional Neural Fields (CNeFs; Xie et al. (2021)) extend NeFs with a conditioning
factor z to influence the output of the neural field. The conditioning factor was originally introduced
for computer vision to control the colours or shapes of objects. In contrast, we condition the neural
field, which models the solution of the PDE, on the IC and the PDE parameters (cf. Figure 1). Thus,
the conditioning factor influences the entire field variable.

Vectorized Conditional Neural Fields. Typically, a (conditional) neural field generates the output
quantities for all input spatial and temporal coordinates in multiple and independent forward passes.
The training and inference times can be improved by processing multiple inputs in parallel on the
GPU which is possible since all forward passes are independent and, hence, embarrassingly parallel.
However, there are spatial dependencies between different input spatial coordinates, particularly for
solving PDEs, that will not be exploited with CNeFs or by processing multiple inputs of CNeFs
in parallel. Consequently, we propose extending CNeFs to take a vector with arbitrary spatial
coordinates of variable size as input, exploit the dependencies among the input coordinates when
generating the outputs, and regress all outputs for the inputs in one forward pass. Hence, we name
our proposed model Vectorized Conditional Neural Field since it implicitly generates a vectorization
of the input spatial coordinates for a given time t. In formal terms, VCNeF represents a function

fθ : (R+ × Rs×D) → Rs×c with (t,X) 7→ u(t,X) =

u(t,x1)
...

u(t,xs)

 (3)
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PDE Model nRMSE (↓) bRMSE (↓)

Burgers

FNO 0.0987 0.0225
MP-PDE 0.3046 (+208.7%) 0.0725 (+221.7%)
CORAL 0.2221 (+125.1%) 0.0515 (+128.2%)
Galerkin 0.1651 (+67.3%) 0.0366 (+62.3%)
OFormer 0.1035 (+4.9%) 0.0215 (-4.5%)
VCNeF 0.0824 (-16.5%) 0.0228 (+1.3%)

Advection

FNO 0.0190 0.0239
MP-PDE 0.0195 (+2.7%) 0.0283 (+18.4%)
CORAL 0.0198 (+4.3%) 0.0127 (-46.8%)
Galerkin 0.0621 (+227.1%) 0.0349 (+46.2%)
OFormer 0.0118 (-38.0%) 0.0073 (-69.6%)
VCNeF 0.0165 (-13.0%) 0.0088 (-63.2%)

1D CNS

FNO 0.5722 1.9797
CORAL 0.5993 (+4.7%) 1.5908 (-19.6%)
Galerkin 0.7019 (+22.7%) 3.0143 (+52.3%)
OFormer 0.4415 (-22.9%) 2.0478 (+3.4%)
VCNeF 0.2943 (-48.6%) 1.3496 (-31.8%)

2D CNS
FNO 0.5625 0.2332
Galerkin 0.6702 (+19.2%) 0.8219 (+252.4%)
VCNeF 0.1994 (-64.6%) 0.0904 (-61.2%)

3D CNS FNO 0.8138 6.0407
VCNeF 0.7086 (-12.9%) 4.8922 (-19.0%)

Table 1: Errors of surrogate models trained and tested on the same spatial and temporal resolutions
with a fixed PDE parameter value. nRMSE and bRMSE denote the normalized and RMSE at the
boundaries, respectively. Values in parentheses indicate the percentage deviation to the FNO as a
strong baseline in terms of accuracy, memory consumption, and runtime. Underlined values indicate
the second-best errors.

where u(t,xi) denotes the PDE solution for the spatial coordinates xi. Note that we do not impose a
structure on the spatial coordinates xi and that the number of spatial points (i.e., s) can be arbitrary.
The model can process multiple timesteps t in parallel on the GPU to further improve the training and
inference times since VCNeF does not exploit the dependencies between the temporal coordinates.

VCNeF for Solving PDEs. VCNeF allows direct learning of the solution function u of a PDE
instead of emulating a numerical PDE solver by mapping a timestep tn to a subsequent timestep
tn+1. The model is conditioned on the IC to allow for generalization to different ICs and on the
PDE parameters p to generalize to PDE parameter values not seen during training. The VCNeF
model can be expressed as a function

fθ : (R+ × Rs×D × Rs×c × Rj) → Rs×c with (t,X, u(0, X),p) 7→ u(t,X;u(0, X),p), (4)

where θ represents the parameters of the neural network, X ∈ Rs×D the grid of dimensionality
D with query spatial coordinates, t the query time, u(0, X) the IC, and p the PDE parameter(s).
u(t,X;u(0, X),p) denotes the solution function, which depends on the given IC and PDE parame-
ter(s), that is directly regressed by VCNeF. Rs×c stands for the entire solution field with c channels.

3 VCNEF FEATURES

Spatial and Temporal ZSSR. VCNeF can be trained on lower spatial and temporal resolutions
and used for high-resolution spatial and temporal inference since it is, by virtue of its design, space
and time continuous.

Accelerated Training and Inference. The training and inference of VCNeF are accelerated by
processing multiple temporal coordinates in parallel on the GPU. If the solution of multiple timesteps
(e.g., t ∈ {t1, t2, . . . , tNt}) is to be predicted, VCNeF can calculate the solution of the timesteps

3
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Figure 2: Error distribution of VCNeF vs. baselines. Boldfaced are unseen PDE parameter values.

in parallel since the predictions of u(t, ·) are independent of each other and, hence, embarrassingly
parallel.

Physics-Informed VCNeF. The loss function of VCNeF can be easily extended with a physics-
informed loss as in PINNs (Raissi et al., 2017) since VCNeF directly models the solution function
u and, therefore, the derivatives can be computed with automatic differentiation (Maclaurin et al.,
2015; Paszke et al., 2017).

4 EXPERIMENTS

We design our experiments such that we are able to answer the following research questions:

RQ1: How effective are VCNeFs compared to the SOTA methods for PDE solving? RQ2: How
well can VCNeF generalize to PDE parameter values unseen during training? RQ3: How well can
the model perform spatial and temporal zero-shot super-resolution? RQ4: Does the vectorization
provide a speed-up, and what is the model’s scaling behaviour when compared to the baselines?

4.1 DATASETS, SETUP, AND BASELINES

We conduct experiments on the following hydrodynamical equations of parametric PDEs from
PDEBench (Takamoto et al., 2022): 1D Burgers’, 1D Advection, and 1D, 2D, and 3D Compress-
ible Navier-Stokes (CNS) equations. Unlike the prevalent models in the SciML literature, we train
and test the models with a single timestep as IC and predicting multiple future steps, as this setting
is best suited for real-world applications. We choose FNO (Li et al., 2020a), MP-PDE (Brandstetter
et al., 2022), CORAL (Serrano et al., 2023), Galerkin Transformer (Cao, 2021), and OFormer (Li
et al., 2023a) as the SOTA baselines. The predictions of FNO, Galerkin Transformer, and OFormer
are achieved in an autoregressive fashion, while VCNeF predicts the entire trajectory of the simula-
tion directly in one forward pass.

