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ABSTRACT

We introduce methods for discovering and applying sparse feature circuits.
These are causally implicated subnetworks of human-interpretable features for
explaining language model behaviors. Circuits identified in prior work consist of
polysemantic and difficult-to-interpret units like attention heads or neurons, ren-
dering them unsuitable for many downstream applications. In contrast, sparse fea-
ture circuits enable detailed understanding of unanticipated mechanisms in neural
networks. Because they are based on fine-grained units, sparse feature circuits
are useful for downstream tasks: We introduce SHIFT, where we improve the
generalization of a classifier by ablating features that a human judges to be task-
irrelevant. Finally, we demonstrate an entirely unsupervised and scalable inter-
pretability pipeline by discovering thousands of sparse feature circuits for auto-
matically discovered model behaviors.

1 INTRODUCTION

The key challenge of interpretability research is to scalably explain the many unanticipated behav-
iors of neural networks (NNs). Much recent work explains NN behaviors in terms of coarse-grained
model components, for example by implicating certain induction heads in in-context learning (Ols-
son et al., 2022) or MLP modules in factual recall (Meng et al., 2022; Geva et al., 2023; Nanda
et al., 2023, inter alia). However, such components are generally polysemantic (Elhage et al.,
2022) and hard to interpret, making it difficult to apply mechanistic insights to downstream ap-
plications. On the other hand, prior methods for analyzing behaviors in terms of fine-grained units
(Kim et al., 2018; Belinkov, 2022; Geiger et al., 2023; Zou et al., 2023) attempt to fit model internals
to researcher-specified mechanistic hypotheses using researcher-curated data. These approaches are
not well-suited to the many cases where researchers cannot anticipate ahead of time how models
internally implement their surprising behaviors.

We propose to explain model behaviors using fine-grained components that play narrow, inter-
pretable roles. Doing so requires us to address two challenges: First, we must identify an appro-
priate fine-grained unit of analysis, since obvious choices like neurons1 are rarely interpretable, and
units discovered via supervised methods like linear probing require pre-existing hypotheses (Mueller
et al., 2024). Second, we must address the scalability problem posed by searching for causal circuits
over a large number of fine-grained units.

We leverage recent progress in dictionary learning for NN interpretability (Bricken et al., 2023; Cun-
ningham et al., 2024) to tackle the first challenge. Namely, we use sparse autoencoders (SAEs) to
identify directions in LM latent spaces which represent human-interpretable concepts. Then, to ad-
dress the scalability challenge, we employ linear approximations (Sundararajan et al., 2017; Nanda,
2022; Syed et al., 2023) to efficiently identify SAE features which are most causally implicated
in model behaviors, as well as connections between these features. The result is a sparse fea-
ture circuit which explains how model behaviors arise via interactions among fine-grained human-
interpretable units.

1We use “neuron” to refer to a basis-aligned direction in an LM’s latent space (not necessarily preceded by
a nonlinearity).
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Figure 1: Overview. Given contrastive input pairs, classification data, or automatically discovered
model behaviors, we discover circuits composed of human-interpretable sparse features to explain
their underlying mechanisms. We then label each feature according to what it activates on or causes
the model to predict. Finally, if desired, we can ablate spurious features out of the circuit to modify
how the system generalizes.

Sparse feature circuits can be productively used in downstream applications. We introduce a tech-
nique, Sparse Human-Interpretable Feature Trimming (SHIFT; §4), which shifts the generalization
of an LM classifier by surgically removing sensitivity to unintended signals. Unlike previous work
on spurious cue removal—which isolates spurious signals using disambiguating data—SHIFT iden-
tifies unintended signals using interpretability and human judgement. We thus showcase SHIFT
by debiasing a classifier in a worst-case setting, where an unintended signal (gender) is perfectly
predictive of target labels (profession).

Finally, we demonstrate our method’s scalability by automatically discovering thousands of narrow
LM behaviors—for example, predicting “to” as an infinitive object or predicting commas in dates—
with the clustering approach of Michaud et al. (2023), and then automatically discovering feature
circuits for these behaviors (§5).

Our contributions are summarized as follows (Figure 1):

1. A scalable method to discover sparse feature circuits. We validate our method by discov-
ering and evaluating feature circuits on a suite of subject-verb agreement tasks.

2. SHIFT, a technique for removing a LM classifier’s sensitivity to unintended signals, even
without data that isolate these signals.

3. A fully-unsupervised pipeline for computing feature circuits for thousands of automatically
discovered LM behaviors, viewable at feature-circuits.xyz.

This paper will be released together with source code, data, and trained autoencoders.

2 FORMULATION

Feature disentanglement with sparse autoencoders. A fundamental challenge in NN inter-
pretability is that individual neurons are rarely interpretable (Elhage et al., 2022). Therefore, many
interpretability researchers have recently turned to sparse autoencoders (SAEs), an unsupervised
technique for identifying a large number of interpretable NN latents (Cunningham et al., 2024;
Bricken et al., 2023; Templeton et al., 2024; Rajamanoharan et al., 2024a;b). Given a model com-
ponent with latent space Rd and an activation x ∈ Rd, an SAE computes a decomposition

x = x̂+ ϵ(x) =

dSAE∑
i=1

fi(x)vi + b+ ϵ(x) (1)

into an approximate reconstruction x̂ as a sparse sum of features vi and an SAE error term ϵ(x) ∈
Rd. Here dSAE is the width of the SAE, the features vi ∈ Rd are unit vectors, the feature activations
fi(x) ≥ 0 are a sparse set of coefficients, and b ∈ Rd is a bias. SAEs are trained on an objective
which promotes having a small reconstruction error ∥x−x̂∥2 while using only a sparse set of feature
activations fi(x). Rather than discard the error terms ϵ for the purposes of circuit discovery, our
methods handle them gracefully by incorporating them into our sparse feature circuits; this gives
a principled decomposition of model behaviors into contributions from interpretable features and
error components not yet captured by our SAEs.

2
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In this work, we leverage the following suites of SAEs:

• A suite of SAEs we train for each sublayer (attention layer, MLP, residual stream, and
embeddings) of Pythia-70M (Biderman et al., 2023). We closely follow Bricken et al.
(2023), using a ReLU-linear encoder fi and sparse dimension dSAE = 64× d and training
the SAEs to minimize a combination of an L2 reconstrution loss and L1 regularization term
which promotes sparsity. Details about our Pythia SAEs and their training can be found in
Appendix B.1.

• The open source Gemma Scope SAEs (Lieberum et al., 2024) available for all sublay-
ers (excluding embeddings) of the open-weights Gemma-2-2B model (Team et al., 2024).
These SAEs use a Jump-ReLU-linear encoder and dSAE = 8×d. Details about the Gemma
Scope SAEs can be found in Appendix B.2.

Scalably training better SAEs is an active area of research, as illustrated by the ready availability of
open-source SAEs (Gao et al., 2024; Lieberum et al., 2024; Lin & Bloom, 2023). Thus, our goal
is to—given a suite of trained SAEs—scalably apply them to understand NN behaviors; we treat
scaling the SAEs themselves as out-of-scope.

Attributing causal effects with linear approximations. Let m be a real-valued metric computed
via a computational graph (e.g., a NN); let a represent a node in this graph. Following prior work
(Vig et al., 2020; Finlayson et al., 2021), we quantify the importance of a on a pair of inputs
(xclean, xpatch) via its indirect effect (IE; Pearl, 2001) on m:

IE(m;a;xclean, xpatch) = m (xclean|do(a = apatch))−m(xclean). (2)

Here, apatch is the value that a takes in the computation of m(xpatch), and m(xclean|do(a = apatch))
denotes the value of m when computing m(xclean) but intervening in the computation of m by manu-
ally setting a to apatch. For example, given inputs xclean =“The teacher” and xpatch =“The teachers,”
we have metric m(x) = logP (“are”|x) − logP (“is”|x), the log probability difference output by
the LM. Then if a is the activation of a particular neuron, a large value of IE(m;a;xclean, xpatch)
indicates that the neuron is highly influential on the model’s decision to output “is” vs. “are” on this
pair of inputs.

