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ABSTRACT

The growing use of 3D point cloud data in autonomous vehicles (AVs) has raised
serious privacy concerns, particularly due to the sensitive information that can be
extracted from 3D data. While model inversion attacks have been widely studied
in the context of 2D data, their application to 3D point clouds remains largely
unexplored. To fill this gap, we present the first in-depth study of model inversion
attacks aimed at restoring 3D point cloud scenes. Our analysis reveals the unique
challenges, the inherent sparsity of 3D point clouds and the ambiguity between
empty and non-empty voxels after voxelization, which are further exacerbated by
the dispersion of non-empty voxels across feature extractor layers. To address
these challenges, we introduce ConcreTizer , a simple yet effective model inversion
attack designed specifically for voxel-based 3D point cloud data. ConcreTizer
incorporates Voxel Occupancy Classification to distinguish between empty and
non-empty voxels and Dispersion-Controlled Supervision to mitigate non-empty
voxel dispersion. Extensive experiments on widely used 3D feature extractors and
benchmark datasets, such as KITTI and Waymo, demonstrate that ConcreTizer
concretely restores the original 3D point cloud scene from disrupted 3D feature
data. Our findings highlight both the vulnerability of 3D data to inversion attacks
and the urgent need for robust defense strategies.

1 INTRODUCTION

Recent advancements in Autonomous Vehicles (AVs) have underscored the importance of continuous
vision data collection and sharing. At the same time, the widespread adoption of AI technology
has amplified privacy concerns, prompting increased research on this issue (Guo et al., 2017; Stahl
& Wright, 2018). Consequently, AV’s data collection faces strict regulations that requires data de-
identification (Mulder & Vellinga, 2021). For example, the EU’s General Data Protection Regulation
(GDPR) (EU, 2016) mandates businesses to adopt stringent data protection protocols.

Beyond these regulations, the need for privacy preservation is rapidly increasing, particularly in
3D point cloud data. This is because various types of privacy-related information can be revealed
through rich 3D shape information. For instance, personal identities can be exposed through facial
recognition (Zhang et al., 2019) and person re-identification (Cheng & Liu, 2021). Additionally,
behavioral patterns can be inferred from human pose estimation (Zhou et al., 2020) and activity
recognition (Singh et al., 2019b). Location information can also be extracted using techniques like
Simultaneous Localization and Mapping (SLAM) (Kim et al., 2018). Furthermore, the ability to
reconstruct 2D images from sparse 3D data (Pittaluga et al., 2019; Song et al., 2020) emphasizes the
importance of securing raw 3D point data from the outset.
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Figure 1: Inversion attack results of a 3D point cloud. Feature data is extracted from original point
cloud through a 3D feature extractor (Yan et al., 2018). ConcreTizer (right) enables restoration with
simple modifications to conventional approach (left), and even achieves more concrete restoration
than generative model approach (middle) (Xiong et al., 2023).
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Figure 2: Restoration through conventional inversion attack method. Voxelization introduces
zero-padding to empty voxels. During downsampling and upsampling, non-empty voxels spread to
neighboring areas, expanding the VoI (green region). Within the VoI, voxel-wise channel regression
generates additional points in zero-padded regions, leading to clustering near the origin.

However, research on privacy in 3D point cloud data remains significantly underexplored compared to
advancements in the 2D image domain. A prominent research area in 2D image privacy is inversion
attack, which aims to restore the original data from extracted feature. While earlier studies (Gupta
& Raskar, 2018; Vepakomma et al., 2018; Singh et al., 2019a) suggested that 2D images could be
anonymized by extracting features, inversion attacks have demonstrated that these features can be
used to restore the original 2D images. In contrast, while there have been a few prior studies on
privacy of 3D data (Wang et al., 2024a), inversion attacks on 3D data remain largely unexplored.
This research gap allowed a recent study (Hwang et al., 2023) to operate under the assumption that
disseminating 3D features inherently prevents the restoration of the original data. In the absence of
existing inversion attack methods for 3D data, the authors developed a Point Regression method to
invert voxel-based backbones, aiming to demonstrate that restoring the original 3D scene from its
extracted features is infeasible. As in Figure 1, the conventional Point Regression in (Hwang et al.,
2023) fails to restore 3D point cloud data from intermediate features.

