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Abstract

Visual reinforcement learning has shown promise in various real-world applica-
tions. However, deploying policies in complex real-world environments with vi-
sual perturbations remains a significant challenge. We notice that humans tend to
filter information at the object level prior to decision-making, facilitating efficient
skill transfer across different contexts. Inspired by this, we introduce Focus-Then-
Reuse (FTR), a method utilizing a novel object selection mechanism to focus on
task-relevant objects, and directly reuse the simulation-trained policy on them.
The training of the object selection mechanism integrates prior knowledge from
a vision-language model and feedback from the environment. Experimental re-
sults on challenging tasks based on DeepMind Control Suite and Franka Emika
Robotics demonstrate that FTR enables rapid adaptation in visual perturbation
environments and achieves state-of-the-art performance. The source code is avail-
able at https://github.com/LAMDA-RL/FTR.

1 Introduction

Visual Reinforcement Learning (RL) has achieved breakthroughs in a wide range of real-world ap-
plications, including robotic manipulation [1–3] and autonomous navigation [4, 5]. However, bridg-
ing the gap between simulation and real-world environments remains a pivotal challenge. In this
work, we focus on distracting background, which is a typical form of visual disturbance. Taking
robotic grasping as an example, although existing methods can achieve good performance in simu-
lation [6, 7], directly deploying the learned policies in the real world may suffer from performance
degradation when there exists complex backgrounds [8, 9].

Recent studies have explored ways to address the challenge of deploying policies in complex en-
vironments with visual perturbations. Existing approaches can be categorized into three groups:
(1) training policies directly in noisy real-world environments [10–12]; (2) learning generalizable
policies that are robust to environment variations [13–22]; and (3) adapting pre-trained policies to
target environments with visual perturbations [23–25]. Each of these approaches presents potential
limitations. First, policies trained directly in visually disturbed environments often incur high costs
and risks, and the policy may generalize poorly to unseen settings. Second, generalization-based
methods rely on techniques such as data augmentation to simulate real-world variations during train-
ing [26]. However, if the training process fails to capture the diversity of the deployment environ-
ment, severe performance degradation may occur. Lastly, existing adaptation methods struggle to
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fully preserve policy performance achieved in simulation. We concentrate on an adaptation approach
that aims to preserve the source policy performance with minimal degradation.

Inspired by the stark contrast with the limitations of existing adaptation methods, we investigate hu-
man skill transfer. Notably, humans possess a natural ability to transfer skills across diverse contexts.
We believe this ability can be attributed to two key aspects. First, during perception, humans perform
object-level filtering to distinguish between task-relevant and irrelevant objects, effectively reducing
the complexity of information processing [27]. Second, in decision-making, humans can leverage
both prior knowledge and environmental feedback to guide their actions. Initially, object selection
is driven by prior knowledge; if the outcome is unsatisfactory, humans will iteratively adjust their
selection policy based on environmental feedback until the task is completed [28].

Focus Reuse

Figure 1: Directly deploying the learned pol-
icy in real-world environments may degrade per-
formance. We propose Focus-Then-Reuse, a
method that utilizes a novel object selection
mechanism to focus on task-relevant objects,
and directly reuses the learned policy on them.

Humans acquire prior knowledge by summariz-
ing a large number of past experiences. Similarly,
foundation models gain strong prior knowledge
through pre-training on large-scale and diverse
datasets, achieving remarkable success in natu-
ral language processing [29, 30] and computer vi-
sion [31–33]. Recently, many studies have also
explored using foundation models as a source of
prior knowledge for downstream tasks [34, 35].

Inspired by humans’ ability to transfer skills and
the success of foundation models, we introduce
a new paradigm for visual domain adaptation RL.
We propose Focus-Then-Reuse (FTR), a method
that directly applies a simulation-trained policy
to observations focused by a novel object selec-
tion mechanism (Fig. 1). The object selection
mechanism consists of a trainable segment selec-
tor, a fixed segmentation model, and a fixed track-
ing model. The training of the segment selec-
tor synthesizes prior knowledge from a Vision-
Language Model (VLM) and feedback from the
environment. Experiments on DeepMind Control Suite and Franka Emika Robotics show that FTR
facilitates rapid policy adaptation from clean training environments to visually perturbed target en-
vironments and achieves state-of-the-art (SOTA) performance.

We summarize the contribution of this paper as:

• We introduce a novel Focus-Then-Reuse framework for policy adaptation, with the focus
stage filtering task-relevant objects and the reuse stage employing a fixed policy for faster
and more stable adaptation.

• We propose an adaptation RL method that integrates supervised learning and reinforcement
learning to synthesize VLM’s prior knowledge and environmental feedback.

• Experiment on challenging tasks demonstrates that our method facilitates quick and effec-
tive policy adaptation to visual perturbation environments, achieving SOTA performance.

2 Related works

The pursuit of robust policy deployment across visually perturbed domains has catalyzed research
interest in recent years. Some works try to train policies in visually distracted environments directly.
DBC [36] first explores this pathway by learning a representation robust to distractions. Building on
DBC, Q2-learning [11] decouples policy learning from behavioral metric learning for stable training.
Some model-based methods [12, 37–39] explicitly recognize task-relevant parts. However, policies
trained directly in visually perturbed environments often suffer from high training costs and risks,
as well as limited generalization to other scenarios.

Generalization methods explore ways to enhance policy performance, which can be classified into
three types: data augmentation, inductive bias, and learning invariances [26]. Data augmentation
methods [14–18] apply techniques like cropping and color jittering to training images to reduce
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the distribution gap between training and testing. Inductive bias methods [19–22, 26] incorporate
assumptions about task-relevance (e.g., foreground is of higher importance), among which Sim-
GRL [13] achieves the SOTA performance. Invariance-based methods [40–45] focus on extracting
information consistent across diverse training environments. We point out that generalization meth-
ods face two issues. First, added perturbations or inductive biases may hurt training performance.
Second, when facing unseen disturbances, the performance may drop significantly.