We often want to compute IEs for a very large number of model components a ∈ Rd, which cannot
be done efficiently with (2). We thus employ linear approximations to (2) that can be computed
for many a in parallel. The simplest such approximation, attribution patching (Nanda, 2022; Syed
et al., 2023; Kramár et al., 2024), employs a first-order Taylor expansion

ÎEatp(m;a;xclean, xpatch) = ∇am|a=aclean
(apatch − aclean) (3)

which estimates (2) for every a in parallel using only two forward and one backward pass.

To improve the quality of the approximation, we can instead employ a more expensive but more
accurate approximation based on integrated gradients (Sundararajan et al., 2017; Hanna et al., 2024):

ÎEig(m;a;xclean, xpatch) =
1

N

(∑
α

∇am|αaclean+(1−α)apatch

)
(apatch − aclean) (4)

where the sum in (4) ranges over N = 10 equally-spaced α ∈ {0, 1
N , . . . , N−1

N }. This cannot be
done in parallel for two nodes when one is downstream of another, but can be done in parallel for
arbitrarily many nodes which do not depend on each other. Thus the additional cost of computing
ÎEig over ÎEatp scales linearly in N and the serial depth of m’s computation graph.

The above discussion applies to the setting where we have a pair of clean and patch inputs, and we
would like to understand that effect of patching a particular node from its clean to patch values. But
in some settings (e.g., §4, 5), we have only a single input x. In this case, we instead use a zero-
ablation, using the indirect effect IE(m;a;x) = m(x|do(a = 0)) −m(x) from setting a to 0. We
get the modified formulas for ÎE(m;a;x) from (3) and (4) by replacing a with 0.

3
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Figure 2: Overview of our method. We view our model as a computation graph that includes SAE
features and errors. We cache activations (Step 1) and compute gradients (Step 2) for each node. We
then compute approximate indirect effects with Eq. (3; shown) or (4) and filter according to a node
threshold TN (Step 3). We similarly compute and filter edges (Step 4); see App. A.1.

3 SPARSE FEATURE CIRCUIT DISCOVERY

3.1 METHOD

Suppose we are given an LM M , SAEs for various submodules of M (e.g., attention outputs, MLP
outputs, and residual stream vectors, as in §2), a dataset D consisting either of contrastive pairs
(xclean, xpatch) of inputs or of single inputs x, and a metric m that depends on M ’s output when
processing data from D. For example, Figure 2 shows the case where D consists of pairs of inputs
which differ in number, and m is the log probability difference between M outputting the verb form
that is correct for the patch vs. clean input.

Viewing SAE features as part of the model. A key idea underpinning our method is that, by apply-
ing the decomposition (1) to various hidden states x in the LM, we can view the feature activations
fi and SAE errors ϵ as being part of the LM’s computation. We can thus represent the model as
a computation graph G where nodes correspond to feature activations or SAE errors at particular
token positions.

Approximating the IE of each node. Let ÎE be one of ÎEatp or ÎEig (see §2). Then for each node
a in G and input x ∼ D, we compute ÎE(m;a;x); we then average over x ∼ D to produce a score
ÎE(m;a) and filter for nodes with |ÎE(m;a)| > TN for some choice TN of node threshold.

Consistent with prior work (Nanda, 2022; Kramár et al., 2024), we find that ÎEatp accurately esti-
mates IEs for SAE features and SAE errors, with the exception of nodes in the layer 0 MLP and
early residual stream layers, where ÎEatp underestimates the true IE. We find that ÎEig significantly
improves accuracy over ÎEatp for these components, so we use it in our experiments below. See
Appendix H for more information about linear approximation quality.

Approximating the IE of edges. Using an analogous linear approximation, we also compute the
average IE of edges in the computation graph. Although the idea is simple, the mathematics are
somewhat involved, so we relegate the details to App. A.1. After computing these IEs, we filter for
edges with absolute IE exceeding some edge threshold TE .

Aggregation across token positions and examples. For templatic data where tokens in matching
positions play consistent roles (see §3.2, 3.3), we take the mean effect of nodes/edges across exam-
ples. For non-templatic data (§4, 5) we first sum the effects of corresponding nodes/edges across
token position before taking the example-wise mean. See App. A.2.
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Structure Example clean input Example output
Simple The parents p(is)− p(are)
Within RC The athlete that the managers p(likes)− p(like)
Across RC The athlete that the managers like p(do)− p(does)
Across PP The secretaries near the cars p(has)− p(have)

Table 1: Example clean inputs x and outputs m for subject-verb agreement tasks.
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Figure 3: Faithfulness and completeness scores for circuits, measured on held-out data. Faint lines
correspond to the structures from Table 1, with the average across structures in bold. The ideal
faithfulness for circuits is 1, while the ideal completeness is 0.

Practical considerations. Various practical difficulties arise for efficiently computing the gradi-
ents needed by our method. We solve these using a combination of stop gradients, pass-through
gradients, and tricks for efficient Jacobian-vector product computation; see App. A.3.

3.2 DISCOVERING AND EVALUATING SPARSE FEATURE CIRCUITS FOR SUBJECT-VERB
AGREEMENT

To evaluate our method, we discover sparse feature circuits (henceforth, feature circuits) on Pythia-
70M and Gemma-2-2B for four variants of the subject-verb agreement task (Table 1). Specifically,
we adapt data from Finlayson et al. (2021) to produce datasets consisting of contrastive pairs of
inputs that differ only in the grammatical number of the subject; the model’s task is to choose the
appropriate verb inflection.

We evaluate circuits for interpretability, faithfulness, and completeness. For each criterion, we
compare to neuron circuits discovered by applying our methods with neurons in place of sparse
features; in this setting, there are no error terms ϵ. When evaluating feature circuits for faithfuless
and completeness, we use a test split of our dataset, consisting of contrastive pairs not used to
discover the circuit.

Interpretability. For Pythia SAEs, we asked human crowdworkers to rate the interpretability of
random features, random neurons, features from our feature circuits, and neurons from our neuron
circuits. Crowdworkers rated sparse features as significantly more interpretable than neurons, with
features that participate in our circuits also being more interpretable than randomly sampled ones
(App. F). This replicates prior findings that SAE features are substantially more interpretable than
neurons (Bricken et al., 2023). For Gemma-2 SAEs, we refer the reader to Lieberum et al. (2024),
which finds the interpretability of these SAEs’ features to be on par with those trained via other
state-of-the-art techniques.

Faithfulness. Given a circuit C and metric m, let m(C) denote the average value of m over inputs
from D when running our model with all nodes outside of C mean-ablated, i.e., set to their average

5
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value over data from D.2 We then measure the faithfulness of a circuit as m(C)−m(∅)
m(M)−m(∅) , where

∅ denotes the empty circuit and M denotes the full model. Intuitively, this metric captures the
proportion of the model’s performance our circuit explains, relative to mean ablating the full model
(which represents the “prior” performance of the model when it is given information about the task,
but not about specific inputs).

We find that components in early model layers are typically involved in processing specific tokens.
In practice, the inputs in the train split of our dataset (used to discover the circuit) and the test split
(for evaluation) do not contain identical tokens, making it difficult to evaluate the quality of early
segments of our circuit. Thus, we ignore the first 1/3 of our circuit, and only evaluate the latter 2/3.

We plot faithfulness for feature circuits and neuron circuits after sweeping over node thresholds TN

(Fig. 3). We find that small feature circuits explain a large proportion of model behavior: the major-
ity of performance in Pythia-70M, resp. Gemma-2-2B is explained by only 100, resp. 500 nodes. In
contrast, around 1500, resp. 50000 neurons are required to explain half the performance. However,
as SAE error nodes are high-dimensional and coarse-grained, they cannot be fairly compared to neu-
rons; we thus also plot the faithfulness of feature circuits with all SAE error nodes removed, or with
all attention and MLP error nodes removed. Unsurprisingly, we find that removing residual stream
SAE error nodes severely disrupts the model and curtails its maximum performance; removing MLP
and attention error nodes is less disruptive.

Completeness. Are there parts of the model behavior that our circuit fails to capture? We measure
this as the faithfulness of the circuit’s complement M \C (Fig. 3). We observe that we can eliminate
the model’s task performance by ablating only a few nodes from our feature circuits, and that this
is true even when we leave all SAE errors in place. In contrast, it takes hundreds (for Pythia) or
thousands (for Gemma) of neurons to achieve the same effect.

