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Abstract
The general-utility Markov decision processes
(GUMDPs) framework generalizes the MDPs
framework by considering objective functions that
depend on the frequency of visitation of state-
action pairs induced by a given policy. In this
work, we contribute with the first analysis on the
impact of the number of trials, i.e., the number of
randomly sampled trajectories, in infinite-horizon
GUMDPs. We show that, as opposed to standard
MDPs, the number of trials plays a key-role in
infinite-horizon GUMDPs and the expected per-
formance of a given policy depends, in general, on
the number of trials. We consider both discounted
and average GUMDPs, where the objective func-
tion depends, respectively, on discounted and aver-
age frequencies of visitation of state-action pairs.
First, we study policy evaluation under discounted
GUMDPs, proving lower and upper bounds on
the mismatch between the finite and infinite trials
formulations for GUMDPs. Second, we address
average GUMDPs, studying how different classes
of GUMDPs impact the mismatch between the
finite and infinite trials formulations. Third, we
provide a set of empirical results to support our
claims, highlighting how the number of trajecto-
ries and the structure of the underlying GUMDP
influence policy evaluation.

1. Introduction
Markov decision processes (MDPs) (Puterman, 2014) pro-
vide a mathematical framework to study stochastic sequen-
tial decision-making. In MDPs, the agent aims to find a
mapping from states to actions such that some function of
the stream of rewards is maximized. The specification of
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the scalar reward function, which expresses the degree of
desirability of each state-action pair, allows the encoding
of different objectives. MDPs have found a wide range of
applications in different domains (White, 1988), such as
inventory management (Dvoretzky et al., 1952), optimal
stopping (Chow et al., 1971) or queueing control (Stidham,
1978). MDPs are also of key importance in the field of
reinforcement learning (RL) (Sutton & Barto, 2018) since
the agent-environment interaction is typically formalized
under the framework of MDPs. Recent years witnessed
significant progress in solving challenging problems across
various domains using RL (Mnih et al., 2015; Silver et al.,
2017; Lillicrap et al., 2016). Such results attest to the flexi-
bility of MDPs as a general framework to study sequential
decision-making under uncertainty.

However, there are relevant objectives that cannot be easily
specified within the framework of MDPs (Abel et al., 2022).
These include, for example, imitation learning (Hussein
et al., 2017; Osa et al., 2018), pure exploration problems
(Hazan et al., 2019), risk-averse RL (Garcı́a et al., 2015),
diverse skills discovery (Eysenbach et al., 2018; Achiam
et al., 2018) and constrained MDPs (Altman, 1999; Efroni
et al., 2020). Such objectives, including the scalar reward
objective of standard MDPs, can be formalized under the
framework of general utility Markov decision processes
(GUMDPs) (Zhang et al., 2020; Mutti et al., 2023). In
GUMDPs, the objective is, instead, encoded as a function of
the occupancy induced by a given policy, i.e., as a function
of the frequency of visitation of states (or state-action pairs)
induced when running the policy on the MDP. Recent works
have unified such objectives under the same framework
and proposed general algorithms to solve GUMDPs under
convex objective functions (Zhang et al., 2020; Zahavy et al.,
2021; Geist et al., 2022). Extensions to the case of unknown
dynamics are also provided by the aforementioned works.

Despite providing a more flexible framework with respect
to objective-specification in comparison to standard MDPs,
Mutti et al. (2023) show that finite-horizon GUMDPs im-
plicitly make an infinite trials assumption. In other words,
GUMDPs implicitly assume the performance of a given
policy is evaluated under an infinite number of episodes of
interaction with the environment. Since this assumption may
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be violated under many interesting application domains, the
authors introduce a modification of GUMDPs where the
objective function depends on the empirical state-action oc-
cupancy induced over a finite number of episodes. Under
the introduced finite trials formulation, the authors show that
the class of Markovian policies does not suffice, in general,
to achieve optimality and that non-Markovian policies may
need to be considered. Finally, the authors suggest that the
difference between finite and infinite trials fades away under
the infinite-horizon setting.