Domain adaptation RL focuses on transferring policies trained in the source domain to the target do-
main [46–50]. Of particular relevance to this paper is visual domain adaptation RL, which remains
relatively under-explored. PAD [23] is the work most closely related to our setting. It introduces
a self-supervised objective during training and performs online adaptation at deployment through
this objective, enabling policy adaptation to target domains with simple backgrounds. Other studies
have explored policy adaptation to target domains with varying camera viewpoints [24], changes in
color and object scale [25] or new visual dynamics [51]. However, we suggest that current adapta-
tion methods fail to fully recover the policies’ performance, with severe degradation in challenging
environments like video background [17].

Foundation models can leverage their prior knowledge to support perception and decision-making
in downstream tasks [52, 53]. For perception, some approaches [54, 55] employ foundation mod-
els as pre-trained feature extractors, while others [10, 56–59] incorporate promptable segmenta-
tion models to enhance scene understanding and representation learning for visual RL agents. For
decision-making, a common approach is to employ foundation models as reward generators to pro-
vide learning signals for policy optimization [60, 61]. Our method leverages foundation models to
assist RL from both aspects. On one hand, we use pre-trained segmentation and tracking models to
process complex inputs in a zero-shot manner. On the other hand, we employ a Vision-Language
Model (VLM) as a supervision signal in policy training.

3 Preliminaries

Reinforcement learning Traditional RL considers the task in the form of a Markov Decision
Process (MDP) M = (S,A,P, R). S is state space, A is action space. P : S × A × S → [0, 1] is
the transition function that defines the conditional probability distribution P(st+1|st, at) over next
states given state st ∈ S and action at ∈ A at time t, R : S ×A → R is a reward function. RL aims
to learn a policy π(a|s) that maximizes the expected discounted cumulative reward Eπ [

∑
t γ

trt]
where γ ∈ [0, 1] is the discount factor. In visual RL tasks, the agent can only have access to the
observation ot rendered from st, and thus the policy becomes π(a|o). In this paper, we use Proximal
Policy Optimization (PPO) [62]. PPO is an effective algorithm for solving general RL problems.
Given policy πθ(a|s) and value function Vψ(s), PPO maximizes the following objectives:

L(θ) = E
(s,a,r,s′)∼πθold

[min (r(θ)Aπθold (s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a))] ,

L(ψ) = E
(s,a,r,s′)∼πθold

[
Vψ(s)− (Vψ−(s) +Aπθold (s, a))

]
.

(1)

Here r(θ) = πθ(a|s)
πθold (a|s)

is the probability ratio measuring how much the current policy deviates
from the old policy used for data sampling, while the clip(·) operation prevents overly large policy
updates. The hyperparameter ϵ defines the clipping boundary. The value function Vψ(s) is a param-
eterized estimate of the expected discounted cumulative reward starting from state s and following
policy πθ thereafter. The advantage Aπθold (s, a) is usually estimated from Vψ(s) via Generalized
Advantage Estimation (GAE) [63]. ψ− denotes the target network parameter, which is periodically
synchronized with ψ for stable training.

Visual foundation models Visual foundation models are commonly pre-trained on massive
datasets and can adapt to various downstream tasks in a zero-shot way. In this work, we fo-
cus specifically on foundation models designed for image understanding [33], image segmenta-
tion [64], and object tracking [65]. For image understanding task, we use Qwen-VL-Max [33],
a multimodal version of the Qwen large model series that outperforms current SOTA general-
ist models on multiple vision-language tasks. It takes a combination of image and text as in-
put and generate structured textual outputs following a specified format (e.g., JSON). For im-
age segmentation and object tracking, we use SAM 2 [32], which achieves SOTA performance
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Figure 2: Architecture overview. FTR comprises a focus stage and a reuse stage, depicted in the or-
ange and purple boxes, respectively. The focus stage utilizes a novel object selection mechanism to
filter task-relevant segments, and the reuse stage applies a fixed, simulator-trained policy to generate
actions based on the selected objects. The object selection mechanism consists of a trainable seg-
ment selector, a fixed segmentation model, and a fixed tracking model. The training of the segment
selector synthesizes prior knowledge from a VLM and feedback from the environment.

in both tasks. In image segmentation task, the model takes an image o ∈ RC×W×H (C, W ,
H are respectively channels, width, and height) as input and outputs a set of k binary masks{
mi | i ∈ {1, · · · , k},mi ∈ {0, 1}W×H

}
. Each mask mi corresponds to a single object instance,

with 1 indicating a pixel of the object. Segmented images are then obtained by element-wise
multiplication (

⊙
),
{
oiobj | i ∈ {1, · · · , k}, oiobj = o

⊙
mi ∈ RC×W×H

}
. In object tracking task,

the model takes a video and masks as input and propagates the masks across the video. Given a
video with T frames

{
ot | t ∈ {1, · · · , T}, ot ∈ RC×W×H}

and k object masks in the first frame{
mi

1 | i ∈ {1, · · · , k},mi
1 ∈ {0, 1}W×H

}
, the goal of tracking is to predict the object masks in

subsequent frames,
{
mi
t | t ∈ {1, · · · , T}, i ∈ {1, · · · , k}

}
.

4 Method

We present Focus-Then-Reuse (FTR), a hierarchical framework designed to quickly deploy policies
in target domains with visual perturbations. FTR facilitates efficient policy adaptation by maintain-
ing the core functionality of the original policy while dynamically compensating for visual pertur-
bations through a learned "focus" module. In this section, we first provide a brief overview of the
FTR framework. Following this, we introduce the forward process of our method, which is divided
into two stages: the focus stage and the reuse stage. For the focus stage, we combine two filtering
techniques to identify the task-relevant objects. For the reuse stage, we explain the training and
reusing of the original policy. Finally, we present the training approach for the segment selector,
which incorporates both supervised learning objective and reinforcement learning objective.

4.1 Architecture overview

An overview of FTR is provided in Fig. 2. FTR comprises two distinct stages: a high-level focus
stage and a low-level reuse stage. They are in the orange and purple boxes, respectively. In the focus
stage, an image observation with visual disturbance is processed. Based on whether the tracked
objects require updating, task-relevant segments are obtained either through a segment selector (high-
level policy πh) or a tracking model. In the reuse stage, the selected objects osel

t are fed into the

4



original policy, which is acquired via pre-training in a clean environment, to obtain the action. The
training objective of πh combines RL with VLM supervision to enable efficient adaptation.

