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Abstract001

Recently, Large Language Models (LLMs)002
have shown strong potential in recommenda-003
tion tasks due to their broad world knowledge004
and reasoning capabilities. However, applying005
them to serendipity-oriented recommendation006
remains challenging, mainly due to a domain007
gap of LLMs in modeling personalized user be-008
havior and the scarcity of labeled serendipitous009
interactions. In this paper, we introduce SO-010
LAR (Serendipity-Optimized Language model011
Aligned for Recommendation), a two-stage012
framework that addresses these challenges.013
To alleviate label scarcity, we adopt a weak014
supervision strategy: a sequential ID-based015
recommender generates candidate items,016
which are then reranked by an LLM acting as a017
preference judge to produce serendipity-aware018
pseudo-labels. To bridge the domain gap,019
we propose a domain-adaptive instruction020
tuning method (SUN) that aligns LLMs with021
recommendation tasks. Experiments on three022
real-world datasets show that SOLAR consis-023
tently improves both accuracy and serendipity024
over strong baselines, showing its effectiveness025
in enabling more diverse, user-centric recom-026
mendations. Code and dataset are released at027
https://github.com/SOLAR2025ARR/SOLAR.028

1 Introduction029

Recommender systems are essential tools for helping030
users discover items aligned with their interests. While031
existing recommendation algorithms (He et al., 2017;032
Kang and McAuley, 2018; Sun et al., 2019) focus033
on maximizing accuracy, they often reinforce users’034
past preferences by recommending similar items. This035
accuracy-centric design leads to the well-known filter036
bubble phenomenon (Pariser, 2011), where users are037
repeatedly exposed to homogeneous content, limiting038
exposure to novel or diverse items. Over time, this can039
result in content fatigue and reduced user engagement.040

To address the filter bubble effect, the recommenda-041
tion community has increasingly emphasized beyond-042
accuracy objectives such as diversity and serendip-043
ity (Ge et al., 2010; Díez et al., 2019). Serendipity,044

in particular, aims to surface recommendations that are 045
not only relevant but also novel and pleasantly surpris- 046
ing (Kotkov et al., 2016). Various multi-objective op- 047
timization frameworks have been proposed to balance 048
relevance with beyond-accuracy objectives (Li et al., 049
2021; Li and Tuzhilin, 2020). However, most existing 050
methods still rely on heuristics and assumptions rather 051
than real human feedback, due to the limited data for 052
supervised training, which may not faithfully reflect 053
human perceptions. 054

Recently, Large Language Models (LLMs) have 055
emerged as promising alternatives due to their pow- 056
erful semantic understanding and broad world knowl- 057
edge (Lin et al., 2025). Unlike traditional collaborative 058
filtering approaches that rely solely on user-item interac- 059
tions, LLMs can directly reason over item semantics and 060
user preferences in natural language (Sheng et al., 2024), 061
enabling more flexible and nuanced recommendations. 062
This raises the exciting possibility of using LLMs to 063
deliver more serendipitous recommendations by captur- 064
ing subtle user intents and surfacing less obvious but 065
relevant content. 066

Despite this potential, LLMs face two key chal- 067
lenges in serendipity-oriented recommendation. First, a 068
domain gap exists between general-purpose LLMs and 069
recommendation tasks: LLMs excel at natural language 070
understanding but lack collaborative filtering mecha- 071
nisms, limiting their ability to model personalized pref- 072
erences from interaction data (Zhao et al., 2024; Lin 073
et al., 2023). Second, there is a significant label scarcity 074
problem, as collecting high-quality serendipity anno- 075
tations is costly and time-consuming (Fu et al., 2023; 076
Kotkov et al., 2018). These issues hinder the direct ap- 077
plication of LLMs to personalized, serendipity-aware 078
recommendation scenarios. 079

To address these challenges, we propose SOLAR 080
(Serendipity-Optimized Language model Aligned for 081
Recommendation), a unified framework for building 082
LLM-based recommenders optimized for serendipity. 083
SOLAR contains two main components: (1) A human- 084
aligned weak supervision pipeline, where a sequential 085
ID-based recommender finetuned on limited human- 086
labeled data generates candidate items, which are then 087
reranked by an LLM acting as a preference judge to pro- 088
duce large-scale, serendipity-aware pseudo-labels; and 089
(2) A domain-adaptive instruction tuning framework, 090
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termed the recommendation-specialized unified tuning091
network (SUN), which aligns general-purpose LLMs092
with recommendation objectives using pseudo-labeled093
data and carefully designed prompts.094

The contributions of our work are summarized as095
follows:096

1. We propose SOLAR, a unified framework that097
aligns LLMs with human preference for generat-098
ing accurate and serendipitous recommendations.099

2. We introduce a human-aligned weak supervi-100
sion approach that combines an ID-based rec-101
ommender and an LLM-based reranker to gen-102
erate large-scale, high-quality serendipity-aware103
pseudo-labels, mitigating the label scarcity prob-104
lem.105

3. We develop the SUN framework, which effectively106
bridges the domain gap between general-purpose107
LLMs and recommendation tasks via instruction108
tuning.109

4. Extensive experiments on three real-world datasets110
demonstrate that SOLAR consistently improves111
both recommendation accuracy and serendipity,112
validating its potential in breaking filter bubbles113
and enhancing user satisfaction.114

2 Related Works115

2.1 LLMs for Recommender Systems116

Recent advances in LLMs have opened up new opportu-117
nities for enhancing recommender systems, significantly118
extending their capabilities. Current LLM-based rec-119
ommender approaches can broadly be categorized into120
generative methods (Liao et al., 2024; Geng et al., 2023;121
Zheng et al., 2024a; Lu et al., 2024; Bao et al., 2023),122
feature engineering techniques (Ren et al., 2024; Zhang123
et al., 2025; Du et al., 2023), and methods for improving124
representation learning (Rajput et al., 2023; Harte et al.,125
2023; Hou et al., 2023). Moreover, researchers have126
integrated LLMs into conversational recommendation127
scenarios (Yang et al., 2024; Gao et al., 2023; Feng et al.,128
2023) and interactive recommendation agents (Zhang129
et al., 2024b,a), aiming to align recommendation sys-130
tems more closely with realistic user interactions.131

Despite these advances, integrating LLMs into rec-132
ommendation scenarios still faces significant challenges.133
One major issue is aligning LLM outputs with user134
preferences, especially given noisy and complex interac-135
tion data. Recent approaches have attempted to address136
this by combining LLMs with traditional recommen-137
dation models (Yue et al., 2023; Li et al., 2023; Wang138
et al., 2024) or finetuning LLMs using domain-specific139
instructions (Bao et al., 2023; Lu et al., 2024; Zhang140
et al., 2024c). Additionally, initial attempts to employ141
LLMs as rerankers have demonstrated their efficiency142
in existing recommendation pipelines (Hou et al., 2024).143

However, prior work typically still focus on accuracy 144
objectives, indicating a critical gap for further research. 145

2.2 Serendipity in Recommender Systems 146

In real-world recommender systems, it’s crucial to bal- 147
ance accuracy with beyond-accuracy objectives. One 148
such objective is serendipity (Kotkov et al., 2016). In the 149
Merriam-Webster dictionary, serendipity is explained 150
as: the faculty or phenomenon of finding valuable or 151
agreeable things not sought for. While there is no agree- 152
ment on how to define serendipity quantitatively yet due 153
to its subjective nature, most definition agree on its two 154
key elements: relevance and unexpectedness. 155

Early research mainly focus on building serendipity- 156
oriented recommender systems through multi-objective 157
optimization (Díez et al., 2019; Li and Tuzhilin, 2020; 158
Li et al., 2021). Learning to optimize multiple met- 159
rics helps the system provide relevant recommendations 160
while catering to user satisfaction, thus enhancing user 161
engagement (Rodriguez et al., 2012). However, due 162
to the scarcity of serendipity-labeled data, prior work 163
often relies on heuristics or assumptions to guide model 164
design or preprocessing, which may fail to capture the 165
nuances of human preferences. 166

Recent advances in LLMs, particularly using LLMs 167
as preference judges (Li et al., 2025; Gu et al., 2025), 168
offer a promising solution to this problem. In our 169
work, we propose a weak supervision strategy that 170
leverages a powerful LLM to rerank candidate rec- 171
ommendations generated by an ID-based sequential 172
model. This two-stage pipeline produces serendipity- 173
aware pseudo-labels, enabling scalable alignment of 174
LLMs with human-centric recommendation objectives. 175

3 Methodology 176

In this section, we introduce SOLAR, a framework 177
for building serendipity-oriented recommender system 178
based on LLMs. SOLAR addresses two key challenges 179
in applying LLMs to serendipitous recommendation: 180
the domain gap between language modeling and col- 181
laborative filtering, and the scarcity of human-labeled 182
serendipity data. 183

As illustrated in Figure 1, SOLAR consists of three 184
main stages: 185

1. ID-based Model Training. We first train an ID- 186
based sequential recommender on large-scale rel- 187
evance data, and then finetune it using limited 188
serendipity-labeled interactions. This yields an ini- 189
tial model capable of generating serendipity-aware 190
recommendation candidates. 191

2. LLM-based Reranking. Given the candidate 192
items from the ID-based model, we employ an 193
LLM as a preference judge to rerank the recom- 194
mendations based on serendipity-oriented prompts. 195
This weak supervision pipeline allows us to con- 196
struct large-scale pseudo-labeled data with human- 197
aligned serendipity signals. 198
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Figure 1: Overview of the SOLAR framework. It consists of three stages: (1) training an ID-based recommender
with accuracy and serendipity objectives (left), (2) reranking its outputs using an LLM guided by serendipity
prompts to generate pseudo-labeled data (mid), and (3) instruction-tuning a general-purpose LLM via the SUN
framework for serendipitous recommendation (right).