3.3 CASE STUDY: SUBJECT-VERB AGREEMENT ACROSS A RELATIVE CLAUSE

We find that inspecting small feature circuits produced by our technique can provide insights into
how Pythia-70M and Gemma-2-2B arrive at observed behaviors. To illustrate this, we present a case
study of relatively small feature circuits for subject-verb agreement across a relative clause (RC).

To keep the number of nodes we need to annotate manageable, we tune our node threshold to pro-
duce a small circuit with faithfulness > 0.2. For Pythia, this results in a circuit with 86 nodes and
faithfulness 0.21; for Gemma we study a circuit with 223 nodes and faithfulness 0.21. We sum-
marize these circuits in Figure 4; the full circuits (as well as small circuits for other subject-verb
agreement tasks) can be found in App. C.1. We depict SAE features with rectangles and SAE errors
with triangles.

Our circuits depict interpretable algorithms wherein both models of study select appropriate verb
forms via two pathways. The first pathway consists of features which detect the number of the
main subject and then generically promote matching verb forms. The second pathway begins the
same, but moves the relevant number information to the end of the relative clause by using PP/RC
boundary detectors. Gemma 2 also uses noun phrase (NP) number trackers, which detect the number
of the noun that heads an NP and remain active on all tokens until the end of the NP; these promote
matching verb forms at each position, but especially at the last token of an NP.

We find significant overlap between this circuit and the circuit we discovered for agreement across a
prepositional phrase, with Pythia-70M and Gemma-2-2B handling these syntactically distinct struc-
tures in a mostly uniform way. In accordance with Finlayson et al. (2021), we find less overlap with
our circuits for simple agreement and within RC agreement (Appendix C.1).

4 APPLICATION: REMOVING UNINTENDED SIGNALS FROM A CLASSIFIER
WITHOUT DISAMBIGUATING LABELS

NN classifiers often rely on unintended signals—e.g., spurious features. Nearly all prior work on
mitigating this problem relies on access to disambiguating labeled data in which unintended signals
are less predictive of labels than intended ones. However, some tasks have structural properties

2Following Wang et al. (2023), we ablate features by setting them to their mean position-specific values.
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Figure 4: Summary of Pythia’s (a) and Gemma 2’s (b) circuits for agreement across RC (full circuits
in App. C.1). The models detect the number of the subject. Then, they detect the start of a PP/RC
modifying the subject. Verb form discriminators promote particular verb inflections (singular or
plural). Gemma 2 additionally uses separate features to track the number of the noun that heads the
current noun phrase. Squares show number of feature nodes in the group and triangles show number
of SAE error nodes, with the shading indicating the sum of ÎE terms across nodes in the group. As
we cannot directly interpret the triangles, we rely on their positions or inclusion in other groups to
label them. If the label is ambiguous, we leave the triangles outside the boxes.

which disallow this assumption. For example, inputs for different classes might come from different
data sources (Zech et al., 2018). Additionally, some have raised concerns (Ngo et al., 2024; Casper
et al., 2023) that sophisticated LMs trained with human feedback (Christiano et al., 2023) in settings
with easy-to-hard domain shift (Burns et al., 2023; Hase et al., 2024) will be misaligned because, in
these settings, “overseer approval” and “desirable behavior” are equally predictive of training reward
labels. More fundamentally, the problem with unintended signals is that they are unintended—not
they are insufficiently predictive—and we would like our methods to reflect this.

We thus propose Spurious Human-interpretable Feature Trimming (SHIFT), where a human inspects
a classifier’s feature circuit and removes features which they judge to be task-irrelevant. We show
that SHIFT removes sensitivity to unintended signals without access to disambiguating labeled data,
or even without knowing what the signals are ahead of time.

Method. Suppose we are given labeled training data D = {(xi, yi)}; an LM-based classifier C
trained on D; and SAEs for various components of C. To perform SHIFT, we:

1. Apply the methods from §3 to compute a feature circuit that explains C’s accuracy on
inputs (x, y) ∼ D (e.g., using metric m = − logC(y|x)).

2. Manually inspect and evaluate for task-relevancy each feature in the circuit from Step 1.
3. Ablate from C features judged to be task-irrelevant to obtain a classifier C ′.
4. (Optional) Further fine-tune C ′ on data from D.

Step 3 removes the classifier’s dependence on unintended signals we can identify, but may disrupt
the classifier’s performance for the intended signal. Step 4 can be used to restore some performance.

7
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Pythia-70M Gemma-2-2B
Method ↑Profession ↓Gender ↑Worst group ↑Profession ↓Gender ↑Worst group

Original 61.9 87.4 24.4 67.7 81.9 18.2
CBP 83.3 60.1 67.7 90.2 50.1 86.7
Random 61.8 87.5 24.4 67.3 82.3 18.0
SHIFT 88.5 54.0 76.0 76.0 51.5 50.0
SHIFT + retrain 93.1 52.0 89.0 95.0 52.4 92.9
Neuron skyline 75.5 73.2 41.5 65.1 84.3 5.6
Feature skyline 88.5 54.3 62.9 80.8 53.7 56.7
Oracle 93.0 49.4 91.9 95.0 50.6 93.1

Table 2: Accuracies on balanced data for the intended label (profession) and unintended label (gen-
der). “Worst group accuracy” refers to whichever profession accuracy is lowest among male profes-
sors, male nurses, female professors, female nurses.

Experimental setup. We illustrate SHIFT using the Bias in Bios dataset (BiB; De-Arteaga et al.,
2019). BiB consists of professional biographies, and the task is to classify an individual’s profession
based on their biography. BiB also provides labels for a spurious feature: gender. We subsample
BiB to produce two sets of labeled data:

• The ambiguous set, consisting of bios of male professors (labeled 0) and female nurses
(labeled 1).

• The balanced set, consisting of an equal number of bios for male professors, male nurses,
female professors, and female nurses. These data carry profession labels (the intended
signal) and gender labels (the unintended signal).

The ambiguous set represents a worst-case scenario: the unintended signal is perfectly predictive
of training labels. Given only access to the ambiguous set, our task is to produce a profession
classifier which is accurate on the balanced set.

We adapt Pythia-70M and Gemma-2-2B into classifiers by training linear classification heads with
the ambiguous set; see App. E.1 for probe training details. We then discover feature circuits for
these classifiers using the zero-ablation variant described in §3.1; the Pythia circuit contains 67 fea-
tures, and the Gemma circuit contains 46. We manually interpret each feature using the Neuronpedia
interface (Lin & Bloom, 2023), which displays maximally activating dataset exemplars on a large
text corpus, as the features’ direct effects on output logits. We judge 55 of the Pythia features and
43 of the Gemma features to be task-irrelevant—e.g., features that promote female-associated lan-
guage in biographies of women, as in Figure 19 (see App. D for more examples features). Although
this interpretability step uses additional unlabeled data, we emphasize that we never use additional
labeled data (or even additional unlabeled classification data).

To apply SHIFT, we zero-ablate these irrelevant features. Finally, we retrain the linear classification
head with the ambiguous set using activations extracted from the ablated model. We evaluate all
accuracies on the balanced set.

Baselines and skylines. To contextualize the performance of SHIFT, we also implement:

• SHIFT with neurons. Perform SHIFT, but using neurons instead of SAE features.
• Concept Bottleneck Probing (CBP), adapted from Yan et al. (2023) (originally for multi-

modal text/image models). CBP works by training a probe to classify inputs x given access
only to a vector of affinities between the LM’s representation of x and various concept
vectors. See App. E.2 for implementation details.

• Random feature ablations. Perform SHIFT, but using (the same number of) randomly
selected SAE features instead of features selected by a human annotator.

• Feature skyline. Instead of relying on human judgement to evaluate whether a feature
should be ablated, we zero-ablate the 55 (for Pythia) or 43 (for Gemma) features from our
circuit that are most causally implicated in spurious feature accuracy on the balanced set.

• Neuron skyline. The same as the feature skyline, but mean-ablating 55 or 43 neurons.
• Oracle. A classifier trained on ground-truth labels on the balanced set.