4.2 RESULTS

RQ1. We test VCNeF’s generalization ability to different ICs by evaluating the models on the
corresponding test sets of PDEBench. Table 1 shows the errors of the baseline and VCNeF models
trained and tested on the selected PDEs and Appendix G contains example predictions. The results
demonstrate that our model performs competitively with the SOTA methods for solving a variety of
PDEs spatially ranging from 1D to 3D.

RQ2. To evaluate the performance and effectiveness of VCNeF and its PDE parameter condi-
tioning, we train VCNeF, a PDE parameter conditioned FNO (cFNO; Takamoto et al. (2023)), and
OFormer that has been modified to accept PDE parameter1, on a set of PDE parameter values and

1We encode the parameter values as an additional channel.
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Figure 3: Example predictions of FNO and VCNeF for density channel of 2D CNS for s = 64×64.

test them on an unseen set of parameter values. Figure 2 shows the error distribution for 1D CNS.
We observe that VCNeF generalizes better to unseen PDE parameters than the compared baseline
models.

RQ3. We evaluate the ability of VCNeF achieving spatial and temporal ZSSR which means that
the model is trained on a reduced spatial and temporal resolution and then used for high-resolution
inference. The results in Table 16 show that OFormer and our proposed VCNeF have spatial ZSSR
capabilities since there is no significant increase in error even when the spatial resolution is 4x the
training resolution. For the case of FNO on 1D Burgers, we observe a near multiplicative increase
of error as the factor of resolution increases (2x and 4x). The inherent support of continuous-time
inference of VCNeF allows predicting a trajectory with a smaller temporal step size than encountered
during training. Table 17 shows a negligible increase in error for VCNeF exemplifying the model’s
superior temporal ZSSR capabilities by learning the dependency between the solution and time.
Doing interpolation between timesteps seems to be only effective for smooth targets such as CNS.

RQ4. Lastly, we measure the inference times of the proposed and baseline models. The times
are the raw inference times, without measuring the time needed to transfer the data from the host
device to the GPU, on a single NVIDIA A100-SXM4 80GB GPU. We measure the time of the models
predicting 40 to 240 timesteps in the future with a spatial resolution of s = 256. The times in Fig-
ure 7 demonstrate that VCNeF is significantly faster than the other transformer-based counterparts.
However, the speed-up results in a higher GPU memory consumption as shown in Table 18.

5 CONCLUSION

In this work, we have designed an effective Neural PDE Solver, Vectorized Conditional Neural Field,
based on the conditional neural fields framework, and demonstrated its generalization capabilities
across multiple axes of desiderata: spatial, temporal, ICs, and PDE parameter values. Furthermore,
the proposed model allows to trade-off the inference time or GPU memory when generating the
solutions. As a future work, we aim to experiment on turbulent flow simulations and incompressible
Navier-Stokes equations, improve the VCNeF model design further with adaptive timestepping, in-
vestigate sophisticated strategies for conditioning the neural fields (Rebain et al., 2023), test physics-
informed losses (Li et al., 2021b), and analyze the model scaling behaviour on vast amounts of PDE
data, including multiphysics simulations (McCabe et al., 2023; Sun et al., 2024).
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Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
NeurIPS, 2022.

Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. Learning neural PDE solvers with
parameter-guided channel attention. ICML, abs/2304.14118, 2023. doi: 10.48550/arXiv.2304.
14118. URL https://doi.org/10.48550/arXiv.2304.14118.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual com-
puting and beyond. CoRR, abs/2111.11426, 2021. URL https://arxiv.org/abs/2111.
11426.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Galli-
nari. Continuous PDE dynamics forecasting with implicit neural representations. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=B73niNjbPs.

9

https://doi.org/10.48550/arXiv.2304.14118
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2111.11426
https://arxiv.org/abs/2111.11426
https://openreview.net/pdf?id=B73niNjbPs


Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

VECTORIZED CONDITIONAL NEURAL FIELDS: A
FRAMEWORK FOR SOLVING TIME-DEPENDENT

PARTIAL DIFFERENTIAL EQUATIONS
SUPPLEMENTARY MATERIAL

A Related Work 12

A.1 Physics-Informed Neural Networks and Neural Operators . . . . . . . . . . . . . . . . 12

A.2 Transformers for Solving PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.3 Solving Parametric PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.4 Implicit Neural Representations (INR) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.5 Comparison of Neural Architectures for PDE Solving . . . . . . . . . . . . . . . . . . 13

B Neural Architecture 13

B.1 Model Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C PDE Datasets 16

C.1 1D Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.2 1D Advection Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.3 1D, 2D, and 3D Compressible Navier-Stokes Equations . . . . . . . . . . . . . . . . . 17

D Baseline Models 17

D.1 Fourier Neural Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D.2 MP-PDE: Message Passing PDE Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.3 CORAL: Coordinate-based Model for Operator Learning . . . . . . . . . . . . . . . . 18

D.4 Galerkin Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.5 OFormer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E Additional Experimental Details 19

E.1 Used PDE Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E.2 Model’s Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

F Additional Experimental Results 21

F.1 (RQ1): Comparison with Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

F.2 (RQ2): Generalization to Unseen PDE Parameter Values . . . . . . . . . . . . . . . . 22

F.3 (RQ3): Temporal and Spatial ZSSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F.4 (RQ4): Inference Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

G Qualitative Results 27

H Table of Notations and Mathematical Symbols 32

11



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A RELATED WORK

Here we outline the work related to our study by categorizing them into four sections as follows.

