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ABSTRACT

This paper develops, for the first time, a novel method using relative-distance
variance to regularize deep metric learning (DML), overcoming the drawbacks of
existing pair-distance-based metrics, notably loss functions. Being a fundamental
field in machine learning research, DML has been widely studied with the goal
of learning a feature space where dissimilar data samples are further apart than
similar ones. A typical approach of DML is to optimize the feature space by
maximizing the relative distances between negative and positive pairs. Despite the
rapid advancement, the pair-distance-based approach suffers from a few drawbacks
that it heavily relies on the appropriate selection of margin to determine decision
boundaries, and it depends on the effective selection of informative pairs, and
resulting in low generalization across tasks. To address these issues, this paper
explores the use of relative-distance variance and investigates its impact on DML
through both empirical and theoretical studies. Based upon such investigation, we
propose a novel Relative Distance Variance Constraint (RDVC) loss by regular-
izing the representation or embedding function learning. The proposed RDVC
loss can seamlessly integrate with various pair-distance-based loss functions to
ensure a robust and effective performance. Substantial experimental results have
demonstrated the effectiveness of our proposed RDVC loss on both within-domain
and cross-domain retrieval tasks. In particular, the RDVC loss is also shown useful
in fine-grained zero-shot sketch-based image retrieval, a challenging task, revealing
its general applicability to cross-domain and zero-shot learning.

’
J A 2 d A d A > d A
n y n ° n ’ n {
s \ y \ o
L e (] { ] / ®
’
9, \ 4 .
/. 7 o 7 \ \.
}Z’ ® L v ’ [ ] ]
\. \
Ideal Decision Boundary Learned Decision Boundar{ Auxiliary Decision Boundary Learned Decision Boundary
> > > >

(a) d, o % (c) p @ %

Figure 1: Concept illustration. Distance-based Metrics (left): Optimizing positive and negative pairs
to (a) an ideal decision boundary of d,, — d, = m, but potentially result in (b) a distorted decision
boundary. Our idea (right): By regularizing the variance of relative distances, it provides (c) an
auxiliary decision boundary of d,, — d,, = u (where p represents the mean relative distance for all
pairs) to guide the optimization, achieving (d) the desired decision boundary.

1 INTRODUCTION

Deep Metric Learning (DML) represents one of the most influential fields in modern computer vision
and machine learning research, receiving increasing attention as a result of the advancements in deep
neural networks in recent years. DML has demonstrated remarkable performance in a variety of
visual tasks, such as image recognition and retrieval. In the pursuit of learning a feature space that
brings similar data samples closer while dissimilar ones further apart, researchers have introduced
a range of metrics, i.e., loss functions. These losses typically utilize positive pair’s distances d,,
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and negative pair’s distances d,, to optimize the learned feature space by maximizing the relative
distance (d,, — d,,), where a fixed hyperparameter margin m defines the desired gap between positive
and negative samples. Examples of these loss functions include triplet loss (Hotfer & Ailon, [2015),
contrastive loss (Hadsell et al.l 2006), semi-hard triplet (SHT) loss (Schroff et al.| 2015a)), angular
loss (Wang et al.,2017), hierarchical triplet loss (Ge}, 2018)), lifted structure loss (Oh Song et al., 2016),
tuplet margin loss (Yu & Tao, [2019), ranked-list loss (Wang et al., |2019a)) and multi-similarity (MS)
loss (Wang et al.,[2019b). By optimizing (d,, — dj,), these methods aim to achieve a desired decision
boundary d,, — d,, = m (represented by the red dashed line in Fig. a)). Nevertheless, because the
actual relative distances between pairs may vary significantly due to different selected samples, it is
challenging to reach the desired decision boundary (see Fig.[I{b)) by reducing relative distance by a
fixed margin m (represented by the green arrows of the same length in Fig.[T(a)). Some sampling
methods were proposed to select more informative pairs (i.e. pairs are more representative of the
embedding feature space) for training. For example, Schroff et al.| (2015a) proposed a semi-hard
mining method to select semi-hard samples while |Ge|(2018) built a hierarchical tree of all classes
to collect hard negative pairs. Some other methods such as lifted structure loss, N-pair loss and
MS-loss focus on assigning different weights for pairs based on their information. Nevertheless,
selecting informative pairs is challenging, especially with large datasets, and large variation in relative
distances can further complicate the optimization process.

In this paper, we investigate the use of relative-distance variances to address the above issues. To
this end, we first examine the relationship between DML performance and the learned distribution of
relative distances across different methods through an empirical study. Building upon the empirical
study, we then propose a novel Relative Distance Variance Constraint (RDVC) loss to regularize the
variance of relative distances across all pairs in the dataset. By adding an additional constraint to
the optimization process, we introduce an auxiliary decision boundary of d,, — d,, = p (indicated
by the orange dashed line in Fig.[I]c)), where 1 represents the mean relative distance of all pairs.
Consequently, the RDVC loss facilitates the optimization of pairs toward the desired decision
boundary, as illustrated in Fig.[I](d). Moreover, the auxiliary decision boundary introduced by the
RDVC loss at d,, — d,, = p can reduce the reliance on selected margin m. If the chosen margin is far
from the optimal value, the RDVC loss can guide the optimization toward d,, — d,, = m, enabling the
identification of a desired decision boundary between d,, — d,, = m and d,, — d, = p. Furthermore,
the RDVC loss makes the relative distance distribution more uniform by intentionally minimizing
the variance of resulting distribution, increasing the possibility for selecting informative paris in the
learning process. Hence, our main contribution is three-fold:

* We present a first-of-its-kind investigation, both empirical and theoretical, on the relative-
distance variance and its impact on DML.