We argue that this failure is not due to an inherent safety of 3D features but rather a lack of careful
design that considers the characteristics of 3D backbones. To address this issue, Figure 2 examines
the phenomena arising when the Point Regression method inverts voxel-based feature extractors,
which are dominant architectures in autonomous driving applications. The Point Regression approach
attempts to directly restore point coordinates within each voxel by minimizing mean squared error
(MSE). The problem is as follows: The sparsity of 3D point cloud data results in a large number
of zero-padded voxels. To identify the meaningful regions within the voxel grid, we define VoI
(Voxels-of-Interest) as the set of non-empty voxels, which contain valuable information. During both
feature extraction and inversion processes, VoI spread into empty voxels. This dispersion leads to a
proliferation of false VoI (originally empty voxels), causing Point Regression to erroneously generate
points in regions that were initially void. Moreover, these false VoI disproportionately impact the
MSE loss, prompting the Point Regression model to bias the restoration by concentrating most points
near the origin (0, 0, 0) to minimize estimation errors for the false VoI. This bias significantly degrades
localization performance for the relatively smaller number of true VoI (originally non-empty voxels).
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The analysis reveals that the key to a successful inversion attack is not restoring the representation of
the voxel (i.e., point coordinates) but accurately determining whether a voxel was originally empty or
non-empty. Once this classification is achieved, localizing points within non-empty voxels becomes
more straightforward, as the error is constrained by the typically small voxel size. Based on this
insight, we transform the conventional Point Regression problem into a more explicit Voxel Occupancy
Classification (VOC) problem. In addition, the spread of VoI should be suppressed during restoration
to minimize the negative impact of false VoI. To address this, our model incorporates Dispersion-
Controlled Supervision (DCS), which segments the feature extractor based on downsampling layers
and trains each segment individually, proactively controlling the dispersion of VoI. Thanks to its
tailored design, our model, ConcreTizer , even outperforms the generative model approach that uses
conditional generation (see Figure 1, the generative model approach (Xiong et al., 2023)).

To demonstrate the general applicability of ConcreTizer , we deployed it on two representative 3D
feature extractors (Yan et al., 2018; Lu et al., 2022), which are essential components in various
applications including 3D object detection, 3D semantic segmentation, and tracking. Our experiments
on the widely used KITTI (Geiger et al., 2012) and Waymo (Sun et al., 2020) datasets confirm that
ConcreTizer consistently outperforms across various datasets and 3D feature extractors. We showcase
the superior performance of ConcreTizer through a comprehensive set of quantitative and qualitative
evaluations, including point cloud similarity metrics, visual analysis, task-specific performance (3D
object detection) using restored scenes, and the effectiveness of potential defense mechanisms.

The contributions of this paper are as follows:

• This is the first in-depth study on model inversion attacks for restoring voxel-based 3D point
cloud scenes, identifying unique challenges from the interaction between sparse point clouds and
voxel-based feature extractors.

• To address the identified challenges, we propose ConcreTizer , tailored for inverting 3D backbone
networks, with Voxel Occupancy Classification and Dispersion-Controlled Supervision.

• Through extensive experiments with representative 3D feature extractors and well-established
open-source datasets, we demonstrate the effectiveness of ConcreTizer in both quantitative and
qualitative aspects.

2 RELATED WORK

3D Point Clouds Feature Extraction. Feature extractors for 3D point cloud data encompass set,
graph, and grid-based approaches, each distinguished by its representation format. The computational
complexity of set and graph-based methods (Qi et al., 2017; Kipf & Welling, 2016; Park et al.,
2023) scales significantly with the number of points, limiting their use in real-time applications like
autonomous driving. Conversely, grid-based methods (Zhou & Tuzel, 2018; Yan et al., 2018; Shi et al.,
2020; Sun et al., 2022) organize the 3D space into a voxel grid and apply specialized convolution (Liu
et al., 2015; Graham & Van der Maaten, 2017) for efficient feature extraction from sparse data. This
efficiency makes them particularly well-suited for autonomous driving applications. Based on these
characteristics, we investigate inversion attacks for scenarios using voxel-based feature extractors.