3. Domain Adaptation via SUN. We convert the199
reranked results into structured instruction-style200
data by encoding user history, recommendations201
and serendipity explanations. We then finetune202
a general-purpose LLM using the proposed SUN203
(Specialized Unified Tuning Network) framework,204
which aligns the LLM with serendipity-aware rec-205
ommendation objectives.206

We next formalize the sequential recommendation207
problem and provide detailed descriptions of each stage208
in the SOLAR framework.209

3.1 Problem Formulation210

To begin with, we formalize the sequential recommen-211
dation problem. For each user u, we observe a histori-212
cal interaction sequence H = {hu

1 , h
u
2 , . . . , h

u
n}, repre-213

senting items the user interacted with until time step n.214
Given a user set U = {u1, u2, . . . , u|U |} and an item215
set I = {i1, i2, . . . , i|I|}, our goal is to predict the next216
item hu

n+1 that user u is likely to interact with. Formally,217
we aim to estimate the conditional probability:218

P(i | H,θ), ∀i ∈ I219

Then, the next predicted item is selected as:220

hu
n+1 = argmax

i∈I
P(i | H,θ),221

where θ denotes the parameters of the recommenda-222
tion model.223

3.2 ID-based Model Training224

Consider a set of users U of size N and items I225
of size M . Each user uj has an interaction history226
Hj = {ik1 , ik2 , . . . , ikl

}. Given model parameters θ,227
we predict the probability that user uj interacts with228
item ik:229

pjk(θ) = p(ik | uj ,θ).230

We define two types of binary labels: relevance rjk231
and serendipity sjk:232

rjk =

{
1 if uj considers ik relevant
0 otherwise

sjk =

{
1 if uj considers ik serendipitous
0 otherwise

233

Ideally, to balance accuracy and serendipity, we 234
would jointly optimize a combined loss: 235

L(θ) = (1− λ)L(Pr(θ)) + λL(Ps(θ)), 236

where λ is a hyperparameter balancing both objec- 237
tives: 238

L(Pr(θ)) =−
∑
j,k

(
rjk log p

r
jk(θ) 239

+ (1− rjk) log(1− prjk(θ))
)
, 240

L(Ps(θ)) =−
∑
j,k

(
sjk log p

s
jk(θ) 241

+ (1− sjk) log
(
1− psjk(θ)

))
, 242

However, due to the extreme scarcity of serendipity- 243
labeled data, directly training the model with this joint 244
objective is not feasible. To overcome this limitation, 245
we adopt a two-stage transfer learning approach inspired 246
by (Pandey et al., 2018), as illustrated in Figure 2: 247

1. Relevance Pre-training: Initially, we optimize 248
only the relevance objective using a large-scale 249
relevance-labeled dataset. 250

2. Serendipity-aware Finetuning: Subsequently, 251
we freeze all parameters except the final dense 252
layer and finetune this layer with the limited 253
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Figure 2: ID-based Model Training. Due to limited
serendipity labels, we first optimize the model using
relevance-labeled data, then finetune the final layer us-
ing scarce serendipity annotations.

serendipity-labeled dataset to introduce serendip-254
ity signals into the model1.255

This transfer learning strategy allows us to incor-256
porate serendipity signals despite limited annotations,257
yielding a unified recommendation model capable of258
balancing accuracy and serendipity.259

3.3 LLM-based Reranking and Serendipity260
Refinement261

Due to the scarcity of serendipity-labeled data, ID-based262
recommenders, even after finetuning, may still fail to263
capture nuanced human perceptions of serendipity. To264
address this limitation, we incorporate a powerful large265
language model (e.g., GPT-4 (Achiam et al., 2023)) as266
a preference judge to rerank initial recommendations,267
effectively injecting serendipity awareness through a268
weak supervision process.269

As shown in Figure 3, our prompting strategy con-270
sists of two stages:271

Serendipity Understanding via In-Context Learn-272
ing. We begin by prompting the LLM with a role273
definition and background context to establish a gen-274
eral understanding of serendipity. Then, we provide275
labeled examples of user-item interactions annotated276
with serendipity scores, including both highly serendip-277
itous and non-serendipitous cases, to guide the LLM278
through in-context learning. Based on these examples,279
the LLM is asked to generate an explanation of its280
learned serendipity criteria, which is used to guide the281
reranking process.282

Candidate List Reranking. With the acquired283
serendipity understanding and the user’s interaction his-284
tory, the LLM is prompted to rerank the candidate items285
produced by the ID-based recommender. For each item,286
the model provides a concise explanation, implicitly287
integrating unexpectedness and relevance to produce a288
refined recommendation list aligned with human notions289
of serendipity.290

1Human annotation data on serendipity is scarce within the
community. We have collected all publicly available labels to date.

Role Definition

In Context Examples

Serendipity Concept

Serendipity Understanding via In Context Learning (Stage 1)

Candidate List Reranking (Stage 2)

Interaction History

Candidate List

Reranked List

Figure 3: LLM-based reranking and serendipity refine-
ment. Given a user’s interaction history and an initial
recommendation list from the ID-based model, the LLM
assesses and reranks the items to produce a serendipity-
enhanced recommendation list.

The reranked outputs, along with their correspond- 291
ing explanations, are then used to construct instruction- 292
style training data for downstream domain adaptation. 293

3.4 Domain Adaptation 294

To align large language models, which operate in the 295
natural language domain, with the goals of serendipitous 296
recommendation, we transform recommendation tasks 297
into instruction-style prompts that LLMs can understand 298
and complete. 299

3.4.1 Key elements in instruction: the SUN 300
Framework 301

To bridge the collaborative filtering and language mod- 302
eling domains, we propose SUN (Recommendation Spe- 303
cialized Unified Tuning Network), a unified instruction 304
tuning framework. SUN encodes essential elements 305
of recommendation tasks into natural language instruc- 306
tions, enabling effective adaptation of general-purpose 307
LLMs. We first describe the overall framework briefly, 308
and introduce each component in detail with illustrative 309
examples. 310

Formally, the framework is defined by the following 311
pair of triplets: 312

SUN = (H,E,T) and SUN−1 = (H,E,T−1) 313
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Table 1: Prompt examples of the SUN (forward tasks) and SUN−1 (inverse tasks) instruction templates. We
highlight three key components: History , Engagement , and Task .

Category Example
⟨H, _, T0⟩ Given the user’s interaction history: {history} , what is the optimal product to suggest next ?

⟨H,P, T1⟩ Please recommend an item to the user based on the following information about the user: {history} , the user’s historical interaction, which

is as follows: {preference} . Try to recommend one item from the following candidates that is consistent with the user’s preference:
{candidate_items}.

⟨H,P, T2⟩ You have some information about this user, which is shown below: {preference} , the user’s historical interactions: {history} . Please

recommend the reranking order of items for the user from the following candidates: {candidate_items}.

⟨H, I, T3⟩ The user enjoys being surprised and has shown implicit preferences based on their interactions: {history} . The user’s current intention

may be vague as follows: {intention} . Based on this information, evaluate the following candidate item: {candidate_item}, please

answer “Yes” or “No” for the fitness of candidate.

⟨H, _, T−1
3 ⟩ Given the following historical interactions of the user: {history} , and the next recommended item: {item}. Please

infer the specific intention that would likely lead to this recommendation.

where the H, E, T stands for History, Engagement314
Profile and Task respectively. While SUN instructs the315
LLMs to perform recommendation tasks given History316
and Engagement Profile, SUN−1, which serves as317
a task enrichment with input inversion, instructs the318
LLMs to infer Engagement Profile given Task output319
and History.320

History (H) represents users’ historical information,321
such as interaction history. In our scenario, we use a322
sequence of most recently interacted items to represent323
history.324

Engagement Profile (E) provides explanation about325
user’s preference pattern, which is a key element used326
for modeling and interpreting user behavior. The en-327
gagement profile can include two kinds of information:328
preferences (P), which indicates user’s explicit pref-329
erence, and intentions (I), which represents user’s im-330
plicit preference.331

Task (T) denotes the type of recommendation task.332
We define four task types, denoted as T0 to T3:333

• Generative Recommendation (T0): The model di-334
rectly generates recommendations rather than se-335
lecting from existing candidates. This enables it to336
produce novel outputs based on the user’s history337
and engagement profile.338

• Direct Recommendation (T1): The model selects339
the most suitable item from a predefined set of340
candidates, identifying the best match without gen-341
erating new items.342

• Reranking (T2): Given a set of candidate items,343
the model reorders them according to a specific344
objective, such as optimizing accuracy or serendip-345
ity.346

• Matching (T3): The model determines whether347
a given candidate item matches the user’s prefer-348
ences or intent, producing a binary decision (“Yes”349
or “No”).350

Table 1 presents illustrative examples of instructions351

described by the above mentioned framework. Com- 352
plete templates are provided in Appendix G. 353

3.4.2 Engagement Profile Generation 354

While H and T can be directly obtained from the dataset 355
or previous steps, the E component, describing users’ 356
implicit and explicit preferences, is typically unavail- 357
able. To address this, we prompt a teacher LLM (e.g., 358
GPT-4) to infer the engagement profile from histori- 359
cal interactions. This inferred profile provides richer 360
semantic grounding and helps contextualize the recom- 361
mendation task. 362

Prompt for Engagement Profile Generation

User’s historical interactions: {interaction}.
Based on these movie titles, use your knowledge
to generate a description of the user’s implicit pref-
erences, such as their favorite genres, themes, or
notable patterns. {constraint}

Figure 4: An example prompt for generating engage-
ment profile from movie interaction data.