A.1 PHYSICS-INFORMED NEURAL NETWORKS AND NEURAL OPERATORS

A common approach for solving PDEs are Physics-Informed Neural Networks (Raissi et al., 2017)
that model the underlying solution function u. Although PINNs are space-and-time continuous
within the specified domain, they are finite-dimensional and hence cannot perform temporal extrap-
olation. Additionally, PINNs generate the solution for all input spatial coordinates independently
without further exploitation of structural dependencies. A PDE-specific loss function allows the
model to learn the underlying solution function which satisfies the PDE equation. However, PINNs
can still fail to approximate the PDE solutions because of complex loss landscapes (Krishnapriyan
et al., 2021). In contrast, neural operators (Li et al., 2020b) learn a mapping between two infinite-
dimensional spaces or two functions, representing the solution function for a timestep tn and the
subsequent timestep tn+1. Consequently, neural operators are not continuous in time, but continu-
ous in space and generate the solution for all spatial coordinates in a single forward pass (Lu et al.,
2019). They further leverage the spatial dependencies of the solution by processing the spatial co-
ordinates in one forward pass. The Fourier Neural Operator (FNO; Li et al. (2020a)) is a prevalent
instantiation of a neural operator that is based on Fourier transforms. However, the FNO model is
limited to regular meshes due to the use of the discrete Fourier transform, which is not suitable for
data that was collected on irregular geometries or a sphere (e.g., climate data). To tackle this issue,
Bonev et al. (2023) propose Spherical Fourier Neural Operators (SFNO) that generalize FNO (Li
et al., 2020a) to deal with data on the sphere. Recent work of Guibas et al. (2022) improves FNO by
combining the FNO and Transformer model (Vaswani et al., 2017) yielding Adaptive Fourier Neural
Operator (AFNO) that replaces the self-attention mechanism of Transformers with a token mixing
mechanism in the Fourier domain. The AFNO outperforms vanilla Transformers on several tasks
and has a quasi-linear time complexity and linear memory and, thus, is more efficient compared to
vanilla Transformers. Physics-Informed Neural Operators (PINO) (Li et al., 2023c) extend neural
operators with a PDE-specific loss term to further improve the accuracy of the model. The proposed
VCNeF can be seen as a combination of PINNs and neural operators.

A.2 TRANSFORMERS FOR SOLVING PDES

Transformers are increasingly being utilized for modelling physical systems or PDEs. Previous
works can be divided into using Transformers for applying temporal self-attention (Geneva &
Zabaras, 2020) to model the temporal dependencies or applying spatial self-attention for capturing
spatial dependencies of the PDE (Cao, 2021; Li et al., 2023a;b). Applying the spatial self-attention
as in Fourier and Galerkin Transformer (Cao, 2021), or in OFormer (Li et al., 2023a) yields a neural
operator (Kovachki et al., 2021) endowing the model with spatial ZSSR capabilities. Since these
models do not consider time as an additional input, they are not time-continuous and, hence, fixed to
a trained temporal discretization. To remedy the issue, the diffusion-inspired temporal Transformer
operator (Ovadia et al., 2023) uses the time component to condition the input solution, thereby sup-
porting a flexible temporal discretization for inference.

A.3 SOLVING PARAMETRIC PDES

Although ML-based methods have shown great success in solving PDEs, they often do not consider
PDE parameters as input resulting in failures to generalize to unseen parameter values. Recent
works such as CAPE (Takamoto et al., 2023), MP-PDE (Brandstetter et al., 2022), and PDERefiner
(Lippe et al., 2023) consider the PDE parameters as additional model input. Along the same lines,
our proposed model also considers the PDE parameter to improve the generalization error of unseen
PDE parameter values.
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A.4 IMPLICIT NEURAL REPRESENTATIONS (INR)

Neural Fields (NeFs) has become widely popular in signal processing (Sitzmann et al., 2020), com-
puter vision (Mescheder et al., 2019), computer graphics (Chu et al., 2022), and recently in SciML
for solving PDEs (Chen et al., 2023b; Yin et al., 2023; Chen et al., 2023a; Serrano et al., 2023).

The prevalent INR models for PDE solving follow the “Encode-Process-Decode” paradigm.
DiNO (Yin et al., 2023) has an encoder, a Neural ODE (NODE) to model dynamics, and a de-
coder. CORAL, an improvement to DiNO, has a two-step training procedure whereby the input and
output INR modules with shared parameters are trained first, and subsequently, the dynamics model-
ing block is trained using the learned latent codes. DiNO and CORAL utilize an INR to encode and
decode the PDE solution in a latent space and a NODE to propagate the dynamics in latent space,
while our approach utilizes a neural field to represent the entire PDE solution encompassing both
the spatial and temporal dependencies within a shared space.

A.5 COMPARISON OF NEURAL ARCHITECTURES FOR PDE SOLVING

Table 2 shows the most important properties of ML models for solving PDEs and compares three
families of models. The VCNeF combines both worlds of neural fields (e.g., PINNs) and neural
operators. PINNs do not leverage the spatial dependencies among the queried coordinates since they
produce the output for each queried coordinate independently. Meanwhile, neural operators map to a
set of solution points and leverage the dependencies between the regressed points. However, neural
operators are usually not time-continuous, while PINNs are time-continuous. VCNeF, therefore,
combines the advantages of both worlds by leveraging spatial dependencies by generating a set of
solution points and being continuous in time.

Model family Model Initial value PDE parameter ZSSR Models spatial dependencies
generalization generalization Spatial Temporal with self-attention

Neural Operator

FNO ✓ ✗ ✓ ✗ ✗
OFormer ✓ ✗ ✓ ✗ ✓

cFNO ✓ ✓ ✓ ✗ ✗
cOFormer ✓ ✓ ✓ ✗ ✓

Neural Field PINN ✗ ✗ ✓ ✓ ✗

Conditional Neural Field CORAL ✓ ✗ ✓ ✓ ✗
VCNeF (ours) ✓ ✓ ✓ ✓ ✓

Table 2: Overview of distinct properties of benchmark baselines and our proposed VCNeF model.

B NEURAL ARCHITECTURE

We propose a transformer-based VCNeF that applies self-attention to the spatial domain to cap-
ture dependencies between the spatial coordinates. The input spatio-temporal coordinates and the
physical representation of ICs are represented in a latent space. Both latent representations are fed
into modulation blocks that capture spatial dependencies and condition the coordinates on the IC.
The output of the modulation blocks, which represent the solution, is then decoded to obtain the
representation in the physical space.

B.1 MODEL COMPONENTS

Latent Representation of Coordinates. The input coordinates, consisting of the query time t ∈
R+ that determines the time for which the model’s prediction is sought and the spatial coordinates
xi ∈ RD, are represented in a latent space. For 1D PDEs, a linear layer is used for encoding,
whereas, for 2D and 3D PDEs, the absolute positional encoding (PosEnc; Vaswani et al. (2017)) to
encode time t, similar to Ovadia et al. (2023) and learnable Fourier features (LFF; Li et al. (2021a))
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Figure 4: VCNeF for solving parametric PDEs. Latent representations of ICs are generated with a
multi-scale patching mechanism (Chen et al., 2021). A Modulation Block consists of self-attention,
activation function σ, and a modulated neural field which uses the pointwise multiplication (scaling)
of FiLM (Perez et al., 2018) to condition the spatio-temporal coordinates on ICs.

to encode the spatial coordinates are used.