* Based upon such investigation, we introduce a novel loss function, LEDVC  which can
seamlessly integrate with various pair-distance based loss functions to ensure robust and
effective representation learning.

» Substantial experiments have been conducted to demonstrate the effectiveness of our
proposed £LPVC on both within-domain and cross-domain tasks, using three datasets:
CUB200-2011, Cars196, and Sketchy. Particularly, our proposed £*PVC exhibits a generic
nature, enabling its application in the realm of fine-grained sketch-based image retrieval
(FG-ZS-SBIR), which still represents a major challenge.

2 RELATED WORK

2.1 DISTANCE OPTIMIZATION AND REGULARIZATION

Being a rapid growing field of study in image retrieval research, deep metric learning (DML) focuses
on learning an embedding space where similar samples are put closer together, while dissimilar
samples are widely spaced. Research in this field can be broadly categorized into two groups, namely
distance optimization and regularization.

Distance optimization loss functions aim to directly refine the relationships between sample pairs,
triplets, or higher-order tuples, within the embedding space. The main objective is to minimize the
distance between similar samples while maximizing the distance between dissimilar ones, typically
using Euclidean, Mahalanobis or angular distances. For instance, the triplet loss (Schroff et al.,
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2015a; Wu et al.| 2017 [Hotfer & Ailon, 2015) leverages anchor, positive, and negative samples to
learn discriminative embedding space, whereby the anchor is closer to the positive sample than to
the negative one. Different from triplet loss, contrastive loss (Hadsell et al., [2006; |Chopra et al.,
2005) operates on sample pairs, minimizing the distance between similar pairs, while penalizing
dissimilar pairs within a specified range. To capture more complex relationships, higher-order
variants (Chen et al., 2017) of these loss functions, such as binomial deviance loss (Y1 et al.,[2014),
lifted structure loss (Oh Song et al.l [2016), and multi-similarity loss (Wang et al.| [2019b), have
been developed. However, these methods, mainly optimizing pair-based distances, often suffer from
slow convergence due to the quadratic increase in the number of sample pairs. To address this issue,
proxy-based methods (Movshovitz-Attias et al.,[2017; |Aziere & Todorovic, [2019; [Teh et al.| 2020
Kim et al.l 2020) have been introduced. They utilize class-level labels and learnable proxies as
class centroids so as to streamline the optimization process and reduce computational complexity.
Building on these pair-wise and class-level approaches, circle loss (Sun et al., 2020) combines the
optimization of positive and negative pairs through dynamic weighting based on similarity, offering
a unified paradigm. Nevertheless, these methods primarily rely on sample-level relative distances
for informative sample utilization, requiring the careful selection of margin. Instead, we develop
a simple, yet effective, loss losses to mitigate this problem and improve the performance of metric
learning when combined with other existing losses.

Regularization loss functions aim to enhance the model’s generalization capability by incorporating
additional constraints during the learning process. While they might not directly optimize the distances
between samples, they influence the learning process through regularization terms which promote a
structured embedding space within this context. Zhang et al.|(2020) proposed the spherical embedding
constraint (SEC), which adaptively adjusts the embedding norms to lie on the same hypersphere,
achieving more balanced directional updates and improved optimization stability. [Roth et al.| (2019),
on the other hand, introduced mining interclass characteristics (MIC) to focus on interclass attributes,
encouraging the model to learn more robust and discriminative feature representations. Roth et al.
(2022) proposed non-isotropy regularization to enhance the robustness and generalization capability
of the learned embeddings. Nevertheless, none of the above consider constraining the feature
distribution from the relative distance point of view, which can eliminate the interference from the
relative distance variability. To address the aforementioned issue and by analysing the gradient of
loss function, we develop a novel RDVC loss function to regularize the relative distance.

2.2  WITHIN-DOMAIN AND CROSS-DOMAIN IMAGE RETRIEVAL

Fine-grained image retrieval The deep metric loss functions mentioned above are widely used in
fine-grained image retrieval Schroff et al.| (2015a); [D’Innocente et al.| (2021); Zhao et al.| (2022).
Compared to within-domain image retrieval, cross-domain image retrieval task is more challenging
because input images are from different domains, such as photos and sketches. When applying
the above loss functions to cross-domain retrieval task, particularly in zero-shot settings, these loss
functions struggle to learn generalized features that effectively bridge the gap between different
domains as well as between seen and unseen data.

Fine-grained zero-shot sketch based image retrieval (FG-ZS-SBIR), involving zero-shot learning,
deep metric learning, fine-grained retrieval as well as cross-domain adaption, is an extremely chal-
lenging task. Most of the existing methods developed from one of the above areas. |Yu et al.| (2016)
first addressed this problem of fine-grained instance-level SBIR by constructing a shoe-and-chair
dataset and using freehand sketches. In[Sangkloy et al.| (2016), a large dataset ‘Sketchy’ was provided
as a benchmark for the research of FG-ZS-SBIR. To reduce the domain gap between sketch and
photo, |Shankar et al.| (2018)) leveraged multi-domain training data to train a classifier capable of
generalizing across different domains while Pang et al.| (2019) exploited an unsupervised learning
approach to model a universal dictionary of prototypical sketches. Recently, with the development
of large image models, such as DINO (Caron et al.| 2021)), CLIP (Radford et al., 2021)), researchers
improved the feature generalization for FG-ZS-SBIR using these large models. For example, [Sain
et al.[(2023b) adopted the availability of unlabeled photo data to train a FG-ZS-SBIR model by
means of semi-supervised method. Moreover, Sain et al.| (2023a)) and [Lyou et al.| (2024) adopted
CLIP, a language-image pre-trained model, to use text semantic space to guide the learning of a
highly versatile embedding space for FG-ZS-SBIR. To learn modality-specific features to distinguish
between a sketch and a photo, |Sain et al.| (2023a) exploited prompt learning approach while Lyou et al.
(2024) incorporated the modality encoder. Our method proposed in this paper, however, requires no



