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Abstract

Large language models (LLMs) pretrained on extensive general corpora, such
as GPT-4 and Llama series, have shown exceptional performance across a wide
range of natural language processing (NLP) tasks. These models provide a user-
friendly and efficient interface that aligns well with user preferences through
natural language instructions. Despite these advances, the application of LLMs in
biomolecular sciences, particularly in protein-related research, remains constrained,
with the boundaries of their capabilities yet to be fully explored. To bridge this gap,
we present Open Protein Instructions (OPI), a comprehensive dataset containing
over 1.64M instruction-tuning samples (98.38% training, 1.62% testing) dedicated
to protein research. OPI enables LLMs to perform a broad array of protein-related
tasks efficiently and cost-effectively. Experimental evaluations across three task
categories—sequence understanding (SU), annotation prediction (AP), and knowl-
edge mining (KM)—demonstrate OPI’s effectiveness in adapting LLMs to protein-
specific applications. Our findings support the feasibility of leveraging LLMs for
biomolecular research through instruction tuning. Data, codes, and instruction-
tuned models are publicly available at https://github.com/baaihealth/opi
to advance research in this field.

1 Introduction

Large Language Models (LLMs) such as GPT-4[OpenAI, 2023] and the Llama series[Dubey et al.,
2024] have shown exceptional performance across a wide range of natural language processing (NLP)
tasks[Tamkin et al., 2021, Zhao et al., 2023]. These models can serve as general assistants to follow
instructions[Wu et al., 2023], adept at addressing various tasks. Furthermore, this capability suggests
tremendous potential for applying LLMs to tackle complex scientific challenges[Jablonka et al., 2023].
Preliminary research has indicated that LLMs, like GPT-4, possess extensive domain knowledge and
strong predictive abilities in scientific fields like drug discovery and materials design[Sharma and
Thakur, 2023, Blanco-Gonzalez et al., 2023, Pradhan et al., 2024]. Their proficiency in problem-
solving and knowledge integration is impressive[Hu et al., 2023]. Recent years have witnessed great
promise of LLMs in the field of biomedical domain, such as analysing vast amounts of literature
and patents for drug discovery[Rane, 2023], or improving the design and implementation of clinical
trials[Zhang et al., 2024].
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However, LLMs still struggle to provide highly accurate and reliable results[Meyer et al., 2023,
Yang et al., 2024], particularly in complex scientific scenarios like biology and computational chem-
istry[AI4Science and Quantum, 2023]. These challenges mainly arise from the inherent complexity
and scarcity of domain-specific scientific data, leading to limited ability of pre-trained LLMs in these
specialized fields. Therefore, this underscores the significance of developing well-designed datasets
and methodologies to incorporate specialized domain knowledge into LLMs and to enhance their
adaptability and ability to diverse scientific challenges.

Some previous studies have demonstrated that instruction tuning can further enhance LLMs’ per-
formance in biomolecular tasks by integrating and understanding diverse data types, including
biomolecular sequences, structures, and functional texts[Pei et al., 2024, Fang et al., 2024]. This
allows LLMs for a comprehensive analysis of biomolecular mechanisms[Feng et al., 2024], such
as enzyme catalysis and gene regulation, etc. By leveraging these capabilities, LLMs can aid in
understanding complex biological processes, elucidate mechanisms underlying disease states. Despite
these advancements, the capabilities of LLMs in handling diverse protein-related tasks remain limited.
A major challenge is the lack of comprehensive instruction datasets specifically designed for tasks
related to protein biology. Existing work fall short in capturing the full diversity and complexity of
protein data, which hinders the effective application and optimization of LLMs in this domain. This
gap underscores a significant limitation in the current LLM landscape, highlighting the importance for
the development of specialized and exhaustive protein instruction datasets. Addressing this challenge
is crucial for enabling LLMs to be fully adapted and effectively utilized in the study of protein
biology.

In this study, we created an instruction dataset for protein biology, Open Protein Instructions (OPI),
which is suitable for a range of protein-related tasks, including sequence understanding(SU),
annotation prediction(AP), and knowledge mining(KM). OPI is able to adapt open-source LLMs
to these protein-related tasks via instruction tuning. Comprehensive experiments demonstrate that the
OPI-tuned LLMs exhibit decent performance on diverse evaluation tasks. Main contributions of the
work go as follows:

I. To the best of our knowledge, OPI is the largest protein instruction dataset to date with over 1.64M
samples. This diverse dataset is designed to evaluate, adapt and enhance LLMs in a wide range of
protein-related tasks.

II. Comprehensive experiments based on OPI, uncover valuable insights that OPI could effectively
enhance LLMs’ understanding of diverse protein-related data, enabling reasoning about protein
domain knowledge and further solving protein-related tasks.

III. All materials pertinent to this study, including datasets, source codes, and fine-tuned models
utilizing OPI, have been made publicly accessible.

We anticipate that the findings of this study will significantly contribute to advancing the field of
computational biology driven by LLMs, fostering further innovation and collaboration within the
scientific community.

2 Related work

Recent advancements in natural language processing (NLP) have been driven by the remarkable
performance of large language models (LLMs) like GPT-4[OpenAI, 2023], Llama series[Dubey et al.,
2024] and Galactica[Taylor et al., 2022] which excel across a wide range of tasks. The former two
models are primarily trained on large, general corpora, such as CommonCrawl*; whereas Galactica
is predominantly pre-trained on scientific literature, including academic papers and textbooks, etc.
Despite their advancements, pre-trained LLMs still encounter challenges when handling diverse tasks
across various domains if they do not undergo domain adaptation. Consequently, it is necessary to
further enhance the capabilities of pre-trained LLMs for downstream tasks. There are three primary
strategies for this: fine-tuning[Howard and Ruder, 2018], prompt tuning[Brown et al., 2020, Li and
Liang, 2021, Lester et al., 2021] and instruction tuning[Wei et al., 2022]. Among these, instruction
tuning has increasingly become a standard practice, recognized for its remarkable effectiveness.
This method refines language models through the use of datasets annotated with natural language
instructions, thereby substantially enhancing the models’ generalization across a wide range of

*https://commoncrawl.org/
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tasks. To facilitate these advancements, several large-scale instruction tuning datasets have been
developed. Notable examples include Alpaca[Taori et al., 2023] employing self-instruct techniques
and COIG[Zhang et al., 2023] which focuses on instruction tuning in Chinese.

Recent studies have integrated LLMs into molecular biology to address critical challenges such as
drug discovery. And for further enhancement of LLM performance in molecular biology, particularly
in understanding biomolecular data, several instruction-tuning datasets have been developedFang
et al. [2024], Cao et al. [2023], Li et al. [2024], Shi et al. [2023], Wang et al. [2023], Jin et al. [2024].
However, most existing efforts focus on small molecules, covering tasks like molecular property
prediction[Li et al., 2024, Cao et al., 2023] and chemical reaction prediction[Shi et al., 2023]. Only a
few studies, such as Mol-Instructions[Fang et al., 2024], partially involve protein-related data with
only around 0.5M protein instructions, which is insufficient in scale to address the complexity of
protein-related scenarios.

3 Dataset construction and analysis

3.1 Construction process of OPI

The process of constructing the OPI dataset is depicted in Fig. 1. The first step involves extracting data
from various protein databases, which are subsequently divided into training and testing sets based on
a predefined ratio. For each evaluation task, we initially craft a set of task-specific instructions through
manual efforts. These initial instructions are then expanded into a larger set using the GPT-3.5 model
to generate additional task-specific examples (Step 1). Following this, each sample in the training
and testing sets is formatted into an instruction-based style, comprising an instruction, input, and
output (Step 2). The instruction for each sample is randomly selected from the pool generated in
Step 1. Ultimately, a total of 1.64M samples are constructed to form the complete OPI dataset, as
summarized in Fig. 2(a). Examples of training and testing data can be found in Appendix A.1.

Structured Protein DB

…
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Multi-modal Data 

Text-Text

Seq-Seq

MNPIVINRLQRKLGYTFNH

QELLQQALTHRSASSKHN

ERLEFLGDSILSYVIANALY

Seq-Text

Protein Sequence:

Function Annotation Text:

Digests  double-stranded RNA. 

Involved in the processing of 

primary rRNA transcript to yield 

the immediate precursors to the 

large and small rRNAs (23S and 

16S). Processes some mRNAs, 

and tRNAs when they are 

encoded in the rRNA operon. 

...

Give a detailed description about the function 

of the given protein sequence.

MNPIVINRLQRKLGYTFNHQELLQQALTH

RSASSKHNERLEFLGDSILSYVIANALY

Instruction:

Input:

Output:

Digests  double-stranded RNA. Involved in 

the processing of primary rRNA transcript 

to yield the immediate precursors to the 

large and small rRNAs (23S and 16S). 

Processes some mRNAs, and tRNAs when 

they are encoded in the rRNA operon. 

OPI

Instruction tuning 

with OPI

Figure 1: Construction of the OPI dataset involves several key steps. First, essential protein
information from databases such as UniProt was extracted. This information is then transformed into
an “Instruction-Input-Output” format to create the OPI dataset. The dataset is subsequently used to
fine-tune LLMs like Galactica and Llama.

3.2 Distribution analysis of OPI

Fig. 2(b) highlights distinct differences in protein sequence length distributions across tasks. These
variations in sequence length distributions suggest that OPI holds a good quality of sequence length
range. This characteristic may affect model performance, as models trained on shorter sequences
may not generalize well to longer ones. Ensuring that the model is robust across the full spectrum
of protein lengths is critical for achieving reliable performance during evaluation. Further analysis
of the label count distribution and function description length variation can be found in Fig. 5 in
Appendix A.6.
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Figure 2: a. Distribution of the full OPI dataset, comprising over 1.64M samples (training:
1,615,661, testing: 26,607). b. Comparison of protein sequence length distributions across nine
tasks, showing variations between training and testing sets.

4 Experimental design

This study is critical for advancing our understanding of how LLMs can be leveraged in protein
biology. By systematically evaluating LLMs across three key categories of tasks—sequence un-
derstanding, annotation prediction, and knowledge mining—we aim to uncover their strengths and
limitations in protein modeling. The two core research questions (Q1 and Q2) we investigate are
central to this endeavor: the capacity of base LLMs to generalize to protein-related tasks and the
efficacy of instruction tuning for them. On the one hand, it is vital to determine whether base
LLMs can successfully generalize to critical protein-related tasks. Addressing those tasks precisely
can substantially advance our understanding of biological processes and disease mechanisms. On
the other hand, assessing the effectiveness of instruction tuning offers insightful guidance to how
specialized training can improve model performance. These findings hold significant implications
for optimizing LLMs to address specific challenges in protein biology and related fields. Overall,
this study not only bridges a critical gap between LLMs and protein biology, but also contributes
to the development of user-friendly and efficient computational tools for biologists. By providing a
comprehensive evaluation of LLMs’ capabilities and the effect of instruction tuning with OPI, this
study offers a pathway toward more precise and impactful applications of LLMs in protein biology
and beyond. The two questions are as follows:

Q1: Could base LLMs be effectively generalized to protein-related tasks, such as predicting enzyme
commission (EC) numbers, gene ontology (GO) terms, and cancer types based on gene names?

Q2: Could instruction tuning enhance LLMs’ performance in protein-related tasks? Additionally,
how effectively do different base LLMs respond to instruction tuning?

4.1 Methods

LLMs have greatly advanced research, especially in the open-source community. The Llama series,
including the recently released Llama 3.1 models [Dubey et al., 2024], is noted for strong performance
across various tasks and is often fine-tuned through instruction tuning to adapt to new scenarios.
Galactica, the model trained for scientific domains, uses about 83% scientific data, including research
papers, databases, and biomolecular sequences. Unlike Galactica, Llama 3.1’s pre-training corpus is
different, with about half of it consisting of general knowledge (see Fig. 4 in Appendix A.2 for the
pre-training data summary). This study, therefore, concentrates on a comprehensive evaluation of
Galactica and Llama-3.1 models for protein modeling tasks, representing the non-instruct version in
the scientific domain and the instruct version in the natural language domain, respectively, to assess
their effectiveness and performance in this specialized area. This comprehensive and comparative
analysis aims to highlight the strengths and limitations of each model in the context of protein-related
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tasks, providing a thorough assessment of their relative performance and suitability. The experimental
design is outlined in Fig. 3. Candidate models for evaluation, including baseline models and OPI-
tuned models, are listed in Table 1. During the inference phase, only a single output is generated
for each model. Training and inference hyperparameters are detailed in Appendix A.3, and the
corresponding evaluation metrics for each task are introduced in Section 4.2.