Results. We find (Table 2) that SHIFT almost completely removes the classifiers’ dependence on
gender information for both models. In the case of Gemma (but not Pythia), the feature ablations
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Cluster 382: Incrementing sequences Cluster 475: “to” as infinitive object

Example features involved:

Succession

Chapter 1 
Chapter 2 
Chapter 3

A, B, C

I, II, III, IV

Narrow induction

A3 … A → 3 or III or 4 …

A7 … A → 7 or vii or 8 …

var input = [1, 2, 3, 4, 5, 6, 7, 8

Step 1. Download the latest CompsNY 3.49 Full 
Step 2. Double click the Setup file and follow the prompts […] 
Step 3. After the main install closes, click OK […] 
Step 4

At issue, whether the defendant should be allowed to

British Prime Min David Cameron says in televised remarks he would like Britain to

Reader bloggers are asked to

Objects which can precede  
object complements

Direct the user to

Other words which precede  
infinitive objects

According to This infection leads toIt’s up to you to

Example features involved:

Figure 5: Example clusters and features which participate in their circuits (see App. C.3 for the full
circuits). Features are active on tokens shaded in blue and promote tokens shaded in red. (left) An
example narrow induction feature recognizes the pattern A3 . . . A and copies information from the
3 token. This composes with a succession feature to implement the prediction A3 . . . A→ 4. (right)
One feature promotes “to” after words which can take infinitive objects. A separate feature activates
on objects of verbs or prepositions and promotes “to” as an object complement.

damage model performance; however, this performance is restored (without reintroducing the bias)
by further training on the ambiguous set. Comparing SHIFT without retraining to the feature skyline,
we further observe that SHIFT optimally or near-optimally identifies the best features to remove.

SHIFT critically relies on the use of properly selected SAE features. When ablating random SAE
features, we see essentially no effect on probe performance. When applying SHIFT with neurons,
essentially none of the neurons are interpretable, making it difficult to tell if they ought to be ablated;
see Appendix D for examples. Because of this, we abandon the SHIFT with neurons baseline. Even
using the balanced set to automatically select neurons for removal (the neuron skyline) fails to
match SHIFT’s performance, as the neurons most implicated in spurious feature classification are
also useful for ground-truth classification.

5 UNSUPERVISED CIRCUIT DISCOVERY AT SCALE

Previous work on circuit analysis relied on human-collected datasets to specify LM behaviors (Wang
et al., 2023; Conmy et al., 2023; Hanna et al., 2023). However, LMs implement numerous interest-
ing behaviors, many of which may be counterintuitive to humans. In this section, we adapt our
techniques to produce a near-fully-automated interpretability pipeline, starting from a large text
corpus—here, a large subset of The Pile (Gao et al., 2020)—and ending with thousands of feature
circuits for auto-discovered model behaviors. These experiments are performed with Pythia-70M.

We proceed in two steps:

1. Behavior discovery via clustering. We interpret our large text corpus as a dataset
{(xi, yi)} of contexts xi with ground-truth next tokens yi. Following Michaud et al. (2023),
we associate a vector vi = v(xi, yi) to each sample and apply a clustering algorithm to
{vi}; this segments our large corpus into a number of smaller subcorpora corresponding
to the clusters. Although this approach is entirely unsupervised, many of the resulting sub-
corpora capture human-interpretable model behaviors, such as predicting the next number
in a sequence (Fig 5). We experiment with a number of ways of assigning (xi, yi) 7→ vi,
such as using the training gradient ∇θ logPθ(yi|xi) as in Michaud et al. (2023) as well as
approaches which leverage SAE activations or gradients. See App. G for details.

2. Circuit discovery. Given a subcorpus D = {(xi, yi)}, we apply the zero-ablation variant
of our feature circuit discovery technique from §3 using the dataset D and metric m =
− logP (yi|xi). Thus, to each subcorpus we associate a feature circuit.

We present example clusters, as well as interesting features participating in their associated circuits
(Figure 5). An interface for exploring all of our clusters and (unlabeled) circuits can be found at
feature-circuits.xyz.

While evaluating these clusters and circuits is an important open problem, we generally find that
these clusters expose interesting LM behaviors, and that their respective feature circuits can provide
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useful insights on mechanisms of LM behavior. For instance, we automatically discover attention
features implicated in succession and induction, two phenomena thoroughly studied in prior work at
the attention head level using human-curated data (Olsson et al., 2022; Gould et al., 2023).

Feature circuits can also shed interesting light on their clusters. For example, while the clusters in
Figure 5 seem at first to each represent a single mechanism, circuit-level analysis reveals in both
cases a union of distinct mechanisms. For cluster 475, Pythia-70M determines whether “to [verb]”
is an appropriate object in two distinct manners (see Figure 5 caption). And for cluster 382, the
prediction of successors relies on general succession features, as well as multiple narrow induction
features which recognize patterns like “A3 . . . A”.

6 RELATED WORK

Causal interpretability. Interpretability research has applied causal mediation analysis (Pearl,
2001; Robins & Greenland, 1992) to understand the mechanisms underlying particular model be-
haviors and their emergence (Yu et al., 2023; Geva et al., 2023; Hanna et al., 2023; Todd et al., 2024;
Prakash et al., 2024; Chen et al., 2024, inter alia). This typically relies on counterfactual inter-
ventions (Lewis, 1973), such as activation patching or path patching on coarse-grained components
(Conmy et al., 2023; Wang et al., 2023). Some techniques aim to, given a hypothesized causal graph,
identify a matching causal mechanism in an LM (Geiger et al., 2021; 2022; 2023); in contrast, we
aim here to discover causal mechansisms without starting from such hypotheses.

Robustness to spurious correlations. There is a large literature on mitigating robustness to spu-
rious correlations, including techniques which rely on directly optimizing worst-group accuracy
(Sagawa et al., 2020; Oren et al., 2019; Zhang et al., 2021; Sohoni et al., 2022; Nam et al., 2022),
automatically or manually reweighting data between groups (Liu et al., 2021; Nam et al., 2020;
Yaghoobzadeh et al., 2021; Utama et al., 2020; Creager et al., 2021; Idrissi et al., 2022; Orgad &
Belinkov, 2023), training classifiers with more favorable inductive biases (Kirichenko et al., 2023;
Zhang et al., 2022; Iskander et al., 2024), or editing out undesired concepts (Iskander et al., 2023;
Belrose et al., 2023; Wang et al., 2020; Ravfogel et al., 2020; 2022a;b). All of these techniques
rely on access to disambiguating labeled data in the sense of §4. Some techniques from a smaller
literature focused on image or multimodal models apply without such data (Oikarinen et al., 2023;
Yan et al., 2023). Our method here is inspired by the approach of Gandelsman et al. (2024) based
on interpreting and ablating undesired attention heads in CLIP.

Feature disentanglement. In addition to recent work on SAEs for LM interpretability (Cunning-
ham et al., 2024; Bricken et al., 2023; Gao et al., 2024; Rajamanoharan et al., 2024a;b), other ap-
proaches to feature disentanglement include Schmidhuber (1992); Desjardins et al. (2012); Kim &
Mnih (2018); Chen et al. (2016); Makhzani & Frey (2013); He et al. (2022); Peebles et al. (2020);
Schneider & Vlachos (2021); Burgess et al. (2017); Chen et al. (2018); Higgins et al. (2017); i.a.

7 CONCLUSION

We have introduced a method for discovering circuits on sparse features. Using this method, we
discover human-interpretable causal graphs for a subject-verb agreement task, a classifier, and thou-
sands of general token prediction tasks. We can edit the set of features that models have access to by
ablating sparse features that humans deem spurious; we find that this is significantly more effective
than a neuron-based ablation method which has an unfair advantage.

8 LIMITATIONS

The success of our technique relies on access to SAEs for a given model. Training such SAEs
currently requires a large (but one-time) upfront compute cost. Additionally, model components not
captured by the SAEs will remain uninterpretable after applying our method.

Much of our evaluation is qualitative. While we have quantitative evidence that feature circuits are
useful for improving generalization without additional data (§4), evaluating dictionaries and circuits
without downstream tasks is challenging. Feature labeling is also a qualitative process; thus, labels
may vary across annotators, and may vary depending on the task of interest.
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REPRODUCIBILITY

This paper is submitted along with code for reproducing all experiments, and experimental details
can be found in appendices A, E, and G. Our experiments are conducted entirely on open-weights
models. The Gemma Scope SAEs are publicly available (Lieberum et al., 2024), and our Pythia-
70M SAEs will be made available upon acceptance. Features for both SAE suites can be browsed
on Neuronpedia (Lin & Bloom, 2023). Our clusters and associated feature circuits can be browsed
at feature-circuits.xyz.
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Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning
perspective. Computing Research Repository, arXiv:2209.00626, 2024.

Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottle-
neck models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=FlCg47MNvBA.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Yonatan Oren, Shiori Sagawa, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
language modeling. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
4227–4237, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1432. URL https://aclanthology.org/D19-1432.

Hadas Orgad and Yonatan Belinkov. BLIND: Bias removal with no demographics. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8801–8821, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
490. URL https://aclanthology.org/2023.acl-long.490.

Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’01, pp. 411–420, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. ISBN 1558608001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

William Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Torralba. The hessian
penalty: A weak prior for unsupervised disentanglement. In Proceedings of European Conference
on Computer Vision (ECCV), 2020.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
enhances existing mechanisms: A case study on entity tracking. In Proceedings of the 2024
International Conference on Learning Representations, 2024. arXiv:2402.14811.

15

https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.lesswrong.com/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.lesswrong.com/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://openreview.net/forum?id=FlCg47MNvBA
https://aclanthology.org/D19-1432
https://aclanthology.org/2023.acl-long.490


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. Computing Research Repository, arXiv:2404.16014, 2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu
sparse autoencoders. Computing Research Repository, arXiv:2407.14435, 2024b. URL https:
//arxiv.org/abs/2407.14435.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out: Guard-
ing protected attributes by iterative nullspace projection. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 7237–7256, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.647. URL https://aclanthology.org/2020.
acl-main.647.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Linear adversarial concept
erasure. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 18400–18421. PMLR, 17–23 Jul
2022a. URL https://proceedings.mlr.press/v162/ravfogel22a.html.

Shauli Ravfogel, Francisco Vargas, Yoav Goldberg, and Ryan Cotterell. Adversarial concept era-
sure in kernel space. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 6034–
6055, Abu Dhabi, United Arab Emirates, December 2022b. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.emnlp-main.405. URL https://aclanthology.org/2022.
emnlp-main.405.

James M. Robins and Sander Greenland. Identifiability and exchangeability for direct and indirect
effects. Epidemiology, 3(2):143–155, 1992. ISSN 10443983. URL http://www.jstor.org/
stable/3702894.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=ryxGuJrFvS.

Jürgen Schmidhuber. Learning Factorial Codes by Predictability Minimization. Neural Com-
putation, 4(6):863–879, 11 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.6.863. URL
https://doi.org/10.1162/neco.1992.4.6.863.

Johannes Schneider and Michalis Vlachos. Explaining neural networks by decoding layer ac-
tivations. In Advances in Intelligent Data Analysis XIX: 19th International Symposium on
Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 26–28, 2021, Proceedings, pp.
63–75, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-3-030-74250-8. doi: 10.1007/
978-3-030-74251-5 6. URL https://doi.org/10.1007/978-3-030-74251-5 6.

Nimit Sharad Sohoni, Maziar Sanjabi, Nicolas Ballas, Aditya Grover, Shaoliang Nie, Hamed
Firooz, and Christopher Re. BARACK: Partially supervised group robustness with guaran-
tees. In ICML 2022: Workshop on Spurious Correlations, Invariance and Stability, 2022. URL
https://openreview.net/forum?id=Rn9POk3wOiV.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 3319–3328. JMLR.org, 2017.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. In NeurIPS Workshop on Attributing Model Behavior at Scale, 2023. URL https:
//openreview.net/forum?id=tiLbFR4bJW.

16

https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://aclanthology.org/2020.acl-main.647
https://aclanthology.org/2020.acl-main.647
https://proceedings.mlr.press/v162/ravfogel22a.html
https://aclanthology.org/2022.emnlp-main.405
https://aclanthology.org/2022.emnlp-main.405
http://www.jstor.org/stable/3702894
http://www.jstor.org/stable/3702894
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://doi.org/10.1162/neco.1992.4.6.863
https://doi.org/10.1007/978-3-030-74251-5_6
https://openreview.net/forum?id=Rn9POk3wOiV
https://openreview.net/forum?id=tiLbFR4bJW
https://openreview.net/forum?id=tiLbFR4bJW


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
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A METHODOLOGICAL DETAILS FOR FEATURE CIRCUIT DISCOVERY

A.1 COMPUTING EDGE WEIGHTS

Let e be an edge between an upstream node u and downstream node d; let also M be the set of
nodes m intermediate between u and d. We define the weight of the edge e to be the effect on the
metric m when intervening to set

d = d (xclean|do (u = upatch,m = mclean : m ∈M)) .
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Figure 6: Aggregation of node/edge effects across examples (and sometimes, across token posi-
tions). Each feature is labeled as “token position, feature index.” If we have templatic data, we
preserve token position information, and treat the same features in different token positions as dif-
ferent features. If we have more general non-templatic data, we first sum across positions, and then
take the example-wise mean of the position-aggregated effects.

Intuitively, this captures the indirect effect of u on m via the direct effect on d, but excluding effects
on d mediated by some other intermediate node m.

As with nodes, we employ a linear approximation:

ÎE(m; e;xclean, xpatch) = ∇dm|dclean
∇u,stop(M)d

∣∣
uclean

(upatch − uclean) (5)

where∇u,stop(M)d denotes the gradient of d with respect to u when treating all m ∈M as constant.
In practice, this is computed by applying stop-gradients to all intermediate nodes m during pytorch’s
backwards pass.

If d is an SAE error, then the naive approach to computing is expression involves performing dmodel
backwards passes; fortunately we can still compute the product in a single backwards pass as ex-
plained in §A.3.

A.2 AGGREGATING ACROSS TOKEN POSITIONS AND EXAMPLES

Figure 6 summarizes how we aggregate effects across examples (and optionally across token posi-
tions). For templatic data where tokens in matching positions play consistent roles (see §3.2, 3.3),
we take the mean effect of nodes/edges across examples. In this case, we treat the same feature (or
neuron) in different token positions as different nodes altogether in the circuit, each with their own
separate effects on target metric m.

For non-templatic data (§4, 5), we first sum the effects of corresponding nodes/edges across token
positions before taking the example-wise mean. This means that each feature appears in the circuit
once, representing its effects at all token positions in an input.

A.3 PRACTICAL CONSIDERATIONS

Here we review a number of tricks that we use to compute the quantities defined above efficiently.
The backbone of our approach is to, given an activation x ∈ Rdmodel of some submodule for which
we have an SAE, use the SAE to compute the quantities fi(x) and ϵ(x) in (1), and then intervene in
our model’s forward pass to set

x←
∑
i

fi(x)vi + b+ ϵ(x). (6)

Even though x was already numerically equal to the right-hand side of (6), after the intervention
the computation graph will incorporate the variables fi(x) and ϵ(x). Thus, when we use Pytorch’s
autograd algorithm to peform backpropogation of downstream quantities, we will automatically
compute gradients for these variables.
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An alternative approach for computing gradients (which we do not use) is to simply run the model
without interventions, use backpropogation to compute all gradients∇xm, and use the formulas

∇fim = ∇xm · vi, ∇ϵm = ∇xm

which follow from the chain rule when m is any function of x.

Stop gradients on SAE errors to compute SAE feature gradients. The natural way to compute
the SAE error ϵ(x) is by first using the SAE to compute x̂ and then setting ϵ(x) = x− x̂. However,
if we take this approach, then after applying the intervention (6) we would have

∇fim = ∇vxdm∇fix
d = ∇xdm∇fi (x̂+ xu − x̂) = 0

where xd is the copy of x downstream of fi in the computation graph, and xu is the copy upstream
of fi. To fix this, we apply a stop gradient to ϵ(x) so that xd = x̂+ stopgrad(xu − x̂).

Pass-through gradients. Although the stop gradient from above solves the problem of vanishing
gradients for the fi, it interferes with the backpropogation of gradients to further upstream nodes.
In order to restore exact gradient computation, we implement a pass-through gradient on the com-
putation of our dictionary. That is, in the notation above, we intervene in the backwards pass of our
model to set

∇xum← ∇xdm.

Jacobian-vector products. Done naively, computing the quantity in (5) when d is an SAE errors
would take O(dmodel) backwards passes. Fortunately, one can use the following trick: when A is a
constant 1× n matrix, x ∈ Rm, and y = y(x) ∈ Rn is a function of x, we have

A∇xy = ∇x(Ay)

where the right-hand side is a 1×m Jacobian which can be computed with a single backward pass.
Thus we can compute (5) with only two backwards passes by first computing ∇dm|dclean

and then
computing∇u

(
∇dm|dclean

)
with another backwards pass, where the second ∇dm|dclean

is treated as
a constant (e.g., by detaching it in Pytorch).