Figure 4 gives an example of the prompt used for en- 363
gagement profile generation. Given the user’s historical 364
interactions, the teacher LLM is prompted to provide 365
an explanation that forms the user’s engagement profile. 366
Moreover, to address different real-world scenarios, we 367
ask the teacher LLM to generate engagement profiles re- 368
flecting varying degrees of preference clarity, including 369
both implicit (I) and explicit (P) preferences. Addi- 370
tional details about the engagement profile are provided 371
in Appendix D and H. 372

3.4.3 Instruction Finetuning 373

We train our large language model for serendipitous 374
recommendations using instruction finetuning (Zhang 375
et al., 2024d). Specifically, we adopt LLaMA (Touvron 376
et al., 2023) as the backbone and finetune it on the 377
instruction dataset generated with the SUN framework. 378
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For supervised finetuning, we optimize the model379
parameters θ by minimizing the following loss:380

LSFT(θ) = − 1

|D|
∑

(xi,yi)∈D

log pθ(yi|xi) (1)381

Here, D is our instruction dataset, where each xi (includ-382
ing the user’s historical interactions, engagement profile,383
and task prompt) is paired with the target serendipitous384
recommendation yi.385

4 Experiments386

In this section, we first provide our experimental setup,387
and then present the results as well as analyses of our388
proposed approach. Additional implementation details389
are presented in Appendix B. To evaluate the real world390
effectiveness of our approach, we also conduct an offline391
A/B test, whose details are provided in Appendix F.392

We conduct experiments to answer the following393
research questions:394

• RQ1: How does SOLAR perform compared with395
baseline models?396

• RQ2: How good is the quality of the generated397
pseudo-labeled data?398

• RQ3: How does the amount of instruction data399
affect SOLAR’s domain adaptation performance?400

• RQ4: How important are SOLAR’s components?401

4.1 Experimental Setup402

Table 2: Dataset Statistics.

Dataset # Users # Items # Actions Sparsity
MovieLens 10,684 11,544 1.05M 99.15%
Books 152,776 65,631 2.94M 99.97%
Movies&TV 69,993 27,560 0.69M 99.96%

4.1.1 Datasets403

We conduct experiments on three real-world datasets404
from different domains: MovieLens (Harper and405
Konstan, 2015; Kotkov et al., 2018), Amazon406
Books (Ni et al., 2019; Fu et al., 2023), and Amazon407
Movies&TV (Ni et al., 2019; Fu et al., 2023). These408
datasets provide distinct item titles and text-based re-409
views for large-scale relevance-labeled datasets with410
real user-labeled serendipity data for a small subset411
of users, we found that these datasets are currently412
the only publicly available ones with user-labeled413
serendipity data. Table 2 presents a summary of dataset414
statistics.415

4.1.2 Evaluation Metrics416

Following prior work on serendipitous sequential rec-417
ommendation (Fu et al., 2023), We adopt a user-level418
train/test split strategy. To accommodate the context419

length limitations of LLMs, each positive item is evalu- 420
ated against 19 randomly sampled negatives. 421

For accuracy evaluation, we report Hit Rate at 422
1 (HR@1). For serendipity evaluation, we use 423
HRseren@1, which measures the hit rate of items la- 424
beled as serendipitous by users. 425

4.1.3 Baselines 426

We compare SOLAR against a diverse set of represen- 427
tative baselines spanning different paradigms of recom- 428
mendation systems: 429

• Traditional sequential recommenders: These 430
include Caser (Tang and Wang, 2018), SAS- 431
Rec (Kang and McAuley, 2018), BERT4Rec (Sun 432
et al., 2019), and S3-Rec (Zhou et al., 2020), which 433
model user behavior sequences using CNNs, self- 434
attention, or mutual information maximization. 435

• LLM-based recommenders: This category covers 436
models that incorporate large language models in 437
various forms, including TALLRec (Bao et al., 438
2023), P5 (Geng et al., 2023), LLMRank (Hou 439
et al., 2024), RecLM (Lu et al., 2024). These 440
models leverage pretrained language models with 441
prompt engineering or finetuning for recommen- 442
dation tasks. 443

• General-purpose LLM: We also include GPT- 444
4o (Achiam et al., 2023), a state-of-the-art 445
instruction-following model, as a zero-shot rec- 446
ommender to assess the capability of off-the-shelf 447
LLMs in recommendation scenarios. 448

Additional details on baselines are provided in Ap- 449
pendix C. 450

4.2 Performance Comparison (RQ1) 451

Performance comparison of SOLAR against baselines 452
is summarized in Table 3. 453

Among ID-based models, method that incorporate 454
item attribute information (S3-Rec) outperform mod- 455
els that rely solely on collaborative signals (Caser, 456
BERT4Rec, and SASRec). While ID-based models ex- 457
cel in capturing collaborative patterns, leading to strong 458
results on accuracy metrics, they fall short in generat- 459
ing serendipitous recommendations, likely due to the 460
inherent sparsity of such interactions in training data. 461

LLM-based methods, on the other hand, benefit 462
from strong language understanding capabilities. How- 463
ever, even with some degree of domain adaptation, they 464
lack the ability to fully leverage collaborative filtering 465
signals. This results in subpar accuracy performance 466
compared to ID-based methods. Nevertheless, LLM- 467
based approaches generally outperform ID-based ones 468
on serendipity metrics, possibly owing to their superior 469
capacity to model subjective human preferences. 470

Our proposed SOLAR framework consistently 471
achieves comparable or superior performance across 472
most datasets in terms of both accuracy and serendipity. 473
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Table 3: Comparison of SOLAR and baselines on the MovieLens, Movies&TV, and Books datasets in terms of
HR@1 and HRseren@1. The best and second-best results are in bold and underlined, respectively.

Dataset Metric SASRec BERT4Rec S3-Rec Caser P5 TALLRec LLMRank RecLM GPT-4o SOLAR

Movielens HR@1 0.1936 0.1616 0.2055 0.1985 0.0234 0.0310 0.0603 0.1353 0.1853 0.2160
HRseren@1 0.0568 0.0341 0.0472 0.0251 0.0138 0.0141 0.0219 0.0894 0.0395 0.1284

Movies&TV HR@1 0.1478 0.1369 0.1417 0.1387 0.0398 0.0341 0.0584 0.1591 0.1256 0.1451
HRseren@1 0.0181 0.0084 0.0325 0.0253 0.0118 0.0103 0.1207 0.1131 0.0443 0.1314

Books HR@1 0.1383 0.1304 0.1410 0.1391 0.0323 0.0385 0.0537 0.1012 0.1097 0.1203
HRseren@1 0.0194 0.0146 0.0250 0.0146 0.0089 0.0149 0.0187 0.0719 0.0496 0.0902

This improvement stems from our strategy to address474
the label scarcity and domain gap problems. With abun-475
dant serendipity-aware labeled data and effective do-476
main adaptation to integrating collaborative signals into477
LLMs, SOLAR is capable of providing both accuracy478
and serendipitous recommendations.479

4.3 Pseudo-Label Quality (RQ2)480

Figure 5: Trade-off between accuracy (HR@1) and
serendipity (HRseren@1) across recommendation mod-
els and datasets. The star denotes our hybrid model.

To assess the quality of pseudo-labels used for in-481
struction tuning, we evaluate our hybrid model, which482
combines a serendipity-tuned SASRec with an LLM-483
based reranker. We compare it against four baselines:484
SASRec, BERT4Rec, and their serendipity-tuned vari-485
ants.486

As shown in Table 4, the hybrid model achieves the487
best or competitive performance across both accuracy488
and serendipity on all datasets. It notably outperforms489
others on MovieLens and Movies&TV, and provides the490
highest serendipity on Books.491

Figure 5 further illustrates the trade-off between ac-492
curacy and serendipity. While baseline models typically493
favor one metric at the cost of the other, our hybrid ap-494
proach gets the best of both worlds (on the upper-right495
parts for each dataset).496

These results demonstrate that the hybrid model497
can effectively approximate user preferences, providing498
high-quality pseudo-labels for downstream training.499

Table 4: Comparison of our hybrid approach against
baseline models (SASRec, BERT4Rec, and their
serendipity-tuned variants) on HR@1 and HRseren@1
under full ranking setting.