LLMs Protein Biology Tasks Application

Sequence Understanding

Annotation Prediction

Knowledge Mining

LLaMA

(i) Instruction Tuning

with OPI

EC Number Fold Type Subcellular Localization

Keywords GO Terms Function 

gSymbol2Tissue gSymbol2Cancer gName2Cancer

OPI-LLMs

(ii) OPI-LLMs

?

Instruction Tuning with 

Natural Instructions

Figure 3: Experimental design outline. We begin by constructing the OPI dataset, which encom-
passes nine protein-related tasks, categorized into SU, AP and KM. Next, we use the training sets of
OPI to perform instruction tuning on the original models, resulting in OPI-tuned models. All models
are evaluated using the same testing sets. Following a thorough evaluation, these OPI-tuned models
are anticipated to be effective for protein question-answering tasks in a conversational format.

Table 1: Candidate baseline and OPI-tuned models. The table lists various models categorized
by their training approach. Baseline models include Galactica-6.7B and Llama-3.1-8B-Instruct.
OPI-tuned models include OPI-Galactica-6.7B and OPI-Llama-3.1-8B-Instruct, which have been
further finetuned on OPI training data.

Category Model Model Description

Baseline Models Galactica-6.7B Original model without instruction tuning
Llama-3.1-8B-Instruct Original instruction-tuned version of Llama-3.1-8B

OPI-tuned Models (ours) OPI-Galactica-6.7B Instruction-tuned Galactica-6.7B on OPI training data
OPI-Llama-3.1-8B-Instruct Continual instruction-tuned Llama-3.1-8B-Instruct on OPI training data

4.2 Evaluation task definition

This study aims to thoroughly explore and evaluate the capabilities of LLMs in protein modeling
by evaluating them on three categories of protein-related tasks: sequence understanding(SU),
annotation prediction(AP), and knowledge mining(KM). Details of the evaluation tasks are listed
in Table 2. These tasks are designed to systematically assess and reveal the potential of LLMs in
the field of protein. Specifically, we have developed nine evaluation tasks, with three tasks for each
category. Our evaluation addresses two critical questions (Q1 and Q2 introduced at the beginning of
Section 4) regarding the application of LLMs to protein modeling. For insights into the significance
of designing each task, see Appendix A.4.

4.2.1 Sequence understanding

[Rationale for task design] The SU evaluation aims to predict protein properties related to structure
or function based on protein sequences. Unlike traditional regression or classification approaches,
LLMs can generate textual results directly from relevant instructions. The goal of SU evaluation is
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Table 2: Evaluation tasks, training/testing sets and metrics. The evaluation tasks are catego-
rized into three types: SU, AP and KM. For each task, the specific training set size, testing set
size, and corresponding evaluation metric used is indicated. Metrics include precision, recall, F1
(see Appendix A.5 for the calculation formulas), accuracy, and ROUGE-L, as appropriate for the
corresponding tasks. The input and label for each task is exampled in Appendix A.6.

Task category Task name Training set size Testing set size Metrics

SU 4.2.1
EC number prediction 227,362 392(N), 149(P) Precision, Recall and F1
Fold type prediction 12,311 718(Fo), 1254(S), 1272(Fa) Accuracy
Subcellular localization prediction 11,230 2,772 Accuracy

AP 4.2.2
Keywords prediction 451,618 184(C), 1,112(I), 4,562(U) Precision, Recall and F1
GO terms prediction 451,618 184(C), 1,112(I), 4,562(U) Precision, Recall and F1
Function prediction 451,618 184(C), 1,112(I), 4,562(U) ROUGE-L[Lin, 2004]

KM 4.2.3
Tissue location prediction from gene symbol 8,723 2,181 Precision, Recall and F1
Cancer prediction from gene symbol 590 148 Precision, Recall and F1
Cancer prediction from gene name 590 148 Precision, Recall and F1

* N: NEW-392, P: Price-149, Fo: Fold, S: Superfamily, Fa: Family, C: CASPSimilarSeq, I: IDFilterSeq, U:
UniprotSeq.

to assess the sequence modeling capabilities of LLMs. This evaluation comprises three tasks: EC
number prediction, fold type prediction, and subcellular localization prediction.

I. EC number prediction

Enzymes are crucial proteins involved in various biological processes. The Enzyme Commission
(EC) number system classifies enzymes into thousands of categories based on their catalytic functions,
using a four-digit format (e.g., 3.4.11.4). The training and testing datasets for this task are sourced
from CLEAN’s dataset [Yu et al., 2023], which is derived from the Swiss-Prot database [Boutet et al.,
2007].

II. Fold type prediction

Protein folding refers to the classification of protein tertiary structures. Proteins with similar fold
types may have significant variations in sequence identity. Typically, fold type prediction relies on
models that map sequences to structures, assigning fold types from a set of 1,195 categories. The
training and testing sets are taken from Hou’s dataset [Hou et al., 2018], which is based on the SCOPE
1.75 database [Fox et al., 2014]. This study includes three testing set types: fold level, superfamily
level, and family level (see Appendix A.7 for detailed explanations). For instance, the fold level
testing set is constructed by excluding entire superfamilies from the original dataset, making this task
also relevant for remote homology detection [Rao et al., 2019], which evaluates the model’s ability to
learn evolutionary relationships from distant homologous sequences.

III. Subcellular localization prediction

This task involves predicting the location of natural proteins within eukaryotic cells, with categories
such as nucleus, cytoplasm, and membrane. The training and testing datasets are obtained from
DeepLoc [Almagro Armenteros et al., 2017], which is extracted from the UniProt database. DeepLoc
clusters sequences based on 30% sequence identity and divides the dataset into five parts with
balanced numbers of sequences. Four parts are used for training and one part for testing.

4.2.2 Annotation prediction

[Rationale for Task design] Protein sequence and biological text are two critical information sources
in protein biology. While significant research has focused on modeling these sources separately,
there has been less emphasis on their joint modeling. The main challenge in integrating diverse
protein information lies in establishing a unified multi-modal data representation, as different protein
databases store data in varied formats, such as knowledge graphs [Zhang et al., 2022a] and tabular
structures [Uhlen et al., 2010]. To address this challenge, we developed the AP evaluation to assess
the ability of LLMs to jointly model protein sequence and text. The AP evaluation comprises three
tasks: keywords prediction, GO terms prediction, and function prediction. Datasets for these
tasks are created using a consistent pipeline. In order to evaluate the ability of LLMs comprehensively,
we constructed three hold-out testing sets, similiar to those in [Taylor et al., 2022], with varying
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criteria: CASPSimilarSeq, IDFilterSeq, and UniProtSeq (see Appendix A.8 for details on dataset
construction).

I. Keywords prediction

Function keywords are used to summarize protein annotations in UniProt, categorized into ten types
(e.g., biological process and molecular function) †. These keywords encapsulate protein properties
through a controlled vocabulary, facilitating efficient retrieval of relevant protein sequences. This
task involves multi-label prediction.

II. GO terms prediction

The Gene Ontology (GO) project provides a structured vocabulary to describe biological knowledge
across three domains: biological processes, cellular components, and molecular functions (see
Appendix A.9 for a comparison of GO terms and function keywords). We use GO terms from the
Swiss-Prot database, where each term is manually mapped from the Gene Ontology knowledge
base ‡.

III. Function prediction

This task evaluates the model’s ability to generate relevant biological descriptions based on protein
sequences. The dataset is constructed by pairing protein sequences with their descriptions, both
sourced from the Swiss-Prot database. These descriptions detail the properties and functions of
proteins in human-readable text §.

4.2.3 Knowledge mining

[Rationale for task design] Recent advancements in NLP have demonstrated the impressive capa-
bilities of LLMs in tasks such as reading comprehension, natural language inference, and question-
answering. These successes can be attributed to LLMs’ ability to store, integrate, and reason about
vast amounts of knowledge [Taylor et al., 2022]. Unlike traditional search engines or databases, LLMs
offer a novel interface for accessing and interpreting information. This capability motivates us to
explore the application of LLMs to protein biology, aiming to extract valuable insights from the exten-
sive protein databases and scientific literature accumulated over years of bioinformatics research. To
investigate this potential, we designed the KM evaluation, which focuses on assessing LLMs’ ability
to uncover useful knowledge from large volumes of protein information. The KM evaluation consists
of three tasks: tissue location prediction from gene symbols(gSymbol2Tissue), cancer prediction
from gene symbols(gSymbol2Cancer), and cancer prediction from gene names(gName2Tissue).

I. gSymbol2Tissue

This task involves predicting the expression locations of protein-coding genes (PCGs) in various
tissues and organs based on gene symbols. The dataset is sourced from the Human Protein Atlas
(HPA) ¶, a comprehensive human proteomics database. It includes 10,904 PCGs across 45 tissues,
with each gene associated with one or more expression locations. The dataset is divided into training
and testing sets in an 80:20 ratio.

II. gSymbol2Cancer

This task evaluates the model’s ability to identify cancer types associated with given gene symbols ||.
The dataset is derived from the Cancer Gene Census, which classifies genes based on their roles in
different cancers. It includes 738 records covering 420 cancer types, with 80% used for training and
20% for testing. The input is a gene symbol (e.g., ATRX), and the target is the associated cancer
names (e.g., lung cancer, T-ALL).

III. gName2Tissue

†https://www.uniprot.org/help/keywords
‡http://geneontology.org/
§https://www.uniprot.org/help/general_annotation
¶https://www.proteinatlas.org/humanproteome/tissue
||The terms Gene Symbol and Gene Name are adopted from the Human Gene Database (https://www.

genecards.org/). For example, CPEB3 is the gene symbol and its gene name is Cytoplasmic Polyadenylation
Element Binding Protein 3.
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Similar to the previous task, this task assesses the model’s ability to predict cancer types based on
gene names rather than symbols. The dataset is the same as in the previous task, but the input consists
of full gene names (e.g., alpha thalassemia/mental retardation syndrome X-linked) instead of symbols.
The goal is to identify cancer names associated with these gene names.

5 Experimental results

This section provides comprehensive results of the experiments we have conducted. By analysing the
results, we conclude the following answers to Q1 and Q2 in Section 4:

A1: Overall, baseline Llama-3.1-8B-Instruct and Galactica-6.7B models demonstrate limited ef-
fectiveness in protein-related tasks, particularly in EC number prediction task (see Table 3), GO
terms prediction task (see Table 5) and three knowledge mining tasks (see Table 6). Additionally,
Galactica-6.7B exhibits slightly better performance compared to Llama-3.1-8B-Instruct in tasks such
as function prediction and keywords prediction (see Table 5). This enhancement is probably attributed
to Galactica’s pre-training on relevant corpus, which has significantly improved its capabilities in
these specific tasks. For more comparison of experimental results, please refer to Appendix A.10.

A2: Instruction tuning with OPI could notably enhance the performance of base LLMs in protein-
related tasks. Furthermore, different OPI-tuned LLMs exhibit varying performance, with OPI-
Galactica-6.7B outperforming OPI-full-1.61M-LaMA-3.1-8B-Instruct. Specifically, fine-tuning with
OPI equips baseline LLMs with competitive capabilities on the task of EC_number_NEW-392 (see
Table 3). For broader tasks like generating function descriptions or keywords based on sequences,
OPI significantly boosts baseline LLMs’ performance, enhancing the accuracy and depth of function
annotations, which is expected in turn to support protein biologists in their research and discovery
efforts (see Table 5). Additionally, OPI-tuned models, particularly OPI-Galactica-6.7B, have excelled
in all three knowledge mining tasks (see Table 6). This highlights the significant potential of special-
ized LLMs to assist biologists as effective research tools in advancing protein studies. Appendix A.12
showcases the accuracy and reliability of several state-of-the-art LLMs, such as GPT-4o and Claude
3.5 Sonnet, alongside the OPI-tuned model, highlighting the effectiveness of OPI in adapting LLMs
for protein-related tasks.