Under review as a conference paper at ICLR 2025

Triplet (f1=23.39) Semi-Hard Triplet (f1=40.30) N-pair (f1=40.23) Multi-similarity (f1=40.70)

S ] 3 2 30 1 3 3 &0 EEE NN R R

(a) Distribution of Relative Distances

,,,,,,,,,,,,,

Probailty

(c) DML performance of NMI and f1
with the corresponding loss functions

(b) Distribution of Mini-Batch Relative-Distance Variances

Figure 2: Empirical study results. (a) We train four baseline models using different loss functions
and examine the resulting distribution of relative distances for the testing set of CUB200-2011
dataset (Wah et al.}2011). As shown, the model learned by the triplet loss shows a distinctly larger
variance than the other 3, this also being reflected in the relevant DML performance measures (e.g., f1
score 1). (b) We further estimate the mini-batch variance for different losses, the resulting expected
values being indicated by red lines. This suggests that the DML performance can be improved by
minimizing the mini-batch variance (e.g., below 0.2). (c) DML performance of different losses —
symbol size represents the variance value.

additional training data nor a teacher model, in fact it does not even require changing the architecture
of the model (i.e., parameter-free), thereby facilitating flexible integration with components from
other studies.

3 METHOD

3.1 EMPIRICAL INVESTIGATION OF RELATIVE DISTANCE DISTRIBUTION.

We examine the relative-distance distributions learned by four models with triplet loss, semi-hard
triplet (SHT) loss, pairwise loss, and MS-loss, respectively. These loss functions together represent
nearly all existing strategies of improving DML performance with pair labels. Assume an anchor
sample = has K positive samples {x; K | of the same category and L negative samples {7, JL:1
from other categories. The positive and negative distances are denoted as {d; K| and {d}, JL:P
respectively. We train four baseline models with the four losses, which their definitions are given
below.

Triplet loss aims to force distance between the anchor sample x and a negative sample x) to be
larger than that of a randomly selected positive one x;, over a given margin m:

Lovs = i — dJ +m], (1

Semi-Hard Triplet (SHT) loss focuses on selecting triplets where the negative sample ¥, is far
from the anchor than the positive sample z;,:

Lspr =d, —dl, +m]y ¥V {d,,d} st d,<d),<d,+m )

N-pair loss utilizes multiple negative samples for each positive pair as follows:
el—dy

1—di L 1—d?
e Pt Zj:l e

»CNP = —log (3)

MS-loss leverages not only multiple negative samples but also multiple positive samples for
each anchor sample, and assign different weights to pairs based on the relative distances between
positive and negative pairs. Additionally, a pair mining strategy is introduced to select informative
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positive and negative pairs, drawing inspiration from the Large Margin Nearest Neighbor (LMNN)
approach (Weinberger et al., 2005). MS-loss is defined as:

K L
1 i 1 j
Lys=—log |1+ E e~=dp=m) ) 4 Zlog | 1+ E efl=dn—m)
@ i=1 B j=1 @

V(d,d) st 1—d, >min{l —d, K —¢ and 1-— & < maz{l — dﬂ;}le +e

where € is a given hyperparameter for LMNN selection.

Result Analysis. The results of the empirical study are shown in Fig.[2] where the details of the
study are provided in the figure caption. We calculate their distances with cosine similarity, and then
the relative distances between positive and negative pairs for each anchor sample in the test set of
CUB200-2011 dataset (Wah et al., 2011). The relative distance distribution of these losses are shown
in Fig. 2J@). Since models are optimized per mini-batch, we also calculate the variance of mini-batch
relative distances and visualize their distributions across mini-batches in Fig. 2[b). As shown, it
is evident that the triplet loss exhibits a significantly larger variance compared to the others (i.e.,
semi-hard triplet (SHT), N-pair and MS losses). Surprisingly, although the motivation and internal
design of SHT and N-pair losses are very different (Eqs. (2) and (3))), the distributions of their learned
relative distance exhibit significant similarities, as shown in Fig. 2b). Furthermore, these observed
patterns are also present in response to the batch-wise estimator distribution. Last but not least, the
variances exhibit a negative correlation with the performance measures of DML, namely the f1 and
Normalized Mutual Information (NMI) scores in this case (Fig. @kc)).

3.2 RDVC L0SS AND THEORETICAL GRADIENT ANALYSIS

Assume a mini-batch with NV pairs of training images {(x}l, zhiyh), (22, 2y?), . (N 2Dy ™))

where each pair of anchor and positive samples < z*, x;, > associates with a distinct category y".