4.2 Focus stage: segmentation, selection and tracking

In this section, we introduce the focus stage in detail, as shown in the orange box in Fig. 2. At time
step t, the image observation of the visually disturbed environment is denoted as ot ∈ RC×W×H .
The focus stage takes ot as input and outputs the filtered task-relevant objects, denoted as osel

t ∈
RC×W×H . Depending on whether the tracked objects need update (blue diamond box in Fig. 2),
there are two approaches: The first approach uses a segmentation model and a segment selector (the
selection pathway). The second approach employs a tracking model and historical selected images
(the tracking pathway). We introduce these two pathways and explain their necessities.

4.2.1 Selection pathway

The selection pathway corresponds to the downward arrow labeled "Yes" in Fig. 2. This pathway
filters objects through an image segmentation model and a segment selector πh. First, an image seg-
mentation model is employed to segment the disturbed observation ot, yielding a set of k segments:
oseg
t =

{
o

segi
t | i ∈ {1, · · · , k}, osegi

t ∈ RC×W×H}
. Subsequently, πh takes the k segments and the

original observation ot as input, and output the mean values µt = (µ1
t , µ

2
t , · · · , µkt ) ∈ (0, 1)k.

By sampling from a diagonal Gaussian distribution N (µ⊤
t , σ

2
hI) with µt as mean, hyperparam-

eter σh as variance (σh = 0.1 by default), and I as the identity matrix, we get action asel
t =

(asel1
t , asel2

t , · · · , aselk
t ). Using 0.5 as the threshold, the i-th segment is selected if its value aseli

t > 0.5;
otherwise, it is discarded. The selected segments are then integrated to form osel

t ∈ RC×W×H , rep-
resenting the union of focused objects:

osel
t =

∪
i∈It

o
segi
t , where It =

{
i | i ∈ {1, · · · , k}, aseli

t > 0.5
}
. (2)

By obtaining osel
t through the above sampling method, we can effectively explore different segment

selection patterns and prevent premature convergence to local optima.

4.2.2 Tracking pathway

While the selection pathway alone is sufficient to derive osel
t , this pathway suffers from a major issue:

the inconsistency in segment selection. A segment selector that has not been sufficiently trained to
develop a stable selection pattern is likely to produce results lacking short-term consistency, resulting
in inconsistent actions and low-quality reward signals. Therefore, we propose another approach to
derive osel

t , the tracking pathway. Whenever we obtain the selected objects in the selection pathway,
we simultaneously record them in the tracking model. The tracking model then recognizes the
selected objects osel

t using previous selection results.

Till now, we have fully introduced the two pathways for selecting images. We propose a simple
yet effective mechanism to combine these two pathways. We introduce a selection interval Tsel
(Tsel = 20 by default). If the current timestep t is divisible by Tsel, the selection pathway is called;
otherwise, the tracking pathway is used. In a corner case where no segment is selected by πh,
tracking must also be refreshed in the subsequent timestep, regardless of Tsel.

4.3 Reuse stage

Before adaptation, the original policy πori is trained in a clean environment without visual perturba-
tion using the DrQ-v2 algorithm [66]. In the reuse stage, πori is copied and frozen as the lower-level
policy πl. As a common practice in visual RL, the last 3 frames of focused objects osel

t−2, o
sel
t−1, o

sel
t are

stacked and fed into πl, yielding action at for environment interaction to obtain reward rt. Notably,
the focus stage and the reuse stage are highly decoupled, meaning that our method is compatible
with a range of RL algorithms. Additionally, our method requires no modifications to πl.
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4.4 Segment selector trained with supervised learning and RL

We introduce the training process of FTR in this section. During training, only the parameters of the
segment selector πh are updated, while those of the segmentation model, tracking model, and low-
level policy πl remain frozen. The training objective of the segment selector consists of two parts:
the first is a supervised learning objective based on a VLM (blue dashed line in Fig. 2); the second
is an RL objective based on environmental rewards (green dashed line in Fig. 2). Recalling the way
humans handle complex environments, as mentioned in Section 1, supervised learning can be seen
as leveraging prior knowledge, while RL resembles adjusting based on environmental feedback.

4.4.1 Supervised learning objective

We use the discrepancy between the VLM’s selection and the output of πh as the supervised loss.
Given segments oseg

t , an example image from the source domain, and output format, the VLM returns
yt = (y1t , y

2
t , · · · , ykt ), where yit ∈ {0, 1}, indicating whether each segment should be focused on.

(ot, o
seg
t ,yt) are added to DSL, the supervision dataset, for training. We provide more details about

VLM in Appendix A.5.

With the selection result of VLM, an intuitive way of training is to use the Binary Cross Entropy
(BCE) loss. However, we point out that the rigidity binarize of µt will degrade the subsequent RL
optimization. Instead, we use a "softer" margin-regularized loss function:

LSL(δ) = E (o,oseg,y)∼DSL

asel∼πh(·|o,oseg)

[
y ·max(0, 0.5 + δ − asel) + (1− y) ·max(0, asel − (0.5− δ))

]
, (3)

where δ is a predefined margin hyperparameter (δ = 0.1 by default). For positive samples (yi = 1),
the loss penalizes predictions aseli that fall below 0.5 + δ with linearly increasing loss. For negative
samples (yi = 0), it penalizes predictions exceeding 0.5− δ.

4.4.2 RL objective

Although the VLM exhibits impressive reasoning capabilities, its predictions can be unreliable in
certain scenarios, and its latency of several seconds is unacceptable for real-time control tasks. These
limitations motivate the integration of RL to refine the policy. Specifically, πh is optimized using
the PPO algorithm within a hierarchical framework. The state, action, and reward of πh are:

• State includes observation ot and segments oseg
t when πh is called on the selection pathway.

• Action is the selection vector asel
t sampled from N (µ⊤

t , σ
2
hI).

• Reward is the cumulative reward
∑t+Tsel−1
τ=t rτ between two consecutive invocations of

πh.

Based on the MDP formulation, we train the high-level policy πh with the PPO algorithm, and the
loss function LRL is defined in Eq. 1. The RL objective relies on a simple yet valid assumption:
the higher the accuracy of the segment selector, the greater the cumulative reward obtained by the
low-level policy, and vice versa.