5.1 Evaluation results of sequence understanding tasks

Our experiments in SU tasks demonstrate that models tuned with OPI are effective at modeling
protein sequences. Based on the experimental results of EC number prediction shown in Table 3,
we found that the original Galactica-6.7B, and Llama-3.1-8B-Instruct models, which were not fine-
tuned using OPI, performed poorly on the EC number prediction task. This indicates that using the
original models directly for specific protein-related tasks does not yield effective prediction results. In
contrast, models fine-tuned with OPI showed some improvement on both testing datasets (Price-149
and NEW-392), but the overall scores fall behind existing models, such as CLEAN[Yu et al., 2023]
and ProteInfer[Sanderson et al., 2023]. This suggests that although instruction-tuning with OPI can
partially enhance the predictive ability of the models, further fine-tuning and optimization are required
to achieve better performance on this task. These results underscore the importance of task-specific
fine-tuning in improving model performance when applying LLMs in the life sciences domain.

To further investigate the capabilities and limitations of LLMs on protein-related tasks, we conducted
experiments on folding type prediction, a more complex structure-related SU task, and subcellular
localization prediction. As shown in Table 4, we design three different levels for fold type prediction
according to the sequence identity between the testing and training sets, which progressively decreases
from the Family level to the Superfamily level, and further to the Fold level. The performance of
OPI-tuned models degrades significantly on “out of distribution” sequences, particularly on the Fold
and Superfamily-level testing sets. Similarly, while the model shows some promise in subcellular
localization prediction, it still falls short compared to the current state-of-the-art. This suggests that
while instruction-tuned LLMs exhibit strong potential in protein-related tasks, they still encounter
challenges in more advanced predictive tasks, especially those involving complex structural variations.

5.2 Evaluation results of annotation prediction tasks

As shown in Table 5, in the tasks of keywords prediction, GO term prediction, and function predic-
tion, notable performance variations were observed across different testing sets: CASPSimilarSeq
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Table 3: Comparative evaluation results of EC number prediction task on testing sets Proce-149
and NEW-392. The dataset size for fine-tuning indicates the number of sequence-label pairs, whose
label is an EC number like 3.4.11.4. The original Galactica-6.7B and Llama-3.1-8B-Instruct models,
which were not fine-tuned by OPI, did not demonstrate predictive capability on the EC number
prediction task. This suggests that these models need further specific fine-tuning to improve their
performance on this task.

Model EC_number samples for fine-tuning Model Type
Price-149 NEW-392

Precision Recall F1 Precision Recall F1

CLEAN[Yu et al., 2023] 227,362 pLM 0.5844 0.4671 0.4947 0.5965 0.4811 0.4988
ProteInfer[Sanderson et al., 2023] 348,105 CNN 0.2434 0.1382 0.1662 0.4088 0.2843 0.3086
DeepEC[Ryu et al., 2019] 1,388,606 CNN 0.1184 0.0724 0.0846 0.2976 0.2167 0.2297
DEEPre[Li et al., 2017] 22,168 CNN, LSTM 0.0415 0.0403 0.0386 - - -
Galactica-6.7B - LLM - - - - - -
Llama-3.1-8B-Instruct - LLM - - - - - -
OPI-Galactica-6.7B 227,362 LLM 0.0268 0.0268 0.0268 0.2700 0.2663 0.2596
OPI-Llama-3.1-8B-Instruct 227,362 LLM 0.0738 0.0738 0.0738 0.3724 0.3374 0.3468

* pLM - Protein Language Model which is pre-trained with a large scale of protein sequence data.

Table 4: Comparative evaluation results (Accuracy) of fold type prediction and subcellular
localization prediction tasks. For information on the model architecture and the training procedure
of the vanilla Transformer and ESM-1b [Rives et al., 2021] fine-tuning details, please refer to
Appendix A.11. The results indicate that while instruction-tuning with OPI improves performance
in some instances, there is still a noticeable gap between the OPI-tuned models and the current
state-of-the-art.

Task name Testing set
w/o pretrain w/ pretrain

Literature SOTA OPI-Galactica-6.7B OPI-Llama-3.1-8B-Instruct
Transformer ESM-1b

Fold type prediction
Family level 0.55 0.94 0.92[Rao et al., 2019] 0.49 0.61

Superfamily level 0.11 0.49 0.43[Rao et al., 2019] 0.13 0.15
Fold level 0.09 0.28 0.26[Rao et al., 2019] 0.08 0.10

Subcellular localization prediction Hold-out 0.56 0.78 0.86[Xu et al., 2022] 0.78 0.42

(CSeq), IDFilterSeq (ISeq), and UniProtSeq (USeq). The Galactica-6.7B model demonstrated limited
effectiveness on the three tasks with the CSeq, ISeq, and USeq testing sets, particularly in the GO
term prediction task, where precision and F1 scores were not provided. Conversely, the Llama-3.1-
8B-Instruct model did not provide effective prediction for all the tree tasks. This limitation may
suggest potential issues related to data collection or model training for these tasks. Most notably,
the instruction-tuned models exhibited exceptional performance across all testing sets. The OPI-
Galactica-6.7B model achieved high precision, recall and F1 in function keywords prediction and GO
terms prediction tasks. Furthermore, in the function prediction task, the model excelled, with Rouge-L
scores consistently exceeding 0.7000 on all testing sets, highlighting its significant advantage in long
text generation tasks.

Table 5: Comparative evaluation of annotation prediction tasks. It presents a comprehensive
evaluation of the performance of various LLMs across three tasks on three distinct testing sets.

Model Testing data Keywords GO terms Function

Precision Recall F1 Precision Recall F1 Rouge-L

Galactica-6.7B
CSeq 0.1050 0.1640 0.1160 - - - 0.1490
ISeq 0.1270 0.2380 0.1570 - - - 0.1350
USeq 0.1250 0.2220 0.1500 - - - 0.1390

Llama-3.1-8B-Instruct
CSeq - - - - - - 0.0555
ISeq - - - - - - 0.0561
USeq - - - - - - 0.0610

OPI-Galactica-6.7B
CSeq 0.8120 0.7360 0.7643 0.7613 0.7492 0.7476 0.7430
ISeq 0.8377 0.8019 0.8070 0.7404 0.7274 0.7207 0.7014
USeq 0.8596 0.8196 0.8276 0.7638 0.7373 0.7358 0.7133

OPI-Llama-3.1-8B-Instruct
CSeq 0.4202 0.5057 0.4385 0.1113 0.0936 0.0990 0.7524
ISeq 0.6762 0.6905 0.6650 0.6686 0.6287 0.6304 0.4786
USeq 0.7606 0.7489 0.7374 0.7150 0.6897 0.6849 0.5144
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5.3 Evaluation results of knowledge mining tasks

As illustrated in Table 6, when assessing the tasks of gSymbol2Tissue, gSymbol2Cancer and
gName2Cancer, the original Galactica-6.7B model has no predictive ability for all testing sets,
which may imply that the model has certain limitations in these tasks. The Llama-3.1-8B-Instruct
model also fails providing predictive results for all testing sets, which may indicate that the model has
insufficiencies in data collection or model training for these tasks. In contrast, the OPI-tuned models
show significant performance improvements across all testing sets. Especially in the gSymbol2Tissue
testing set, both models achieve a recall of 0.9077 and 0.9356 respectively, indicating a high level
of recall capability in the task of tissue location prediction. However, in the gSymbol2Cancer and
gName2Cancer testing sets, the precision, Recall and F1 scores remain at a low level, indicating that
the models have limitations in cancer name prediction tasks.

Overall, the OPI-tuned models demonstrate good comprehensive performance in KM tasks, especially
achieving recall value higher than 0.9000 in tissue location prediction. These results suggest that by
instruction-tuning with OPI, LLMs can be well adapted to protein-related KM tasks. Future research
can further explore how to use these models to enhance the efficiency and accuracy of biomedical
information mining.

Table 6: Comparative evaluation results of knowledge mining tasks, including gSymbol2Tissue,
gSymbol2Cancer and gName2Cancer.

Model Evaluation task Precision Recall F1

Galactica-6.7B
gSymbol2Tissue - - -
gSymbol2Cancer - - -
gName2Cancer - - -

Llama-3.1-8B-Instruct
gSymbol2Tissue - - -
gSymbol2Cancer - - -
gName2Cancer - - -

OPI-Galactica-6.7B
gSymbol2Tissue 0.3917 0.9077 0.5303
gSymbol2Cancer 0.3555 0.3189 0.3229
gName2Cancer 0.2728 0.2554 0.2533

OPI-Llama-3.1-8B-Instruct
gSymbol2Tissue 0.4002 0.9356 0.5466
gSymbol2Cancer 0.2890 0.2701 0.2664
gName2Cancer 0.2786 0.2707 0.2659

6 Conclusion and future work

We conducted a comprehensive evaluation of LLMs in the context of protein modeling, encompassing
nine critical tasks, categorized into sequence understanding, annotation prediction, and knowledge
mining. This study developed the OPI dataset with over 1.64M samples — the largest high-quality
protein instruction dataset available to date to the best of our knowledge, and applied instruction
tuning to the original Galactica-6.7B and Llama-3.1-8B-Instruct models. Systematic assessments
revealed that the OPI-tuned models perform well in nine protein tasks. These findings not only
validate the exceptional quality of the OPI dataset but also highlight its critical role in advancing
research in instruction-based protein modeling using LLMs, which holds considerable significance
for the fields of protein biology. Moreover, this study points to some key areas for future exploration.
Further research should focus on expanding the scope of OPI to encompass more protein-related
tasks including protein engineering and protein design, and exploring multi-modal modeling that
integrates knowledge across multiple protein modalities (e.g, protein tertiary structure) and biomolec-
ular domains (e.g., DNA, RNA, small molecule). By continuing to develop and optimize such
methodologies, it is expected to offer a unified LLM-based tool for protein biology, enabling highly
accurate function prediction, de novo protein design, and ultimately, transformative advancements in
biomedical applications.
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A Appendix

A.1 Examples of training and testing data

A data sample follows a format of "Instruction-Input-Output". The “Input” and “Output” sections
consist of key information extracted directly from the Swiss-Prot protein database. The “Instruction”
is generated using ChatGPT based on a set of manually created seed instructions. For each protein
task, we develop a set of manual instructions, such as “What is the function of the protein sequence?”
To generate variations of these instructions, we prompt ChatGPT with requests like, “Could you
provide 30 alternative phrasings for ‘What is the function of the protein sequence?’ Please save each
variation in a .txt file, one per line without numbering.” We generate approximately 50 high-quality
variations for each instruction and manually verify their accuracy. Instructions are then randomly
assigned to each Input-Output pair.

An example of training data

"instruction": "What is the EC classification of the input protein sequence based on its
biological function?"
"input": "MGLVSSKKPDKEKPIKEKDKGQWSPLKVSAQDKDAPPLPPLVVFNHLTPPPPDE
HLDEDKHFVVALYDYTAMNDRDLQMLKGEKLQVLKGTGDWWLARSLVTGREGYVPSNF
VARVESLEMERWFFRSQGRKEAERQLLAPINKAGSFLIRESETNKGAFSLSVKDVTTQGELIK
HYKIRCLDEGGYYISPRITFPSLQALVQHYSKKGDGLCQRLTLPCVRPAPQNPWAQDEWEIP
RQSLRLVRKLGSGQFGEVWMGYYKNNMKVAIKTLKEGTMSPEAFLGEANVMKALQHERL
VRLYAVVTKEPIYIVTEYMARGCLLDFLKTDEGSRLSLPRLIDMSAQIAEGMAYIERMNSIHR
DLRAANILVSEALCCKIADFGLARIIDSEYTAQEGAKFPIKWTAPEAIHFGVFTIKADVWSFG
VLLMEVVTYGRVPYPGMSNPEVIRNLERGYRMPRPDTCPPELYRGVIAECWRSRPEERPTFE
FLQSVLEDFYTATERQYELQP"
"output": "2.7.10.2"

An example of testing data

{"id": "seed_task_0", "name": "EC number of price dataset from CLEAN", "instruction":
"Return the EC number of the protein sequence.", "instances": ["input": "MAIPPYPDFRSAA
FLRQHLRATMAFYDPVATDASGGQFHFFLDDGTVYNTHTRHLVSATRFVVTHAMLYRTTG
EARYQVGMRHALEFLRTAFLDPATGGYAWLIDWQDGRATVQDTTRHCYGMAFVMLAYA
RAYEAGVPEARVWLAEAFDTAEQHFWQPAAGLYADEASPDWQLTSYRGQNANMHACEA
MISAFRATGERRYIERAEQLAQGICQRQAALSDRTHAPAAEGWVWEHFHADWSVDWDYN
RHDRSNIFRPWGYQVGHQTEWAKLLLQLDALLPADWHLPCAQRLFDTAVERGWDAEHGG
LYYGMAPDGSICDDGKYHWVQAESMAAAAVLAVRTGDARYWQWYDRIWAYCWAHFVD
HEHGAWFRILHRDNRNTTREKSNAGKVDYHNMGACYDVLLWALDAPGFSKESRSAALGR
P", "output": "5.3.1.7"], "is_classification": false}

A.2 Pre-training data summary of Llama-3.1 and Galactica

As depicted in[?], the pre-training data of Llama-3.1 is composed with general knowledge tokens
(50%), mathematical and reasoning tokens (25%), code tokens (17%), and multilingual tokens (8%).
According to [Zhao et al., 2023], the pre-training dataset of Galactica is made up of scientific data
tokens (83%), Webpages tokens (10%) and Code tokens(7%). Their comparison is shown in Fig. 4.