Model Inversion. Model inversion was originally explored in the context of interpreting deep
learning models. Traditional approaches generate saliency maps to understand how models produce
outputs (Du et al., 2018). Other methods (Mahendran & Vedaldi, 2015; Dosovitskiy & Brox, 2016b;a)
reconstruct the input from intermediate features to analyze the information flow through model layers.
Recently, with growing concerns about data privacy, model inversion has gained attention as a privacy
attack. Early studies attempted to restore input face images from confidence scores (Yang et al.,
2019b). Subsequent studies (Zhang et al., 2020; Zhao et al., 2021) leverage additional information
for more sophisticated restoration. Building on these studies, corresponding defense techniques (Liu
et al., 2019; Xue et al., 2023; Dusmanu et al., 2021; Ng et al., 2022; Zhang et al., 2022) have also
been investigated, enriching the exploration of data privacy. However, existing work has primarily
focused on 2D image data. There is a clear need for an inversion attack technique that accounts for the
unique characteristics of 3D point cloud data in autonomous driving. To the best of our knowledge,
this research is the first to study inversion attacks on 3D data.

Point Cloud Generation. Generative models are widely used, owing to their diverse range of
applications. In the 3D point cloud domain, several generative models are actively being explored.
Unconditional generation tasks aim to create plausible 3D shapes from random inputs, such as
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Figure 3: (Left) The results of the conventional inversion attack: As the layer depth increases, the
number of restored points increases rapidly, and the concentration of points near the origin becomes
more noticeable. (Right) The VoI (Voxels-of-Interest) dispersion effect: The non-empty voxels
spread as they pass through the feature extractor and inversion attack model.

noise (Achlioptas et al., 2018; Valsesia et al., 2018; Yang et al., 2019a; Luo & Hu, 2021). Conditional
generation tasks involve generating the missing part of a point cloud (Yu et al., 2021; Huang et al.,
2020; Wen et al., 2020) or producing a 3D point cloud from a 2D image (Mandikal et al., 2018;
Mandikal & Radhakrishnan, 2019; Melas-Kyriazi et al., 2023). However, most existing research
focuses on dense point cloud data for individual objects (e.g., Chang et al. (2015)). Only a few
studies (Caccia et al., 2019; Zyrianov et al., 2022) deal with scene-level sparse point clouds captured
from autonomous vehicles. Even these studies require specific representation formats and do not
support using 3D grid-type features, as conditions in our inversion attack scenario. To our knowledge,
the only scene-level sparse point cloud generation model based on 3D grid representations is Xiong
et al. (2023). We also conducted performance comparisons with conditional generation approach.

3 PRELIMINARY: LIMITATIONS OF CONVENTIONAL INVERSION ATTACK

The only known attempt at an inversion attack on 3D point cloud data is by Hwang et al. (2023).
Even this research does not directly focus on inversion attacks but rather seeks to assess the privacy
protection effectiveness of 3D features by developing a simple inversion attack based on Point
Regression. Before designing our method, we explore why the conventional approach can not
effectively restore 3d point cloud scenes (Figure 3, left).

Firstly, we identified an issue in voxel-based models related to the voxelization process. During
voxelization, regions without points are zero-padded. However, conventional regression method
does not consider point existence but focus solely on point localization, mistakenly interpreting
zero-padded representations as valid points located at (0, 0, 0). As a result, points are created even
for empty voxels, leading to an overgeneration of points compared to the original data. Secondly,
the inherently sparse nature of point clouds results in a large number of zero-padded voxels, far
exceeding those containing valid points. Since Point Regression-based inversion attacks aim to
minimize estimation errors across all voxels, they unintentionally prioritize zero-padded regions.
Consequently, this bias towards zero-padded voxels causes an over-concentration of points near the
origin in the restored scene. Moreover, it significantly increases localization errors for the relatively
smaller number of valid points, as these errors become negligible within the overall regression error.

Lastly, we observed that as the feature extractor layers deepen, existing attack methods are increasingly
hindered by the negative impact of zero-padded voxels: (1) an excessive number of restored points
and (2) an intensified concentration of points near the origin. Specifically, if voxels with a value of (0,
0, 0) persist in the final restored state, they are excluded from the regression targets and do not directly
affect the regression loss. However, due to the nature of convolution operations, the values of non-
empty voxels—defined as VoI (Voxels-of-Interest)—gradually disperse into the surrounding empty
voxels. As the layers deepen, more originally zero-padded voxels become non-empty during the
feature extraction and inversion processes. Consequently, an increasing number of these previously
zero-padded voxels are included in the regression targets. Our experiments revealed that the density
of VoI spikes significantly at downsampling layers (Figure 3, right), further amplifying the influence
of zero-padded voxels on the final restoration results.
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Figure 4: ConcreTizer framework. Original point cloud and features are denoted as p and fi,
with restored versions as p′ and f ′

i , respectively, where i indicates the i-th downsampling layer.
ConcreTizer restores data by classifying f0’s occupancy and placing points at voxel centers. For
deeper layers, it partitions at downsampling layers to restore fi−1 from fi.