4.4.3 Combination of the objectives

Both objectives involve trade-offs: supervised learning enables rapid convergence but is limited by
the VLM’s accuracy and latency, whereas RL can achieve better performance but may result in
slower training. The total loss function is defined as follows:

L = ηSLLSL + ηRLLRL, (4)

where the weights of LSL and LRL are ηSL and ηRL, respectively. To complement the two objectives,
we propose a dynamic adjustment mechanism of ηSL and ηRL. This strategy allows the training to
benefit from supervised learning for fast convergence in the early phase, while gradually shifting
towards reinforcement learning for fine-tuning in the later phase. Specifically, when t < T1, ηSL =
1, ηRL = 0. During T1 ≤ t < T2, ηSL decays linearly from 1 to 0 while ηRL rises from 0 to
1, mitigating gradient misalignment between objectives. Note that the VLM is called only when
t < T1 with its outputs added to DSL. When t > T2, ηSL = 0, ηRL = 1. By default, we set
T1 = 5000 and T2 = 10000, thereby restricting VLM calls to T1/Tsel = 250 times.
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5 Experiments

In this section, we present the experimental results of FTR on 11 tasks, including 8 tasks of Deep-
Mind Control Suite (DMC) [67] and 3 tasks of Franka Emika Robotics [68, 69]. DMC is a widely
used benchmark of visual RL, while Franka Emika Robotics can better reflect real-world training
scenarios. Finally, we conduct ablation studies to validate each module’s effectiveness.

5.1 Experimental setup

We use 8 tasks from DMC: pendulum-swingup (ps), cartpole-swingup (cs), finger-spin (fs), hopper-
stand (hs), hopper-hop (hh), cheetah-run (cr), walker-walk (ww), walker-run (wr), and 3 tasks for
robotic manipulation: franka-reach (fr), franka-push (fp), and franka-door (fd). These tasks are di-
verse and comprehensive, ranging from single objects to multiple objects and from easy locomotion
tasks to dexterous manipulation tasks.

Our research explores fast adaptation from source to target domains. The source domain corresponds
to environments with no background. Policies are trained using the DrQ-v2 algorithm. We perform
three independent runs and choose the policy with the best performance as the original policy πori.
To simulate real-world visual disturbances, we use five diverse videos from the DMC-Generalization
Benchmark [17], as shown in Fig. 3. These videos cover a range of indoor and outdoor scenes and
serve as the backgrounds of five target domains. We perform domain adaptation independently on
each target domain and report the average performance.

Figure 3: Source domain (leftmost) and five target domains of task franka-push.

We compare FTR with the following baseline methods:

• DrQ-v2 (clean) [66]. DrQ-v2 is a classic visual RL algorithm. It is also used as the default
method by FTR for training the original policy in the source domain. DrQ-v2 (clean) can
be regarded as the potential upper bound for FTR’s domain adaptation performance.

• SimGRL [13]. SimGRL achieves SOTA performance in visual generalization RL, demon-
strating effectiveness in test environments with video backgrounds.

• PAD [23]. PAD is a classical visual domain adaptation method in reinforcement learning,
and has shown effectiveness in adapting to target domains with simple backgrounds.

• Q2-learning [11]. Q2-learning is a representation learning-based method for performing
RL directly on complex visual inputs.

We also compare against FTR w/o SL and FTR w/o RL. FTR w/o SL refers to the variant of FTR
trained without supervised learning, relying solely on the RL objective. Conversely, FTR w/o RL
denotes the variant trained without RL.

FTR and the baseline methods can be categorized into four groups: classical visual RL method DrQ-
v2, generalization method that requires no interaction with target domains, adaptation methods that
involve limited interaction, and robust training method that is trained directly on the target domains.
Although we present the results of all methods in the same table, we clarify their differences:

• Classical visual RL method (DrQ-v2 (clean)): We perform three independent runs in the
source domain and report the best performance.

• Generalization method (SimGRL): Policies are trained in the source domain for 500k
steps across three runs. The trained policies are then evaluated in the five target domains.
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• Adaptation methods (FTR, PAD): We first conduct three training runs in the source do-
main and select the best-performing policy as the initial policy. This policy is then adapted
to each of the five target domains using three different seeds for 200k steps.

• Robust training method (Q2-learning): Policies are trained directly in each target domain
for 500k steps.

We report the mean and standard deviation of performance across the five target domains for all
methods except DrQ-v2 (clean).

5.2 Experiment results

Table 1 and Fig. 4 show the performance for FTR and baseline methods. Table 1 records the final
performance. The solid lines and shaded area in Fig. 4 correspond to the mean and variance. FTR
achieves the best performance on 10 out of 11 tasks.

Compared to baselines, FTR demonstrates clear advantages in both sample efficiency and perfor-
mance. In terms of sample efficiency, FTR leverages prior knowledge from the VLM to achieve
strong initial performance and improves rapidly using environmental feedback, achieving conver-
gence within 50k steps in most cases. Regarding final performance, FTR outperforms baselines on
all tasks except cartpole-swingup. On average across all tasks, FTR retains over 85% of the poten-
tial upper bound represented by DrQ-v2 (clean). On the most complex robotic manipulation tasks,
FTR shows considerable advantages over other methods. SimGRL, the SOTA visual generalization
RL method, performs decently on most tasks, but compared to FTR, it only holds an advantage on
the cartpole-swingup task, a task with sparse rewards and challenging object segmentation. This
suggests that even with strong augmentation during training, encountering unseen disturbances at
deployment can still lead to substantial performance degradation. Similarly, Q2-learning can obtain
a certain level of performance on most tasks. However, its performance remains inferior to FTR
except on cartpole-swingup. This indicates that traditional representation learning methods still
struggle to handle complex visual perturbations. Despite being a classic visual domain adaptation
RL method, PAD performs poorly on all 11 tasks. This indicates that existing adaptation methods
struggle with complex, near-real-world target domains with video background.