Then, a triplet can be represented as < 2%, 2%, 27 >. The relative distance for each triplet is obtained
as follows:

p’
D; = dy, — dy, = d(f,, f,) — d(f5. f1) ®)
where f:, f. are the features of anchor sample 2’ and positive sample x/,, respectively. f,, is the

feature of a negative sample that can be sampled from z7?. d(-) is the distance function (e.g., L2 or
cosine distance). We propose a new loss, named relative distance variance constraint (RDVC ) loss,
to regularize the resulting relative-distance distribution by minimising its variance as follows

N N
. 1 1
RDVC _ ' _ o ha)2 (o — )
L =0%(D) = N1 7221(731 fp)* where fip = N ;:1 D; 6)
The total loss is obtained by combining the triplet loss with its associated RDVC loss as follows:
ﬁtotal — )\1 ERDVC’ + Etri (7)

Hereafter, we conduct a theoretical gradient analysis by deriving RDVC (left component of Eq. (7))
w.r.t. D; as follows:
Yl B 2
= D —fip)? = ——(D; — [i 8

j=1

. oD; . . 0D; . Ofip _ 1
Since 55" = 0fori # j, 5D, = 1for¢ =75, and D = N

The gradient of the triplet loss £ (right component of Eq. ) is as follows:

6£tm‘ _
oD;  OD;

1, ifD; > -«
0, otherwise

max(D; + «a,0) = { )
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From Eq. (9), it can be seen that for an easy
triplet (i.e., when D; < —a), the gradient is
consistently 0. Otherwise, for a hard triplet (i.e.
when D; > —a), the gradient remains constant
with a value of 1, regardless the variance (o (D))
within the mini-batch. This could lead to an
error as a more difficult triplet should receive
a higher gradient compared to a less difficult
one. Such gradient discrepancies can hinder the
learning process. Nevertheless, by taking into  Figure 3: (a) relative-distance distribution of £/,
account Eq. (8)), this error can be avoided, since  (b) resulting distribution with combined gradient
it proposes that if a more difficult triplet deviates effect of RDVC and triplet losses.

from the mean value within a mini-batch, the

gradient of £LFPVC is added to facilitate the

optimization of £, Fig. illustrates our learning process, with the lengths of the red and black
solid arrows indicating the norm of the gradients for L#PVC and L£!"?, respectively, in (a). When
considering the various distances represented by D; and D;, the gradient magnitudes of LFPVC

differ from those of £!"*. As a consequence, the resulting distribution becomes more uniform
(Fig.[3[b)), leading to enhanced model generalization. Note that for the most difficult triplet, our
RDVC loss will create the greatest acceleration > (max({D}X.,}) — fip). On the other hand, if
[RDVC

-a uDD,-Dj
(a) Initial distribution (b) Resulting distribution

the given triplet is less difficult (D; vs D), our also provides a guidance for this triplet, in
order to push D; more closer to the averaged relative distance [ip. This means that we are striving
for a difficulty-uniform feature space by adjusting all samples, appropriately. (See supplementary
materials for another illustrative example.)

3.3 INTEGRATING OTHER LOSS FUNCTIONS

For simplicity, we have discussed our proposed loss function when the given mini-batch consists
of positive pairs under different categories. It is not difficult to see that, if the class distribution is
balanced and the sample distribution is uniform, the mini-batch variance obtained by Eq. (€) serves
as an unbiased estimator (Hermans et al., 2017), i.e., LEPVC = E(6?%) = o2

In addition to triplet loss, the proposed RDVC loss can integrate with other existing loss functions to
ensure a robust and effective representation learning. In the experiment section, we will demonstrate
the integration of RDVC with four well-known DML loss functions, including triplet (Hoffer & Ailon)
2015)), semi-hard triplet (SHT) (Schroff et al.|[2015a), N-pair (NP) (Sohn| [2016), and multi-similarity
(MS) (Wang et al., 2019b) losses. Moreover, we utilize the SEC loss (L) to better normalize
each feature. Hence, our toal loss function is given by:

Lt if triplet loss is selected

L3HT " if semi-hard triplet loss is selected
Etotal Y ﬁRDVC L:SEC ) 10
! i + LNP - if N-pair loss is selected (10)

LMS " if Multi-Similarity loss is selected

where \; is our hyperparameter and 7 is the hyperparameter for SEC loss (Zhang et al., [2020). It
is noteworthy that we offer the advantage complementing existing losses instead of replacing them
entirely, which has proven advantages in various applications (Zhang et al.| 2020). Our supplemental
materials provide a full version of theoretical gradient analysis for other losses and the implementation
details.

4 EXPERIMENTS

We comprehensively evaluated the effectiveness of our RDVC on both within-domain and cross-
domain image retrieval tasks, using fine-grained image retrieval datasets for the former while applying
our RDVC on the FG-ZS-SBIR dataset for the latter. The latter represents a challenging task due to the
large visual gap between sketches and real photos and the requirement for fine-grained discrimination
between visually similar categories.
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4.1 DATASETS AND EXPERIMENTAL SETTINGS

Fine-grained image retrieval. We evaluated our method on two benchmark datasets: CUB200-
2011 (Wah et al.l 2011)) and Cars196 (Krause et al., [2013). The CUB200-2011 dataset contains
11,818 photos covering 200 categories of birds, with the first 100 categories consisting of 5,894
photos being used for training purposes, and the other 100 categories, with 5,924 photos, for testing.
The Cars196 dataset has 196 different categories, with 16,183 photos of cars in total. We used the
first 98 categories for training purposes and the other 98 categories for testing. Our experimental
work was based upon that of [Zhang et al.| (2020) in that we used the BN-Inception (loffe, |2015)) as
the backbone network and initiated the model weights from an ImageNet pre-trained model. The PK
sampling strategy (Hermans et al.,|2017) was adopted to construct the mini-batches and the P and
K values for the different datasets are in accordance with those of |[Zhang et al.[(2020). The batch
size was set at 120 and embedding size at 512 for all the methods and datasets, while the Adam
optimizer was used to optimize the loss function. For 7 in £!°**! we adopted the values used in the
other study (Zhang et al., 2020) for the various datasets and loss functions. Readers may refer to the
supplemental materials for details.