4 PROPOSED METHOD

4.1 AV SCENARIO

We focus on autonomous vehicle (AV) scenarios due to their high risk of exposure to inversion attacks.
In AV contexts, feature data would be shared for purposes such as computation offloading (Xiao
et al., 2022; Hanyao et al., 2021), model enhancement (Hwang et al., 2023), and cooperative
inference (Wang et al., 2020; Xu et al., 2022; Yu et al., 2022). Specifically, we selected voxel-based
feature extractors, which are well-suited for real-time processing in AV. Their efficiency makes them
essential for tasks such as 3D object detection (Yan et al., 2018; Lang et al., 2019; Shi et al., 2019;
2020; Shi & Rajkumar, 2020), semantic segmentation (Wu et al., 2019; Thomas et al., 2019), and
tracking (Yin et al., 2021). In this scenario, an attacker with access to the same feature extractor can
easily prepare 3D point cloud data for training the inversion attack model. Since the restoration task
doesn’t require separate labeling, they can utilize open-source datasets or self-collected data.

4.2 PROBLEM DEFINITION

The goal of an inversion attack is to discover the inverse process of a given feature extractor in order
to restore the original data. For voxel-based feature extractors, the initial step involves a voxelization
process that transforms point cloud data into a grid format. Voxelization converts a 3D point cloud
p ∈ Rk×3, where k is the number of points, into a voxel grid f0 ∈ R3×H×W×D, where H,W,D
represent the spatial dimensions of the grid. The x, y, and z coordinate information is organized into
separate channels, and voxels without points are zero-padded, resulting in channel values of (0, 0,
0). In particular, during the downsampling process, the spatial dimensions shrink while the channel
size increases, producing features fN ∈ RCN×hN×wN×dN , where N is the number of downsampling
layers, CN > 3, and hN , wN , dN are smaller than H,W,D. Consequently, our inversion attack aims
to restore the original voxel grid f0 from the downsampled features fN .

4.3 CONCRETIZER FRAMEWORK

Figure 4 depicts the overall ConcreTizer framework incorporating the scenario and attacker-side
training operations. For the design of the inversion attack model, we adopted a symmetrical structure
to the feature extractor, following previous studies (Yang et al., 2019b; Zhang et al., 2020; Zhao
et al., 2021). In this approach, the original shape is restored by upsampling at the positions where
downsampling occurred (detailed structure is provided in the supplementary material). Building upon
symmetric structure, ConcreTizer applies Voxel Occupancy Classification (VOC) and Dispersion-
Controlled Supervision (DCS) to overcome the limitations of traditional inversion attack. VOC
converts the regression problem into a classification problem to address the issue of point clustering
near the origin. DCS prevents the dispersion of VoI by splitting the feature extractor, helping to
mitigate the degradation of restoration performance as the network deepens.
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4.3.1 VOXEL OCCUPANCY CLASSIFICATION

In traditional inversion attack methods, the original data is directly restored through regression on
channel values. In our scenario, since the x, y, and z coordinates are channelized during the voxeliza-
tion process, performing regression would restore coordinate values. However, since voxelization
of sparse point clouds produces a large number of zero-padded voxels with (0, 0, 0) channel value,
many unnecessary points cluster near the origin in the inversion attack results (Figure 3, left). To
address this issue, we transform the regression problem into a classification problem to resolve the
semantic ambiguity of zero-padded voxels—whether they represent empty voxels or valid points
at coordinates (0, 0, 0). This can be achieved through simple binary encoding, where each voxel is
labeled as 0 (negative occupancy) or 1 (positive occupancy), making the meaning of zero-padding
clear. Using the VOC method, the inversion attack model outputs binary classification scores in the
form of R1×H×W×D, rather than continuous coordinate values in the form of R3×H×W×D. If a
voxel is determined to contain a point, the corresponding coordinate can be restored easily. This is
because the range of coordinate values is bounded by the spatial location of the voxel, and the voxel
size is typically small enough. As a result, by using the center coordinates of the voxel, we achieve
effective restoration within an error range constrained by the voxel size.