For 1D: ci = (t ∥ xi)W + b

For 2D: ci = (PosEnc(t) ∥ LFF(xi) ∥ . . . ∥ LFF(xi+15))W + b

For 3D: ci = (PosEnc(t) ∥ LFF(xi) ∥ . . . ∥ LFF(xi+63))W + b

LFF(x) =
1√
d
(cos(xWr) ∥ sin(xWr))

T

C = (c1 ∥ . . . ∥ cs)T

(5)

where ∥ denotes the concatenation of two vectors.

Latent Representation of IC. The input IC is mapped to a latent representation by either applying
a shared linear layer to each solution point u(t, xi) or by dividing the spatial domain into non-
overlapping patches and applying a linear layer to the patches, akin to Vision Transformers (ViTs;
Dosovitskiy et al. (2020)). However, unlike a traditional ViT, our patch generation has two branches:
patches of a smaller size (4 × 4) and of a larger size (16 × 16) as proposed in Chen et al. (2021)
since we aim to capture the dynamics accurately with multi-scale processing.

For 1D: z(0)i =(u(t,xi) ∥ xi ∥ p)W + b

For 2D: z(0)i =(u(t,xi) ∥ . . . ∥ u(t,xi+15)∥
xi ∥ . . . ∥ xi+15 ∥ p)W + b

For 3D: z(0)i =(u(t,xi) ∥ . . . ∥ u(t,xi+63)∥
xi ∥ . . . ∥ xi+63 ∥ p)W + b

Z(0) =(z
(0)
1 ∥ . . . ∥ z(0)s )T

(6)

A vector in the latent space (i.e., token) either represents the solution on a spatial point (for 1D)
or the solution on a patch of spatial points (for 2D and 3D). The grid contains the coordinates
where the solutions are sampled in the spatial domain. This information is used when generating the
latent representations of the IC to ensure that each latent representation has information about the
position. The PDE parameters p are also added to the latent representation. We neglect additional
positional encoding to prevent any length generalization problems (Ruoss et al., 2023) that could
prevent changing the spatial resolution after training.

Linear Transformer Encoder for IC. We utilize a Linear Transformer (Katharopoulos et al.,
2020) with self-attention in our VCNeF architecture to generate an attention-refined latent represen-
tation of the IC Z(0). The global receptive field of Transformer allows the proposed architecture
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to capture spatial dependencies in the IC, although each token contains only partial spatial infor-
mation. Intuitively, the Transformer outputs latent representations that incorporate the entire spatial
solution and not only a single spatial point or a subset of spatial points. We assume that this is bene-
ficial to generate a better representation of the IC to condition the input spatio-temporal coordinates
accordingly.

Z(n+1) = Transformer Block
(
Z(n)

)
(7)

where Transformer Block(·) is a Linear Transformer block with self-attention and n denotes the
nth block.

Modulation of Coordinates based on IC. The modulation blocks condition the input coordinates
on the input IC Z(3) by modulating the latent representation C of the coordinates. The block
contains self-attention, a non-linearity σ, a modulation mechanism similar to Feature-wise Linear
Modulation (FiLM; Perez et al. (2018)), layer normalization, residual connections, and an MLP.
However, the conditioning mechanism uses only the scaling (i.e. pointwise multiplication) of FiLM
and omits the shift (i.e. pointwise addition). A modulation block is expressed succinctly as

Z(m+1) = Modulation Block
(
C,Z(m)

)
= MLP

(
σ
(
Self Attn

(
Z(m)

))
◦ MLP(C)

)
σ(X) = ELU(X) + 1

(8)

where Z(3) ∈ Rs×d represents the IC, C ∈ Rs×d denotes the latent representation of the input
coordinates, ◦ represents the Hadamard product, and m is the mth fusion block. The residual
connections and layer normalization are omitted in Equation 8 for the sake of simplicity.

Decoding the Solution’s Latent Representation. The solution’s latent representation Z(6) is
mapped back to the physical space by either applying an MLP for 1D or by mapping the latent
representations to small and large patches and outputting the weighted sum of the small and large
patches for 2D and 3D.

B.2 ABLATION STUDY

We conduct an ablation study on the prominent parts of the proposed architecture. Namely, the
self-attention mechanism that allows the model to capture spatial dependencies and the conditioning
mechanism that is used to condition the neural field. For 2D PDEs, we also study the effect on the
model’s performance for patches of one size and the multi-scale patching mechanism with small
and large patches. Additionally, we compare linear attention (Katharopoulos et al., 2020) with
vanilla attention (Vaswani et al., 2017) in terms of training time and GPU memory consumption.
For simplicity, we perform the ablation study mainly on the 1D Burgers’ and 2D CNS datasets.

Self-Attention, Conditioning Mechanism, and Patch Generation. Table 3 shows the results of
the proposed model with and without self-attention as well as with different modulation mechanisms
to condition the neural field. Table 4 presents the different results for patches of one size vs multi-
scale patching mechanism.

PDE Self-attention Conditioning mechanism nRMSE (↓) bRMSE (↓)

1D Burgers
✓ Modulation with scaling 0.0824 0.0228
✗ Modulation with scaling 0.8890 0.3242
✓ Modulation with scaling and shifting 0.0945 0.0291

Table 3: Ablation study for attention and conditioning mechanisms of our proposed VCNeF model.

Vanilla Attention and Linear Attention. The Linear Transformer and the linear self-attention
component in the proposed architecture can be replaced with vanilla attention or some arbitrary at-
tention mechanism. We choose linear attention since it promises a speed-up for long sequences (i.e.,
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PDE Patches nRMSE (↓) bRMSE (↓)

2D CNS Small and large 0.1994 0.0904
Only large 0.45694 0.19822

Table 4: Ablation study for the multi-scale patching mechanism of our proposed VCNeF model.

fine resolution of the spatial domain) compared to vanilla attention. Table 5 shows empirical results
for training the transformer-based VCNeF on the 1D Burgers’ PDE. We observe that the memory of
linear attention increases linearly and of vanilla attention quadratically. Double the spatial resolution
corresponds to double the number of tokens yielding an increased memory and time consumption.
Training the VCNeF with vanilla attention requires more than 640 GiB while the VCNeF with lin-
ear attention requires only 99.4 GiB. We use the vanilla attention implementation of Katharopoulos
et al. (2020) for a fair comparison to the non-optimized linear attention implementation.