A.3 Hyperparameters of experiments

Hyperparameters for the instruction-tuning and testing phases are summarized in Table 7.

A.4 Significance of designing each evaluation task

EC number prediction (SU): The EC number describes the catalytic function of enzymes, which is
a major class of protein that accelerates chemical reaction to maintain steady biological activities.
Through the study of enzyme catalytic function, we can further understand metabolic pathways and
accelerate designing new metabolic pathways[Finley et al., 2009], building genome-scale metabolic
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Figure 4: Comparison of the pre-training data summary of Llama-3.1 and Galactica.

Table 7: Hyperparameters for the instruction-tuning and testing phases.

Hyperparameters Instruction-tuning Testing
DeepSpeed ZeRO Stage 3 -

optimizer AdamW -
optimizer hyperparameters (β1,β2)=(0.9, 0.999), eps=1e-8 -

per_device_train_batch_size 4 -
gradient_accumulation_steps 4 -

gradient_checkpointing True -
learning rate 2e-5 -
weight decay 0.0 -
warmup ratio 0.03 -

lr scheduler type cosine -
training epochs 1 -

GPU 8*A100 1*A100
temperature - 0.2

top_k - 50
top_p - 0.75

num_beams - 1
max_new_tokens - 400

use_cache - True
do_sample - True

eos_token_id - tokenizer.eos_token_id
pad_token_id - tokenizer.pad_token_id

models of bacteria, archaea and eukarya[Gu et al., 2019] and annotating the fast-growing next
generation sequencing data[Kodama et al., 2012].

Fold type prediction (SU): Through fold type prediction task, we can inspect the capability of models
to identify structural similarities from distantly related sequences. It is of much significance in
numerous biological problems, such as finding novel sequences with similar structures but different
sequences (e.g., enzyme design[Liu et al., 2019]), and detecting distant homologous based functional
genes (e.g., antibiotic resistance genes[Tavares et al., 2013, Zhang et al., 2022b]).

Subcellular localization prediction (SU): Abnormal subcellular localization of proteins affects
their functions and are pathogenesis of many human diseases, like cardiovascular diseases and
cancers[Hung and Link, 2011]. Therefore, identifying the subcellular localization of proteins can
provide crucial clues to understand the mechanism of cellular actions and biomolecular interactions,
as well as identification for drug discovery[Thul et al., 2017].

Keywords prediction (AP): Basically, function keywords embody the summary of structures and
functions of a protein sequence, and have great potential to be utilized to mine potential functional
proteins from unannotated sequences.
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GO terms prediction (AP): As a widely-accepted sequence-functional classification scheme, GO
terms play a crucial role in many aspects of protein biology research, such as assigning functions
to protein domains and integrating proteomic information from different organisms[Schmidt et al.,
2014, Stalmach et al., 2022]. Currently, GO terms have been associated with many other biomedical
ontologies and have become fundamental to the application of computer science to biomedical
research.

Function prediction (AP): Function description provides the richest human-readable textual informa-
tion of a protein, describing in details the whole discovery process of this protein in the course of
bioinformatics development. Undoubtedly, the detailed function descriptions about proteins could
greatly assist practitioners in related research fields and accelerate the development of protein biology.

Tissue location prediction from gene symbol (KM): The location of proteins in human tissues
can further assist in revealing their functional properties, so they are reported by many proteomics
databases and biomedical literature, which can well show the information mining capabilities of
LLMs.

Cancer prediction from gene symbol and gene name (KM): Cancers are major threats to human
health, thus understanding the relationship between gene encoded proteins and the development of
cancers is quite important. For decades, researchers contribute lots of scientific insights about cancers
and proteins in numerous literature. Biomedical text mining is a long-term research topic, and this
task can evaluate the performance of LLMs in extracting knowledge from pre-training scientific
literatures.

A.5 Metrics for multi-label tasks

The multi-label task means that each sample has multiple corresponding labels. For the data set with
m samples, the Precision, Recall and F1 value are defined as follows:

Precision =
1

m

m∑
i=1

∣∣y(i) ∩ ŷ(i)
∣∣∣∣ŷ(i)∣∣

Recall =
1

m

m∑
i=1

∣∣y(i) ∩ ŷ(i)
∣∣∣∣y(i)∣∣

F1 =
1

m

m∑
i=1

2
∣∣y(i) ∩ ŷ(i)

∣∣∣∣y(i)∣∣+ ∣∣ŷ(i)∣∣
where y(i) is true labels of the i-th sample, and ŷ(i) is predicted labels.

A.6 Example of input and label for each task

As shown in Table 8, the tasks exhibit diverse input formats, with SU and AP tasks containing
protein sequences, while KM tasks take gene symbols or names as input. There are also variations
in label formats; for example, SU tasks involve numerical labels for EC number and fold type
prediction, while other tasks use character labels. This diversity in both input types and label formats
highlights the heterogeneous nature of the tasks, presenting distinct challenges for model design and
performance optimization across different prediction objectives.

Furthermore, Fig. 5 presents the distribution of label counts for tasks with multiple items per label, as
well as the variation in description length for the function prediction task. Tasks with single-label
samples or predominantly single-label distributions are excluded from this figure. Notably, the tasks
of keyword prediction, GO term prediction, and gSymbol2Tissue contain a significant proportion of
samples with more than five items per label, underscoring the complexity of these tasks. Furthermore,
the majority of samples in the function description task contain over 25 words, indicating the presence
of rich and detailed information in the descriptions.
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Table 8: Example of input and label for each task. In SU and AP, the input data contain protein
sequences, while in KM, they contain gene symbols or names. Each task is associated with specific
labels format, such as numerical labels for EC number and fold type prediction, and character labels
for subcellular localization prediction in SU, as well as all tasks in AP and KM.

Task category Task name Input Label

SU 4.2.1
EC number prediction Protein sequence 2.7.10.2
Fold type prediction Protein sequence 10
Subcellular localization prediction Protein sequence membrane

AP 4.2.2
Keywords prediction Protein sequence

Chloroplast;DNA-directedRNApolymerase;Meta
l-binding;Nucleotidyltransferase;Plastid;Transcri
ption;Transferase;Zinc

GO terms prediction Protein sequence plasma membrane; alpha,alpha-trehalase activity;
trehalase activity; trehalose catabolic process

Function prediction Protein sequence
SpecificallycatalyzesthedecarboxylationofL-argi
ninetoagmatine.HasnoS-adenosylmethioninedeca
rboxylase(AdoMetDC)activity.

KM 4.2.3
gSymbol2Tissue Gene symbol bone marrow; lymph node; oral mucosa; spleen
gSymbol2Cancer Gene symbol peripheral T-cell lymphoma
gName2Cancer Gene name acute megakaryocytic leukaemia; ETP ALL

Figure 5: Label count distribution and function description length variation in multi-label tasks.
Tasks with single-label samples or predominantly single-label distributions are excluded from this
figure.

A.7 Detailed explanation for the testing set of fold type prediction task

A protein fold type can be further subdivided into superfamilies, wherein all members share evolu-
tionary relationships and a common ancestor. Further, each superfamily is classified into families
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based on sequence identity. In this study, we employ three testing sets at different hierarchical levels:
fold level, superfamily level, and family level. The fold-level testing set ensures that sequences from
the testing set do not share any superfamily-level overlap with the training set by holding out entire
superfamilies exclusively for testing. Similarly, the superfamily-level testing set guarantees that there
is no intersection at the family level between the training and testing sets. For the family-level testing
set, 20% of sequences within each family are allocated to the testing set, ensuring a more nuanced
evaluation of model performance.

Among these, the fold-level testing set presents the greatest challenge due to its minimal similarity to
the training set, followed by the superfamily level. The family-level testing set, on the other hand,
maintains the highest degree of similarity to the training data, allowing for consistency in evaluation.
This hierarchical approach enables a thorough assessment of model generalization across different
levels of protein sequence similarity and evolutionary relationships.

A.8 Dataset construction details of the annotation prediction tasks

Our dataset is constructed employing Swiss-Port database including 565,861 samples (data as
of January 2022, which is officially named 2022_01 relsease in UniProtKB/Swiss-Prot protein
knowledgebase **). The function keywords, go terms and function description of some protein
sequences are missing. Therefore, we delete the samples where one of them is empty, and finally
filter our dataset to 457,476 samples, called Swiss-Port-all. Next, three testing sets are hold-out from
it through three steps, and the last remaining samples are used as the training set.

Step 1: Compared to 51 target sequences released by CASP14, the sequences whose sequence identity
≥ 50% in Swiss-Port-all with one of CASP14 sequences are removed through BLAST[McGinnis
and Madden, 2004], with a total of 184 samples, called CASPSimilarSeq.

Step 2: For the remaining 457,292 samples, we clustered these sequences by setting sequence identity
≥ 80% using CD-HIT. We randomly selected all samples of 500 clusters, a total of 1,112 sequences,
as our second testing set, termed as IDFilterSeq.

Step 3: For the remaining 456,180 sequences from the second step, We randomly selected 1% of the
sequences as the third testing set, with 4,562 sequences, named UniProtSeq. All remaining 451,618
samples are used for training.

Thence, for the three tasks of function keywords prediction, go terms prediction and protein function
prediction, we respectively construct corresponding training sets and three types of testing sets.
Moreover, for three testing sets, UniProtSeq is the most similar to the training set, followed by
IDFilterSeq and CASPSimilarSeq is the least similar to the training set.

A.9 Comparison of GO terms and function keywords

As of February 2023, the Swiss-Prot database contains a total of 1,191 unique function keywords,
classified into the following ten categories: (1) Biological process (495); (2) Cellular component
(158); (3) Coding sequence diversity (13); (4) Developmental stage (9); (5) Disease (156); (6) Domain
(35); (7) Ligand (69); (8) Molecular function (198); (9) PTM (47); (10) Technical term (11). In
contrast, Gene Ontology (GO) organizes biological knowledge into three categories: molecular
function, biological process, and cellular component. As of January 2023, GO includes 27,942
terms for molecular functions, 11,263 terms for biological processes, and 4,043 terms for cellular
components. While Swiss-Prot function keywords offer a broad overview of functional descriptions,
GO provides a more detailed classification within these key categories, which is crucial for supporting
detailed biomedical research.

A.10 Evaluation results

A.10.1 Evaluation of OPI-Llama-3.1-8B-Instruct model on nine tasks

Each testing result shown in Table 9 is derived from the Llama-3.1-8B-Instruct model that has been
fine-tuned using the full OPI dataset and subsequently evaluated on the respective testing set for each
specific task.

**https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2022_01/
knowledgebase/UniProtKB_SwissProt-relstat.html
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Table 9: Evaluation results of OPI-Llama-3.1-8B-Instruct on nine tasks.
Task Type Task Name Testing set Accuracy Precision Recall F1 Rouge-L

SU

EC number prediction CLEAN_EC_number_new_test - 0.3724 0.3374 0.3468 -
CLEAN_EC_number_price_test - 0.0738 0.0738 0.0738 -

Fold type prediction
fold_type_test_Fold_Holdout 0.1045 - - - -
fold_type_test_Superfamily_Holdout 0.1507 - - - -
fold_type_test_Family_Holdout 0.6145 - - - -

Subcellular localization prediction subcell_loc_test 0.4214 - - - -

AP

Keywords prediction
CASPSimilarSeq_keywords_test - 0.4202 0.5057 0.4385 -
IDFilterSeq_keywords_test - 0.6762 0.6905 0.6650 -
UniProtSeq_keywords_test - 0.7606 0.7489 0.7374 -

GO terms prediction
CASPSimilarSeq_go_terms_test - 0.1113 0.0936 0.0990 -
IDFilterSeq_go_terms_test - 0.6686 0.6287 0.6304 -
UniProtSeq_go_terms_test - 0.7150 0.6897 0.6849 -

Function prediction
CASPSimilarSeq_function_test - - - - 0.7524
IDFilterSeq_function_test - - - - 0.4786
UniProtSeq_function_test - - - - 0.5144

KM
gSymbol2Tissue gene_symbol_to_tissue_test - 0.4002 0.9356 0.5466 -
gSymbol2Cancer gene_symbol_to_cancer_test - 0.2890 0.2701 0.2664 -
gName2Cancer gene_name_to_cancer_test - 0.2786 0.2707 0.2659 -

A.10.2 Evaluation of OPI-Galactica-6.7B model on nine tasks

Each testing result shown in Table 10 is derived from the Galactica-6.7B model that has been fine-
tuned using the full OPI dataset and subsequently evaluated on the respective testing set for each
specific task.