Additionally, due to the sparsity of original point cloud data, the binary-encoded labels contain a
higher ratio of 0s compared to 1s. This phenomenon is particularly exacerbated as the depth of
the layers increases. Let f0 be the original voxelized point cloud and f ′

0 be the restored one by the
inversion attack. The number of positive labels is fixed as |VoI of f0|, while the number of negative
labels, |VoI of f ′

0| − |VoI of f0|, increases exponentially as the depth of the layer increases. To
account for this imbalance, we apply the Sigmoid Focal (SF) loss (Lin et al., 2017), a variant of
the conventional cross-entropy loss. The mathematical representation of the SF loss is given by
FL(pt) = −αt(1− pt)

γ log(pt), where pt denotes the model’s predicted probability for the target
class. The factor αt is employed to adjust the importance given to the positive and negative classes.

4.3.2 DISPERSION-CONTROLLED SUPERVISION

While applying SF loss in VOC can partially address the label imbalance issue, it cannot prevent the
more inherent problem of VoI dispersion. The original data is sparse with many empty voxels, yet as
observed earlier, the VoI density increases exponentially during the downsampling process (Figure 3,
right). As the VoI spreads excessively in the deeper layers, it becomes increasingly difficult to restore
the data to its original sparse state.

Our proposed DCS offers a more fundamental solution to address VoI dispersion. It divides the feature
extractor into multiple blocks and performs restoration progressively. First, the feature extractor is
partitioned based on the downsampling layer, where VoI dispersion occurs. In the inversion attack
model, a corresponding inversion block is created for each block of feature extractor. This allows the
restoration process to be trained in block units, effectively controlling VoI dispersion within each
block. It is important to note that, at the original voxel level, the channel values directly represent
point coordinates, eliminating the need for regression (if the classification result is positive, the
channel value is estimated as the center coordinate of the voxel). However, at the intermediate feature
level, normalization is applied, which disrupts the direct relationship between the channel values and
the voxel location. As a result, both classification and regression on the channel values are required.

For example, if the input to the (i + 1)-th block is fi ∈ RCi×hi×wi×di and the output is fi+1 ∈
RCi+1×hi+1×wi+1×di+1 , then the (i + 1)-th inversion block in the inversion attack model takes
fi+1 as input and produces f ′

i ∈ RCi×hi×wi×di , which is the result of restoring fi. Specifically,
m′

i ∈ R1×hi×wi×di (spatial occupancy scores found by applying SF loss) and c′i ∈ RCi×hi×wi×di

(channel values found by applying L2 loss) are derived from fi+1. Then, c′i is masked by using m′
i to

generate f ′
i . During the masking process, unnecessary voxel values are erased, helping to suppress

the dispersion of VoI. Note that in the first inversion block, which is the final stage of the inversion
attack model, only classification is performed, with no additional regression. The loss function for
each inversion block is:

Loss(inversion block i+ 1) =

{
Lcls if i = 0,

Lcls + β · Lreg if i ≥ 1.

Lcls =
∑
VoI

SF loss(mi,m
′
i) and Lreg =

∑
VoI

L2 loss(ci, c′i)
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Table 1: Inversion attack result with KITTI and Waymo dataset. Average CD and HD values in
centimeters, and F1 scores with 15 cm and 30 cm thresholds for KITTI and Waymo datasets. Metrics
evaluate over each dataset with 3769 and 3999 scenes, respectively.

#Downsampling 1 (3rd) 2 (6th) 3 (9th) 4 (12th)
(LayerDepth) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑) CD (↓) HD (↓) F1score (↑)

K
IT

T
I Point Regression 1.3868 23.5855 0.3543 1.2879 34.2395 0.3904 3.1229 54.0173 0.2110 4.1439 56.9811 0.1298

UltraLiDAR 0.0744 8.2269 0.9122 0.0818 8.0974 0.8905 0.0836 7.9561 0.8869 0.1012 7.9185 0.8152
ConcreTizer 0.0321 7.5603 0.9918 0.0373 7.5249 0.9914 0.0507 7.8453 0.9793 0.0776 8.1193 0.9160

W
ay

m
o Point Regression 1.4979 55.6589 0.7644 2.7733 66.7899 0.6489 4.1053 70.6608 0.5524 4.9340 71.9608 0.4355

UltraLiDAR 0.0810 10.9582 0.9742 0.0898 11.3360 0.9623 0.1017 11.4987 0.9503 0.1378 12.0259 0.8849
ConcreTizer 0.0374 10.2544 0.9984 0.0466 10.2326 0.9979 0.0712 10.5724 0.9781 0.1087 11.3399 0.9251
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Figure 5: Qualitative results for KITTI (scene 73) and Waymo (scene 79). Top shows the original
point cloud, 2D image, and highlighted region. Below, restoration performance of three techniques is
displayed, progressing left to right by layer depth.