Model Movielens Movies&TV Books

Acc Seren Acc Seren Acc Seren

SASRec 0.0298 0.0000 0.0494 0.0081 0.0518 0.0000
SASRec-seren 0.0259 0.0114 0.0371 0.0068 0.0293 0.0049
BERT4Rec 0.0281 0.0000 0.0190 0.0000 0.0348 0.0000
BERT4Rec-seren 0.0273 0.0114 0.0086 0.0000 0.0106 0.0049

Our reranker 0.0303 0.0114 0.0455 0.0098 0.0298 0.0049

4.4 Impact of Instruction Data Scale (RQ3) 500

To evaluate the scalability of our domain adaptation 501
approach, we examine how different proportions of in- 502
struction data affect model performance. We sample 503
four augmentation ratios: 0 (unfinetuned LLaMA), 0.33, 504
0.66, and 1.0, representing increasing amounts of in- 505
struction data relative to the full training set. 506

As shown in Table 5, both accuracy and serendipity 507
improve as more instruction data is used. The gains are 508
especially pronounced in serendipity, suggesting that the 509
domain-adaptive tuning benefits most from serendipity- 510
aware signals. However, performance gains begin to 511
plateau near full data usage, indicating diminishing re- 512
turns. 513

These results confirm that SOLAR’s instruction tun- 514
ing scales effectively with data and contributes to better 515
alignment with user-centric recommendation goals. 516

Table 5: Proportion control of SOLAR on different data
augmentation ratios.

Model Movielens Movies&TV Books

Acc Seren Acc Seren Acc Seren

UnfinetunedLlama (0) 0.1284 0.0675 0.0978 0.0403 0.1214 0.0317
SOLAR (0.33) 0.1651 0.0953 0.1154 0.0949 0.1147 0.0538
SOLAR (0.66) 0.1944 0.1156 0.1349 0.1166 0.1184 0.0748
SOLAR 0.2160 0.1284 0.1451 0.1314 0.1203 0.0902

4.5 Ablation Study (RQ4) 517

To assess the contribution of each component in SO- 518
LAR, we conduct an ablation study by evaluating the 519
following variants: 520

• w/o reranker: Removes the LLM reranker and 521
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Table 6: Comparison of SOLAR and its ablated variants on three datasets. Metrics reported: HR@1 and HRseren@1.
The best and second-best results are in bold and underlined, respectively.

Dataset Metric SOLAR w/o reranker w/o SM w/o SM & reranker w/o SUN NoAugment

Movielens HR@1 0.2160 0.1524 0.1828 0.1386 0.0363 0.1354
HRseren@1 0.1284 0.1101 0.1193 0.0780 0.0398 0.0734

Movies&TV HR@1 0.1451 0.0915 0.1072 0.0878 0.0413 0.0928
HRseren@1 0.1314 0.0949 0.1168 0.0584 0.0487 0.0401

Books HR@1 0.1203 0.0962 0.0909 0.1077 0.0527 0.1123
HRseren@1 0.0902 0.0598 0.0824 0.0255 0.0312 0.0333

uses only the serendipity-tuned ID model for label522
generation.523

• w/o SM: Replaces the serendipity-tuned ID model524
with a standard accuracy-optimized sequential525
model.526

• w/o SM & reranker: Removes both the reranker527
and the serendipity-tuned model.528

• w/o SUN: Retaining only the sequential recom-529
mendation task without SUN framework.530

• NoAugment: Trains only on limited human-531
labeled data without pseudo-labels.532

Results in Table 6 show that removing any com-533
ponent leads to noticeable drops in both accuracy and534
serendipity. The LLM reranker and the serendipity-535
tuned model each contribute to performance gains,536
with the reranker having a more pronounced impact on537
serendipity. Removing both results in substantial degra-538
dation. Among all components, the SUN framework539
is the most critical, as its removal leads to the largest540
overall decline, showing its central role in aligning col-541
laborative signals with language-based reasoning.542

These results confirm that each component of SO-543
LAR plays a complementary role, and their integration544
is essential for achieving both accurate and serendipi-545
tous recommendations.546

4.6 Case Study547

Table 7 presents a real-world case study illustrating548
how recommendations can be generated based on a549
user’s historical viewing history. In this scenario,550

the user’s previously watched films (e.g., The Witch ,551

Sea Inside ) reflect a preference for works character-552
ized by rich storytelling, emotional depth, and socially553
relevant themes. Given a set of candidate movies (e.g.,554

7 Women , Without Bias ) including target item (e.g.,555

Remember ), each model (GPT4o, RecLM, and SO-556
LAR) was tasked with selecting five recommended557
items from candidate items. By comparing the resulting558
recommendation lists. Table 7 highlights key differ-559
ences in recommendation approaches. GPT4o over-560
explains, burying recommendations in excessive detail.561

Table 7: Comparison of recommendation lists generated
by GPT4o, RecLM, and our SOLAR method. Each
model selects items based on the user’s historical in-
teractions and candidate pool. Compared to GPT4o
and RecLM, SOLAR provides a more aligned and di-
verse set of recommendations, effectively balancing ac-
curacy and serendipity to yield the best overall results.
We highlight texts for history items , candidate items ,

target item and unpredicted item .

Input Example

Instruction You are an expert recommender engine. You need to select a recommendation list considering
user’s historical interactions. The historical interactions are provided as follows: The Witch ,
Sea Inside , Long Way Round , Project Nim , Lady Bird , Best of Youth , La meglio gioventù ,

Take Me Home , The Hunting Ground . The candidate items are: Idle Class, The , 7 Women ,

Great Santini, The , Love(Szerelem) , Shadow of the Vampire , We Are the Best! (Vi är bäst! ,

April 9th , Remember , Without Bias , Elvira, Mistress of the Dark . Please select a
recommendation list with 5 different items from candidate items.

GPT4o To generate a recommendation list, we can consider the user’s historical interactions to identify
patterns in their preferences. Based on the provided historical data, the user appears to enjoy movies
that are critically acclaimed, have emotional depth, explore human experiences, or involve impactful
storytelling. Using these preferences, here’s a curated list of recommendations:
Love(Szerelem) , Shadow of the Vampire , Idle Class, The , Remember , Without Bias .

RecLM 7 Women , Without Bias , Remember , Elvira, Mistress of the Dark , Hurricane of Fun
SOLAR Remember , Love (Szerelem) , Great Santini, The , We Are the Best! (Vi är bäst! , 7 Women

RecLM hallucinates, suggesting movies outside the can- 562
didate set. In contrast, SOLAR effectively and accu- 563
rately identifying the target item with a concise recom- 564
mendation list that surpasses the other two models. 565

5 Conclusion 566

We propose SOLAR, a serendipity-optimized recom- 567
mendation framework built upon large language models, 568
which addresses two key challenges in serendipitous 569
recommendation: the domain gap between language 570
modeling and user behavior modeling, and the scarcity 571
of serendipity-labeled data. To mitigate label scarcity, 572
SOLAR leverages a weak supervision strategy that com- 573
bines a serendipity-tuned ID-based model with an LLM- 574
based reranker to generate high-quality pseudo-labels. 575
To bridge the domain gap, we introduce the SUN frame- 576
work, which aligns LLMs with collaborative filtering 577
signals through domain-adaptive instruction tuning. Ex- 578
periments on three real-world datasets demonstrate that 579
SOLAR consistently outperforms strong baselines in 580
both accuracy and serendipity. These results show the 581
effectiveness of aligning LLMs with serendipitous rec- 582
ommendation objectives through weak supervision and 583
instruction tuning, offering a scalable path toward more 584
diverse and user-aligned recommendation systems. 585
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Limitations586

Although SOLAR demonstrates improved accuracy and587
serendipity, it still faces several potential risks and limi-588
tations. A potential risk lies in popularity bias, where the589
model may favor frequently appearing items in training590
data, though this could be mitigated through diversity-591
aware sampling strategies. Furthermore, using LLMs592
for large-scale recommendation tasks may face effi-593
ciency challenges. In this work, in our evaluation setting594
the input size is limited, and thus, noticeable efficiency595
issues do not arise. However, this constraint may limit596
its applicability in computationally restricted settings.597
We conduct experiments to evaluate efficiency, and the598
results can be found in the Appendix E. Future work599
may includes exploration on improving efficiency and600
scalability.601

Ethics Statement602

Our SOLAR framework aims to enhance recommenda-603
tion diversity while maintaining user privacy and fair-604
ness. We rely on anonymized historical data and adhere605
to data protection standards. While serendipity may606
influence user preferences, we will strive to avoid biases607
and harmful content. Ongoing monitoring, transparency608
about recommendation processes, and allowing users609
to adjust or opt out of personalized suggestions help610
ensure ethical and responsible deployment.611
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A Dataset and Preprocessing898

1. MovieLens: A classic movie recommendation899
dataset (Harper and Konstan, 2015) for movie rec-900
ommendation systems, which comprises user rat-901
ings on movies and comprehensive textual descrip-902
tions of movies. The dataset also includes serendip-903
ity labels for a subset of movie reviews, obtained904
from the Serendipity 2018 dataset (Kotkov et al.,905
2018).906

2. Books: A large-scale dataset derived from the907
Amazon Review dataset (Ni et al., 2019) containing908
millions of book metadata entries, user reviews,909
and ratings. It is commonly used for research910
on personalized recommendation systems. The911
dataset also includes serendipity labels for a sub-912
set of book reviews, obtained from the SerenLens913
dataset (Fu et al., 2023).914