Table 10: Evaluation results of OPI-Galactica-6.7B model on various tasks.
Task Type Task Name Testing file Accuracy Precision Recall F1 Rouge-L

SU

EC number prediction CLEAN_EC_number_new_test - 0.2700 0.2663 0.2596 -
CLEAN_EC_number_price_test - 0.0268 0.0268 0.0268 -

Fold type prediction
fold_type_test_Fold_Holdout 0.0808 - - - -

fold_type_test_Superfamily_Holdout 0.1348 - - - -
fold_type_test_Family_Holdout 0.4854 - - - -

Subcellular localization prediction subcell_loc_test 0.7771 - - - -

AP

Keywords prediction
CASPSimilarSeq_keywords_test - 0.8120 0.7360 0.7643 -

IDFilterSeq_keywords_test - 0.8377 0.8019 0.8070 -
UniProtSeq_keywords_test - 0.8596 0.8196 0.8276 -

GO terms prediction
CASPSimilarSeq_go_terms_test - 0.7613 0.7492 0.7476 -

IDFilterSeq_go_terms_test - 0.7404 0.7274 0.7207 -
UniProtSeq_go_terms_test - 0.7638 0.7373 0.7358 -

Function prediction
CASPSimilarSeq_function_test - - - - 0.7430

IDFilterSeq_function_test - - - - 0.7014
UniProtSeq_function_test - - - - 0.7133

KM
gSymbol2Tissue gene_symbol_to_tissue_test - 0.3917 0.9077 0.5303 -
gSymbol2Cancer gene_symbol_to_cancer_test - 0.3555 0.3189 0.3229 -
gName2Cancer gene_name_to_cancer_test - 0.2728 0.2554 0.2533 -

A.10.3 A comparative analysis of OPI-Llama-3.1-8B-Instruct and OPI-Galactica-6.7B

As depicted in Fig. 6, the Llama-3.1 model consistently outperforms Galactica across different testing
sets of the EC number prediction task, as well as on the fold type prediction task. The similarity
between these two tasks is that both of their prediction targets are numeric type, such as 3.4.11.4 and
10. This is probably attributed to a large volume of mathematical and reasoning tokens for Llama-
3.1 pre-training. For the tasks whose prediction targets are character type, Galactica consistently
surpasses Llama-3.1 model, particularly on the three AP tasks and cancer prediction from gene
symbols. On the other tasks, the performance is relatively balanced between the two models.

A.11 Baseline model details for fold type prediction and subcellular localization prediction

The Transformer baseline model is a simple Transformer architecture with 2 blocks without pre-
training. Conversely, the ESM-1b baseline model is pre-trained on UniRef50 dataset with 33 blocks.
The corresponding input and feed-forward network (FFN) layers vector dimensions of these two
models are 256 and 512, 1280 and 5120, respectively. Unlike LLMs, which treat folding type
prediction and subcellular localization prediction as generative tasks, the two baseline models based
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Figure 6: Comparison of performance between OPI-Llama-3.1-8B-Instruct and OPI-Galactica-
6.7B across nine tasks. It highlights task-specific strengths of each model, with Llama-3.1 excelling
in EC number prediction and fold type prediction, while Galactica leads in all three AP tasks, as well
as cancer prediction from gene symbols.

on representation learning regard them as classification tasks corresponding to 1195 and 10 categories,
respectively. For both tasks, the models extract the representation of the last layer of <CLS> token
and add a non-linear layer on top of it to predict the corresponding class of the sequence.

A.12 Prediction comparison of OPI-tuned and state-of-the-art general purpose models

In this section, we compare prediction performance of the OPI-tuned model and state-of-the-art
general purpose models, such as GPT-4o, Llama-3.1-8B-Instruct, and Claude 3.5 Sonnet. Fig. 7
illustrates the accuracy and reliability of each model across nine protein-related tasks. By examining
the discrepancies and congruences between the models’ predictions and the true answers, we can
identify the strengths and weaknesses inherent to each model. These insights are instrumental
in guiding further fine-tuning efforts and optimizing model selection for particular applications.
Ultimately, this analysis is essential for enhancing model robustness and ensuring that the OPI-tuned
model is well-suited to the intended use case for protein biology.
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Input

Ground Truth

Instruction

To determine the EC number of an input protein sequence, I would typically need to perform a sequence similarity search against databases of known enzymes or use specialized tools for enzyme classification. However, I don't have the capability to directly access such 

databases or run those tools.

From just examining the sequence itself, I can't definitively state its EC number. EC numbers are assigned based on the enzymatic function of a protein, not solely on its sequence.

However, I can make some general observations about the sequence:

1. It appears to be a protein sequence, as it's composed of standard amino acid single-letter codes.

2. The sequence is quite long, containing several hundred amino acids.

3. It contains regions that suggest it might be a kinase, such as the presence of a potential catalytic domain with phrases like "DLKSDNILVDLSEGDAYPTIVITDFG" which is reminiscent of kinase motifs.

If this protein is indeed a kinase, it might fall under EC 2.7.- (Transferases transferring phosphorus-containing groups). However, this is just a speculation based on sequence features, and would need to be confirmed through proper functional characterization or 

bioinformatics analysis.

To get the actual EC number, you would need to:

1. Use sequence similarity search tools like BLAST against enzyme databases.

2. Use specialized enzyme prediction tools.

3. Look up literature about this specific protein if it has been previously characterized.

If you have access to such tools or additional information about this protein's function, that would help in determining its EC number more accurately.

2.7.11.1

2.7.11.1

What is the EC number of the input sequence?

MSLLAYTNLLLQNGRIFRYYKKANIKKFIKKIIKLDLKSTPSEASVSRQTFLSTGLNSVKNAVQLQARKLLINNVLERVTPTLNSDLKKKAAKRLFYGDSAPFFALVGVSLASGSGLLTKDDELEGICWEIREA

VSKGKWNDSESENVEQLQAANLDELDLGEPIAKGCNAVVYSAKLKNVQSNKLAHQLAVKMMFNYDVESNSTAILKAMYRETVPAMSYFFNQNLFNIENISDFKIRLPPHPNIVRMYSVFADRIPDLQCNK
QLYPEALPPRINPEGSGRNMSLFLVMKRYDCTLKEYLRDKTPNMRSSILLLSQLLEAVAHMNIHNISHRDLKSDNILVDLSEGDAYPTIVITDFGCCLCDKQNGLVIPYRSEDQDKGGNRALMAPEIANAKPG

TFSWLNYKKSDLWAVGAIAYEIFNIDNPFYDKTMKLLSKSYKEEDLPELPDTIPFIIRNLVSNMLSRSTNKRLDCDVAATVAQLYLWAPSSWLKENYTLPNSNEIIQWLLCLSSKVLCERDITARNKTNTMSE

SVSKAQYKGRRSLPEYELIASFLRRVRLHLVRKGLKWIQELHIYN

Task 1: EC Number Prediction

The input sequence provided is a protein sequence, not an RNA sequence. To determine the EC number (Enzyme Commission number) , which classifies enzymes based on the chemical reactions they catalyze, you'd need to identify the 

enzyme based on the sequence.

Here’s a general approach to identify the enzyme:

1.Sequence Alignment: Use the sequence to perform a BLAST search against a protein database to identify similar sequences and determine if it's an enzyme with a known EC number.

2.Annotation Databases: Use databases like UniProt or InterPro to annotate the sequence and find if it matches any known enzymes with an EC number.

Would you like me to help you with one of these approaches, or do you have any specific databases or tools in mind?

I'd be happy to help! The EC number of the input sequence is not directly provided, as EC numbers are assigned to enzyme classification, and the input sequence does not appear to be an enzyme. EC numbers are 

typically used to classify enzymes based on their catalytic activity and reaction mechanism. However, if you're interested in identifying the protein function or classifying the input sequence, I can assist you with that. 
Please let me know what specific information you're looking for, and I'll do my best to help!

OPI-tuned model

(a) Task 1: EC number prediction

Input

OPI-tuned model

Ground Truth

Instruction

To accurately predict the folding type of a protein based solely on its amino acid sequence and assign a specific number from 0 to 1194 would require advanced bioinformatics tools and protein structure prediction algorithms, which I don't have direct access to. 

Such a prediction typically involves complex computational methods like machine learning models trained on large databases of known protein structures.

However, I can provide some general observations about the sequence you've given:

1. The sequence is 185 amino acids long.

2. It contains a mix of hydrophobic, hydrophilic, charged, and polar residues.

3. There are several proline residues, which can influence protein folding due to their unique structure.

4. The presence of multiple lysine (K) and glutamic acid (E) residues suggests the potential for salt bridges in the folded structure.

Without using specialized prediction tools, it's not possible to confidently assign a specific folding type number from 0 to 1194. Accurate protein structure prediction requires sophisticated algorithms that consider factors like sequence homology, physicochemical 

properties of amino acids, and potential secondary structure elements.

If you need a more precise prediction, I would recommend using established protein structure prediction tools or databases such as:

1. I-TASSER

2. Phyre2

3. SWISS-MODEL

4. AlphaFold

These tools can provide more accurate predictions of protein structure and folding type based on the amino acid sequence. They might also be able to assign a specific folding type number if they use a classification system that matches the 0-1194 range you 

mentioned.

Please predict its folding type based on the protein sequence. Here, a number is assigned to each folding type, ranging from 0 to 1194.

GSGDSHPDFPEDADVDLKDVDKILLISEDLKNIGNTFFKSQNWEMAIKKYTKVLRYVEGSRAAAEDADGAKLQPVALSCVLNIGACKLKMSDWQGAVDSCLEALEIDPSNTKALYRRAQGWQGLKE

YDQALADLKKAQEIAPEDKAIQAELLKVKQKIKAQKDKEKAAY

Task 2: Fold Type Prediction

Predicting the folding type of a protein sequence typically involves using a machine learning model or a specialized bioinformatics tool trained on known protein structures. The sequence you've provided would 

need to be analyzed by such a model to assign it to one of the 1194 folding types.

If you have access to a pre-trained model that can predict folding types, you can input the sequence into that model. If not, you could consider using one of the following approaches:

1.Use of Pre-trained Deep Learning Models: Utilize existing models like AlphaFold, which predict protein folding based on sequence. While AlphaFold provides detailed 3D structures, specific models might 

classify sequences into predefined folding types.

2.Protein Structure Databases: Use databases like CATH, SCOP, or the Protein Data Bank (PDB) to find similar sequences whose folding types are known and infer the folding type by similarity.

3.Custom Model Development: If you are developing your own model, you could train a classification model using features extracted from the sequence (e.g., using one-hot encoding, physicochemical 

properties, or embeddings) and labeled data containing known folding types.

Do you have a specific model or tool in mind for this prediction, or are you looking to build one?

I'd be happy to help you predict the folding type of this protein sequence. Using a protein folding prediction tool, I obtained a prediction of the folding type based on the sequence you provided. Here is the result: 

Folding Type Prediction: 435 Please note that protein folding prediction is not an exact science, and different tools or methods may produce slightly different results. However, this prediction should give you a 

good idea of the folding type of the protein. If you'd like to know more about the folding type or would like to explore other prediction tools, feel free to ask!

3

3

(b) Task 2: Fold type prediction

Input

OPI-tuned model

Ground Truth

Instruction

To forecast the intracellular localization of this protein in eukaryotic cells, I‘ll analyze its amino acid composition and sequence motifs. Here’s a step-by-step analysis:1. Sequence length: The protein is quite long, with over 1000 amino acids, suggesting it‘s a complex, multi-domain protein. 2. 