As an ablation study to evaluate the respective contributions of supervised learning and reinforce-
ment learning in FTR, we compare FTR with its two variants: FTR w/o SL and FTR w/o RL.
Comparing FTR and FTR w/o SL, we observe similar final performance; however, FTR converges
significantly faster. This suggests that the prior knowledge from VLM offers a well-informed ini-
tialization. On the cartpole-swingup task, the performance of FTR w/o SL exhibits a notable per-
formance drop. We speculate that this is due to the task’s reward being sensitive to state variations,
which causes excessive noise in the RL objective. Comparing FTR and FTR w/o RL, it can be ob-
served that incorporating RL consistently improves performance. This indicates that the supervisory
signal alone is insufficient, as errors from the VLM can lead to sub-optimal policies. Therefore, RL
is essential for achieving optimal domain-adaptive performance.

Table 1: Performance comparison of FTR and baselines (mean ± std). Note that we train and
evaluate DrQ-v2 in the clean source domain, and test all other methods in visually perturbed target
environments. For DrQ-v2 (clean), we report the best performance over three runs as the potential
upper bound for other methods.

Task DrQ-v2 (clean) PAD Q2-learning SimGRL FTR w/o RL FTR w/o SL FTR (ours)

ps 829.0 0.5± 0.4 436.6± 331.2 46.1± 49.8 708.1± 145.5 770.9± 85.4 786.7 ± 82.3
cs 829.3 79.3± 8.9 807.3 ± 84.1 578.6± 306.1 541.2± 187.2 373.7± 152.1 646.0± 168.5
fs 973.3 0.8± 0.7 695.8± 121.8 351.6± 273.8 718.0± 183.8 909.1 ± 62.3 903.9± 71.2
hs 888.9 2.2± 2.2 264.2± 125.8 746.9± 139.3 563.0± 209.3 813.7± 68.0 825.5 ± 83.6
hh 336.4 0.5± 0.7 91.7± 48.9 124.2± 20.3 231.1± 77.2 300.9± 17.1 307.3 ± 20.8
cr 516.0 6.8± 6.8 221.6± 49.8 221.4± 110.6 344.9± 124.7 427.3± 70.5 446.1 ± 65.0

ww 957.1 26.3± 10.5 325.3± 62.2 734.0± 41.6 558.6± 212.2 891.5± 41.3 899.7 ± 45.4
wr 415.4 25.8± 12.4 141.5± 17.9 312.1± 27.8 244.3± 94.3 359.2± 36.7 366.5 ± 37.8

fr 948.3 −1.1± 6.4 657.7± 220.0 10.3± 14.9 781.8± 161.9 873.3 ± 52.0 860.5± 70.6
fp 121.5 10.4± 11.6 19.0± 12.9 6.5± 4.2 64.2± 47.4 107.4 ± 15.1 96.8± 33.8
fd 156.8 0.3± 0.4 2.7± 4.9 91.5± 74.2 108.6± 37.2 122.7± 28.5 123.0 ± 34.9
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Figure 4: Training curves on DeepMind Control Suite (a-h) and Franka Emika Robotics (i-k). Note
that for the adaptation methods (FTR, PAD), we set the adaptation duration to 200k steps, and for
other methods, we train for 500k steps. FTR has converged by 100k steps across all tasks.

5.3 Further ablation studies

We conduct ablation studies on different selection intervals Tsel, SL-to-RL transition timesteps T1,
and supervised learning objectives LSL on the finger-spin task.

The results under different values of Tsel are in Fig. 5(a). When Tsel = 1 (using only the selection
pathway while disabling the tracking pathway), the RL process fails to converge, leading to poor
final performance. This highlights the critical role of the tracking pathway in FTR. As mentioned
in Section 4.2.2, the tracking pathway helps maintain consistency in segment selection, thereby
enhancing the stability in RL training. For Tsel ∈ {10, 20, 40}, performance exhibits minor variation.

In Fig. 5(b), the performance shows negligible differences between T1 = 1000 and T1 = 5000,
demonstrating the effectiveness of our method even with limited supervision from the VLM. When
T1 = 10000, a slight performance drop is observed, which may be attributed to overfitting to DSL.

As shown in Fig. 5(c), using BCE loss as the supervised learning objective leads to a significant
degradation in performance, especially during the transition from supervised learning to reinforce-
ment learning. This underscores the importance of the proposed margin-regularized loss in Eq. 3 for
ensuring a stable transition from supervised learning to reinforcement learning.
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Figure 5: Ablation studies on different selection intervals Tsel, SL-to-RL transition timesteps T1, and
supervised learning objectives LSL on the finger-spin task.
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6 Conclusion

In this work, we propose a novel Focus-Then-Reuse (FTR) framework to achieve rapid policy de-
ployment in real-world environments with background disturbances. The core of FTR lies in train-
ing a segment selector using both environmental rewards and VLM’s supervision to identify task-
relevant objects, while directly applying source domain policy on the filtered visual inputs. The
focus stage and the reuse stage are highly decoupled, meaning that FTR is compatible with a range
of generalization RL algorithms and has the potential to handle complex distribution shift. Fur-
thermore, we propose a novel object selection mechanism that combines segmentation model and
tracking model to improve object selection consistency and enhance the stability in RL training.
Experimental results on the DeepMind Control Suite and Franka Emika Robotics indicate that our
method effectively synthesizes prior knowledge from the VLM and environmental feedback, demon-
strating advantages over baseline methods in performance, efficiency, and interpretability.

For future work, we suggest three aspects worth improving and exploring. First, while FTR demon-
strates effective deployment in target domains with visual perturbation, it struggles in additional
disturbances such as camera pose variations. A potential solution involves incorporating visual
generalization RL approaches to enhance the robustness of the source domain policy. Second, the
fixed selection interval Tsel relies on manual configuration. Developing an adaptive scheduler for
Tsel could potentially enhance performance. Finally, the performance of FTR depends on the seg-
mentation and tracking model, suggesting the need for foundation models specifically tailored for
downstream RL tasks.
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Appendix

A Implementation Details

In this section, we describe the implementation details of our work.