Here, mi and m′
i represent the ground truth and predicted spatial occupancy masks, respectively,

while ci and c′i denote the ground truth and predicted channel values. The final result of passing
through all inversion blocks is a set of binary classification scores in the form of R1×H×W×D.
Restoration is completed by generating a point at the center of the voxel corresponding to positive
occupancy.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

3D Feature Extractor. We employ voxelization-based 3D feature extractors as the target of our
inversion attack. Based on the OpenPCDet (Team, 2020) project, we utilize pre-trained VoxelBack-
bone (Yan et al., 2018) and VoxelResBackbone (Lu et al., 2022), extensively used in key applications
for 3D point cloud data. The VoxelBackBone structure includes four downsampling layers (i.e.,
N = 4), each preceded by two convolutional layers, while the VoxelResBackbone incorporates
additional convolutional layers and skip connections.

Inversion Model Training. We train the inversion attack model on the real-world KITTI (Geiger
et al., 2012) and Waymo (Sun et al., 2020) datasets. In VOC, when applying the SF loss function,
only α in the hyperparameters is adjusted. In DCS, the weight on the regression loss, β, is set to 1.

Metrics. To evaluate 3D scene restoration performance, we employ various metrics. For qualitative
analysis, we visualize the 3D point cloud using the KITTI viewer web tool. For quantitative analysis,
we utilize point cloud similarity metrics such as Chamfer Distance (CD) (Borgefors, 1984), Hausdorff
Distance (HD) (Huttenlocher et al., 1993), and F1 Score (Goutte & Gaussier, 2005). Additionally, to
assess the utility of the restored data, we examine 3D object detection accuracy using pre-trained
detection models.

5.2 RESTORATION PERFORMANCE

Comparison Schemes. To demonstrate the superiority of ConcreTizer , we compare it with two
approaches: a traditional inversion attack method and a generative model-based approach. First,
we examine Point Regression (Mahendran & Vedaldi, 2015; Dosovitskiy & Brox, 2016a;b), a
conventional inversion attack method. In this approach, the goal is to directly recover the channel
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Figure 6: Restoration result on VoxelResBackbone with KITTI dataset. At the left, the last layer’s
restoration performance for three techniques is shown. At the right, average performance across the
KITTI dataset is presented. A bar graph depicts relative performance, and a table details raw values.

values. To improve the results, we additionally apply post-processing to remove points that fall
outside the defined point cloud range or cluster excessively near the origin. Next, we compare
ConcreTizer with a generative model-based approach. Inversion attacks using generative models
require conditional generation, where feature data serve as the condition. Among existing LiDAR
point cloud generation models, UltraLiDAR (Xiong et al., 2023) is the only one utilizing a voxel
representation similar to our feature extractor. To adapt UltraLiDAR for inversion, we modified its
encoder to accept voxel features as input.

Result Analysis. Table 1 presents the point scene restoration performance at different layer depths of
VoxelBackBone (Yan et al., 2018), while Figure 5 visualizes the corresponding restored point cloud
scenes. It is evident that ConcreTizer consistently demonstrates outstanding performance across all
cases in both the KITTI and Waymo datasets.

Traditional Point Regression methods prove ineffective for inversion attacks on 3D features. In
particular, many points cluster near the origin, and this phenomenon becomes more pronounced
at deeper layers. This limitation stems from the failure to account for the characteristics of 3D
sparse features. By leveraging conditional generation, UltraLiDAR can restore the overall scene in a
coarse-grained manner, showing less performance degradation in terms of the HD metric as layer
depth increases. This rough recovery can be attributed to the transformation of 3D sparse features
into 2D dense features, which aligns with the 2D VQ-VAE design. Since VoI dispersion is no longer
present in 2D dense features, UltraLiDAR achieves better stability. However, this conversion leads to
the loss of 3D sparse characteristics, resulting in less accurate restoration of fine details. In contrast,
ConcreTizer effectively suppresses VoI dispersion through DCS while preserving the sparse nature
of 3D features. Despite its simple design, it achieves more concrete restoration compared to the
generative model-based approach. At the deepest layer, ConcreTizer outperforms the generative
approach by 23.4% and 12.4% on KITTI, and by 21.1% and 4.5% on Waymo in terms of CD and F1
score, respectively.