3. Movies&TV: A dataset also sourced from Amazon915
Review, including a wide range of movies and TV916
shows, including titles, genres, release dates, and917
millions of user reviews and ratings. It provides an918
essential benchmark for testing recommendation al-919
gorithms and analyzing trends in user preferences.920
The dataset also includes serendipity labels for a921
subset of movie and TV reviews, obtained from922
the SerenLens dataset.923

We preprocess each dataset as follows:924

1. MovieLens (Serendipity-2018): keep only ratings925
after June 1, 2017; remove users and items with926
fewer than 5 interactions.927

2. Books (Amazon Reviews 2014): keep only re-928
views after January 1, 2012; remove users and929
items with fewer than 10 interactions.930

3. Movies&TV (Amazon Reviews 2014): keep only931
reviews after January 1, 2012; remove users and932
items with fewer than 5 interactions.933

For each dataset, we randomly split users into 80%934
for training and 20% for testing. For the training users,935
we further use the last interaction of each user sequence936
as the validation set, and the remaining interactions as937
the training data.938

The datasets used in this study are publicly available939
and widely used in academic research. To the best of our940
knowledge, they do not contain personally identifiable941
information (PII) or offensive content. We rely on the942
dataset providers’ documentation and our own checks943
to ensure the ethical use of data.944

B Implementation Details945

We implement our SOLAR framework with the follow-946
ing configurations:947

ID-based Model We employ SASRec as our back- 948
bone sequential recommendation model with the fol- 949
lowing hyperparameters: maximum sequence length of 950
100, hidden dimension of 256, 2 attention heads, and 2 951
transformer blocks. For optimization, we use the Adam 952
optimizer (Kingma and Ba, 2017) with a learning rate 953
of 1e-4 and batch size of 128. 954

LLM Reranking For the reranking process, we uti- 955
lize GPT-4 (Achiam et al., 2023) to refine the recom- 956
mendations generated by the ID-based model and to 957
construct the engagement profiles that capture user pref- 958
erences and intentions. 959

Instruction Finetuning We finetune LLaMA3 960
8B (Touvron et al., 2023) using Low-Rank Adaptation 961
(LoRA) (Hu et al., 2021) with a rank of 8 and alpha of 962
16. The finetuning process is optimized using Adam 963
with a learning rate of 5e-4 and batch size of 32. We use 964
LLaMA-Factory (Zheng et al., 2024b) for instruction 965
finetuning. 966

Computing Resources All experiments are con- 967
ducted on a single NVIDIA A100 GPU with 80GB 968
memory. The ID-based models and all baselines are 969
implemented in PyTorch (Paszke et al., 2019). 970

C Baselines 971

We adopt the following representative sequential recom- 972
mendation models as baselines: 973

1. SASRec: (Kang and McAuley, 2018) A causal se- 974
quential model using a unidirectional transformer 975
to predict the next item in a sequence of IDs. 976

2. BERT4Rec: (Sun et al., 2019) A sequential 977
method using a bidirectional transformer to learn 978
user behavior sequences for recommendations. 979

3. S3-Rec: (Zhou et al., 2020) A self-supervised 980
learning approach, primarily leveraging Mutual 981
Information Maximization (MIM) during its pre- 982
training phase to learn from the correlations be- 983
tween different elements. 984

4. Caser: (Tang and Wang, 2018) A sequential 985
method treats recent item sequence embeddings 986
as an ’image,’ using horizontal convolutional fil- 987
ters to capture union-level patterns.. 988

5. TALLRec: (Bao et al., 2023) A framework that 989
finetunes LLMs for recommendation tasks, align- 990
ing pre-trained models with recommendation. 991

6. P5: (Geng et al., 2023) A training framework 992
for T5, extended to LLMs. It uses personalized 993
prompting and template-based training to unify 994
multiple recommendation tasks. 995

7. LLMRank: (Hou et al., 2024) An LLM-based 996
recommendation system that pairs with sequential 997
models with careful prompting. 998
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8. RecLM: (Lu et al., 2024) A framework combining999
supervised and reinforcement learning to improve1000
LLMs’ instruction-following abilities and general-1001
ize across various recommendation tasks.1002

9. GPT-4o: (Achiam et al., 2023) A state-of-the-art1003
general purpose large language model from Ope-1004
nAI.1005

D Detailed Categorization of Preferences1006

and Intentions1007

User engagement profiling serves as a crucial step in1008
understanding personalized recommendation scenarios.1009
By examining a user’s historical interactions alongside1010
their expressed or inferred preferences, we can more1011
accurately capture their long-term interests and current1012
intentions. In this appendix, we provide a detailed cate-1013
gorization of user preferences and intentions, expanding1014
on the definitions presented in the main text. This addi-1015
tional information aims to clarify how these categories1016
can be applied to construct more nuanced user engage-1017
ment profiles, ultimately leading to more effective and1018
explainable recommendation outcomes.1019

Preference (P) describes a user’s personalized likes1020
or dislikes for certain product attributes or features. Pref-1021
erences capture inherent, long-term interests and needs.1022
Depending on the level of personalization, user prefer-1023
ences can be categorized as follows:1024

- No Preference (P0): When the system lacks any1025
information about the user’s preferences, recommenda-1026
tions are non-personalized. This often occurs in cold-1027
start situations where the system has no historical data1028
to base recommendations on.1029

- General Preferences (PC): Reflect interests1030
through both direct expressions and inferred patterns1031
expressed by the user. This includes straightforward1032
preferences expressed through ratings and reviews, pro-1033
viding direct feedback. It also includes patterns ob-1034
served from long-term interactions, such as browsing1035
history and purchase activities, which reveal underlying1036
interests. Together, these aspects form a comprehensive1037
view of the user’s personalized likes and dislikes.1038

- Novelty Preferences (PN): Reflect the user’s in-1039
terest in exploring both new and unexpected content1040
beyond their typical preferences. This includes a will-1041
ingness to actively try categories or domains different1042
from their usual choices. It also reflects an openness to1043
items that pleasantly surprise them, even if these items1044
do not match their established tastes. These elements1045
together add diversity and exploration to recommenda-1046
tions.1047

Intention (I) describes a user’s immediate needs and1048
goals at a specific point in time. Unlike long-term pref-1049
erences, intentions focus on the user’s current, specific1050
demands, which may differ from their usual interests.1051
Intentions can be categorized based on their level of1052
clarity:1053

- No Intention (I0): The user has no clear needs,1054

showing exploratory behavior to discover potential in- 1055
terests through the system’s recommendations. 1056

- General Intention (IC): Reflect the user’s expressed 1057
need, which can range from vague to specific. This in- 1058
tention can be vague, where the user describes a general 1059
goal or purpose without identifying specific product 1060
types, attributes, or features. Such expressions often 1061
lack clear guidance, requiring further refinement or ex- 1062
ploration. Alternatively, the intention can be specific, 1063
where the user provides detailed information, explicitly 1064
outlining the characteristics, attributes, or requirements 1065
they are seeking. 1066

- Exploratory Intention (IE):Reflect the user’s de- 1067
sire to explore and engage with new domains or prod- 1068
uct types. This intention demonstrates a purposeful 1069
approach where the user actively searches for opportuni- 1070
ties to broaden their knowledge, experience diverse op- 1071
tions, or discover innovative solutions that expand their 1072
understanding and satisfaction. It highlights a proactive 1073
and goal-oriented behavior in their exploration process. 1074

E Latency Evaluation and Scalability 1075

Considerations 1076

To assess the scalability of our approach, we conducted 1077
latency experiments using two NVIDIA A100 GPUs 1078
with vLLM deployment (Kwon et al., 2023) under 1079
simple setup configurations. Results are summarized in 1080
Table 8. 1081

While these results indicate limitations for real-time 1082
applications in an academic setup, we believe perfor- 1083
mance can be significantly improved through industrial- 1084
grade infrastructure and optimization. Potential strate- 1085
gies include: 1086

• Infrastructure Scaling: Deploying across more 1087
GPUs with proper load balancing. 1088

• Model Optimization: Quantization, distillation, 1089
or using smaller LLM variants. 1090

• Caching Strategies: Implementing result caching 1091
for frequent queries. 1092

• Batch Processing: Leveraging more aggressive 1093
batch inference for improved throughput. 1094

We acknowledge scalability challenges and discuss 1095
them in the limitation section. However, successful 1096
industrial deployments of LLM-based recommender 1097
systems demonstrate that, with proper infrastructure and 1098
optimization, these issues can be effectively addressed. 1099

F Detailed Implementation and Results of 1100

A/B Test 1101

Participants. We recruited 53 random participants for 1102
this study. 1103

Procedure. Participants were presented with user 1104
profiles (including browsing history) and correspond- 1105
ing recommendations generated by each of the three 1106
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Metric Value (seconds)

Average Latency 2.13
P50 Latency 2.68
P90 Latency 2.74
P95 Latency 2.77
P99 Latency 2.98
QPS (Queries per Second) 10.48

Table 8: Latency performance metrics using vLLM on
two A100 GPUs.

methods: A1, A2, and B. To avoid bias, the source of1107
the recommendation (A1, A2, or B) was not revealed1108
to the participants. Each participant was shown the1109
user profile and recommendations, and asked to rate the1110
recommendations based on two metrics: relevance and1111
serendipity. The concept of "relevance" and "serendip-1112
ity" were clearly explained to the participants before1113
the test. We employed a 5-point Likert scale for collect-1114
ing the ratings. To minimize potential priming effects1115
where explicitly considering relevance might influence1116
the perception of serendipity, the relevance question1117
was presented before the serendipity question. Partici-1118
pants were not shown the serendipity question until after1119
completing the relevance assessment.1120