PDE Spatial resolution (# tokens) Attention type GPU memory Time per epoch

1D Burgers

256 Vanilla 72.6 GiB 28 s
Linear 31.4 GiB 18 s

512 Vanilla 223.4 GiB 78 s
Linear 53.8 GiB 32 s

1024 Vanilla >640 GiB N/A
Linear 99.4 GiB 62 s

Table 5: GPU memory consumption and training time per epoch of VCNeF with vanilla attention
(scaled dot-product attention) and linear attention on the 1D Burgers’ train set. The values refer to
training with a batch size of 64 on 4x NVIDIA A100-SXM4 80GB GPUs using data parallelism. The
number of queried timesteps Nt is 40. Time per epoch includes the time that is needed to load the
data from a network share and transfer it to the GPUs.

C PDE DATASETS

This part serves as an expository section on the parametric PDE datasets of the hydrodynamical
equations that we experimented with to answer our research questions.

C.1 1D BURGERS’ EQUATION

The Burgers’ PDE models the non-linear behaviour and diffusion process in fluid dynamics and is
expressed as

∂tu(t, x) + u(t, x)∂xu(t, x) =
ν

π
∂xxu(t, x)

kinematic viscosity

(9)

where the PDE parameter ν denotes the diffusion coefficient. Our dataset contains solutions for x ∈
(-1, 1) with a maximum resolution of 1024 spatial discretization points and t ∈ (0, 2] with a maxi-
mum resolution of 201 temporal discretization steps including the initial condition. We subsample
the data along the temporal and spatial domain yielding a trajectory of 41 time steps where each
snapshot has a spatial resolution of 256, respectively.

C.2 1D ADVECTION EQUATION

The Advection PDE models pure advection behaviour without non-linearity. It is written as

∂tu(t, x) + β ∂xu(t, x) = 0

advection velocity

(10)
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where the PDE parameter β denotes the advection velocity. Similar to 1D Burgers’, we subsample
the data to get samples with a trajectory of 41 time steps each with a spatial resolution of 256.

C.3 1D, 2D, AND 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS

Following Takamoto et al. (2022; 2023), we conduct experiments on the challenging Compressible
Navier-Stokes datasets, with random initial fields as the initial conditions for 1D, 2D, and 3D cases.

∂tρ+∇ · ( ρ v) = 0, (11a)

ρ(∂tv + v · ∇v) = −∇p+ η△v + ( ζ +
η

3
)∇(∇ · v), (11b)

∂t(ϵ+
ρv2

2
) +∇ · [(p+ ϵ +

ρv2

2
)v − v · σ′ ] = 0,

mass density (mass per unit volume)

shear viscosity

bulk viscosity

viscous stress tensor

internal energy

(11c)

where ρ represents the (mass) density of the fluid, v the fluid velocity (in vector field), p the
gas pressure, ϵ the internal energy according to the equation of state, σ′ the viscous stress tensor,
η and ζ the PDE parameters which represent the shear and bulk viscosities, respectively. We
subsample the data for 1D, 2D, and 3D equations. The original resolution of 1D simulation has
1024 spatial points and 101 timesteps for each trajectory. For training purposes, we subsample
across both spatial and temporal resolutions by a factor of 4 and 2 respectively yielding a trajectory
of length 51 time steps and a spatial resolution of 256. To be consistent with other 1D PDE
trajectory lengths, we retain only the first 41 timesteps and perform experiments on this temporally
truncated data. The original resolution of the 2D simulation data is 128 × 128 for each channel
(i.e., density, velocity-x, velocity-y, and pressure) and has 21 timesteps. For training, we have
subsampled the data only for the spatial dimensions resulting in a resolution of 64 × 64. For 3D
data, the original spatial resolution is 128 × 128 × 128 which was subsampled to a resolution of
32× 32× 32 for training.

D BASELINE MODELS

D.1 FOURIER NEURAL OPERATOR

Fourier Neural Operator (FNO; Li et al. (2020a)) is an implementation of a neural operator that
maps from one function a(x) to another function a′(x) (Kovachki et al., 2021). Traditionally, neu-
ral networks learn a mapping between two finite-dimensional Euclidean spaces which leads to the
problem that they are fixed to a spatial resolution when used for solving PDEs. Neural Operators
overcome this limitation by learning an operator that is a mapping between infinite-dimensional
function spaces (i.e., mapping between functions). The function a(x) := u(tn,x) represents the
solution for timestep tn and a′(x) := u(tn+1,x) the solution for a future timestep tn+1. FNO, an
instantiation of a neural operator, is based on spectral convolution layers which implement an inte-
gral transformation of the input function. The integral transformation is implemented with discrete
Fourier transforms on the spatial domain allowing an efficient and expressive architecture. We use
the FNO model as a baseline because it is a very strong model in terms of accuracy, speed, and
memory consumption. The FNO model is trained in an autoregressive fashion for 500 epochs.
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D.1.1 CFNO

cFNO (Takamoto et al., 2023) is the adapted version of the FNO where the PDE parameters are
added as an additional channel to condition the model on the PDE parameters.

D.2 MP-PDE: MESSAGE PASSING PDE SOLVERS

Several models exist that use Graph Neural Networks (GNNs) for solving PDEs (Brandstetter et al.,
2022; Boussif et al., 2022)

Message Passing Neural PDE Solvers. MP-PDE (Brandstetter et al., 2022) follows the preva-
lent Encode-Process-Decode framework for simulating physical systems (Sanchez-Gonzalez et al.,
2020). The MP-PDE model has an MLP as encoder, GNN as a processor, and a CNN as the decoder.
Moreover, the model introduces several tricks such as pushforward, temporal bundling (time win-
dow with 5 timesteps), and random timesteps in the length of the trajectory as starting points during
training for autoregressive PDE solving, while also considering the PDE parameter values as addi-
tional input, making it as a versatile choice for generalized neural PDE solving. Hence, we adopt it
as a baseline. However, it has to be noted that we apply the model only to 1D PDEs. The configu-
ration of our adaptation for 1D PDEs amounts to 614,929 model parameters which is comparable to
the other baselines.

D.3 CORAL: COORDINATE-BASED MODEL FOR OPERATOR LEARNING

Considering that CORAL (Serrano et al., 2023), to the best of our knowledge, is the current state-of-
the-art INR-based method for solving PDEs, we benchmark our proposed VCNeF model against it
on 1D Advection and Burgers’ as well as on the challenging 1D and 2D compressible Navier-Stokes
PDEs (Takamoto et al., 2022). The CORAL model is trained purely in a data-driven manner and
involves two stages: (i) INR training, and (ii) Dynamics Modelling training. Due to the sequential
nature of this two-phase training, first, we train the INR model and dynamics model is trained after
the completion of INR model training. CORAL authors conducted experiments on a small dataset of
256 training and 16 test samples. We, on the other hand, conduct experiments on PDEBench which
consists of 9000 train and 1000 test samples. Hence, we train the CORAL baseline model for 1000
epochs for INR training and 500 epochs for dynamics modelling optimization, unlike the original
authors’ suggested setting of 10000 epochs of optimization for both INR and dynamics modelling
training.