Additionally, Figure 6 presents results for VoxelResBackbone (Lu et al., 2022). When analyzing the
representative results from the deepest layer, ConcreTizer exhibits the best performance in CD, F1
Score, and AP3D. A persistent limitation of UltraLiDAR is the lack of detailed shape in the inversion
attack result. Detailed experimental results, including those for VoxelResBackbone and the Waymo
dataset, are provided in the supplementary materials.

5.3 ATTACK PERFORMANCE IN THE CONTEXT OF 3D OBJECT DETECTION

To assess the effectiveness of inversion attack results in terms of privacy compromise, we measure
the 3D object detection accuracy using restored point cloud scenes with pre-trained object detection
models. Table 2 summarizes the benchmark results for the KITTI and Waymo datasets. Point
Regression fails to perform inversion attack, producing completely unusable results. UltraLiDAR
performs relatively well on KITTI but exhibited poor performance on Waymo, which has a broader
range and higher scene complexity. This suggests that while generative models can restore overall
scene, they struggle to capture detailed shape. In contrast, only ConcreTizer demonstrates consistent
performance across both datasets, achieving 75.5 to 87.0% and 62.6 to 75.7% of the detection
performance compared to the original scenes in KITTI and Waymo, respectively.
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Table 2: 3D object detection results with KITTI and Waymo datasets. The reported metric for the
KITTI dataset is Average Precision (AP) at hard difficulty, while for the Waymo dataset, Average
Precision weighted by Heading (APH) is reported at LEVEL2 difficulty.

Detection Model PointPillar PVRCNN VoxelRCNN PointRCNN

K
IT

T
I Original Data 76.11 78.82 78.78 78.25

Point Regression 0 0 0 0
UltraLiDAR 58.32 56.08 59.00 54.19
ConcreTizer 66.25 59.48 64.27 65.03

Detection Model PointPillar PVRCNN VoxelRCNN CenterPoint

W
ay

m
o Original Data 0.5604 0.6534 0.6554 0.6239

Point Regression 0 0 0 0
UltraLiDAR 0.2328 0.1602 0.2179 0.1944
ConcreTizer 0.4245 0.4369 0.4100 0.4107
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Figure 7: Ablation study on VoxelBackbone with KITTI dataset. At the left, the restoration
performance for three cases is shown. At the right, average performance across the KITTI dataset is
presented wih boxplot.

5.4 ABLATION STUDY: COMPONENT-WISE ANALYSIS

To understand the performance of ConcreTizer , we analyze the impact of each component. Figure 7
compares the performance of VOC (BCE loss), VOC, and ConcreTizer (VOC+DCS). Firstly, VOC
(BCE loss) shows that transitioning from regression to classification, which clarifies the meaning
of zero-padded voxels, enables restoration of 3D sparse data (6th layer result). However, BCE loss
struggles with significant label imbalance as layer depth increases. Comparing VOC (BCE loss)
with VOC highlights that SF loss helps alleviate the label imbalance issuet. Nonetheless, in VOC,
the restored points cluster in specific areas, leading to biased restoration (12th layer result). Only
ConcreTizer successfully restores points in a distribution closely matching the original data. This
success stems from DCS’s ability to effectively mitigate VoI dispersion, especially in deeper layers.

5.5 PARTITIONING POLICY IN DISPERSION-CONTROLLED SUPERVISION

We conduct experiments to identify the effective strategy for applying DCS in ConcreTizer , given a
specific 3D feature extractor. Restoration performance is evaluated on the KITTI dataset by varying
the number of DCS instances (i.e., the number of inversion blocks). In each case, partitioning is
applied at positions that aim to achieve an even division of the total number of layers. As shown
in Figure 8, applying 10 DCS instances results in significantly worse performance than not using
DCS at all (i.e., DCS 1). This is because the restoration error accumulates as it passes through
multiple inversion blocks. The best performance is achieved with 2, 3, or 4 DCS instances, where
each partitioned block contains at least one downsampling layer. This can be attributed to the
additional supervision effectively suppressing VoI dispersion that occurs during the downsampling
process. Therefore, to maximize the benefits of supervision, partitioning should be aligned with the
downsampling layers, where VoI dispersion manifests. Qualitative results for different DCS instances
and further discussion on the optimal DCS split position are provided in the supplementary materials.