A.1 FTR implementation

The source code is available at https://github.com/LAMDA-RL/FTR. The code is mod-
ified from DMC-Generalization Benchmark [17] and FTD [10]. The PPO algorithm used
in FTR is implemented based on https://iclr-blog-track.github.io/2022/03/25/
ppo-implementation-details/. The DrQ-v2 algorithm is implemented based on https://
github.com/facebookresearch/drqv2. For details on hyperparameters and network architec-
ture, please refer to the "Hyperparameters" section and the "Network Architecture" section. Algo-
rithm for FTR is shown in Algorithm 1. Most experiments are conducted on a server outfitted with
2 AMD EPYC 7542 32-Core Processor CPUs, 504GB of RAM, and 8 GPUs, each with a perfor-
mance of over 35 TFLOPS, running Ubuntu 22.04. Training in the source domain using the DrQ-v2
algorithm for 500k steps takes about 1 day. Adapting in the target domain for 200k steps takes about
8 hours.

Algorithm 1 Focus-Then-Reuse

1: Initialize: segmentation model, tracking model, VLM, segment selector πh, original policy
trained in clean environment πori, replay buffer DRL, VLM supervision dataset DSL

2: for t = 1 to N do
3: if t%Tsel == 0 then
4: use the segmentation model to generate oseg

t from ot
5: generate high-level action asel

t = πh(ot, o
seg
t )

6: select osel
t according to asel

t
7: initialize the tracking model with osel

t and ot
8: if t < T1 then
9: gain VLM’s supervision information yt

10: add ⟨ot, oseg
t ,yt⟩ to DSL

11: end if
12: add ⟨

{
ot−Tsel , o

seg
t−Tsel

}
,
{
ot, o

seg
t

}
, asel
t−Tsel

,
∑t−1
τ=t−Tsel

rτ ⟩ to DRL
13: else
14: use the tracking model to recognize osel

t from ot
15: end if
16: input (osel

t−2, o
sel
t−1, o

sel
t ) into πori to obtain at

17: take action at in the environment to receive the next observation ot+1 and reward rt
18: sample a batch BSL from DSL and calculate LSL according to Eq. 3
19: sample a batch BRL from DRL and calculate LRL according to Eq. 1
20: calculate L according to Eq. 4 and update πh
21: update ηSL and ηRL
22: end for

Segment Anything Model 2 (SAM 2) serves as the default segmentation model and tracking model
in FTR. The official implementation of SAM 2 only supports offline video object tracking, not live
streaming video. Therefore, we utilize the implementation from https://github.com/Gy920/
segment-anything-2-real-time, which makes SAM 2 possible for real-time video applica-
tions. To improve training speed and memory efficiency, we align with FTD’s preprocessing [10] to
heuristically filter the segmentation model’s outputs into k = 9 instances.

The default VLM used in FTR is Qwen-VL-Max [33]. For more details, please refer to the "VLM
Details" section.
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A.2 Baseline implementation

SimGRL and PAD are implemented following the open-source code, Table 2 includes the links of
them. Q2-learning is implemented according to the original paper, and is included in our code.

Table 2: Links to the open-source code of baseline methods.
Method Open-Source URL
SimGRL https://github.com/W-Song11/SimGRL-Code
PAD https://github.com/nicklashansen/dmcontrol-generalization-benchmark

A.3 Hyperparameters

Table 3 shows the hyperparameters for reproducing the experiments.

Table 3: Hyperparameters.
Hyperparameters of environments

frame size 168× 168 (franka-push, franka-door), 84× 84 (otherwise)
frame stack 3
episode length 200 (franka-push, franka-door), 1000 (otherwise)
action repeat 2 (finger-spin, pendulum-swingup), 4 (otherwise)

Hyperparameters of DrQ-v2
train steps 5× 105

replay buffer size 1× 105

exploration steps 1× 104

n-step returns 3
batch size 256
optimizer Adam
actor & critic learning rate 1× 10−4

discount factor 0.99
critic Q-function soft-update rate τ 0.01
exploration stddev. clip 0.3
exploration stddev. schedule linear(1.0,0.1,100000)

Hyperparameters of focus stage
SAM 2 checkpoint sam2_hiera_tiny
adapt steps 2× 105

number of segments k 9
selection interval Tsel 20
SL-to-RL transition timestep T1 5000
transition end timestep T2 10000
policy stddev. σh 0.1
optimizer Adam
batch size 128
learning rate 3× 10−4

clip ratio of PPO 0.2
discount factor 0.5
GAE lambda 0.95
LSL objective margin δ 0.1

A.4 Network architecture

Below are the network architectures of the main components of FTR. Here, MLP(n) denotes a
fully-connected layer with output size of n; LayerNorm() denotes applying layer normalization;
Conv2D(c, k, s, p) denotes a 2D convolution layer of output channel c, kernel size k, stride
s, and padding p; Maxpool2D(k, s) denotes a 2D max-pooling layer of kernel size k and stride
s; Flatten() denotes a flatten layer; ReLU() denotes a rectified linear unit; Tanh() denotes a
hyperbolic tangent function; {· · · } × k denotes repeating the layers within brace for k times.
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A.4.1 Network architecture of the original policy

The original policy πori is trained in the clean environment without visual perturbation using the
DrQ-v2 algorithm. The actor and critic share the same image encoder.

Encoder:

Conv2D(32, 3, 2, 0) => ReLU() => {Conv2D(32, 3, 1, 0) => ReLU()}×3 =>
Flatten()

Actor:

MLP(50) => LayerNorm() => Tanh() => {MLP(1024) => ReLU()}×2 =>
MLP(action_dim)

Critic:

MLP(50) => LayerNorm() => Tanh() => {MLP(1024) => ReLU()}×2 => MLP(1)

A.4.2 Network architecture of the segment selector

The segment selector (high-level policy πh) is trained with the PPO algorithm. The actor πh and
value function V share the same embedding module ϕ.