B DETAILS ON SPARSE AUTOENCODERS

B.1 PYTHIA-70M SPARSE AUTOENCODERS

B.1.1 ARCHITECTURE

Following Bricken et al. (2023), our SAEs for Pythia-70M are one-layer MLPs with a tied pre-
encoder bias. In more detail, our SAEs have parameters

WE ∈ RdSAE×dmodel ,WD ∈ Rdmodel×dSAE , bE ∈ RdSAE , bD ∈ Rdmodel

where the columns of WD are constrained to be unit vectors. Given an input activation x ∈ Rdmodel ,
we compute the sparse features activations via

f = [f1(x) . . . fdSAE(x)] = ReLU(WE(x− bD) + bE)

with the ReLU nonlinearity applied coordinatewise and reconstructions via

x̂ = WDf + bD.

The feature vectors vi ∈ Rdmodel are the columns of WD.

B.1.2 TRAINING

Fix a specific choice of activation in Pythia-70M, e.g. MLP output, attention output, or residual
stream in a particular layer. Following Cunningham et al. (2024); Bricken et al. (2023) we train an
SAE for this activation by sampling random text from The Pile (Gao et al., 2020) (specifically the
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first 128 tokens of random documents), extracting the values x for this activation over every token,
and then training our SAE to minimize a loss function

L = Lreconstruction + λLsparsity = ∥x̂− x∥2 + λ∥f∥1

consisting of a L2 reconstruction loss and a L1 regularization term to promote sparsity. This loss is
optimized using a variant of Adam (Kingma & Ba, 2014) adapted to ensure that the columns of WD

are unit vectors (see Bricken et al. (2023) or our code for details). We use λ = 0.1 and a learning
rate of 10−4.

Following Nanda (2023), we cache activations from 10000 contexts in a buffer and randomly sample
batches of size 214 for training our SAE. When the buffer is half-depleted, we replenish it with fresh
tokens from The Pile. We train for 120000 steps, resulting in a total of about 2 billion training
tokens.

A major obstacle in training SAEs is dead features, that is, neurons in the middle layer of the SAE
which never or rarely activate. We mitigate this by, every 25000 training steps, reinitializing fea-
tures which have not activated in the previous 12500 steps using the same reinitialization procedure
described in Bricken et al. (2023).

Finally, we use a linear learning rate warmup of 1000 steps at the start of training and after every
time that neurons are resampled.

B.1.3 EVALUATION

Here we report on various easy-to-quantify metrics of SAE quality. Note that these metrics leave out
important qualitative properties of these SAEs, such as the interpretability of their features (App. F).
Our metrics are:

• Variance explained, as measured by 1− Var(x−x̂)
Var(x) .

• Average L1, and L0 norms of f .

• Percentage of features alive as measured by features which activate at least once on a
batch of 512 tokens.

• Cross entropy (CE) difference and percentage of CE recovered. The CE difference is
the difference between the model’s original CE loss and the model’s CE loss when inter-
vening to set x to the reconstruction x̂. We obtain percentage of CE recovered by dividing
this difference by the difference between the original CE loss and the CE loss when zero-
ablating x. These CE losses are computed averaged over a batch of 128 contexts of length
128.

These metrics are shown in Tables 3–6. Note that we index residual stream activations to be the
layer which outputs the activation (so the layer 0 residual stream is not the embeddings, and the
layer 5 residual stream is the output of the final layer, immediately preceding the final decoder).

% Variance Explained L1 L0 % Alive CE Diff % CE Recovered
96 1 3 36 0.17 98

Table 3: Embedding SAE evaluation.

B.2 GEMMA-2-2B SPARSE AUTOENCODERS

For Gemma-2-2B, we use the Gemma Scope SAEs released by Lieberum et al. (2024), which are
based on the Jump-ReLU architecture proposed by Rajamanoharan et al. (2024b). We use the SAEs
of width 16384. There exist SAEs for the attention, MLP, and residual vectors for each of the 26
layers in the model. However, the attention and MLP SAEs are trained at different positions than in
Pythia: attention SAEs are trained on the input to the out projection, and MLP SAEs are trained on
the output of the LayerNorm following the MLP. The embedding SAEs are experimental and have
a dictionary size of only 4000, so we do not use them in our experiments.
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Layer % Variance Explained L1 L0 % Alive CE Diff % CE Recovered
Attn 0 92% 8 128 17% 0.02 99%
Attn 1 87% 9 127 17% 0.03 94%
Attn 2 90% 19 215 12% 0.05 93%
Attn 3 89% 12 169 13% 0.03 93%
Attn 4 83% 8 132 14% 0.01 95%
Attn 5 89% 11 144 20% 0.02 93%

Table 4: Attention SAE evaluation by layer.

Layer % Variance Explained L1 L0 % Alive CE Diff % CE Recovered
MLP 0 97% 5 5 40% 0.10 99%
MLP 1 85% 8 69 44% 0.06 95%
MLP 2 99% 12 88 31% 0.11 88%
MLP 3 88% 20 160 25% 0.12 94%
MLP 4 92% 20 100 29% 0.14 90%
MLP 5 96% 31 102 35% 0.15 97%

Table 5: MLP SAE evaluation by layer.

There exist multiple SAEs for every submodule. The primary difference between them is their
average L0 norm.3 Neuronpedia (Lin & Bloom, 2023) uses the SAEs with the L0 norm closest to
100; we do the same.

One of the primary technical challenges in using the Gemma Scope SAEs is the existence of BOS
features. These are features that are active primarily or only on BOS tokens, and whose top logits
are generally not informative. These features are difficult to interpret, but can have high indirect
effects on the model’s logits. As we cannot interpret them, we exclude them from annotation and
from the SHIFT analysis (i.e., we do not ablate them). We also exclude them when running the
feature skyline in §4.

C FEATURE CIRCUITS

C.1 SUBJECT-VERB AGREEMENT

Here, we present the full agreement circuits for various syntactic agreement structures, with
researcher-provided annotations for features. We chose thresholds manually in order to keep the
number of nodes to annotate manageable while still displaying the full range of feature types for a
given task.

In each circuit, sparse features are shown in rectangles, whereas causally relevant error terms not yet
captured by our SAEs are shown in triangles. Nodes shaded in darker colors have stronger effects
on the target metric m. Blue nodes and edges are those which have positive indirect effects (i.e.,
are useful for performing the task correctly), whereas red nodes and edges are those which have
counterproductive effects on m (i.e., cause the model to consistently predict incorrect answers).

First, we present agreement across a relative clause. Pythia (Figure 7) and Gemma (Figure 8) both
appear to detect the subject’s grammatical number at the subject position. One position later, features
detect the presence of relative pronouns (the start of the distractor clause). Finally, at the last token
of the relative clause, the attention moves the subject information to the last position, where it assists
in predicting the correct verb inflection. Gemma 2 additionally leverages noun phrase (NP) number
tracking features, which are active at all positions for NPs of a given number (except on distractor
phrases of opposite number). We present an example of an NP number tracker feature in Figure 15.

The circuits for agreement across a prepositional phrase (Figures 9 and 10) look remarkably similar
to agreement across a relative clause; for both Pythia and Gemma, these two circuits share over 85%

3In other words, the average number of features active for a given token.
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Layer % Variance Explained L1 L0 % Alive CE Diff % CE Recovered
Resid 0 92% 11 59 41% 0.24 97%
Resid 1 85% 13 54 38% 0.45 95%
Resid 2 96% 24 108 27% 0.55 94%
Resid 3 96% 23 68 22% 0.58 95%
Resid 4 88% 23 61 27% 0.48 95%
Resid 5 90% 35 72 45% 0.55 92%

Table 6: Residual (Resid) SAE evaluation by layer.

Figure 7: The feature circuit for agreement across a relative clause in Pythia-70M, computed using
TN = 0.1 and TE = 0.01. The model detects the subject’s number at the subject position. Other
features detect relative pronouns (the start of the distractor clause). Finally, at the last token of the
RC, the attention moves the subject information to the last position, where it assists in predicting the
correct verb inflection.

of their features, and many of the same features are used for detecting both prepositions and relative
clauses.