Charged residues: There are many charged residues (K, R, D, E) throughout the sequence, which is common in water-soluble proteins. 3. Hydrophobic regions: There are several stretches of hydrophobic amino acids, particularly in the middle and latter parts of the sequence, suggesting possible 

transmembrane domains. 4. N-terminal analysis: - No clear signal peptide at the very beginning - Presence of many charged residues (D, E, R, K) in the first 50 amino acids 5. Nuclear localization signals (NLS): - Strong NLS-like motif: RRRRRHKRKT near the N-terminus - Several lysine-rich 

regions throughout the sequence 6. Transmembrane domain predictions: - Multiple hydrophobic stretches that could form transmembrane helices 7. Specific motifs: - “KKKKK” repeat near the C-terminus, which could be a nuclear retention signal - “DSDNDDSD” sequence near the C-terminus, 

potentially a phosphorylation site or protein interaction motif 8. Overall composition: - Rich in glycine (G) and proline (P) in some regions, suggesting flexible linkers - Presence of cysteine (C) residues that could form disulfide bonds Based on this analysis, I predict that this protein could have 
multiple localizations: 1. Primary localization: Nuclear Reasoning: Strong NLS-like motif near the N-terminus, lysine-rich regions, and the “KKKKK” repeat near the C-terminus are strong indicators of nuclear localization. 2. Secondary localization: Membrane-associated (possibly nuclear 

membrane or endoplasmic reticulum) Reasoning: The presence of multiple hydrophobic regions suggests transmembrane domains, which could anchor the protein in a membrane. 3. Potential for nucleocytoplasmic shuttling Reasoning: The combination of nuclear localization signals and 

membrane-association features suggests this protein might shuttle between the nucleus and the cytoplasm, possibly in response to cellular signals.This protein appears to be a complex, multi-domain protein that may play a role in nuclear functions, possibly including transcription regulation or 

nuclear envelope interactions. Its potential membrane association suggests it might be involved in signaling pathways or transport processes between the nucleus and cytoplasm. To confirm this prediction, experimental verification would be necessary, such as fluorescent tagging and microscopy, 

or subcellular fractionation followed by Western blotting.

By scrutinizing the protein's amino acid composition and sequence motifs, forecast its intracellular localization in eukaryotic cells.

MEDEAVLDRGASFLKHVCDEEEVEGHHTIYIGVHVPKSYRRRRRHKRKTGHREKKEKERISENYSDKSDVENADESSSSILKPLISPAAERIRFILGEEDDSPAPPQLFTELDELLAVDGQEMEWKETARWIKFEEKVEQGGERWSKPHVATLSLHSLFELRTCMEKGSIMLDREASSLPQLVEMIVDHQIETGLLKPDLKDKVTYTLLRKHRHQT

KKSNLRSLADIGKTVSSASRMFTNPDNGSPAMTHRNLTSSSLNDISDKPEKDQLKNKFMKKLPRDAEASNVLVGEVDFLDSPFIAFVRLQQAVMLGALTEVPVPTRFLFILLGPKGKAKSYHEIGRAIATLMSDEVFHDIAYKAKDRQDLIAGIDEFLDEVIVLPPGEWDPAIRIEPPKSLPSSDKRKNMYSGGENVQMNGDTPPDGGHGGGGHAD

CEELQRTGRFCGGLIKDIKRKAPFFASDFYDALNIQALSAILFIYLATVTNAITFGGLLGDATDNMQGVLESFLGTAVSGAIFCLFAGQPLTILSSTGPVLVFERLLFNFSKDHNFDYLEFRLWIGLWSAFLCLILVATDASFLVQYFTRFTEEGFSSLISFIFIYDAFKKMIKLADYYPINSNFKVGYNTQFSCVCMPPDPVNISVSNDTTLAPEDLPTISS

SNMYHNATFDWAFLTTKECLKYGGKLVGNNCGFVPDITLMSFILFLGTYTSSMALKKFKTSPYFPTTARKLISDFAIILPILIFCVIDALVGVDTPKLIVPSEFKPTSPNRGWFVAPFGGNPWWVYLAAAIPALLVTILIFMDQQITAVIVNRKEHKLKKGAGYHLDLFWVAILMVVCSFMALPWYVAATVISIAHIDSLKMETETSAPGEQPKFLGV
REQRVTGTLVFILTGLSVFMAPILKFIPMPVLYGVFLYMGVASLNGVQFMDRLKLLLMPLKHQPDFIYLRHVPLRRVHLFTFLQVLCLALLWILKSTVAAIIFPVMILALVAVRKGMDYLFSQHDLSFLDDVIPEKDKKKKEDEKKKKKKKGSVDSDNDDSDCPYSEKVPSIKIPMDIMEQQPFLSDSKPSDRERSPTFLERHTSC

Task 3: Subcellular Localization Prediction

To predict the intracellular localization of the given protein sequence in eukaryotic cells, we can analyze its amino acid composition, sequence motifs, and structural characteristics that are typically associated with specific cellular compartments. Here's a detailed analysis:

1. Signal Peptide for Secretion or Membrane Localization: The sequence contains several stretches of hydrophobic amino acids (e.g.,

LAVDGQEMEWKETARWIKFEEKVEQGGERWSKPHVATLSLHSLFELRTCMEKGSIMLDREASSLPQLVEMIVDHQIETGLLKPDLKDKVTYTLLRKHRHQTKKSNLRSLADIGKTVSSASRMFTNPDNGSPAMTHRNLTSSSLNDISDKPEKDQLKNKFMKKLPRDAEASNVLVGEVDFLDSPFIAFVRLQQAVMLGALTEVPVPTRFLFILLGP

KGKAKSYHEIGRAIATLMSDEVFHDIAYKAKDRQDLIAGIDEFLDEVIVLPPGEWDPAIRIEPPKSLPSSDKRKNMYSGGENVQMNGDTPPDGGHGGGGHADCEELQRTGRFCGGLIKDIKRKAPFFASDFYDALNIQALSAILFIYLATVTNAITFGGLLGDATDNMQGVLESFLGTAVSGAIFCLFAGQPLTILSSTGPVLVFERLLFNFSKDHNF
DYLEFRLWIGLWSAFLCLILVATDASFLVQYFTRFTEEGFSSLISFIFIYDAFKKMIKLADYYPINSNFKVGYNTQFSCVCMPPDPVNISVSNDTTLAPEDLPTISSSNMYHNATFDWAFLTTKECLKYGGKLVGNNCGFVPDITLMSFILFLGTYTSSMALKKFKTSPYFPTTARKLISDFAIILPILIFCVIDALVGVDTPKLIVPSEFKPTSPNRGWFVA

PFGGNPWWVYLAAAIPALLVTILIFMDQQITAVIVNRKEHKLKKGAGYHLDLFWVAILMVVCSFMALPWYVAATVISIAHIDSLKMETETSAPGEQPKFLGVREQRVTGTLVFILTGLSVFMAPILKFIPMPVLYGVFLYMGVASLNGVQFMDRLKLLLMPLKHQPDFIYLRHVPLRRVHLFTFLQVLCLALLWILKSTVAAIIFPVMILALVAVR

KGMDYLFSQHDLSFLDDVIPEKDKKKKEDEKKKKKKKGSVDSDNDDSDCPYSEKVPSIKIPMDIMEQQPFLSDSKPSDRERSPTFLERHTSC) indicative of potential transmembrane domains. This suggests that the protein could be localized to the plasma membrane or internal membranes like the endoplasmic reticulum (ER).

2. Nuclear Localization Signals (NLS): The sequence has several stretches of basic amino acids, such as RRRRRHKRKTGHREKKEKERISENY, which are characteristic of Nuclear Localization Signals (NLS). This motif suggests that the protein might localize to the nucleus.

3. Mitochondrial Targeting Sequences (MTS): There is no strong evidence of mitochondrial targeting sequences, which typically contain alternating positively charged and hydrophobic amino acids.

4. Endoplasmic Reticulum (ER) and Golgi Apparatus: The presence of signal peptides and transmembrane domains may also indicate localization to the ER and Golgi apparatus for proteins that are involved in secretion or reside in the membranes of these organelles.

5. Post-translational Modifications: The sequence has regions rich in serine (S) and threonine (T), suggesting potential sites for phosphorylation, which could further influence its localization, possibly to signaling pathways associated with the plasma membrane or nuclear functions.

Prediction Summary: Based on the sequence motifs and composition: Nucleus: The presence of multiple NLS motifs suggests nuclear localization. Membrane: The hydrophobic regions and potential transmembrane domains suggest that the protein could also be associated with the plasma membrane or other intracellular membranes like the ER or 

Golgi apparatus. Given these characteristics, the protein may have dual localization in both the nucleus and membrane-bound compartments (plasma membrane or internal membranes).

To forecast the intracellular localization of the protein, I‘ll analyze its amino acid composition and sequence motifs. 1. Amino Acid Composition: The protein has a high percentage of hydrophobic amino acids (e.g., Leu, Ile, Val, Phe) and a moderate percentage of charged amino acids (e.g., Asp, 

Glu, Lys, Arg). This suggests that the protein may be localized to the plasma membrane or an intracellular organelle with a hydrophobic environment. 2. Sequence Motifs: The protein contains several sequence motifs that are known to be involved in protein localization: a. The 

MEDEAVLDRGASFLKHVCDEEEVEGHHTIYIGVHVPKSYRRRRRHKRKTGHREKKEKERISENYSDKSDVENADESSSSILKPLISPAAERIRFILGEEDDSPAPPQLFTELDELLAVDGQEMEWKETARWIKFEEKVEQGGERWSKPHVATLSLHSLFELRTCMEKGSIMLDREASSLPQLV

EMIVDHQIETGLLKPDLKDKVTYTLLRKHRHQTKKSNLRSLADIGKTVSSASRMFTNPDNGSPAMTHRNLTSSSLNDISDKPEKDQLKNKFMKKLPRDAEASNVLVGEVDFLDSPFIAFVRLQQAVMLGALTEVPVPTRFLFILLGPKGKAKSYHEIGRAIATLMSDEVFHDIAYKAKDRQD

LIAGIDEFLDEVIVLPPGEWDPAIRIEPPKSLPSSDKRKNMYSGGENVQMNGDTPPDGGHGGGGHADCEELQRTGRFCGGLIKDIKRKAPFFASDFYDALNIQALSAILFIYLATVTNAITFGGLLGDATDNMQGVLESFLGTAVSGAIFCLFAGQPLTILSSTGPVLVFERLLFNFSKDHNFDY
LEFRLWIGLWSAFLCLILVATDASFLVQYFTRFTEEGFSSLISFIFIYDAFKKMIKLADYYPINSNFKVGYNTQFSCVCMPPDPVNISVSNDTTLAPEDLPTISSSNMYHNATFDWAFLTTKECL KYGGKLVGNNCGFVPDITLMSFILFLGTYTSSMALKKFKTSPYFPTTARKLISDFAIILPILIF

CVIDALVGVDTPKLIVPSEFKPTSPNRGWFVAPFGGNPWWVYLAAAIPALLVTILIFMDQQITAVIVNRKEHKLKKGAGYHLDLFWVAILMVVCSFMALPWYVAATVISIAHIDSLKMETETSAPGEQPKFLGVREQRVTGTLVFILTGLSVFMAPILKFIPMPVLYGVFLYMGVASLNGVQF

MDRLKLLLMPLKHQPDFIYLRHVPLRRVHLFTFLQVLCLALLWILKSTVAAIIFPVMILALVAVRKGMDYLFSQHDLSFLDDVIPEKDKKKKEDEKKKKKKKGSVDSDNDDSDCPYSEKVPSIKI PMDIMEQQPFLSDSKPSDRERSPTFLERHTSC sequence contains several stretches of 

hydrophobic amino acids, which could facilitate membrane association. b. The protein contains a potential transmembrane domain (TMD) around residues 150-170

(MEDEAVLDRGASFLKHVCDEEEVEGHHTIYIGVHVPKSYRRRRRHKRKTGHREKKEKERISENYSDKSDVENADESSSSILKPLISPAAERIRFILGEEDDSPAPPQLFTELDELLAVDGQEMEWKETARWIKFEEKVEQGGERWSKPHVATLSLHSLFELRTCMEKGSIMLDREASSLPQLV
EMIVDHQIETGLLKPDLKDKVTYTLLRKHRHQTKKSNLRSLADIGKTVSSASRMFTNPDNGSPAMTHRNLTSSSLNDISDKPEKDQLKNKFMKKLPRDAEASNVLVGEVDFLDSPFIAFVRLQQAVMLGALTEVPVPTRFLFILLGPKGKAKSYHEIGRAIATLMSDEVFHDIAYKAKDRQD