Groups. The control group (A) included two sub-1121
groups: recommendations from a baseline algorithm1122
(A1) and random recommendations (A2). The experi-1123
mental group (B) received recommendations generated1124
by our LLM-based model.1125

• A1: Baseline recommendation algorithm: SAS-1126
Rec (Kang and McAuley, 2018).1127

• A2: Random recommendations (sample randomly1128
according to popularity)1129

• B: SOLAR1130

Evaluation Metrics.1131
Relevance (Positive). Participants rated the rele-1132

vance of each recommendation by answering: "Based1133
on the user’s browsing history, how relevant is this rec-1134
ommendation to their interests?" (1: Not at all relevant,1135
5: Highly relevant).1136

Serendipity (Positive). Participants rated their1137
agreement with the statement: "This recommendation1138
is surprising and delightful" (1: Strongly Disagree, 5:1139
Strongly Agree).1140

Data Analysis. We employed the Mann-Whitney1141
U test to compare the serendipity and relevance scores1142
between groups (A1 vs. B and A2 vs. B). We used1143
Spearman’s rank correlation coefficient to assess the1144
relationship between serendipity and relevance scores1145
within each group (A1, A2, and B). A significance level1146
of p < 0.05 was used.1147

Experimental Results.1148
Rating Data. Table 9 presents the raw rating data1149

collected from the participants.1150

Mann-Whitney U Test and Spearman Correla- 1151
tion Coefficients Results. Table 10 presents the results 1152
of the Mann-Whitney U test and the Spearman correla- 1153
tion coefficients, respectively. 1154

Discussion. The results demonstrate that our 1155
method (Group B) achieved significantly higher 1156
serendipity scores compared to both the baseline algo- 1157
rithm (A1) and random recommendations (A2) (Mann- 1158
Whitney U test, p < 0.01). Group B also scored signifi- 1159
cantly higher on relevance compared to both A1 and A2 1160
(Mann-Whitney U test, p < 0.05). Importantly, within 1161
Group B, we observed a statistically significant positive 1162
correlation between serendipity and relevance scores 1163
(Spearman’s rho = 0.28, p < 0.05). This suggests that 1164
the LLM is capable of generating recommendations that 1165
are both surprising and relevant to users’ interests, even 1166
when relevance is assessed prior to serendipity. 1167

Limitations. The offline nature of this A/B test 1168
has inherent limitations. The sample size of 53 partic- 1169
ipants, while sufficient for initial validation, may not 1170
fully represent the broader user population. Addition- 1171
ally, subjective ratings may be influenced by individual 1172
biases. Future work should involve a larger-scale online 1173
A/B test to further validate these findings in a real-world 1174
setting. 1175

G Construction of SUN and SUN−1 1176

In this appendix, the two figures (Figure 6 and Figure 1177
7), we illustrate two examples of the overall process 1178
framework that transforms user interaction records and 1179
system instructions into recommendation outputs. In the 1180
first part (yellow), the system will receive instructions 1181
as input. In the second part (red), the user engagement 1182
profile serves as the foundation, combining the user’s 1183
history with candidate items and dynamically selecting 1184
the most relevant next recommendation through var- 1185
ious methods at output (green), including generative, 1186
direct recommendation, reranking, and matching. As 1187
the reverse method, the user history and potential rec- 1188
ommendation results serve as input (red) to prompt the 1189
model to output the user engagement profile (green). 1190
And detailed templates are presented in Table 13, Table 1191
14 and Table 15. 1192

H Templates of Generation of 1193

Engagement Profile 1194

In this appendix, we present detailed templates for gen- 1195
erating engagement profiles based on multiple datasets, 1196
including Movielens, Booksand Movies & TV, see Ta- 1197
ble 16,Table 17, and Table 18. These templates leverage 1198
users’ historical interaction data (and corresponding re- 1199
views) to extract and infer various dimensions of user 1200
preferences and intentions. In these templates, {interac- 1201
tion} and {reviews} serve as placeholders for user in- 1202
teraction histories and associated feedback, while {con- 1203
straint} introduces necessary limiting conditions.Using 1204
these templates, the system improves recommendation 1205
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Table 9: Raw Serendipity and Relevance Ratings

Group Serendipity_1 Serendipity_2 Serendipity_3 Serendipity_4 Serendipity_5 Relevance_1 Relevance_2 Relevance_3 Relevance_4 Relevance_5

A1 2 16 13 14 8 3 8 15 23 4
A2 6 14 19 8 6 9 16 17 7 4
B 4 3 12 15 19 1 7 7 17 21

Table 10: Mann-Whitney U Test and Spearman Correlation Coefficients Results

Table 11: Mann-Whitney U Test

Comparison U Value p-value

A1 vs. B - Serendipity 980.0 0.002913257250473625
A2 vs. B - Serendipity 809.0 5.581316015540164e-05
A1 vs. B - Relevance 920.5 0.000729550390629055
A2 vs. B - Relevance 606.5 1.2171162949477135e-07

Table 12: Spearman Correlation

Group rho p-value

A1 0.043 0.760
A2 -0.178 0.203
B 0.283 0.040

accuracy and serendipity.1206

I Artifact License and Usage1207

We release the code used in our experiments under the1208
MIT License.2 All external artifacts used in this work1209
(including datasets and tools) conform to their intended1210
usage as specified by the original authors or sources, and1211
are used solely for non-commercial academic research.1212

All released artifacts are intended for non-1213
commercial academic use only.1214

2https://opensource.org/licenses/MIT
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Figure 6: Reverse Recommendation Task.
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Templates of Construction of SUN (RecTempalte)

(1)

{reranking} The behavioral sequence of the user is shown below: {historical_interactions}, which can be used to infer the user’s preferences
{explicit_preference}. Then please rerank the items to better align with the user’s preferences by comparing the candidates and their similarities to
the user’s preferences. The candidates are: {candidate_items}.

(2)

{reranking} You have some information about this user, which is shown below: {explicit_preference}, the user’s historical interactions:
{historical_interactions} Based on this information, please recommend the reranking order of items for the user, which should match the user’s
preference, from the following candidates: {candidate_items}

(3)

{generation} Using the user’s historical interactions as input data, predict the next product that the user is most likely to interact with. The historical
interactions are provided as follows: {historical_interactions}.

(4)
{generation} Given the user’s interaction history: {historical_interactions}, what is the optimal product to suggest next?

(5)

{generation} Given the sequence of the user’s past interactions: {historical_interactions}, what is the most suitable product to recommend
next?

(6)
{generation} Considering the user’s interaction pattern: {historical_interactions}, suggest the next likely product they would engage with.

(7)
{generation} Given the historical context of user interactions: {historical_interactions}, what is the optimal next product recommendation?

(8)
{generation} Based on the user’s historical engagement data: {historical_interactions}, provide the next product recommendation.

(9)
{generation} Based on the user’s past interaction data: {historical_interactions}, suggest the most relevant product for their next interaction.

(10)

{generation} Using the provided interaction history: {historical_interactions}, determine the most likely product the user would engage with
next.

(11)

{generation} You are a recommendation system, and are good at recommending products to a user based on his preferences. Given the user’s
preferences: {explicit_preference}, please recommend products that are consistent with those preferences.

(12)

{generation} As we know, a user’s behavior is driven by his preferences, which determine what they are likely to buy next. Your task is to predict
what products a user will purchase next, based on his preferences. Given the user’s preferences as follows: {explicit_preference}, please make
your prediction.

(13)

{generation} Given the following historical interaction of the user: {historical_interactions}. You can infer the user’s preference:
{explicit_preference}. Please predict next possible item for the user.

(14)

{generation} To make a recommendation for this user, we need to analyze their historical interactions: {historical_interactions}. As we know,
historical interactions reflect the user’s preferences {explicit_preference}. Based on these preferences, please recommend an item that you think
would be suitable for them.

(15)

{generation} Recommend the next potential product to a user based on his profile and past interactions. You have access to the user’s profile
information, including his preference: {explicit_preference} and past interactions: {historical_interactions}. For example, if the user
recently interacted with {recent_item}, you might consider similar products. Now, based on this approach, determine what product would be
recommended to him next.

(16)

{generation} Imagine the user recently interacted with {recent_item}. Using this example, and given the user’s historical interactions as input data:
{historical_interactions}, predict the next product that the user is most likely to interact with.

(17)

{direct} The user has previously purchased the following items: {historical_interactions}. This information indicates their personalized
preferences {explicit_preference}. Based on this information, is it likely that the user will interact with {candidate_item} next?

(18)

{direct} Based on the user’s historical interaction list, which is provided as follows: {historical_interactions}, you can infer the user’s
personalized preference {explicit_preference}. And your task is to use this information to predict whether the user will click on {candidate_item}
next.

(19)

{direct} Please recommend an item to the user based on the following information about the user: {historical_interactions}, the user’s historical
interaction, which is as follows: {explicit_preference} Try to select one item from the following candidates that is consistent with the user’s
preference: {candidate_items}.