For simple agreement (Figures 11 and 12), many of the same features that were implicated in noun
number detection and verb number prediction in the previous circuits also appear here. The mod-
els detect the subject’s number at the subject position in early layers. In later layers, these noun
number detectors become inputs to verb number promoters, which activate on anything predictive
of particular verb inflections.

The circuits for agreement within a relative clause (Figures 13 and 14) appear to have the same
structure as that for simple agreement: subject number detectors in early layers, followed by verb
number promoters in later layers.

C.2 BIAS IN BIOS CIRCUIT

Here, we present the full annotated circuit discovered for the Bias in Bios classifier trained on Pythia-
70M (described in §4 and App. E). The circuit was discovered using TN = 0.1 and TE = 0.01.
We observe that the circuit (Figure 16) contains many nodes which simply detect the presence of
gendered pronouns or gendered names. A few features attend to profession information, including
one which activates on words related to nursing, and another which activates on passages relating to
science and academia.

C.3 CLUSTER CIRCUITS

Here, we present full annotated circuits discovered for automatically discovered behaviors (de-
scribed in App. G). First, we present the circuit for incrementing number sequences (Figure 17),
discovered with TN = 0.4 and TE = 0.04. We note that this circuit includes many features which
perform either succession (Gould et al., 2023) or induction (Olsson et al., 2022). The succession
features in the layer 3 attention seem to be general; they increment many different numbers and
letters (as in Figure 5). The induction features are sensitive only to specific tokens: for example,
contexts of the form “x3. . .x3”, where “3” is a literal. These compose to form specific successor
features in layer 5: the most strongly-activating layer 5 residual feature specifically increments “3”
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Figure 8: The feature circuit for agreement across a relative clause in Gemma-2-2B, computed using
TN = 0.073 and TE = 0.007.

Figure 9: The feature circuit for agreement across a prepositional phrase in Pythia-70M, computed
using TN = 0.1 and TE = 0.01. The model detects the subject’s number at the subject position.
Other features detect prepositional phrases (the start of the distractor clause). Finally, at the last
token of the RC, the attention moves the subject information to the last position, where it assists in
predicting the correct verb inflection.
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Figure 10: The feature circuit for agreement across a prepositional phrase in Gemma-2-2B, com-
puted using TN = 0.5 and TE = 0.05. Note that we show the circuit beginning in layer 13, as our
circuit discovery implicated only one node in earlier layers.

Figure 11: The feature circuit for simple agreement in Pythia-70M, computed using TN = 0.2
and TE = 0.02. The model detects the subject’s number at the subject position in early layers.
In later layers, these are inputs to features which activate on anything predictive of particular verb
inflections.
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Figure 12: The feature circuit for simple agreement in Gemma-2-2B, computed using TN = 0.5 and
TE = 0.05.
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Figure 13: The feature circuit for agreement within a relative clause in Pythia-70M, computed with
TN = 0.2 and TE = 0.02. The model detects the subject’s number at the subject (within the
RC)’s position in early layers. In later layers, these features are inputs to features which activate on
anything predictive of particular verb inflections.

Figure 14: The feature circuit for agreement within a relative clause for Gemma-2-2B, computed
with TN = 0.5 and TE = 0.05.
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Figure 15: An example sparse feature for agreement across a relative clause in Gemma 2
(resid 12/13561). This feature activates on tokens in noun phrases where the noun head is plural,
but not on singular distractor phrases within the plural NP. This feature carries the number of the
subject across positions, so we term it an “NP number tracker”.

Figure 16: The full annotated feature circuit for the Bias in Bios classifier. Many nodes simply
detect the presence of gendered pronouns or gendered names. A few features attend to profession
information, including one which activates on words related to nursing, and another which activates
on passages relating to science and academia.
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Figure 17: The full annotated feature circuit for incrementing number sequences. The model first
detects the presence of specific number tokens, like “3”. Later, it learns more robust semantic
representations of those numbers, like “iii” and “Three”. Then, the model uses a series of narrow
and general succesion and induction features to increment the next number.

Figure 18: The full annotated feature circuit for predicting “to” as an infinitival object. The model
first detects the presence of verbs that often take infinitival objects. Then, it uses one mechanism
to detect present-tense verbs, participles, or predicate adjectives which take infinitival objects, and
another mechanism to detect direct objects that can directly precede infinitival object complements.
Finally, these two mechanisms both influence the output in layer 5 without fully intersecting.

to “4” given induction-like lists, where each list item is preceded by the same string (e.g., “Chapter
1. . . Chapter 2. . . Chapter 3. . . Chapter”).

The circuit for predicting infinitival objects (Figure 18, discovered with TN = 0.25 and TE = 0.001)
contains two distinct mechanisms. First, the model detects the presence of specific verbs like “re-
member” or “require” which often take infinitival objects. Then, the model uses two separate mech-
anisms to predict infinitive objects. The first mechanism detects present-tense verbs, participles,
or predicate adjectives which can be immediately followed by infinitival direct objects (e.g., “They
were excited to. . . ”). The second mechanism detects nominal direct objects that can directly pre-
cede infinitival object complements (e.g., “They asked us to. . . ”). Finally, these two mechanisms
both influence the output in layer 5 without fully intersecting.
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Figure 19: An example sparse feature from the Bias in Bios task (attn 3/22029). This feature
detects female-related words in biographies of women. It also promotes words like “husband” and
“née”. This feature probably contributes to preferences for the spurious correlate of gender; we
therefore ablate it.

Figure 20: An example sparse feature from the Bias in Bios task (resid 2/31098). This feature
activates on words related to nursing, including “RN” and “nurse”. This probably relates to the
target task of profession prediction. We therefore keep it.

D SAMPLE FEATURES

D.1 SPARSE FEATURES

Here, we present examples of sparse features with high indirect effects on the Bias in Bios task.
Some of these features clearly activate on terms related to medicine or academia, which are related
to the target profession classification task. Others simply detect the presence of “he” or female
names.

D.2 NEURONS

For contrast, we also present examples of dense features—that is, neurons from MLPs, layer-end
residuals, and the out-projection of the attention—with high indirect effects on the Bias in Bios
task. We cannot directly interpret the activation patterns of these neurons, and so it is difficult to
run the SHIFT with neurons baseline. We therefore instead compare to the neuron skyline, where
we allow the skyline an unfair advantage by simply ablating neurons which have positive effects on
gender-based probabilities given the balanced set.

E IMPLEMENTATION DETAILS FOR CLASSIFIER EXPERIMENTS

E.1 CLASSIFIER TRAINING

Here we describe how we train linear classification heads on Pythia-70M and Gemma-2-2B the Bias
in Bios (BiB) task of §4.
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Figure 21: An example neuron from the Bias in Bios task. This appears to activate on beginnings
and ends of sentences, but also more strongly on any token in a sentence that contains capital letters
or numbers. We cannot deduce whether this would contribute more to gender or profession names.

Figure 22: An example neuron from the Bias in Bios task. This activates positively on tokens starting
with capital letters, but negatively on many other tokens (whose unifying theme we cannot deduce).

Given a model M and choice ℓ of layer, we mean-pool over (non-padding) tokens all layer ℓ residual
stream activations from M ; we then train a linear classification head via logistic regression, using
the AdamW optimizer (Loshchilov & Hutter, 2017) and learning rate 0.01 for one epoch on this
dataset of activations. The activations and labels for this logistic regression are collected from the
ambiguous set for the baseline classifier and from the balanced set for the oracle classifier.

To mimick a realistic application setting, we tune the choice ℓ of layer for the baseline probe’s
accuracy on (a test split of) the ambiguous set. For Pythia, this recommends using the penultimate
layer ℓ = 4. For Gemma, there is a wide range of equally performant layers. Thus—for this one
choice only—we make use of the balanced set to compute how the baseline probe generalizes; we
select the layer ℓ = 22 for which the baseline probe generalizes worst. We make this choice to
set up a testbed where there is the most space for improvement. We emphasize that we never tune
hyperparameters for the performance balanced set of SHIFT, as using the balanced set is forbidden
by the problem statement.

When retraining after performing SHIFT, we retrain only the linear classification head, not the full
model.