FG-ZS-SBIR. We used the popular Sketchy dataset (Sangkloy et al., 2016) to evaluate our method
for FG-ZS-SBIR. The Sketchy dataset contains 125 categories, each with 100 photos and at least
5 fine-grained sketches. To in line with Yelamarthi et al.| (2018)), we splitted the dataset into 104
categories for training purposes and 21 categories for testing. Various networks pre-trained on
ImageNet, including InceptionV3, P-ViT and ViT, are used as our backbone feature extractors. The
input size is set as 224 x 224 and the batch size as 64. The model is trained using the Adam optimizer
with a learning rate of [r = 1e —4; with the other learning hyperparameters 8; = 0.9 and 52 = 0.999.
To preserve the knowledge of pre-trained models, all the parameters of the models are frozen, except
for the layer normalization during the training stage.

Performance Measures. For fine-grained image retrieval, we evaluate performance using Normal-
ized Mutual Information (NMI), F1 score, and retrieval rates at R@1, R@2, R@4, and R@8. For
FG-ZS-SBIR, we follow |Sain et al.|(2023a) and evaluate effectiveness using Acc@1, Acc@5, and
Acc@10.

Table 1: The compatibility of the RDVC loss with other losses.

Loss CUB200-2011 Dataset Cars196 Dataset
NMI F1 R@l R@2 R@4 R@8 | NMI F1 R@l R@2 R@4 R@8
Triplet 59.85 2339 5334  65.60 7630 84.98 | 56.66 2444 60.79 71.30 79.47  86.27
Ours: Triplet+RDVC 67.01 3497 5832 70.88 81.74 88.83 | 64.74 3370 7637 84.65 9033 94.29
" TripletSEC — T T T T 7| ¢ 6424 T 30.83 7 60827 7161 T 8T.40 ~ 88.86 | 59.17 "25.51 ~ 67.89 78356 8559 ~90.99 ~
Oours: Triplet+SEC+RDVC | 68.10 37.62 6231 7427 83.88 90.61 | 67.89 38.78 79.89 88.07 93.09 96.04
SHT 69.66 4030 6531 7645 8471 9099 | 67.64 3831 80.17 8795 9249 95.67
Ours:SHT+RDVC 7134 4281 6691 77.38 8560 91.81 | 71.46 4447 83.63 90.33 9417 96.59
T SHT+SEC ~ ~ ~ ~ T T 7|7 7162 ~42.05 6735 7873 T86.63 ~ 91.90 | 7267 ~44.67 ~ 8519 91,537 9528 T 97.29 ~
Ours: SHT+SEC+RDVC 7353 4630 68.15 78.88 87.15 9234 | 7331 46.05 8550 91.35 9507 97.10
N-pair 69.58 4023 6136 7436 8381 89.94 | 68.07 37.83 7859 8722 9288 9594
Ours: N-pair+RDVC 71.01 4190 6494 7601 8449 91.14 | 71.02 4232 8257 8940 9438 97.01
" NepairtSEC ~ ~ ~ T |7 7224 T 43217 66000 7723 T86.01 ~ 91.837| 70.61 4212 T 8229 8960 9426 ~ 97.07 ~
Ours: N-pair+SEC+RDVC 7330 4562 67.69 7942 8739 9247 | 7243 4430 8359 9025 9479 9737
MS 70.57 4070 66.14 77.03 8543 9126 | 7023 42.13 8407 9023 9412  96.53
Ours: MS+RDVC 71.05 4257 66.59 77.60 8547 9148 | 71.98 4474 84.52 90.54 9440 96.83
TMS+SEC T T T T T T |7 7213 T 42.60 T 6877 7937 T 87.05 T 92.08°| 73.04 T47.7 T 84.93 9128 9503 " 97.07
Ours: MS+SEC+RDVC 7394 4673 69.48 80.11 8749 9247 | 73.13 4555 8695 9258 9582 97.77

4.2 FINE-GRAINED IMAGE RETRIEVAL

We consider five representative baseline loss functions, namely, triplet loss, semihard triplet loss
(SHT), N-pair loss, spherical embedding constraint loss (SEC), multi-similarity loss (MS), as well as
a norm feature regularization loss function to evaluate our RDVC . In Table[I} we compare these loss
functions, with and without RDVC , on the CUB200-2011 (Wah et al., 2011) and Cars196 (Krause
et al.| [2013) datasets. Table E] shows that RDVC improves the performance of these baseline loss
functions on both datasets, indicating that reducing the variance of relative distance is effective in
improving performance. For example, compared to the triplet loss, the use of RDVC significantly
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Table 2: Comparison with SOTA methods (with BN-Inception).