As in the case of other baseline models, we train and test the CORAL baseline on the subsampled
data yielding a spatial and temporal resolution of 256 and 41 respectively. We report results on
1D Advection, Burgers’, and CNS. The training of 2D CNS resulted in very high errors in the
INR training phase and the loss diverged to NaN values in dynamics modeling training. Hence, we
exclude 2D results. We encode both the single and multiple channel inputs of PDEs in a single latent
space of dimension 256 with the aim to keep the model simple and match the number of parameters
to other baseline models. For other hyperparameter values such as the learning rate, NODE depth
and width, we use the default values suggested by Serrano et al. (2023).

D.4 GALERKIN TRANSFORMER

Cao (2021) introduces the novel application of self-attention for learning a neural operator. The
author provides an alternative way to interpret the matrices Q,K, V by interpreting them column-
wise as the evaluation of learned basis functions instead of row-wise as the latent representation of
the tokens. This new interpretation allows the author to improve the effectiveness of the attention
mechanism by linearizing it, yielding Fourier and Galerkin-type Attention. The author employs
the proposed attention mechanisms in a transformer-based neural operator for solving PDEs. We
choose Galerkin Transformer as a baseline because it is transformer-based and uses self-attention
on the spatial domain of the PDE. The baseline model is trained for 500 epochs in an autoregressive
fashion using the hyper-parameters suggested by Cao (2021).
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D.5 OFORMER

OFormer (Li et al., 2023a) is a transformer-based neural operator which is based on the Galerkin
and Fourier Transformer (Cao, 2021). Existing approaches such as FNO and Galerkin or Fourier
Transformer are restricted in having the same grid for the input and output. Consequently, it is not
possible to query the model (i.e., output function) on arbitrary spatial points that are different or
partially disjoint from the input points. OFormer solves this problem by adding cross-attention to
the model to allow querying for arbitrary spatial points. In addition, Li et al. (2023a) suggest further
improvements to the Galkerin or Fourier Transformer and name the resulting model Operator Trans-
former (OFormer). We train the OFormer model in an autoregressive fashion with the curriculum
learning strategy of Takamoto et al. (2023) for 500 epochs.

D.5.1 COFORMER

Inspired by cFNO (Takamoto et al., 2023) we adapt OFormer to take the PDE parameter as an
additional input. The PDE parameter values are appended to the input as an additional channel to
condition the model on the PDE parameter.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 USED PDE PARAMETERS

Unlike the prevalent models in the SciML literature, we train and test the models with a single
timestep as IC and predicting multiple future steps. We use the PDE parameter values in Table 6 for
our experiments with one fixed PDE parameter value, i.e., we train and test the models on the same
parameter.

PDE Timesteps Spatial res. PDE parameters
1D Burgers 41 256 ν = 0.001

1D Advection 41 256 β = 0.1
1D CNS 41 256 η = ζ = 0.007

2D CNS 21 64× 64 η = ζ = 0.01

3D CNS 11 32× 32× 32 η = ζ = 10−8

Table 6: Fixed PDE parameters used in our experiments with a fixed PDE parameter value.

Table 7 shows the combinations of PDE parameter values used in our experiments for the multiple
parameters setting. In this case, we train the models on a set of PDE parameter values (seen) and test
it on a different set of PDE parameter values (unseen) with the aim to test the model’s generalization
capabilities on this aspect.

PDE Training Set Parameters (seen) Test Set Parameters (unseen)
1D Burgers ν = (0.002, 0.004, 0.02, 0.04, 0.2, 0.4, 2.0) ν = (0.001, 0.01, 0.1, 1.0, 4.0)

1D Advection β = (0.2, 0.4, 0.7, 2.0, 4.0) β = (0.1, 1.0, 7.0)
1D CNS η = ζ = (10−8, 0.001, 0.004, 0.01, 0.04, 0.1) η = ζ = (0.007, 0.07)

Table 7: Exemplary set of PDE parameters used in our experiments with multiple PDE parameters.

E.2 MODEL’S HYPERPARAMETERS

Tables 8, 9 and 10 list the used hyperparameters for the baselines and our proposed VCNeF model.
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E.3 EVALUATION METRICS

We use the normalized RMSE (nRSME) and boundary RMSE (bRMSE) from PDEBench
(Takamoto et al., 2022) as metrics to evaluate the models.

Normalized RMSE (nRMSE). The normalized RMSE ensures the independence of the different
scales. The channels of PDEs with multiple channels are often on different scales (e.g., one channel
consists of values with small magnitudes while another channel consists of values with large mag-
nitudes). Additionally, the scale of a single channel usually changes when the time-dependent PDE
evolves in time (e.g., large magnitudes at the beginning of the trajectory decaying to small magni-
tudes at the end). nRMSE is independent of these scaling effects and provides a good metric for the
global and local performance of the ML model. Let y ∈ RNt×s×c be the ground truth trajectory and
ŷ ∈ Rs the model’s prediction where Nt denotes the length, s = sx · sy · . . . the spatial points per
timestep, and c the number of channels of the PDE. Then, the per-sample nRMSE is defined as

relativeError(t, ci) =
∥yt,·,ci − ŷt,·,ci∥2

∥yt,·,ci∥2
∈ R

nRMSE =
1

Nt · c

Nt∑
t=1

c∑
i=1

relativeError(t, i) ∈ R
(12)

Boundary RMSE (bRMSE). The RMSE on the boundaries of the spatial domain quantifies
whether the boundary condition can be learned or not. Let y ∈ RNt×sx×c be the ground truth
trajectory of a 1D PDE and ŷ ∈ RNt×sx×c the model’s prediction where Nt denotes the length,
sx denotes the number of points for the x-axis, and c the number of channels of the PDE under
consideration. Then, the per-sample bRMSE is defined as

boundaryError(t, ci) =

√
(yt,1,ci − ŷt,1,ci)

2 + (yt,s,ci − ŷt,s,ci)
2

2
∈ R

bRMSE =
1

Nt · c

Nt∑
t=1

c∑
i=1

boundaryError(t, i) ∈ R
(13)

F ADDITIONAL EXPERIMENTAL RESULTS

This section contains additional results of the experiments. We train all models on two different
initializations and provide the mean and standard deviations of the runs. Similar to the main section
in the main paper, we structure the results to answer the four research questions.