In this work, we contribute with the first analysis on the
impact of the number of trials in infinite-horizon GUMDPs.
We show that the number of trials plays a key role in infinite-
horizon GUMDPs, as opposed to what has been suggested
(Mutti et al., 2023). Such a finding is of interest and rele-
vance as: (i) the infinite-horizon setting is one of the most
prevalent settings in the planning/RL literature and has
found important applications in different domains where
the lifetime of the agent is uncertain or infinite; and (ii)
the assumption that the agent is evaluated under an infinite
number of trajectories is usually violated in relevant appli-
cation domains. We focus our attention on discounted and
average GUMDPs, where the objective function depends
on discounted and average occupancies, respectively. We
show, both theoretically and empirically, that the agent’s
performance may depend on the number of infinite-length
trajectories drawn to evaluate its performance, but also on
the structure of the underlying GUMDP. Our analysis fun-
damentally differs, from a technical point of view, from
that in Mutti et al. (2023) where the authors consider the
finite-horizon case; this is because discounted and average
occupancies are inherently different than occupancies in-
duced under the finite-horizon setting.

2. Background
Infinite-horizon MDPs (Puterman, 2014) provide a math-
ematical framework to study sequential decision making
and are formally defined as a tuple M = (S,A, p, p0, r)
where: S is the discrete finite state space; A is the discrete
finite action space; p : S × A → ∆(S) is the transition
probability function with ∆(S) being the set of distribu-
tions over S, p0 ∈ ∆(S) is the initial state distribution;
and r : S × A → R is the bounded reward function. The
interaction protocol is: (i) an initial state S0 is sampled
from p0; (ii) at each step t, the agent observes the state of
the environment St ∈ S and chooses an action At ∈ A.
The environment evolves to state St+1 ∈ S with proba-
bility p(·|St, At), and the agent receives a reward Rt with
expectation given by r(St, At); (iii) the interaction repeats
infinitely.

A decision rule πt specifies the procedure for action selec-
tion at each timestep t. A stochastic Markovian decision

rule maps the current state to a distribution over actions, i.e.,
πt : S → ∆(A). In the case of deterministic Markovian de-
cision rules πt : S → A instead. A policy π = {π0, π1, . . .}
is a sequence of decision rules, one for each timestep. If,
for all timesteps, the decision rules are deterministic or
stochastic, we say the policy is deterministic or stochastic,
respectively. We denote the class of Markovian policies with
ΠM and the class of Markovian deterministic policies with
ΠD

M. A policy is stationary if it consists of the same decision
rule for all timesteps. We denote with ΠS the set of station-
ary policies and with ΠD

S the set of stationary deterministic
policies. We highlight that ΠS ⊂ ΠM and ΠD

S ⊂ ΠD
M.

For a given policy π, the interaction between the agent
and the environment gives rise to a random process T =
(S0, A0, S1, A1, . . .) ∈ (S ×A)N, where the probability of
trajectory τ = (s0, a0, s1, a1, . . .) is given by ζπ(τ). In the
case of π ∈ ΠS, we denote with Pπ the |S| × |S| matrix
with elements Pπ(s, s′) = EA∼π(·|s) [p(s

′|s,A)].

The infinite-horizon discounted setting The discounted
state-action occupancy under policy π is

dγ,π(s, a) = (1− γ)

∞∑
t=0

γtPπ,p0
(St = s,At = a), (1)

where γ ∈ [0, 1) is the discount factor and Pπ,p0
(St =

s,At = a) denotes the probability of state-action
pair (s, a) at timestep t when following policy π and
S0 ∼ p0. The expected discounted cumulative re-
ward of policy π can be written as ⟨dγ,π,−r⟩1 where
dγ,π = [dγ,π(s0, a0), . . . , dγ,π(s|S|, a|A|)] and r =
[r(s0, a0), . . . , r(s|S|, a|A|)]. We aim to find

π∗ = argmin
π∈ΠS

⟨dγ,π,−r⟩.