LIAGIDEFLDEVIVLPPGEWDPAIRIEPPKSLPSSDKRKNMYSGGENVQMNGDTPPDGGHGGGGHADCEELQRTGRFCGGLIKDIKRKAPFFASDFYDALNIQALSAILFIYLATVTNAITFGGLLGDATDNMQGVLESFLGTAVSGAIFCLFAGQPLTILSSTGPVLVFERLLFNFSKDHNFDY

LEFRLWIGLWSAFLCLILVATDASFLVQYFTRFTEEGFSSLISFIFIYDAFKKMIKLADYYPINSNFKVGYNTQFSCVCMPPDPVNISVSNDTTLAPEDLPTISSSNMYHNATFDWAFLTTKECL KYGGKLVGNNCGFVPDITLMSFILFLGTYTSSMALKKFKTSPYFPTTARKLISDFAIILPILIF

CVIDALVGVDTPKLIVPSEFKPTSPNRGWFVAPFGGNPWWVYLAAAIPALLVTILIFMDQQITAVIVNRKEHKLKKGAGYHLDLFWVAILMVVCSFMALPWYVAATVISIAHIDSLKMETETSAPGEQPKFLGVREQRVTGTLVFILTGLSVFMAPILKFIPMPVLYGVFLYMGVASLNGVQF

MDRLKLLLMPLKHQPDFIYLRHVPLRRVHLFTFLQVLCLALLWILKSTVAAIIFPVMILALVAVRKGMDYLFSQHDLSFLDDVIPEKDKKKKEDEKKKKKKKGSVDSDNDDSDCPYSEKVPSIKI PMDIMEQQPFLSDSKPSDRERSPTFLERHTSC, which is a characteristic feature of 
transmembrane proteins. c. The protein contains several potential phosphorylation sites, including several serine and threonine residues, which could be involved in regulating protein localization or activity. Based on these features, I predict that the protein is likely

membrane

membrane

(c) Task 3: Subcellular localization prediction
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OPI-tuned model

Ground Truth

Instruction

To provide accurate UniProtKB keywords for this specific protein sequence, I would need to search a protein database, which I don't have direct access to. However, I can analyze the sequence and provide some general observations that might hint at potential keywords:

1. The sequence starts with a methionine (M), which is typical for the start of a protein.

2. There's a high concentration of leucine (L) near the N-terminus, which could suggest a signal peptide or transmembrane region.

3. The sequence contains several repeating patterns, particularly of leucine (L) and serine (S), which might indicate leucine-rich repeat (LRR) domains.

4. There are multiple cysteines (C) present, which could be involved in disulfide bond formation.

5. The C-terminal end has a stretch of hydrophobic residues, which might suggest a transmembrane region.

6. The sequence ends with AIQA, which doesn't appear to be a common motif but could be functionally significant.

Based on these observations, some potential UniProtKB keywords might include:

- Signal peptide

- Transmembrane

- Leucine-rich repeat

- Disulfide bond

- Membrane protein

However, to get the actual UniProtKB keywords, you would need to search this sequence in the UniProtKB database or use tools like BLAST to find similar proteins with known annotations. Would you like me to explain any of these observations in more detail?

What are the UniProtKB keywords for this specific protein sequence?

MRGSFFSRLPPQLSLLLLLLLLLSWRRVWTQEHIGTDPSKSPVAPVCPEACSCSPGGKANCSALALPAVPAGLSWQVRSLLLDRNRVSTLPPGAFADAGALLYLVLRENRLRSVHARAFWGLGVLQRLDLSSN

QLETLSPGTFTPLRALSFLSLAGNRLALLEPSILGPLPLLRVLSLQDNSLSALEAGLLNSLPALDVLRLHGNPWACSCALRPLCTWLRKHPRPTSETETLLCVSPKLQTLNLLTDFPDNAFKQCTQSLAARDLAV

VYALGPASFLASLAICLALGSVLTACGARRRRRRTTVRHLIRRQPDPEGPASLEDVGSPTTTAIQA

Task 4: Keywords prediction

To determine the UniProtKB keywords for this specific protein sequence, you would typically need to identify the protein based on its sequence. The UniProtKB keywords are standard terms used in the UniProt 

database to describe specific features, functions, and characteristics of a protein.

However, without direct access to the UniProt database or specific annotation tools, it isn't possible to definitively identify the UniProtKB keywords for this sequence directly from the sequence alone.

If you have access to a sequence alignment tool or a database search tool (like BLAST), you could input the sequence to find the closest matching protein in the UniProt database. Once you have identified the 

corresponding protein entry, you could then check the UniProtKB keywords associated with that entry.

Would you like guidance on how to use these tools to find this information?

I can help you with that! The UniProtKB keywords for this specific protein sequence are: * Cell membrane * Cytoplasm * Lipid anchor * Lipid-binding * Lipid metabolism * Membrane protein * Phospholipid * 

Protein binding * Protein modification * Protein processing * Signal peptide * Transmembrane region Please note that UniProtKB keywords are not always exhaustive and may not cover all possible functions or 

features of a protein.

Cell membrane; Cytoplasm; Cytoskeleton; Disulfide bond; Ion channel; Ion transport; Leucine-rich repeat; Membrane; Reference proteome; Repeat; Signal; Transmembrane; Transmembrane helix; 

Transport

Cell membrane; Cytoplasm; Cytoskeleton; Disulfide bond; Ion channel; Ion transport; Leucine-rich repeat; Membrane; Reference proteome; Repeat; Signal; Transmembrane; Transmembrane helix; Transport

(d) Task 4: Keywords prediction

Input

OPI-tuned model

Ground Truth

Instruction

To predict the Gene Ontology (GO) term for this protein sequence, I would need to use specialized bioinformatics tools and databases, which I don‘t have direct access to. However, I can provide you with a general approach to predict GO terms for a given protein sequence 

and some insights based on the sequence you provided. General approach to predict GO terms: 1. Sequence similarity search: Use tools like BLAST to find similar proteins with known GO annotations. 2. Protein domain analysis: Identify conserved domains using tools like 

InterProScan or PFAM. 3. Machine learning methods: Use pre-trained models that can predict GO terms based on sequence features. 4. Literature mining: Search for publications mentioning this or similar proteins. 5. Integrative approaches: Combine multiple methods for 

more accurate predictions. Observations about the given sequence: 1. Length: The sequence is approximately 420 amino acids long, which is a moderate size for a protein. 2. Composition: It contains a mix of hydrophobic (e.g., L, V, I, F) and hydrophilic (e.g., K, R, E, D) 

amino acids, suggesting it might have both globular and membrane-interacting regions. 3. Potential functional motifs: - “GEPLANY” might be part of a binding site or active site. - “MSPEG” could be involved in protein-protein interactions. - “KKREELMP” might be a 

nuclear localization signal due to the basic residues. 4. Recurring patterns: There are several lysine (K) and arginine (R) rich regions, which might indicate DNA/RNA binding or nuclear localization. Based on these observations, some possible GO term predictions could be:

1. Cellular Component: - GO:0005634 (nucleus) - due to potential nuclear localization signals - GO:0005737 (cytoplasm) - as many proteins are present here 2. Molecular Function: - GO:0003677 (DNA binding) - due to the presence of basic amino acid clusters - 

GO:0005515 (protein binding) - common function for many proteins 3. Biological Process: - GO:0006355 (regulation of transcription, DNA-templated) - if it's a nuclear protein involved in DNA binding  - GO:0016032 (viral process) - some viral proteins have similar 

characteristics Please note that these are speculative predictions based on limited information. For accurate GO term prediction, you would need to use specialized bioinformatics tools and databases, and ideally have experimental data to support the predictions.

The Gene Ontology project (GO) provides a controlled vocabulary to describe gene and gene product attributes in any organism.  There are 3 disjoint categories: cellular component, molecular function and biological process. Predict the GO term 

for a given protein sequence.

MEFVTNYTLEELKKRFTELGLEPYRAKQVFRWVYKKFVTDFEKMTDLGKKHRELLKEHFAFHPLEKLDRVEAPDAVKYLFKTKDGHILETVLIKERDHYTLCVSSQIGCAVGCTFCATALDGLKRNLSTAEIIDQYLQVQQDLGEEKIRN

VVFMGMGEPLANYENVRKAVEIMVSPEGLDLSKRRITISTSGIVAQIKRMAQDPVMKEVNLAVSLNAVSQKKREELMPLTKTNTLEELMEVLKNYPLPKYRRITLEYVLIKGVNDSPNDAERLAK LIGRHKKKFKVNLIPFNPDPNLPYER

PALTDIMKFQKVLWKYGISNFVRFSKGVEVFGACGQLRTQRLQLQRV

Task 5: GO terms prediction

To predict the Gene Ontology (GO) term for a given protein sequence, one approach is to use machine learning models trained on a dataset of protein sequences with known GO annotations. The process generally involves feature extraction from the protein sequence, model training, and prediction.

Here's a high-level approach:

1. **Feature Extraction**:  - Convert the protein sequence into a numerical representation that can be used as input for a machine learning model. Common methods include: - **Amino acid composition**: Count the frequency of each amino acid in the sequence. - **K-mer frequency**: Count the 

occurrence of subsequences of length k.- **Position-specific scoring matrix (PSSM)**: Represent evolutionary information from multiple sequence alignments. - **Physicochemical properties**: Encode properties like hydrophobicity, charge, and molecular weight.

2. **Model Selection**: - Use a classifier such as Random Forest, Support Vector Machine, or deep learning models like Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN). - For deep learning models, techniques like one-hot encoding or embedding layers can be applied directly to 
the protein sequence.

3. **Training**: - Train the model on a labeled dataset where protein sequences are associated with known GO terms.- The dataset could be sourced from databases like UniProt, where sequences are annotated with GO terms.

4. **Prediction**: - Once the model is trained, input the new protein sequence (like the one provided) into the model to predict the most likely GO term(s).

5. **Post-Processing** - Apply thresholds or confidence scoring to refine the predictions. - Consider hierarchical relationships in GO terms to make more accurate predictions.

For the specific sequence provided:
`̀ `MEFVTNYTLEELKKRFTELGLEPYRAKQVFRWVYKKFVTDFEKMTDLGKKHRELLKEHFAFHPLEKLDRVEAPDAVKYLFKTKDGHILETVLIKERDHYTLCVSSQIGCAVGCTFCATALDG LKRNLSTAEIIDQYLQVQQDLGEEKIRNVVFMGMGEPLANYENVRKAVEIMVSPEGLDLSKRRIT

ISTSGIVAQIKRMAQDPVMKEVNLAVSLNAVSQKKREELMPLTKTNTLEELMEVLKNYPLPKYRRITLEYVLIKGVNDSPNDAERLAKLIGRHKKKFKVNLIPFNPDPNLPYERPALTDIMKFQKVLWKYGISNFVRFSKGVEVFGACGQLRTQRLQLQRV``̀

If a model is already in place, you would input this sequence and receive predictions for its GO terms across the three categories (cellular component, molecular function, biological process).

Would you like to see a code example for predicting GO terms, or any further specific details?

To predict the GO term for a given protein sequence, I'll use a combination of bioinformatics tools and algorithms. Since you didn't provide any specific information about the protein sequence, I'll assume it's a novel protein and try to identify its functional categories using 

various databases and tools. After analyzing the protein sequence using various tools, including BLAST, Pfam, and InterProScan, I've identified some potential functional domains and motifs. Here are my predictions for the GO terms: 1. Cellular Component: * Based on the 

presence of a transmembrane domain (TM) and a signal peptide, I predict that this protein is likely to be a membrane protein, possibly a receptor or a transporter. Therefore, I assign the GO term "cell membrane" (GO:0005886) as a potential cellular component. 2. Molecular 

Function: * The presence of a catalytic domain (Pfam: PF00067) suggests that this protein may have enzymatic activity. I predict that it may be involved in catalyzing a chemical reaction, possibly a hydrolysis reaction. Therefore, I assign the GO term "catalytic activity" 

(GO:0003824) as a potential molecular function. 3. Biological Process: * The presence of a signal peptide and a transmembrane domain suggests that this protein may be involved in cellular signaling or transport processes. Additionally, the presence of a catalytic domain 

suggests that it may be involved in metabolic processes. Therefore, I assign the GO term "cellular process" (GO:0009987) as a potential biological process. Please note that these predictions are based on computational analysis and may require experimental validation to 

confirm the protein's function and GO terms.

cytoplasm ; 4 iron, 4 sulfur cluster binding ; metal ion binding ; rRNA (adenine-C2-)-methyltransferase activity ; rRNA binding ; tRNA (adenine-C2-)-methyltransferase activity ; tRNA binding ; rRNA base methylation ; tRNA 

methylation

cytoplasm ; 4 iron, 4 sulfur cluster binding ; metal ion binding ; rRNA (adenine-C2-)-methyltransferase activity ; rRNA binding ; tRNA (adenine-C2-)-methyltransferase activity ; tRNA binding ; rRNA base methylation

(e) Task 5: GO terms prediction

Input

OPI-tuned model

Ground Truth

Instruction

Based on the provided protein sequence, I can generate a functional description in free-text form. Please note that this description is based on analysis of the sequence and potential structural motifs, without access to experimental data or specific literature about this exact 

protein. Here's a possible functional description:

This protein appears to be a multi-domain enzyme, likely involved in metabolic processes. The sequence suggests several key features:

1. N-terminal region: The protein starts with a potential signal peptide or targeting sequence (MAAPSGVHLLVRR...), which might direct it to a specific cellular compartment.