CUB200-2011 dataset Cars196 dataset

Methods

R@]1 R@2 R@4 NMI | R@l R@2 R@4 NMI
HTL (Ge![2018) 57.1 688 787 - 814 83.0 927 -
RLL-H (Wang et al.[[2019a) 574 697 792 636 | 740 83.6 90.1 654
MS (Wang et al.|[2019b) 657 770 863 - 84.1 904 94.0 -
SoftTriple (Qian et al.[|2019) 654 764 845 693 | 845 907 945 70.1
GroupLoss (Elezi et al.|[2020) 655 77.0 850 69.0 | 85.6 91.2 949
CircleLoss (Sun et al.|[2020) 66.7 774 86.2 - 834 898 94.1 -
ProxyAnchor (Kim et al.|[2020) | 68.4 792  86.8 - 86.1 917 950 -
ProxyGML (Zhu et al.|[2020) 66.6 776 864 698 | 855 918 953 724
DRML (Zheng et al.|[2021) 68.7 786 863 693 | 869 921 952 721
HIST (Lim et al.|[2022) 69.7 800 873 70.8 | 874 925 954 73.0

" Ours: MS+SEC+RDVC ~ |~ 69.5 801 875 73.0 | 87.0 92.6 958 731

Table 3: Performance comparison for the FG-ZS-SBIR task on the Sketchy.

Methods Backbone | Acc@1 | Acc@5 | Acc@10
Hard-Transfer (Yu et al.|[2016) 16.0% 40.5% 55.2%
CVAE-Regress (Yelamarthi et al.|[2018) 2.4% 9.5% 17.7%
Reptile (Nichol & Schulman![2018) IN-V3 17.5% | 42.3% 57.4%
CrossGrad (Shankar et al.|[2018) 13.4% | 34.9% 49.4%
CC-DG (Pang et al.|[2019) 227% | 42.1% 63.3%
Ours: Triplet+RDVC 26.3% | 53.4% 66.5%
SketchPVT (Sain et al.][2023b) P_ViT 30.2% | 51.7% -
Ours: Triplet+RDVC 329% | 60.4% 72.4%
CLIP-AT (Sain et al.|[2023a) 28.7% | 62.3% -
MARL (Lyou et al.|[2024) ViT 29.8% | 57.9% -
Ours: Triplet+RDVC 31.0% | 60.4% 73.1%

increases the NMI, F1 and R@1 by 7.16%, 11.58% and 4.98%, respectively, on CUB200-2011.
Compared to different losses in Table|l} RDVC has shown improved performance on the NMI, F1
and R@1 of the most state-of-the-art model with MS-loss by 1.75%, 2.09% and 0.45%, respectively.
Furthermore, combining SEC and RDVC can further improve performance. Specifically, on the
CUB200-2011 dataset, using RDVC increases the NMI, F1 and R@1 wehn integrated with both
triplet and SEC losses by 3.86%, 6.79% and 1.49%, respectively. On the Cars196 dataset, with the
combination of MS and SEC, RDVC increases the NMI, F1 and R@1 by 0.96%, 2.23% and 0.62%,
respectively. This demonstrates that RDVC, which focuses on reducing the variance of relative
distance, effectively complements SEC, which focuses on reducing the variance of feature norms.
In Table[2] we also compare our method with other 10 SOTA methods in metric learning on both
the CUB200-2011 and Cars196 datasets. It can be seen that our method always achieves nearly the
highest accuracy in all metrics on both datasets, indicating its outstanding performance in detecting
differences between fine-grained image categories as well as its robustness to noisy or widely varied
samples. The R@1 and R@2 of our method are only slightly lower than those of HIST. Nevertheless,
unlike HIST, which relies on graph networks to utilize multilateral semantic relations, our method
does not require the addition of new networks for training.

4.3 FG-ZS-SBIR

In Table[3] we evaluate our RDVC loss for fine-grained sketch-based image retrieval (FG-ZS-SBIR)
in terms of the triplet loss with our RDVC loss, compared to eight SOTA methods. Table |3| shows
that our model outperforms all the listed methods. In particular, our method outperforms the best
method of CC-DG (Pang et al.,[2019)), among the InceptionV3-based models, by 3.7% and 11.3%
in terms of Acc@1 and Acc@35, respectively. Furthermore, our method outperforms SketchPVT,
which utilizes additional photos for training, by 2.7% and 8.7% in terms of Acc@1 and Acc@5,
respectively. Similar improvements are also found in methods using ViT backbone.

4.4 ABLATION STUDY AND DISCUSSION

The effectiveness of RDVC. We analyze the effectiveness of RDVC for both the fine-grained
image retrieval and FG-ZS-SBIR tasks. For the former task, we analyze the effect of the RDVC on the
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Figure 4: Illustrations of the relevant learned distributions based on testing set of CUB200-2011: (a)
mini-batch variance and (b) dataset-level relative distances.

mini-batch interclass variance and the dataset-level distribution of relative distances in Fig. f(a) and
(d), respectively. In Section [3.2] we explain that reducing the relative-distance distribution variance
leads to a more uniformly distributed feature space. It can be seen in Fig.[d[a) that the triplet loss with
RDVC results in with smaller variations in each mini-batch and a less dispersed distribution of relative
distances across the entire dataset, as illustrated in Fig. Ekb). For the FG-ZS-SBIR task, Table|§| gives
the ablation study results based on the Sketchy dataset. It can be seen that PK Sampling produce a
very similar performance to Random Sampling for baseline (BL) with triplet loss. In contrast to this,
our approach significantly improves performance, producing relative improvements from 21.32% to
26.3%, 46.69% to 53.35%, and 59.63% to 66.45% for Acc@1, Acc@5, and Acc@ 10, respectively,
when compared to the baseline (BL) with PK Sampling. Comparative results for different categories
are also shown in Fig.[5} It can be seen that RDVC has produced performance improvements for
nearly all the categories, and these improvements are relatively uniform across all the categories
without any particular bias towards learning a specific category. This indicates that RDVC helps
the model learn more generalized and robust features that are beneficial across various categories.
Additionally, Table[5]shows that, statistically, the difference between ‘Random Sampling + BL" and
‘PK Sampling + BL’ is not significant (p > 0.05), whereas our method significantly outperforms both
baseline methods (p < 0.05).
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Figure 5: Per-class accuracy of different sampling strategies for the FG-ZS-SBIR task based on the
Sketchy dataset. The statistically significant results are presented in Table 5]