F.1 (RQ1): COMPARISON WITH BASELINES

The Tables 11, 12, 13, 14, and 15 show the metrics with standard deviations for the chosen PDEs
and models.

Model nRMSE (↓) bRMSE (↓)

FNO 0.0987±0.0004 0.0225±0.0006

MP-PDE 0.3046±0.0004 0.0725±0.0014

CORAL 0.2221±0.0108 0.0515±0.0001

Galerkin 0.1651±0.0044 0.0366±0.0012

OFormer 0.1035±0.0059 0.0215±0.0009

VCNeF 0.0824±0.0004 0.0228±0.0003

Table 11: Normalized RMSE (nRMSE) and
RMSE at the boundaries (bRMSE) of base-
lines and proposed model for the 1D Burg-
ers’ equation with ν = 0.001.

Model nRMSE (↓) bRMSE (↓)

FNO 0.0190±0.0003 0.0239±0.0002

MP-PDE 0.0195±0.0011 0.0283±0.0022

CORAL 0.0198±0.0031 0.0127±0.0014

Galerkin 0.0621±0.0024 0.0349±0.0011

OFormer 0.0118±0.0012 0.0073±0.0008

VCNeF 0.0165±0.0007 0.0088±0.0003

Table 12: Normalized RMSE (nRMSE) and
RMSE at the boundaries (bRMSE) of base-
lines and proposed model for the 1D Advec-
tion equation with β = 0.1.
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Model nRMSE (↓) bRMSE (↓)

FNO 0.5722±0.0244 1.9797±0.0029

CORAL 0.5993±0.1014 1.5908±0.1341

Galerkin 0.7019±0.0002 3.0143±0.0112

OFormer 0.4415±0.0115 2.0478±0.0581

VCNeF 0.2943±0.0034 1.3496±0.0254

Table 13: Normalized RMSE (nRMSE) and
RMSE at the boundaries (bRMSE) of base-
lines and proposed model for the 1D CNS
equation with η = ζ = 0.007.

Model nRMSE (↓) bRMSE (↓)

FNO 0.5625±0.0015 0.2332±0.0001

Galerkin 0.6702±0.0036 0.8219±0.0043

VCNeF 0.1994±0.0086 0.0904±0.0036

Table 14: Normalized RMSE (nRMSE) and
RMSE at the boundaries (bRMSE) of base-
lines and proposed model for the 2D CNS
equation with η = ζ = 0.01.

Model nRMSE (↓) bRMSE (↓)

FNO 0.8138±0.0007 6.0407±0.0493

VCNeF 0.7086±0.0005 4.8922±0.0077

Table 15: Normalized RMSE (nRMSE) and RMSE at the boundaries (bRMSE) of baselines and
proposed model for the 3D CNS equation with η = ζ = 10−8.

F.2 (RQ2): GENERALIZATION TO UNSEEN PDE PARAMETER VALUES

We test VCNeF’s generalization capabilities to unseen PDE parameter values by training it on a set
of PDE parameter values and testing it on a different set of unseen PDE parameter values. We use
cFNO (Takamoto et al., 2023) and cOFormer as the state-of-the-art baselines. Both models have
been adapted to encode the PDE parameter as an additional input channel. Figures 5 and 6 show the
error distribution over the corresponding PDE parameter values and test sets.
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Figure 5: Error distribution of samples in the test set of 1D Burgers. Boldfaced are the unseen PDE
parameter values.
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Figure 6: Error distribution of samples in the test set of 1D Advection. Boldfaced are the unseen
PDE parameter values. Values for cOFormer and β = 7.0 are missing since the model produced
NaN at inference time.

F.3 (RQ3): TEMPORAL AND SPATIAL ZSSR

Here we discuss the spatial and temporal zero-shot super-resolution capabilities of VCNeF and
compare it with FNO and OFormer for spatial ZSSR. As for the temporal ZSSR, we chose CORAL
since it is a continuous-time model, and FNO+Interpolation because FNO does not support temporal
ZSSR. Table 16 shows the errors for the spatial ZSSR experiment and Table 17 for the temporal
ZSSR experiment.
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PDE Spatial resolution s Model nRMSE (↓) bRMSE (↓)

Burgers

FNO 0.0987 0.0225
OFormer 0.1035 0.0215256
VCNeF 0.0824 0.0228

512
FNO 0.2557 0.0566
OFormer 0.1092 0.0228
VCNeF 0.0832 0.0229

1024
FNO 0.3488 0.0766
OFormer 0.1102 0.0233
VCNeF 0.0839 0.0230

1D CNS

FNO 0.5722 1.9797
OFormer 0.4415 2.0478256
VCNeF 0.2943 1.3496

512
FNO 0.6610 2.7683
OFormer 0.4657 2.5618
VCNeF 0.2943 1.3502

1024
FNO 0.7320 3.5258
OFormer 0.4655 2.5526
VCNeF 0.2943 1.3510

2D CNS

FNO 0.5625 0.2332
64× 64 VCNeF 0.1994 0.0904

128× 128
FNO 0.8693 2.3944
VCNeF 0.4016 0.2280

3D CNS

FNO 0.8138 6.0407
32× 32× 32 VCNeF 0.7086 4.8922

64× 64× 64
FNO 0.9452 8.7068
VCNeF 0.7228 5.1495

128× 128× 128
FNO 1.0077 9.8633
VCNeF 0.7270 5.3208

Table 16: Errors of spatial ZSSR experiment. The models are trained on the spatial resolutions
indicated in grey and tested on higher spatial resolutions. The temporal resolution is Nt = 41 for
1D, Nt = 21 for 2D, and Nt = 11 for 3D (same as during training). Underlined values indicate the
second-best errors.
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PDE Temporal resolution Nt Model nRMSE (↓) bRMSE (↓)