The infinite-horizon average setting The average state-
action occupancy under policy π is

davg,π(s, a) = lim
H→∞

1

H

H−1∑
t=0

Pπ,p0
(St = s,At = a). (2)

The expected average reward of policy π can
be written as ⟨davg,π,−r⟩, where davg,π =
[davg,π(s0, a0), . . . , davg,π(s|S|, a|A|)]. The analysis
of the average reward setting depends on the structure of
the Markov chains induced by conditioning the MDP on
different policies. We say that an MDP is (Puterman, 2014;
Altman, 1999):

• unichain if, for every π ∈ ΠD
S , the Markov chain with

transition matrix Pπ contains a single recurrent class

1⟨a, b⟩ denotes the dot product between vectors a and b.
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Figure 1: Illustrative GUMDPs (Mf,1 and Mf,2 are adapted from Mutti et al., 2023). All GUMDPs have deterministic
transitions. The objective for Mf,1 is f(d) = ⟨d, log(d)⟩ (entropy maximization), for Mf,2 is f(d) = KL(d|dβ) where β
is a fixed policy (imitation learning), and for Mf,3 is f(d) = d⊤Ad where A is positive-definite (quadratic minimization).

plus a possibly empty set of transient states. A recur-
rent class is an irreducible class where all states are
recurrent. An irreducible class is a set of states such
that every state is reachable from any other state in the
set. A state is recurrent if the probability of returning
to it in the future is one and transient if the probability
is less than one. In a finite-state Markov chain, all
irreducible classes are recurrent.

• multichain if the MDP is not unichain.

Under both unichain and multichain MDPs we aim to find

π∗ = argmin
π∈ΠS

⟨davg,π,−r⟩.

2.1. General-utility Markov decision processes

The framework of GUMDPs generalizes utility-specification
by allowing the objective of the agent to be written in terms
of the frequency of visitation of state-action pairs. This
is in contrast to the standard MDPs framework, where the
objective of the agent is encoded by the reward function.

We define an infinite-horizon GUMDP as a tuple Mf =
(S,A, p, p0, f) where S , A, p, and p0 are defined in a simi-
lar way to the standard MDP formulation. The objective of
the agent is encoded by f : ∆(S×A) → R, as a function of
a state-action occupancy d. Similar to the case of standard
MDPs, d can correspond to: (i) a discounted state-action oc-
cupancy dγ , as defined in (1), in the case of infinite-horizon
discounted GUMDPs; or (ii) an average state-action occu-
pancy davg, as defined in (2), in the case of infinite-horizon
average GUMDPs. The objective is then to find

π∗ ∈ argmin
π∈Π

f(dπ), (3)

where: (i) dπ can either correspond to a discounted or av-
erage state-action occupancy depending on the considered
setting; and (ii) Π = ΠM

2 in the case of average multichain
GUMDPs and Π = ΠS in the case of discounted GUMDPs

2Since f can be non-linear it may happen that a stationary
policy does not attain the minimum of f and, hence, we need to
consider the case where π ∈ ΠM (Puterman, 2014, p. 402).

(Altman, 1999, Theo. 3.2.) and average unichain GUMDPs
(Puterman, 2014, Theo. 8.9.4). When f is linear, we are
under the standard MDP setting; if f is convex, we are under
the convex MDP setting (Zahavy et al., 2021). Finally, it
is known that the optimal policy may not be deterministic
(Hazan et al., 2019; Zahavy et al., 2021).

Illustrative GUMDPs Throughout this paper, we make
use of the GUMDPs depicted in Fig. 1, which are represen-
tative of three common tasks in the convex RL literature.

3. From Expected to Empirical
Objectives for GUMDPs
In this section, we introduce multiple objectives for
GUMDPs. As opposed to the objective in (3), which de-
pends on the expected discounted or average state-action
occupancy dπ, the objectives herein introduced depend on
the empirical discounted or average state-action occupancy.