Table 5: A comparison of the statistically signifi-
cance of the per-class accuracy of the different meth-
ods (Fig. B). A p-value < 0.05 indicates highly

Table 4: Effect of sampling strategies for the
FG-ZS-SBIR task using the Sketchy dataset.

Metrics significant difference.
Method Acc@l  Acc@5  Acc@10 :
Paired T-Test P-value
Random Sampling + BL | 21.85 47.27 60.49 " X N A . N
PK Sampling + BL 21.32 46.69 59.63 ) Random Samp}mg + BL’, vs PK Samp}mg +BL . 0.688
PK Sampling + Ours 26.30 53.35 66.45 Random Sampling + BL’ vs ‘PK Sampling + Ours 5.8e-7
‘PK Sampling + BL’ vs ‘PK Sampling + Ours’ 3.6e-8




Under review as a conference paper at ICLR 2025

- [P —
068 xR el s yewmmy=g | 062 ¥ *
’ Lauz ™ i
70— —g—0—n_ . _a| 060 -
0.66 ), margin K J——
¥ — 10 0.58 il =

-
B
— 20 — *’"'.5"; =%

g : @056 s
[ Methods o< /%(Q\./’\.
062 , —— A=1.0 == Triplet .,',' -~ —~—a—e
i 1=1 045 =x= Ours 0541 51 & ~®" Triplet
0.60 R A=15 k =%=Ours: triplet + RDVC

053] # === A1=2.0 oo '\.__._.__. 050 '.': _:. gﬂ??t;piiszcmoyc
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
iteration iteration iteration
(a) Loss weight effective (b) Margin sensitivity analysis (c) Convergence&stability
investigation

Figure 6: Illustration of various analyses: (a) the effect of loss weight lambda, (b) sensitivity of
margin selection, and (c) convergence and stability.

The effect of loss weight. The loss weight )\ in Eq. controls the regularization strength of the
RDVC. We analyze in Fig. [6a) the impact of the loss weight A, on the performance of FG-ZS-SBIR
when assuming different values of A; . As can be seen from Fig. @a), our RDVC leads to a robust
improvement with A; € [0.5,2.0]. This demonstrates that our RDVC is not sensitive to the choice of
A1, with the minimization of the relative distance variance improving the generalization ability.

Sensitivity analysis of the margin selection. We analyze the impact of the RDVC on the sensitivity
of margin selection using a baseline model with triplet loss on the Cars196 dataset. Fig. [6[b) shows
how the R@1 accuracy changes over iterations with and without RDVC under different margin
settings. As can be seen, the triplet loss exhibits a high sensitivity to changes in the selected margin.
When the margin is increased from 1 to 2, the network converges rapidly within 800 iterations,
but subsequently collapses due to an extremely biased learning on training samples. However, the
integration of our RDVC loss with triplet loss rectifies the biased learning by regularizing the relative
distance and stabilizing the model training. This demonstrates that our RDVC can effectively reduce
the reliance on selected margin values in model learning, thereby addressing the problem of having
to carefully select the fixed margin.

Analysis of convergence. We analyze in Fig.[6|c) the convergence of metric learning with and with-
out RDVC . As can be seen, the model without RDVC converges faster and achieves higher accuracy
on the 1000th iteration than the model with SEC and RDVC , and the model with RDVC achieves
the best performance at the 2000th iteration. This indicates that the original triplet loss exhibited
early-stage overfitting, causing it to overly adapt to those samples with significant differences while
neglecting the overall characteristics of the data. By imposing constraints on the feature norm and
relative distance by SEC and our RDVC , respectively, this reduces the overfitting problem. Although
SEC slows down the convergence speed, the network’s learning process accelerates after integrating
SEC with the LEPVC | leading to improved performance.

5 CONCLUSIONS

In this paper, we develop a novel Relative Distance Variance Constraint (RDVC) loss to regularize
pair-distance based deep metric learning (DML). We provide both empirical and theoretical analyses
to demonstrate the effectiveness of our RDVC loss. Extensive experimental results on three datasets
show that the RDVC loss can ensure a robust and effective representation learning, when combining
with other existing loss functions, and it reduces reliance on careful margin selection and increases
the chance of selecting informative pairs in the sampling process for model training. Moreover,
the RDVC loss has proven effective in FG-ZS-SBIR, a challenging task that requires bridging the
gap between different domains and between seen and unseen data. In the future, we will focus on
extending the RDVC loss to general cross-domain learning and zero-shot learning.
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A APPENDIX