E.2 IMPLEMENTATION FOR CONCEPT BOTTLENECK PROBING

Our implementation for Concept Bottleneck Proving (CBP) is adapted from (Yan et al., 2023). It
works as follows:

1. First, we collect a number of keywords related to the intended prediction task. We use
N = 20 keywords: nurse, healthcare, hospital, patient, medical, clinic, triage, medication,
emergency, surgery, professor, academia, research, university, tenure, faculty, dissertation,
sabbatical, publication, and grant.

2. We obtain concept vectors c1, . . . , cN for each keyword by extracting Pythia-70M’s penul-
timate layer representation over the final token of each keyword, and then subtracting off
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Activation type Interpretability

Dense (random) 32.6
Dense (agreement) 30.2
Dense (BiB) 36.0

Sparse (random) 52.8
Sparse (agreement) 62.3
Sparse (BiB) 81.5

Table 7: Human interpretability ratings for dense (neuron) vs. sparse (autoencoder) features. We
present mean interpretability scores across features on a 0–100 scale. We show scores for features
that were either uniformly sampled (random), the top 30 by ÎE from the subject-verb agreement
across RC task (agreement; §3.3), or the top 30 by ÎE for the Bias in Bios task (BiB; §4).

the mean concept vector. (Without this normalization, we found that concept vectors have
very high pairwise cosine similarities.)

3. Given an input with representation x (obtained via the mean-pooling procedure in
App. E.1), we obtain a concept bottleneck representation z ∈ RN by taking the cosine
similarity with each ci.

4. Finally, we train a linear probe with logistic regression on the concept bottleneck represen-
tations z, as in App. E.1.

We decided to normalize concept vectors but not input representations because it resulted in stronger
performance. We also experimented with computing cosine similarities before mean pooling.

F HUMAN INTERPRETABILITY RATINGS FOR SPARSE FEATURES

Given our trained Pythia-70M sparse autoencoders, we asked human crowdworkers to rate the in-
terpretability of random features, random neurons, features from our feature circuits, and neurons
from our neuron circuits on a 0–100 scale (Table 7). Crowdworkers rate sparse features as signifi-
cantly more interpretable than neurons, with features that participate in our circuits also being more
interpretable than randomly sampled features.

See Figures 23 and 24 for examples of the human annotator interface. Humans were presented with
the tokens on which the feature activated most strongly, followed by the tokens whose probabilities
were most affected in Pythia-70M when the feature was ablated. This is followed by a series of
example contexts in which the feature activated on some subset of tokens, where feature activations
are shown in varying shades of blue (darker shades indicate higher activations). On the same page
below the contexts, we ask annotators to write a textual description of the feature, and rate both its
interpretability and its semantic complexity on 0–100 scales.

Crowdworkers were recruited from the ARENA Slack channel, whose members are machine learn-
ing researchers interested in AI alignment and safety. The selection of annotators certainly influ-
enced our results; a truly random sample of human annotators would likely display higher variance
when annotating features.

One common error pattern we notice is that annotators often label features according to semantic
groupings (e.g., “text about politics,” and do not pay attention to syntactic context (e.g., “plural
nouns”). Future work could address this design bias by testing variants of the instructions.

Results of human evaluations for the Gemma Scope SAEs are described in Lieberum et al. (2024).

G DISCOVERING LM BEHAVIORS WITH CLUSTERING

In this section, we describe our unsupervised method for discovering language model behaviors.
More specifically, following Michaud et al. (2023), we cluster contexts from The Pile according to
the Pythia-70M’s internal state during inference. In this section, we describe our clustering pipeline
and methods.
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Figure 23: The human annotation interface used to obtain the interpretability ratings in Table 7.
Here, we show the instructions, top-activating tokens, the token probabilities that were most affected
when ablating the feature, and example contexts with feature activation values.

Figure 24: The human annotation interface used to obtain the interpretability ratings in Table 7.
Here, we show the rating interface on the same page as the content in Fig. 23, below the example
contexts. Humans were asked to write a textual description of each feature, assign a 0–100 inter-
pretability rating, and assign a 0–100 semantic complexity rating to each feature.
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G.1 FILTERING TOKENS

We must first locate (context, answer) pairs for which an LM correctly predicts the answer token
from the context. We select The Pile (Gao et al. (2020)) as a general text corpus and filter to pairs
on which Pythia-70M confidently and correctly predicts the answer token, with cross-entropy lower
than 0.1 or 0.3 nats, depending on the experiment. The model consistently achieves low loss on
tokens which involve “induction” (Olsson et al., 2022)—i.e., tokens which are part of a subsequence
which occurred earlier in the context. We exclude induction samples by filtering out samples in
which the bigram (final context token, answer token) occured earlier in the context.

G.2 CACHING MODEL-INTERNAL INFORMATION

We find behaviors by clustering samples according to information about the LM’s internals when
run on that sample. We find clusters of samples where the model employs similar mechanisms for
next-token prediction. We experiment with various inputs to the clustering algorithm:

• Dense Activations: We take activations (residual stream vectors, attention block outputs,
or MLP post-activations) from a given context and concatenate them. To obtain a vector
whose length is independent of the context length, we can either use the activations at the
last N context positions before the answer token, or aggregate (sum) across the sequence
dimension. We experiment with both variants.

• Sparse Activations: Rather than dense model activations, we can use the activations of
SAE features. We concatenate and aggregate these in the same manner as for dense activa-
tions.

• Dense Component Indirect Effects: We approximate the indirect effect of all features on
the correct prediction using 2 without a contrastive pair—namely, by setting apatch = 0. The
negative log-probability of the answer token m = − log p(answer) serves as our metric for
the correct prediction of the next token. The computatiom of linear effects requires saving
both (1) activations and (2) gradients w.r.t m at the final N positions for each context in the
dataset. We optionally aggregate by summing over all positions.

• Sparse Indirect Effects: Similarly, we can compute the linear effects of sparse activations
on the correct prediction.

• Gradient w.r.t. model parameters: As in Michaud et al. (2023), we also experiment with
using gradients of the loss w.r.t. model parameters, but with some modifications. We de-
scribe this method in more detail in §G.3 below.

G.3 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

We apply either spectral clustering or k-means clustering. For spectral clustering, given ei-
ther activations or effects xi for sample i, we compute a matrix of pairwise cosine similarities
Cij = xi · xj/(||xi||||xj ||) between all pairs of samples. Before performing spectral clustering,
we normalize all elements of C to be in [0, 1] by converting the cosine similarities to angular simi-
larities: Ĉij = 1− arccos(Cij)/π.

We use the scikit-learn (Pedregosa et al., 2011) spectral clustering implementation with k-means.
For all inputs except gradients w.r.t. model parameters, we used spectral clustering across 8192
samples. We chose k (the number of total clusters) to maximize the number of clusters implicated
in more than one input context.

We also experimented with using gradients w.r.t. model parameters as inputs, as in Michaud et al.
(2023). Here, we scale up our approach to 100,000 samples. It is intractible to perform spectral
clustering given 100,000 samples, so we instead use k-means clustering. Rather than clustering
the gradients themselves (which are high-dimensional), we cluster sparse random projections of the
gradients down to 30,000 dimensions. When projecting, we use a matrix with entries {−1, 0, 1}.
When sampling the entries of this matrix, sample a nonzero value with probability 32/30000, and
if nonzero, sample −1 or 1 with equal probability. For a sparse projection matrix with dimensions
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Figure 25: Approximate IEs (y-axis) and exact IEs (x-axis) using attribution patching (a; top) or
integrated gradients (b; bottom). Each point corresponds to an SAE feature or SAE error at one
token position of one input. Data were collected from 30 inputs from our across RC dataset.

Rn×30000, there will on average be 32 · n nonzero entries, where n is the number of parameters in
the model.4

H QUALITY OF LINEAR APPROXIMATIONS OF INDIRECT EFFECTS

Figure 25 shows the quality of our linear approximations for indirect effects. Prior work (Nanda,
2022; Kramár et al., 2024) investigated attribution patching accuracy for IEs of coarse-grained model
components (queries, keys, and values for attention heads, residual stream vectors, and MLP out-
puts) and MLP neurons. Working with SAE features and errors, our results echo previous findings:
attribution patching is generally quite good, but sometimes underestimates the true IEs. Notable ex-
ceptions are the layer 0 MLP and the residual stream in early layers. We also find that our integrated
gradients-based approximation significantly improves approximation quality.

4We only consider gradients w.r.t. non-embedding and non-layernorm parameters.
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