Burgers

FNO 0.0987 0.0225
CORAL 0.2221 0.051541
VCNeF 0.0824 0.0228

101
FNO + Interp. 0.1116 0.0279
CORAL 0.5298 0.1682
VCNeF 0.0829 0.0234

201
FNO + Interp. 0.1154 0.0294
CORAL 0.6186 0.2013
VCNeF 0.0831 0.0236

Advection

FNO 0.0190 0.0239
CORAL 0.0198 0.012741
VCNeF 0.0165 0.0088

101
FNO + Interp. 0.0234 0.0242
CORAL 0.8970 0.4770
VCNeF 0.0165 0.0088

201
FNO + Interp. 0.0258 0.0247
CORAL 0.9656 0.5376
VCNeF 0.0165 0.0088

1D CNS

FNO 0.5722 1.9797
CORAL 0.5993 1.590841
VCNeF 0.2943 1.3496

82
FNO + Interp. 0.5667 1.9639
CORAL 1.1524 3.7960
VCNeF 0.2965 1.3741

3D CNS

FNO 0.8138 6.040711 VCNeF 0.7086 4.8922

21 FNO + Interp. 0.8099 6.1938
VCNeF 0.7106 5.1446

Table 17: Errors for temporal ZSSR. The models are trained on the temporal resolutions indicated
in grey and tested on higher temporal resolutions. The spatial resolution is s = 256 for 1D and
s = 64 × 64 × 64 for 3D (same as during training). “FNO + Interp.” means FNO with linear
interpolation between the timesteps since it doesn’t naturally support temporal ZSSR. Underlined
values indicate the second-best errors.
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F.4 (RQ4): INFERENCE TIMES

In traditional numerical solvers, the simulation time of trajectories of a given PDE is influenced by
several factors such as the value of PDE parameter, efficiency of software implementation, the type
and order of numerical algorithm, fineness of discretization meshes, length of the domain, and so
on. On the contrary, inference (simulation) time of ML models is agnostic to these factors, which is
one of the huge advantages of machine-learned PDE surrogates.

To compare and understand the time consumed for longer rollouts, we visualize the inference times
of VCNeF, FNO, Galkerin Transformer, and OFormer models. Figure 7 shows the scaling be-
haviour of the inference times for a variable number of timesteps in the future {80, 120, 160, 200,
240}. Table 18 includes the memory consumption in addition to the inference times. The results
demonstrate that the inference times of the proposed VCNeF model scale better when compared to
other transformer-based baselines and are competitive with FNO. However, the speed-up results in
a higher memory consumption. The model can also be used to do inference in a sequential fash-
ion which reduces the memory consumption but increases the inference time. Nevertheless, it is
still faster than OFormer while the memory requirement remains the same even for extended rollout
durations making it as a strong contender among the transformer-based neural PDE solvers.
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Figure 7: Inference times of the listed models predicting different numbers of timesteps in the future
with a fixed spatial resolution of s = 256 on 1D Burgers.
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Prediction Steps Model Inference Time [ms] GPU Memory
Consumption [MiB]

40

FNO 917.77 ±2.51 716
Galerkin 2415.99 ±54.56 632
OFormer 6025.75 ±12.75 990
VCNeF 2244.04 ±6.65 4724
VCNeF sequential 4853.17 ±75.29 644

80

FNO 1912.19 ±56.03 716
Galerkin 4940.80 ±89.44 632
OFormer 12081.98 ±19.39 990
VCNeF 4422.65 ±4.11 9284
VCNeF sequential 9701.80 ±84.48 644

120

FNO 2808.04 ±82.22 716
Galerkin 7908.18 ±96.52 644
OFormer 17965.47 ±14.19 988
VCNeF 6606.41 ±3.00 13638
VCNeF sequential 14577.00 ±112.83 644

160

FNO 3733.10 ±62.94 716
Galerkin 10295.78 ±116.50 644
OFormer 24108.24 ±6.45 990
VCNeF 6084.04 ±9.37 18871
VCNeF sequential 19449.80 ±113.73 644

200

FNO 4614.21 ±97.52 718
Galerkin 13151.47 ±93.95 644
OFormer 29986.81 ±6.35 990
VCNeF 7584.48 ±1.86 22328
VCNeF sequential 24252.38 ±101.41 644

240

FNO 5572.07 ±109.23 716
Galerkin 15600.60 ±262.51 644
OFormer 35900.51 ±6.71 988
VCNeF 8935.28 ±7.08 26662
VCNeF sequential 29063.89 ±79.58 668

Table 18: Inference times and GPU memory consumptions of different models trained and evalu-
ated on the 1D Burgers’ equation with a spatial resolution of 256, predicting different numbers of
timesteps in future.

G QUALITATIVE RESULTS

Here we provide a comparison of visualizations of the predictions vs ground truth for 1D Advection,
Burgers, and 2D Compressible Navier-Stokes PDEs. The 2D CNS dataset has four channels, namely
density, velocity-x, velocity-y, and pressure, and we visualize the predictions of our VCNeF model
with the ground truth data.
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Figure 8: Example prediction’s of VCNeF for 1D Burgers with Nt = 41 and s = 256 spatial
resolution.
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Figure 9: Example prediction of VCNeF for 1D Burgers with Nt = 41 and s = 256 spatial resolu-
tion.
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Figure 10: Example prediction of VCNeF for 1D Advection with Nt = 41 and s = 256 spatial
resolution.
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Figure 11: Example prediction of VCNeF for 1D Advection with Nt = 41 and s = 256 spatial
resolution.
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Figure 12: Example prediction of VCNeF for the density channel of 2D compressible Navier-Stokes
with Nt = 21 and 64× 64 spatial resolution.

29



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Gr
ou

nd
 Tr

ut
h

t0 t4 t8 t12 t16 t20

Pr
ed

ict
io

ns
Ab

s. 
Er

ro
rs

9.5

10.0

10.5

11.0

0.05

0.10

2D Compressible Navier-Stokes, Pressure p, PDE Parameters = = 0.01

Figure 13: Example prediction of VCNeF for the pressure channel of 2D compressible Navier-
Stokes with Nt = 21 and 64× 64 spatial resolution.
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Figure 14: Example prediction of VCNeF for the velocity in x-direction of 2D compressible Navier-
Stokes with Nt = 21 and 64× 64 spatial resolution.
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Figure 15: Example prediction of VCNeF for the velocity in y-direction of 2D compressible Navier-
Stokes with Nt = 21 and 64× 64 spatial resolution.
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H TABLE OF NOTATIONS AND MATHEMATICAL SYMBOLS

LIST OF MATHEMATICAL SYMBOLS

The below tabulation describes several symbols that are used within the article.

R+ Set of positive real numbers. Specifically, t ∈ (0, T]
Rs×D Spatial grid of size s and dimensionality D

∇ Gradient or vector derivative operator ( ∂
∂x , ∂

∂y ,)

∆ Laplacian (∇2)
∂t Partial derivative with respect to t

∂x Partial derivative with respect to x

u(t, x) Solution of the PDE at time t for a given x

v Velocity vector field (x, y, . . . )
p PDE parameter values, either a scalar or vector
fθ Neural network with learnable parameters θ

Nt Total number of timesteps in the simulation
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