A.1 ILLUSTRATION OF OUR OBJECTIVE FUNCTION

A Anchor Sample
®/Q® Positive/Negative Sample

dAO) dAO) aA®) oAO) dAO) AO) «A®) qAO) «AO) 4AO) «A®) 4qAO)
@ (b) ©

Figure 7: Illustration of our objective function, with the different colors indicating different categories.
In (a), it is assumed that there are two hard triplets in a mini-batch, where both triplets are in the
condition of d,,, — dq, < m, while the blue-anchor triplet is harder (i.e., the positive distance
dqp is closer to the negative distance d,,) than the green-anchor one. Although both triplets have
different levels of hardness (i.e., Ady # Ady), the triplet loss will generate equivalent gradients with
respective to them which is considered unfair. In (b), all distances are forced to be equal to each
other for positive and negative pairs respectively, which can alleviate the problem associated with
(a). This strategy, however, leads to the loss of class-specific information, disabling any anchor to
learn discriminative features. (c) addresses the problems present in both (a) and (b) by incorporating
relative distance variance minimization.

A.2 FULL VERSION OF GRADIENT DERIVATION IN RELATION TO TRIPLET LOSS
Considering £t = £t + LEPVC "we have

aﬁtotal 8£tri acRDVC’
= + A .

11
oD; LoD, > oD, (in
Consider the first term, £ on the R.H.S of (TT))
oLt 0 1, ifD; > —a
—_— = — D; ,0) = ’ ' = 12
oD, oD; max(Di + a, 0) {0, otherwise (12)
Let’s move on to the second term, £, of the R.H.S of (TT). Since
oD, 0D, 0 1
m)j — 0fori # 7, 87)1 — 1fori = j, and algj =+
We can deduce that
ockove 5 1 I 1 (D, — pip)
= Dj — up)? = 2(D;j — pup) ——2-"172
aD; aD,»N—1;1( j ~ o) N—1; T
1 JD; 1 Oup
=— N9, - i = N"op; -
N—lzj: (Di =) 55, N—1Xj: (Di =12 5p,
- N_1 7 KD
Then we have:
o [total N—-1+2(D;—up) it D; > —
e o (14)
9D; Sknl, otherwise

Hence, every triplet will contribute gradients to enhance the model’s learning process.

14



Under review as a conference paper at ICLR 2025

A.3 FULL VERSION OF GRADIENT DERIVATION IN RELATION TO N-PAIR LOSS

Recall the definition of N-pair loss, we have:

1—d? el— d;,
el P+ Y
Lyp = —log - . = log ]1
61_dp+2f:1 el—dh el—dp

(15)
L L
=log |1+ Z eo=dn | = log | 1+ Z el
j=1 j=1
Then we can calculate the gradient w.r.t D;:

grNp  Olog (1 + Zle eDi> D 16)

o : - L .

oD; oD; 1+ ijl eDi

NP
‘We can see that

solely focuses on the sum of L relative distances, overlooking the variance

i
within a mini batch, resulting in a similar issue of a distorted decision boundary to the triplet loss.

A.4 FULL VERSION OF GRADIENT DERIVATION IN RELATION TO MS LOSS

Recall the definition of MS loss in Eq.[] we can consider a relaxed form by letting aw = § = 1, we
then will have:

K L
1 1 .
_ = —a(l1—d; —m) - B(1—d) —m)
EMS—a10g<1+§ e % >+510g 1+E e

i=1 =1

L
= log (1 + Ze z_m)> +log | 1+ Ze(l_di_m)

Jj=1
(z

Mx

e~ (1=, >> + log Ze(l d=m) | if softplus is disabled  (17)

j=1

Il
N

d

"_J
e

] =
Mn

.
Il
—_

<.
Il
—_

= log

M=
Rﬂh

7

Il
a
<.

Il
—

We observe that Eq. [17|only considers the sum of relative distances (similar to N-pair loss), and does
not incorporate variance statistics as constraints.

A.5 MORE EXPERIMENTAL RESULTS

Figure [§] presents qualitative results in the FG-ZS-SBIR task, demonstrating the effectiveness of our
proposed method.
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Figure 8: Qualitative comparison. For each query sketch, we show ours (the 1st row of each case)
and the baseline (the 2nd row of each case).

A.6 MORE IMPLEMENTATION DETAILS

For the the combination of our RDVC and SEC Zhang et al.|(2020) loss, we directly employ the
default settings from [Zhang et al.| (2020). Our full settings are shown in Table[A.6] As shown, T,
SHT, NNP and MS represent tripelt[Hoffer & Ailon| (2015)), semi-hard triplet[Schroff et al] (2015b)),
N-pair[Sohn|(2016) and multi-similarity loss, respectively. 7 is the loss weight for £57C and \; is
our loss weight.

Settings from [Zhang et al| (2020) Our setting
LR Settings
Dataset Tters Loss (Ir for head/Ir for backbone/Ir decay @iter) n A1 wlo SEC | Ap w/SEC
T, SHT 0.5e-5/2.5e-6/0.1 @5k 1.0, 0.5 2.0, 4e-5 0.5, 4e-5
CUB200-2011 8k NNP le-5/5e-6/0.1 @5k 1.0 2e-4 2e-4
MS 5e-5/2.5e-5/0.1 @3k, 6k 0.5 0.5 1.0
T, SHT 1.5e-5/1e-5/0.5@4k,6k 0.5,0.5 2.0, 4e-5 0.25, le-4
Cars196 8k NNP le-5/1e-5/0.5@4k,6k 1.0 2e-4 Se-5
MS 4e-5/4e-5/0.1 @2k 1.0 0.5 1.0

Table 6: Full version of hyperparameter settings.
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