2. Regulatory domain: The presence of serine-rich regions (e.g., SSSQQ) suggests possible phosphorylation sites, indicating that the protein's activity might be regulated by kinases.

3. Catalytic core: The central portion of the protein contains sequences typical of enzymes, particularly oxidoreductases or dehydrogenases. The presence of motifs like GIVPDWGD and VLLLAG suggests potential NAD(P)H binding sites, which are common in these 

enzyme classes.

4. Substrate binding: Regions rich in hydrophobic amino acids (e.g., ILCHGIPDSRPL) may form binding pockets for organic substrates.

5. Metal binding: The sequence HVLLLAGK could potentially be part of a metal-binding site, suggesting that the protein might require a metal cofactor for its activity.

6. C-terminal domain: The C-terminus (ITSRGAQILTKLPHEA) might be involved in protein-protein interactions or provide additional regulatory functions.

Given these features, this protein is likely an oxidoreductase or dehydrogenase involved in cellular metabolism. It may catalyze the oxidation or reduction of specific substrates, possibly playing a role in pathways such as amino acid metabolism, fatty acid oxidation, or 

carbohydrate processing. The protein's activity is probably regulated through phosphorylation and potentially by cellular localization. It may interact with other proteins as part of a larger metabolic complex.

Further experimental characterization would be necessary to confirm its exact function, substrates, and physiological role within the cell.

Generate the functional description in free-text form based on the protein sequence.

MAAPSGVHLLVRRGSHRIFSSPLNHIYLHKQSSSQQRRNFFFRRQRDISHSIVLPAAVSSAHPVPKHIKKPDYVTTGIVPDWGDSIEVKNEDQIQGLHQACQLARHVLLLAGKSLKVDMTTEEIDALVHREIISHNAYPSPLGYGGFPKSVCT

SVNNVLCHGIPDSRPLQDGDIINIDVTVYYNGYHGDTSETFLVGNVDECGKKLVEVARRCRDEAIAACRAGAPFSVIGNTISHITHQNGFQVCPHFVGHGIGSYFHGHPEIWHHANDSDLPMEEG MAFTIEPIITEGSPEFKVLEDAWTVVS

LDNQRSAQFEHTVLITSRGAQILTKLPHEA

Task 6: Function prediction

Based on the provided protein sequence, the following functional description can be inferred:

**Functional Description:**

This protein appears to have several key functional domains that suggest a role in various cellular processes. The presence of multiple arginine-rich regions (RR) and lysine residues (K) indicates potential roles in nucleic acid binding, possibly involved in transcription 

regulation or RNA processing. The sequence also features glycine-rich regions (G) which are often associated with flexible linkers or regions that may facilitate interactions with other proteins or nucleic acids.

The presence of serine (S) and threonine (T) residues suggests potential sites for phosphorylation, implying regulation by kinases and a role in signal transduction pathways. The conserved regions with histidine (H) and cysteine (C) residues could indicate metal ion binding 

capabilities, possibly zinc fingers or other metal-binding motifs, which are crucial for DNA-binding and structural stability.

The sequence also contains stretches of hydrophobic amino acids (V, L, I), likely forming transmembrane domains or contributing to protein-protein interactions within the cellular membrane or other hydrophobic environments. This could suggest a role in membrane-

associated processes or signal transduction across membranes.

Given the sequence, the protein might be involved in diverse functions such as gene regulation, signal transduction, and possibly interactions with membranes or other proteins, highlighting its multifaceted role in cellular biology.

Here is the functional description in free-text form based on the protein sequence: This protein is a serine protease that plays a crucial role in the blood coagulation cascade. It is a key enzyme in the formation of blood clots and is involved in the conversion of fibrinogen to 

fibrin. The protein has a serine active site and is activated by thrombin, which is itself an enzyme that is produced during the coagulation process. The protein is composed of multiple domains, including a serine protease domain, a thrombin-binding domain, and a 

fibrinogen-binding domain. The serine protease domain is responsible for the proteolytic activity of the protein, while the thrombin-binding domain allows the protein to interact with thrombin and be activated. The fibrinogen-binding domain allows the protein to bind to 

fibrinogen and convert it to fibrin. The protein is also involved in the regulation of platelet aggregation and the formation of blood clots. It is able to bind to platelets and activate them, leading to the formation of platelet aggregates and the release of pro-coagulant factors. 

Additionally, the protein is able to bind to von Willebrand factor, a protein that plays a key role in platelet adhesion and aggregation. Overall, this protein plays a critical role in the blood coagulation cascade and is essential for the formation of blood clots. Its dysregulation 

can lead to bleeding disorders or thrombotic events, such as deep vein thrombosis or pulmonary embolism.

Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires 

deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed (By similarity). May play a role in colon tumorigenesis.

Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires 

deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed.

(f) Task 6: Function prediction
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To accurately predict protein expression patterns in tissues based on gene symbols, we would need to consult scientific databases and recent literature. However, I can provide some general information about 

TMEM198 and how one might go about investigating its tissue expression:

TMEM198 stands for "Transmembrane Protein 198". As the name suggests, it's a protein that spans cellular membranes.

To predict which tissues express TMEM198, researchers would typically use resources such as:

1. Gene expression databases like GTEx (Genotype-Tissue Expression project)

2. Protein atlases like the Human Protein Atlas

3. Literature searches in scientific databases for studies that have examined TMEM198 expression

Without access to these resources in real-time, I can't provide definitive information about TMEM198's tissue-specific expression. However, transmembrane proteins are often found in various tissues throughout 

the body, as they play crucial roles in cellular communication, transport, and signaling.

To get accurate, up-to-date information on TMEM198's tissue expression, I'd recommend:

1. Checking the GTEx portal for RNA-seq data across different tissues

2. Examining the Human Protein Atlas for protein-level data

3. Conducting a literature search for any studies that have specifically investigated TMEM198 expression patterns

Would you like me to explain how you might go about using these resources to investigate TMEM198's expression, or do you have any other questions about this topic?

According to the relevant data reported in the scientific literature, the Gene symbol of a given protein can be used to predict which tissues the protein is expressed in.

TMEM198

Task 7: Tissue Location Prediction from Gene Symbol

The gene TMEM198 encodes a transmembrane protein that has been studied for its potential role in various tissues. According to scientific literature, TMEM198 is associated with specific tissue expression 

patterns, which can provide insights into its biological function.

While the detailed tissue expression data for TMEM198 may vary depending on the study and the methodology used, general databases like GTEx (Genotype-Tissue Expression) can be used to predict and analyze 

the tissue-specific expression of TMEM198. Typically, proteins encoded by TMEM198 may show differential expression in tissues like the brain, liver, or other organs depending on the biological context.

To obtain precise and up-to-date tissue expression profiles, it is recommended to consult resources like GTEx, BioGPS, or relevant scientific publications that provide experimental data on TMEM198's expression 

across various tissues.

According to the relevant data reported in the scientific literature, TMEM198 is a protein that is expressed in the following tissues: * Brain * Kidney * Liver * Lung * Spleen * Testis Please note that the 

expression patterns of proteins can vary across different species, and this information may not be applicable to all organisms. Additionally, the expression patterns of a protein can also vary depending on the 

specific conditions or disease states.

adrenal gland, appendix, breast, bronchus, cerebral cortex, colon, fallopian tube, gallbladder, kidney, nasopharynx, prostate, rectum, salivary gland, seminal vesicle, skeletal muscle, small intestine, 

stomach, urinary bladder

adrenal gland, appendix, bone marrow, breast, bronchus, caudate, cerebellum, cerebral cortex, cervix, colon, duodenum, endometrium, epididymis, esophagus, fallopian tube, gallbladder, heart muscle, 

hippocampus, kidney, liver, lung, lymph node, nasopharynx, oral mucosa, ovary, pancreas, parathyroid gland, placenta, prostate, rectum, salivary gland, seminal vesicle, skeletal muscle, skin, small 

intestine, smooth muscle, soft tissue, spleen, stomach, testis, thyroid gland, tonsil, urinary bladder

(g) Task 7: Tissue location prediction from gene symbol (gSymbol2Tissue)

Input

OPI-tuned model

Ground Truth

Instruction

The cancer most commonly associated with the FOXL2 gene is:

Adult-type granulosa cell tumor

This is a rare type of ovarian cancer that develops from the granulosa cells in the ovary. Mutations in the FOXL2 gene are found in over 95% of adult-type granulosa cell tumors, making it a key genetic marker for 

this cancer type.

FOXL2 mutations are considered a defining molecular feature of adult-type granulosa cell tumors. However, it's important to note that while FOXL2 mutations are strongly associated with this cancer, genetics is 

complex and a single gene mutation does not always directly cause cancer.

Would you like me to provide more information about the role of FOXL2 in this type of ovarian cancer or explain any other aspects of this gene-cancer association?

Return the name of the cancer corresponding to the given gene symbol.

FOXL2

Task 8: Cancer Prediction from Gene Symbol

The gene symbol **FOXL2** is associated with **granulosa cell tumor** (GCT), which is a type of ovarian cancer. Mutations in the FOXL2 gene are commonly found in adult granulosa cell tumors of the ovary.

The cancer corresponding to the gene symbol FOXL2 is Ovarian Cancer.

granulosa-cell tumour of the ovary

granulosa-cell tumour of the ovary

(h) Task 8: Cancer prediction from gene symbol (gSymbol2Cancer)

Input
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Instruction

The gene name "immunoglobulin lambda locus" is not specifically associated with one particular type of cancer. Instead, this gene locus is related to the production of antibodies and is important for the immune 

system.

However, alterations or abnormalities in the immunoglobulin lambda locus can be associated with certain blood cancers, particularly:

1. Multiple Myeloma: A cancer of plasma cells, which are a type of white blood cell that produces antibodies.

2. Some types of Non-Hodgkin Lymphoma: Particularly those affecting B-cells, such as:

   - Lymphoplasmacytic lymphoma

   - Waldenstrom macroglobulinemia

3. Chronic Lymphocytic Leukemia (CLL): In some cases, CLL can involve abnormalities in the immunoglobulin genes.

It's important to note that while alterations in this gene locus can be associated with these cancers, the presence of such alterations doesn't necessarily mean cancer is present, and conversely, these cancers can 

occur without specific alterations to this locus.

If you need more specific information about the relationship between this gene and cancer, I'd recommend consulting recent medical literature or speaking with a genetics professional or oncologist.

Give back the cancer name that is associated with the provided gene name.

immunoglobulin lambda locus

Task 9: Cancer Prediction from Gene Name

The gene name "immunoglobulin lambda locus" (IGL) is associated with certain types of cancer, particularly:

Multiple Myeloma: A type of blood cancer that affects plasma cells, which are responsible for producing antibodies (including immunoglobulins like the lambda chain).

Lymphomas: Particularly non-Hodgkin lymphomas, where abnormal B cells may produce an excessive amount of immunoglobulin lambda light chains.

These cancers involve the immune system and are characterized by abnormal proliferation of cells producing the immunoglobulin lambda chain.

The cancer associated with the immunoglobulin lambda locus is Waldenström macroglobulinemia.

Burkitt lymphoma

Burkitt lymphoma

(i) Task 9: Cancer prediction from gene name (gName2Cancer)

Figure 7: Prediction comparison of OPI-tuned and state-of-the-art models.
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