5.6 TRADEOFF BETWEEN PRIVACY AND UTILITY

To analyze the trade-off between utility (3D object detection accuracy) and privacy protection
(restoration error), we examine various data perturbation techniques (Wang et al., 2024b; Li et al.,
2021; Wang et al., 2024a) as potential defense mechanisms against the ConcreTizer inversion attack.
We explored two types of perturbations: point cloud augmentations and Gaussian noise addition.
For point cloud augmentations, we apply random rotations, random scaling, and random sampling.
For Gaussian noise addition, we introduce noise at the feature data level with three region-specific
configurations: distributed noise, which is uniformly applied across all feature data regions; feature-
centric noise, which is applied only to VoI (regions containing information); and empty-centric noise,
which exclusively targeted empty regions.
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Figure 8: Effect of the number of DCS instances. DCS 1 is the end-to-end approach without
partitioning. DCS 2, 3, and 4 use downsampling-based partitioning. DCS 10 partitions at every layer.

Table 3: Effect of point cloud augmen-
tation. Measured: AP3D (detection ac-
curacy) of the SECOND model and CD
(restoration error) of ConcreTizer .

Rotation (◦) 0 1 2 3 4 5
AP 81.77 38.38 17.08 12.10 6.10 2.78
CD 0.0776 0.1142 0.1728 0.2310 0.2848 0.3344

Scaling (%) 0 2 4 6 8 10
AP 81.77 54.12 24.09 11.47 8.88 5.26
CD 0.0776 0.1468 0.2253 0.2780 0.3179 0.3516

Sampling (%) 100 25 20 15 10 5
AP 81.77 63.35 58.32 52.71 40.31 24.59
CD 0.0776 0.1368 0.1516 0.1717 0.2034 0.2789

Noise level (std.)

3. Noise (KITTI, Scene)

1

Original Points ConcreTizer Restoration from Features with Each Noise Attached 

(a) Distributed Noise (b) Feature-centric Noise (c) Empty-centric Noise

Figure 9: Effect of Gaussian noise. Measured: AP3D

(detection accuracy) of the SECOND model and CD
(restoration error) of ConcreTizer .

As shown in Table 3 and Figure 9, these perturbations effectively reduce the restoration capability
of the attack (defense) but also degrade object detection performance (target task), highlighting
the challenge of mitigating ConcreTizer attacks without significantly compromising system utility.
Notably, Figure 9 reveals that the sparse nature of 3D feature data causes noise to affect different
regions unevenly, emphasizing the importance of considering spatial characteristics when designing
future defense mechanisms. More visualization results are provided in the supplementary materials.

6 DISCUSSION: LIMITATIONS AND FUTURE DEFENSE STRATEGIES

Our inversion attack method demonstrates that 3D features are not inherently secure, as they can be
exploited to restore the original data. This restored data could reveal private information, including
personal identities, behavioral patterns, and location details, thereby posing a risk to the applications
of voxel-based 3D vision models. Since ConcreTizer assumes that the parameters of the feature
extractor are known, protecting model parameters can prevent such attacks. If sharing parameters is
unavoidable, defense can be achieved by sacrificing some utility (accuracy of the vision model), as
shown in Section 5.6. However, in accuracy-critical environments like autonomous driving, simple
defense techniques are likely to be inadequate. Future research should focus on developing defenses
that mitigate attacks while minimizing the impact on utility. Additionally, for latency-sensitive
systems, it is crucial that defenses do not impose significant computational overhead. Potential
strategies include Differential Privacy (DP) (Abadi et al., 2016), Adversarial Training (Liu et al.,
2019), and Feature Obfuscation (Zhang et al., 2022). The strengths and limitations of each technique
are discussed in the supplementary material.

7 CONCLUSION
This paper presents the first comprehensive study on model inversion for 3D point cloud restoration.
In the context of autonomous driving, we focus on the most dominant voxel-based feature extractors
and examine the challenges arising from their interaction with 3D point cloud characteristics. Based
on this, we introduce ConcreTizer , a simple yet effective inversion technique tailored for restoring
3D point data from features, which incorporates Voxel Occupancy Classification and Dispersion-
Controlled Supervision. Through rigorous evaluations using prominent open-source datasets such as
KITTI and Waymo, along with representative 3D feature extractors, we not only demonstrate the
superiority of ConcreTizer but also analyze each of its components in detail for valuable insights. Our
research reveals the vulnerability of 3D point cloud data to inversion attacks, emphasizing the urgent
need to devise extensive defense strategies. While this work focuses on voxel-based representations,
we see inversions attacks for more diverse representations of 3D data, such as point set and graph, as
valuable future work.
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