(20)

{generation} Suppose you are a search engine, now the user search that {explicit_preference_vague_intention_specific_intention}, can
you generate the item to respond to user’s query?

Table 13: Generation templates for the Recommendation Task
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Templates of Construction of SUN (RecTemplateInverse)

(1)

{explicit_preference} The behavioral sequence of the user is shown below: {historical_interactions}. The candidates were provided as:
{candidate_items}, and they have been reranked to better align with the user’s preferences: {rerank_list}. Based on this information, please infer
the user’s explicit preferences that likely led to this reranking.

(2)

{explicit_preference} You have observed that the user has clicked on the following items: {historical_interactions}. The following candidates
were presented: {candidate_items}, and they have been reranked in an order deemed suitable for the user: {rerank_list}. Based on this information,
please infer the user’s explicit preferences that likely led to this reranking.

(3)

{explicit_preference} You have some information about this user, which is shown below: the user’s historical interactions:
{historical_interactions}. The candidates presented were: {candidate_items}, and they have been reranked in the following order:
{rerank_list}. Based on this information, please infer the user’s explicit preferences that would justify this reranking.

(4)

{implicit_preference} The user has interacted with the following items in the past: {historical_interactions}. The candidates provided were:
{candidate_items}, and they have been reranked to better align with the user’s interests: {rerank_list}. Based on this information, please infer the
user’s implicit preferences that likely led to this reranking.

(5)

{vague_intention} The user has shown the following historical interactions: {historical_interactions}, and the candidate items were provided
as: {candidate_items}. The candidates have been reranked in this order: {rerank_list}. Based on this information, infer the user’s vague intention
that could explain why this reranking aligns with their preferences.

(6)

{specific_intention} Analyzing the user’s past behavior: {historical_interactions} and the given candidates: {candidate_items}, which
have been reordered to: {rerank_list}, please determine the user’s specific intention that could explain this preference for certain elements over
others.

(7)

{explicit_preference} Given the following historical interaction of the user: {historical_interactions}. And the next recommended item:
{next_item}. Please infer the user’s explicit preferences that would likely lead to this recommendation.

(8)

{novelty_preference} Given the user’s historical behavior and intention: {historical_interactions}, and the next recommended item:
{next_item}, please infer the user’s exploratory preferences that would justify this recommendation.

(9)

{specific_intention} Given the following historical interactions of the user: {historical_interactions}, and the next recommended item:
{next_item}. Please infer the specific intention that would likely lead to this recommendation, such as seeking a particular genre, theme, or type of
item.

(10)

{specific_intention} To better understand the user’s needs, consider their past interactions: {historical_interactions}. The next recommended
item is: {next_item}. Based on this information, infer the user’s specific intention that would justify this recommendation, focusing on concrete
preferences or desires.

(11)

{exploratory_intention} The user has recently been recommended the following item: {next_item}. Given the user’s historical actions:
{historical_interactions} and the candidates: {candidate_items}, please infer the user’s exploratory intention that would justify this sur-
prising recommendation.

(12)

{exploratory_intention} The user was recommended the following item: {next_item}. Considering their historical interactions:
{historical_interactions} and the set of candidates: {candidate_items}, please infer the user’s lack of specific intention for surprising recom-
mendations that justify the selection of this item.

(13)

{explicit_preference} Please try to infer the preference to the user based on the following information: {historical_interactions}, the user’s
historical interaction, which is as follows: {next_item} and the candidate item: {candidate_items}.

(14)

{vague_intention} The user has received the following recommendation: {next_item}. Given their historical actions: {historical_interactions}
and the set of candidates: {candidate_items}, please infer the user’s vague intention that could justify this recommendation.

(15)

{implicit_preference} Based on the user’s historical interaction list: {historical_interactions}, and considering the candidate items:
{candidate_items}, the item most likely to be clicked next is: {next_item}. Please infer the user’s implicit preferences that would justify
the selection of this item.

Table 14: Generation templates for the Reverse Recommendation Task
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Templates of Construction of SUN (RecTemplateSeren)

(1)

{generation} The user likes to explore new types of products and has recently shown interest in items that differ from their usual preferences. The
user is looking to try new domains or product types. Based on the user’s historical behavior and intention: {historical_interactions}, generate a
product recommendation that aligns with the user’s novelty preference: {novelty_preference}.

(2)

{generation} The user is interested in exploring new types of products while maintaining certain explicit preferences: {explicit_preference}.
Given the user’s exploratory intention ({exploratory_intention}) to try something new and different, please generate a product recommendation
that aligns with both the user’s explicit preferences and their desire for exploration.

(3)

{direct} The user enjoys receiving surprising recommendations and wants to try items that do not match their usual preferences. Based on the user’s
exploratory intention:{exploratory_intention} and combine the user’s historical action : {historical_interactions}, select the item most likely
to offer a pleasant surprise from the following candidates: {candidate_items}

(4)

{matching} The user is interested in new types of products that do not match their usual preferences:{explicit_preference} but their needs are still
unclear. Please determine whether the following item matches the user’s vague exploratory intention and answer "Yes" or "No": {candidate_item}

(5)

{direct} The user has no specific intention but enjoys receiving surprising recommendations. Based on this, select the item most likely to provide a
pleasant surprise from the following candidates: {candidate_items}

(6)

{matching} The user enjoys being surprised and has shown implicit preferences based on their historical interactions: {historical_interactions}.
The user’s current intention may be vague as following : {vague_intention}. Based on this information, evaluate the following candidate item:
{candidate_item} to determine if it would be a suitable recommendation for the user, please answer "Yes" or "No" for the fitness of candidate.

(7)

{generation} You are a search engine. Here is the historical interaction of a user: {historical_interactions}. And his personalized preferences
are as follows: {explicit_preference}. Your task is to generate a new product that are consistent with the user’s preference.

(8)

{generation} The user has interacted with a list of items, which are as follows: {historical_interactions}. Based on these interacted items, the
user current intent are as follows {vague_intention}, and your task is to generate products that match the user’s current intent.

(9)

{generation} As a search engine, you are assisting a user who is searching for the query: {specific_intention}. Your task is to recommend
products that match the user’s query and also align with their preferences based on their historical interactions, which are reflected in the following:
{historical_interactions}

(10)

{direct} Using the user’s current query: {explicit_preference_vague_intention_specific_intention} and their historical interactions:
{historical_interactions} you can estimate the user’s preferences {explicit_preference}. Please respond to the user’s query by select-
ing an item from the following candidates that best matches their preference and query: {candidate_items}

(11)

{direct} The user wants to try some products and searches for: {explicit_preference_vague_intention_specific_intention}. In ad-
dition, they have previously bought: {historical_interactions}. You can estimate their preference by analyzing his historical interac-
tions. {explicit_preference} Please recommend one of the candidate items below that best matches their search query and preferences:
{candidate_items}

Table 15: Generation templates for the RecTemplate for Serendipity Purpose
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Templates of Generation of Engagement Profile (Movielens)

(1)

User’s historical interactions: {interaction}. Based on these movie titles, use your knowledge to generate a description of the user’s implicit
preferences, such as their favorite genres, themes, or notable patterns. {constraint}

(2)

The user has browsed the following movies in chronological order: {interaction}. Based on this browsing history, use your understanding of these
movies to generate a description of the user’s implicit preferences, including their likely favorite genres, themes, or types of movies. {constraint}

(3)

Recently, the user has browsed the following movies: {interaction}. Based on this recent activity, apply your knowledge of these movie to generate a
description of the user’s current movie preferences, focusing on genres, themes, or other noticeable patterns.{constraint}

(4)

Analyze the user’s recent viewing history: {interaction}. From these interactions, use your knowledge of these movies to infer the user’s implicit
preferences, such as preferred genres, sub-genres, or specific types of storylines. {constraint}

(5)

The user has shown a strong interest in the following movies: {interaction}. Using this data, infer their explicit preferences, such as particular
themes, moods, or types of narratives they actively seek.{constraint}

(6)

Consider the user’s engagement with the following movies: {interaction}. Based on these patterns, determine their explicit preferences, such as
favorite directors, frequent actors, or recurring motifs that they seem to appreciate. {constraint}

(7)

The user has recently browsed a variety of different movie genres: {interaction}. Based on this diverse viewing pattern, describe the user’s novelty
preferences, such as their openness to exploring new genres or trying unexpected movie types. {constraint}

(8)

Given the user’s browsing history: {interaction}, identify any novelty preferences they may have, such as a willingness to explore genres outside
their usual interest or a desire for unique and unconventional film experiences. {constraint}

(9)

The user has moved from browsing typical genres to less common ones: {interaction}. Describe the user’s novelty preferences, focusing on their
interest in discovering diverse genres or unique cinematic styles. {constraint}

(10)

The user has recently watched the following movies: {interaction}. Reflect on this history to infer a general type or mood of movies they might be
interested in next, without narrowing down to a specific genre or characteristic. {constraint}

(11)

Given the user’s recent viewing history: {interaction}, suggest a broad intention for what they may want to watch next, focusing on an overall style
or feeling rather than pinpointing a particular movie or specific genre. {constraint}

(12)

Based on these movies: {interaction}, generate an open-ended intention that represents a general mood or broad category the user could be leaning
towards, even if their specific preferences aren’t clear. {constraint}

(13)