Embedding module ϕ:

Conv2D(32,3,2,1) => {ReLU() => Conv2D(32,3,1,1) => Maxpool2D(2,2)}×4 =>
Flatten() => MLP(128)

Actor πh:

πh adopts an attention-like mechanism to capture the relationship between oseg
t and ot. First, the

inputs are transformed into latent representation ϕ(ot) ∈ R1×D and ϕ(oseg
t ) ∈ Rk×D through an

embedding module ϕ, where D is the dimension of the latent space. Next, ϕ(ot) undergoes linear
projection to generate query vector qt ∈ R1×D, while ϕ(oseg

t ) are mapped to key vectors kt ∈ Rk×D.
Scaled dot-product scores are computed between qt and kt:

scoret =
qtk

⊤
t√
D

∈ R1×k. (5)

Linear projection W k
i and W q

i , (i = 1, 2, 3, 4): MLP(128)

The scores can be interpreted as the relevance of k segments to the task, where a higher value
indicates stronger task relevance of the corresponding segments. Then, a sigmoid function is used
to generate the probability of sampling each segment:

µt = (µ1
t , µ

2
t , · · · , µkt ) = Sigmoid(scoret) ∈ (0, 1)k. (6)

Value V :

V adopts an attention mechanism. Given latent representation ϕ(ot) and ϕ(oseg
t ) through the embed-

ding module ϕ, ϕ(ot) undergoes linear projection to generate query vector, while ϕ(oseg
t ) are mapped

to key vectors and value vectors.

Linear projection W k
i and W q

i , (i = 1, 2, 3, 4), W v: MLP(128)

The outputs of the attention mechanism are fed into a value head to get the value of current state.

Value head: MLP(1)

A.5 VLM details

We use Qwen-VL-Max [33] by default. Given segments oseg
t and prompt, the VLM returns yt =

(y1t , y
2
t , · · · , ykt ), yit ∈ {0, 1}, indicating whether each segment should be focused on. The prompt

template is shown in Fig. 6, including an example image from source domain, segments oseg
t and

output format. The example images for each task used in the prompt are shown in Fig. 7. The total
cost of API calls is below $100 for our experiment. The average response time for API calls is
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approximately 7 seconds. The number of VLM calls for a single run in our experiment is T1/Tsel =
5000/20 = 250.

Task: Determine if the object in each of the candidate 
images 1-9 is part of the *articulated* object(s) in the 
target image. Note that the articulated object may be in 
*different poses* or joint configurations across images. 
Output the results in JSON format.

Target Image: [Image Placeholder]
Candidate Image 1: [Image Placeholder]
Candidate Image 2: [Image Placeholder]
Candidate Image 3: [Image Placeholder]
Candidate Image 4: [Image Placeholder]
Candidate Image 5: [Image Placeholder]
Candidate Image 6: [Image Placeholder]
Candidate Image 7: [Image Placeholder]
Candidate Image 8: [Image Placeholder]
Candidate Image 9: [Image Placeholder]

Please return the results in JSON format as an array of 
objects. **The order of objects in the array must 
correspond to the order of candidate images provided 
(from 1 to 9).** Each object should contain the following 
fields:
- "image_id": Candidate image number (1-9)
- - "is_same_object": Boolean value (true if same object, 

false if different)

JSON Output Template:
```json[  
{ "image_id": "1", "is_same_object": boolean },  
{ "image_id": "2", "is_same_object": boolean },  
{ "image_id": "3", "is_same_object": boolean }, 
 { "image_id": "4", "is_same_object": boolean },  
{ "image_id": "5", "is_same_object": boolean },  
{ "image_id": "6", "is_same_object": boolean },  
{ "image_id": "7", "is_same_object": boolean },  
{ "image_id": "8", "is_same_object": boolean },  
{ "image_id": "9", "is_same_object": boolean }]```

Figure 6: VLM prompt template.

(a) pendulum-swingup (b) cartpole-swingup (c) finger-spin (d) hopper-stand

(e) hopper-hop (f) cheetah-run (g) walker-walk (h) walker-run

(i) franka-reach (j) franka-push (k) franka-door

Figure 7: Source domain of the DeepMind Control Suite (a-h) and Franka Emika Robotics (i-k)
tasks.
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B Additional Experimental Results

B.1 Further ablation studies

We conduct ablation studies on different selection intervals Tsel, SL-to-RL transition timesteps T1,
and supervised learning objectives LSL on the finger-spin task. Results are shown in Table 4, Table 5,
Table 6, and Fig. 5.

Table 4: Ablation on Tsel on the finger-spin task.
Tsel Performance (mean ± std)
1 249.6± 244.0

10 915.7± 55.9
20 903.9± 71.2
40 928.9± 47.8

Table 5: Ablation on T1 on the finger-spin task.
T1 Performance (mean ± std)

1000 922.5± 44.4
5000 903.9± 71.2

10000 802.8± 229.5

Table 6: Ablation on LSL on the finger-spin task.
LSL Performance (mean ± std)

The proposed loss in Eq. 3 903.9± 71.2
Binary Cross Entropy (BCE) loss 510.4± 337.8

B.2 Performance of the baselines in the clean environments

Table 7 shows the results of the baselines in the clean environment. The experiments are conducted
with three random seeds. PAD and SimGRL perform well on most tasks, while Q2-learning performs
decently except in franka-push and franka-door.

Table 7: Performance of the baselines in the clean environments (mean ± std).
Task PAD Q2-learning SimGRL

pendulum-swingup 665.0± 437.7 912.0± 32.0 910.0± 6.0
cartpole-swingup 859.6± 14.5 874.2± 0.7 862.8± 7.2

finger-spin 908.5± 18.5 653.2± 262.9 979.5± 6.4
hopper-stand 814.7± 25.6 845.0± 18.3 866.2± 5.8
hopper-hop 114.6± 5.3 170.7± 14.0 150.9± 5.2
cheetah-run 343.2± 36.8 385.5± 13.3 318.8± 4.6
walker-walk 915.4± 20.4 616.9± 43.9 879.1± 43.9
walker-run 318.3± 7.3 251.2± 37.3 349.4± 11.3

franka-reach 942.7± 3.3 884.2± 44.6 932.7± 22.4
franka-push 102.8± 2.1 54.8± 5.6 95.3± 11.2
franka-door 152.4± 4.3 20.4± 0.3 163.3± 0.8

B.3 VLM accuracy

We calculate the accuracy of Qwen-VL-Max across different tasks in Table 8. The VLM’s judg-
ment is considered accurate when it selects task-related segments and refrains from selecting task-
irrelevant ones.
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Table 8: Accuracy of Qwen-VL-Max.
Task Accuracy (%)

pendulum-swingup 97.84
cartpole-swingup 88.67

finger-spin 86.40
hopper-stand 94.23
hopper-hop 94.33
cheetah-run 96.32
walker-walk 89.77
walker-run 89.11

franka-reach 89.04
franka-push 85.52
franka-door 91.41

B.4 Relationship between segment selection accuracy and reward

We conduct supplementary experiments on the franka-reach task to validate the relationship between
segment selection accuracy and cumulative reward in an episode over five random seeds in Table 9.
The results in the table demonstrate a clear correlation: When the segment selector accurately fo-
cuses on task-relevant objects, πl achieves the highest rewards. Conversely, incorrect selection leads
to substantially lower rewards.

Table 9: Relationship between segment selection accuracy and performance (mean ± std).
segment selection Performance (mean ± std)

Only task-relevant objects 892.4± 22.9
Task-relevant objects + 1 irrelevant object 570.9± 223.1
Task-relevant objects + 2 irrelevant objects 495.3± 259.3

All objects 234.4± 282.9
All task-irrelevant objects 9.6± 17.2

B.5 Experiments on more distractions

B.5.1 Task-similar objects

To verify FTR’s ability to handle task-similar objects in the target domain that could easily be
misidentified, we introduce two scenarios: another cube in the background and another uncontrolled
robotic arm in the background. We conduct experiments on the franka-reach task over three ran-
dom seeds. The results, shown in Table 10, indicate that even with such objects in the background,
FTR can still filter out task-relevant objects using environmental reward, thereby maintaining high
performance.

Table 10: Performance of FTR on the franka-reach task in face of distracting objects (mean ± std).
Another cube Another uncontrolled robotic arm
913.0± 18.5 871.8± 38.6

B.5.2 Illumination variation

We evaluate FTR’s illumination generalization on the franka-reach task over three random seeds. To
enhance the adapted policy’s performance, as discussed in the conclusion of our paper, we introduce
illumination perturbation during low-level policy πl training to enhance robustness. The results are
in Table 11.

Row 1 shows performance without illumination-robust training, while Row 2 demonstrates FTR’s
adaptation under both illumination and background perturbations, maintaining the performance of
πl despite illumination sensitivity. We introduce varying directions of illumination perturbations
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during the training of πl in the source domain to enhance its robustness. As presented in Row 3,
πl’s performance improved significantly. Row 4 shows FTR’s adaptation performance under both
illumination and background perturbations, demonstrates that FTR consistently maintained the
performance of πl. Furthermore, benefiting from the enhanced robustness of πl, the performance
showed a notable improvement compared to Row 2.

Table 11: Performance of FTR in face of illumination variation (mean ± std).
With background

perturbation?
πl robust to

illumination variation?
With FTR

adaptation? Performance (mean ± std)

no no no 659.3± 52.5
yes no yes 599.1± 62.1
no yes no 952.3± 4.1
yes yes yes 929.5± 11.6

B.6 Fine-tuning πl after adaptation

When πl lacks robustness or is deployed in an unforeseen perturbed environment, we show fine-
tuning πl after adaptation (while fixing the selector) can further improve performance.

To demonstrate this, we conduct experiments on the franka-reach task over three random seeds and
introduce two types of target domain perturbations: a 15◦ rotation of the camera around the z-axis
and a 15◦ horizontal inclination of the robot arm’s base. After training the selector for 200k steps,
we fix its parameters and unfreeze πl’s parameters to fine-tune πl for 50k steps using environmental
reward. The results are in Table 12. The adapted FTR performance initially degrades. Nevertheless,
after the 50k-step fine-tuning, the performance recovers to a commendable level.

Table 12: Performance after adaptation and fine-tuning πl (mean ± std).
After FTR adaptation After fine-tuing πl

Camera rotation 733.3± 15.7 904.6± 8.7
Base inclination 716.2± 51.0 906.0± 13.7

We posit that the reason for the effectiveness of the "adapt + fine-tune" process and the performance
maintenance with non-robust πl is the same: The selector’s RL training does not impose stringent
requirements on the optimality of πl. The selector can be guided towards correct learning as long as
πl satisfies a key condition: the reward for a correctly chosen action by the selector is greater than
that for an incorrectly chosen one. As shown in the experiment of Appendix B.4, this condition can
be easily satisfied. Once the selector learns the correct selection patterns, fine-tuning πl based on
the filtered images becomes highly efficient.

C Visualization

We visualize ot, osel
t , oseg

t , and the selection result of oseg
t across all tasks (Figs. 8 to 18).

We show images from t = 0 to t = 36, sampled every 4 time steps. Recall that we set selection
interval Tsel = 20. When t = 0 and t = 20, the selection pathway is called; otherwise, the tracking
pathway is used. In the selection pathway, we displays the segments oseg

t , t ∈ {0, 20}, and their
selection probabilities. Here, a segment is selected if its probability > 0.5. The selected segments
are then integrated to form osel

t , t ∈ {0, 20}, representing the union of focused objects. Whenever we
obtain the selected objects osel

t , t ∈ {0, 20} in the selection pathway, we simultaneously record them
in the tracking model. In the tracking pathway, the tracking model recognizes the selected objects
osel
t using observation ot.
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Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 8: Visualization of pendulum-swingup.

Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 9: Visualization of cartpole-swingup.

Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 10: Visualization of finger-spin.
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Figure 11: Visualization of hopper-stand.

Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 12: Visualization of hopper-hop.

Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 13: Visualization of cheetah-run.
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Figure 14: Visualization of walker-walk.
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Figure 15: Visualization of walker-run.

Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 16: Visualization of franka-reach.
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Figure 17: Visualization of franka-push.

Tracking Pathway

Selection PathwaySelection Pathway

Tracking Pathway

Figure 18: Visualization of franka-door.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction include the claims made in the paper, which
accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the possible limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the implementation details in Section 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code is available at https://github.com/LAMDA-RL/FTR.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the experimental setting in Section 5 and Appendix A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results and accompanied by error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I have read and followed the ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators or original owners of assets used in the paper, are properly credited
in Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: The paper use the Vision-Language Model for the component of the method.
Details are provided in Section 4 and Appendix A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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