The user has watched these movies: {interaction}. Use this data to determine a specific movie intention they might have, such as seeking a particular
genre, a specific plot, or a film with certain defining characteristics. {constraint}

(14)

Based on the user’s recent movie list: {interaction}, infer a clearly defined intention for the next type of film they may want to watch, focusing on
particular elements like genre, theme, or distinctive features. {constraint}

(15)

Considering the user’s viewing pattern: {interaction}, determine a specific intention about the next movie they are likely to watch, including precise
details about the genre, mood, or main elements they are interested in. {constraint}

(16)

The user has recently watched these movies:{interaction}. Based on this history, suggest an exploratory intention where the user might want to
explore genres or types of movies they haven’t typically watched. {constraint}

(17)

Given the user’s movie-watching history of: {interaction}, infer an exploratory intention indicating their curiosity to explore new and different
genres, styles, or narrative types that they might not have considered before. {constraint}

(18)

Using the following interaction data: {interaction}, generate an exploratory intention for the user, where they express interest in trying out new
genres, themes, or movie types that differ from their usual choices. {constraint}

Table 16: Generation templates for the Movielens dataset

20



Templates of Generation of Engagement Profile (Books)

(1)

Analyze the user’s reading history: {interaction} and the associated reviews: {reviews}. From these data points, determine the user’s explicit
preferences, such as the genres, themes, or specific book characteristics they explicitly praise or mention in their comments. {constraint}

(2)

Considering the user’s reading history of these books: {interaction}, along with their corresponding reviews: {reviews}, generate a description of
the user’s explicit preferences, focusing on any recurring genres, themes, or patterns evident in their comments. {constraint}

(3)

Based on the user’s recent engagement with the following books: {interaction} and their comments: {reviews}, identify their explicit preferences by
analyzing the sentiments and focus of their reviews, such as preferred genres, themes, or author styles they frequently mention or praise. {constraint}

(4)

Analyze the user’s reading history: {interaction} and the associated reviews: {reviews}. From these data points, determine the user’s explicit
preferences, such as the genres, themes, or specific book characteristics they explicitly praise or mention in their comments. {constraint}

(5)

The user has shown a clear interest in certain books: {interaction}, with specific comments: {reviews}. Using this data, infer their explicit
preferences, such as favorite themes, plot types, or narrative styles they often highlight in their reviews. {constraint}

(6)

Consider the user’s engagement with these books: {interaction}, accompanied by their reviews: {reviews}. Based on these reviews, identify
explicit preferences, such as preferred authors, frequent genres, or writing styles that the user frequently praises or critiques. {constraint}

(7)

The user has recently reviewed a variety of different genres or unconventional books: {interaction}, with comments: {reviews}. Describe the user’s
novelty preferences, such as their openness to experimenting with new genres or exploring unique literary styles, based on the diversity of their reviews.
{constraint}

(8)

Given the user’s diverse reading history: {interaction} and their reviews: {reviews}, identify any novelty preferences they may have, such as a
tendency to seek out unique literary experiences or genres that are outside their usual interests. {constraint}

(9)

The user has moved from reading typical genres to exploring less common ones: {interaction}, as indicated by their reviews: {reviews}. Describe
the user’s novelty preferences, focusing on their interest in discovering new genres or unconventional narrative approaches. {constraint}

(10)

The user has recently read the following books: {interaction}, with the following reviews: {reviews}. Reflect on this history and the accompanying
reviews to infer a general type or mood of books they might be interested in next, without narrowing down to a specific genre or characteristic.
{constraint}

(11)

Given the user’s recent reading history: {interaction} and their reviews: {reviews}, suggest a broad intention for what they may want to read next,
focusing on an overall style or feeling rather than pinpointing a particular book or specific genre. {constraint}

(12)

Based on these books: {interaction} and the corresponding reviews: {reviews}, generate an open-ended intention that represents a general mood or
broad category the user could be leaning towards, even if their specific preferences aren’t clear. {constraint}

(13)

The user has read these books: {interaction} and provided the following reviews: {reviews}. Use this data to determine a specific book intention
they might have, such as seeking a particular genre, a specific plot, or a book with certain defining characteristics. {constraint}

(14)

Based on the user’s recent book list: {interaction} and their reviews: {reviews}, infer a clearly defined intention for the next type of book they may
want to read, focusing on particular elements like genre, theme, or distinctive features. {constraint}

(15)

Considering the user’s reading pattern: {interaction} and their reviews: {reviews}, determine a specific intention about the next book they are
likely to read, including precise details about the genre, mood, or main elements they are interested in. {constraint}

(16)

The user has recently read these books: {interaction} and left the following reviews: {reviews}. Based on this history, suggest an exploratory
intention where the user might want to explore genres or types of books they haven’t typically read. {constraint}

(17)

Given the user’s book-reading history of: {interaction} and their reviews: {reviews}, infer an exploratory intention indicating their curiosity to
explore new and different genres, styles, or narrative types that they might not have considered before. {constraint}

(18)

Using the following interaction data: {interaction} and corresponding reviews: {reviews}, generate an exploratory intention for the user, where
they express interest in trying out new genres, themes, or book types that differ from their usual choices. {constraint}

Table 17: Generation templates for the Books dataset
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Templates of Generation of Engagement Profile (Movies & TV )

(1)

Analyze the user’s viewing history: {interaction} and the associated reviews: {reviews}. From these data points, determine the user’s explicit
preferences, such as the genres, themes, or specific movie characteristics they explicitly praise or mention in their comments. {constraint}

(2)

Considering the user’s viewing history of these movies/TV shows: {interaction}, along with their corresponding reviews: {reviews}, generate a
description of the user’s implicit preferences, focusing on any recurring genres, themes, or patterns evident in their comments. {constraint}

(3)

Based on the user’s recent engagement with the following movies/TV shows: {interaction} and their comments: {reviews}, identify their implicit
preferences by analyzing the sentiments and focus of their reviews, such as preferred genres, themes, or character types. {constraint}

(4)

Analyze the user’s viewing history: {interaction} and the associated reviews: {reviews}. From these data points, determine the user’s explicit
preferences, such as the genres, themes, or specific movie characteristics they explicitly praise or mention in their comments. {constraint}

(5)

The user has shown a clear interest in certain movies/TV shows: {interaction}, with specific comments: {reviews}. Using this data, infer their
explicit preferences, such as favorite themes, plot types, or emotional tones they often highlight in their reviews. {constraint}

(6)

Consider the user’s engagement with these movies/TV shows: {interaction}, accompanied by their reviews: {reviews}. Based on these reviews,
identify explicit preferences, such as preferred directors, frequent actors, or narrative styles that the user frequently praises or critiques. {constraint}

(7)

The user has recently reviewed a variety of different genres or unconventional movies/TV shows: {interaction}, with comments: {reviews}.
Describe the user’s novelty preferences, such as their openness to experimenting with new genres or exploring unique cinematic styles, based on the
diversity of their reviews. {constraint}

(8)

Given the user’s diverse viewing history: {interaction} and their reviews: {reviews}, identify any novelty preferences they may have, such as a
tendency to seek out unique film experiences or genres that are outside their usual interests. {constraint}

(9)

The user has moved from watching typical genres to exploring less common ones: {interaction}, as indicated by their reviews: {reviews}. Describe
the user’s novelty preferences, focusing on their interest in discovering new genres or unconventional storytelling approaches. {constraint}

(10)

The user has recently watched the following movies: {interaction}, with the following reviews: {reviews}. Reflect on this history and the
accompanying reviews to infer a general type or mood of movies they might be interested in next, without narrowing down to a specific genre or
characteristic. {constraint}

(11)

Given the user’s recent viewing history: {interaction} and their reviews: {reviews}, suggest a broad intention for what they may want to watch
next, focusing on an overall style or feeling rather than pinpointing a particular movie or specific genre. {constraint}

(12)

Based on these movies: {interaction} and the corresponding reviews: {reviews}, generate an open-ended intention that represents a general mood
or broad category the user could be leaning towards, even if their specific preferences aren’t clear. {constraint}

(13)

The user has watched these movies: {interaction} and provided the following reviews: {reviews}. Use this data to determine a specific movie
intention they might have, such as seeking a particular genre, a specific plot, or a film with certain defining characteristics. {constraint}

(14)

Based on the user’s recent movie list: {interaction} and their reviews: {reviews}, infer a clearly defined intention for the next type of film they may
want to watch, focusing on particular elements like genre, theme, or distinctive features. {constraint}

(15)

Considering the user’s viewing pattern: {interaction} and their reviews: {reviews}, determine a specific intention about the next movie they are
likely to watch, including precise details about the genre, mood, or main elements they are interested in. {constraint}

(16)

The user has recently watched these movies: {interaction} and left the following reviews: {reviews}. Based on this history, suggest an exploratory
intention where the user might want to explore genres or types of movies they haven’t typically watched. {constraint}

(17)

Given the user’s movie-watching history of: {interaction} and their reviews: {reviews}, infer an exploratory intention indicating their curiosity to
explore new and different genres, styles, or narrative types that they might not have considered before. {constraint}

(18)

Using the following interaction data: {interaction} and corresponding reviews: {reviews}, generate an exploratory intention for the user, where
they express interest in trying out new genres, themes, or movie types that differ from their usual choices. {constraint}

Table 18: Generation templates for the Movies & TV datasets
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Figure 7: Recommendation Task.
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