We start by considering that the agent interacts with its
environment over multiple trials, i.e., multiple trajecto-
ries/episodes. We denote by K the number of trials. We
assume the K trials are independently sampled. As it is gen-
erally clear from the context to understand whether we are
referring to discounted or average empirical occupancies,
we use d̂ to denote both types of empirical occupancies.

3.1. Empirical state-action occupancies

Discounted state-action occupancies We introduce
d̂TK

, which denotes the empirical discounted state-
action occupancy induced by a set of K trajec-
tories TK = {T1, . . . , TK}, where each Tk =
(Sk,0, Ak,0, Sk,1, Ak,1, . . .), defined as

d̂TK
(s, a) =

1

K

K∑
k=1

(1− γ)

∞∑
t=0

γt1(Sk,t = s,Ak,t = a),

(4)
where 1 is the indicator function. In practice, it is common
to truncate the trajectories of interaction between the agent
and its environment. We denote by H ∈ N the length at
which the trajectories are truncated, i.e. the length of the
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sampled trajectories. We then introduce a truncated version
of estimator d̂TK

, which we denote d̂TK ,H , defined as

d̂TK ,H(s, a) =
1

K

K∑
k=1

1− γ

1− γH

H−1∑
t=0

γt1(Sk,t = s,Ak,t = a).

(5)

Average state-action occupancies In the case of average
state-action occupancies, we define

d̂TK
(s, a) =

1

K

K∑
k=1

lim
H→∞

1

H

H−1∑
t=0

1(Sk,t = s,Ak,t = a).

(6)
We emphasize that the estimator above d̂TK

always consid-
ers infinite-length trajectories.

3.2. Infinite and finite trials objectives for GUMDPs

We now introduce multiple objectives for GUMDPs that
are functions of empirical discounted/average state-action
occupancies. Below, in the case of a discounted GUMDP,
d̂TK

corresponds to an empirical discounted occupancy and
dπ = dγ,π. For average GUMPDs, d̂TK

is an empirical
average occupancy and dπ = davg,π .

The finite trials discounted/average objective, fK , is

min
π

fK(π) = min
π

ETK

[
f(d̂TK

)
]
,

where Tk ∼ ζπ for each Tk ∈ TK . The infinite trials
discounted/average objective, f∞, is

min
π

f∞(π) = min
π

f(dπ) = min
π

f
(
ETK

[
d̂TK

])
,

where Tk ∼ ζπ for each Tk ∈ TK . We note that f∞, un-
der both discounted and average occupancies, is equivalent
to the objective introduced in (3). Precisely, we call the
objective above the infinite trials objective because, assum-
ing f is continuous, limK→∞ f(d̂TK

) = f(dπ) = f∞(π).
The finite trials truncated objective, fK,H , which we only
consider under discounted occupancies, is

min
π

fK,H(π) = min
π

ETK

[
f(d̂TK ,H)

]
,

where Tk ∼ ζπ for each Tk ∈ TK . We note that the finite
trials truncated objective is more general than the finite trials
objective. In particular, fK,H = fK as H → ∞.

Why there may be a mismatch between the infinite and
finite trials objectives? When f is linear, we make the
following remark.
Remark 3.1. If f is linear, for both discounted and average
occupancies, we have that f∞(π) = fK(π), for any K ∈ N.

Proof. Under both discounted and average occupancies d̂,
for any K ∈ N, it holds that

f∞(π) = ⟨dπ, b⟩ = ⟨ETK

[
d̂TK

]
, b⟩

= ETK

[
⟨d̂TK

, b⟩
]
= fK(π),

due to the linearity of the expectation.

Thus, all objectives are equivalent. Intuitively, the perfor-
mance of a given policy is, in expectation, the same inde-
pendently of the number of trajectories drawn to evaluate
its performance.

However, assume that the objective function f is convex,
possibly non-linear. We make the following remark.
Remark 3.2. If f is convex, for both discounted and average
occupancies, we have that f∞(π) ≤ fK(π), for any K ∈ N.

Proof. Under both discounted and average occupancies, for
any K ∈ N and convex f , it holds that

f∞(π) = f(dπ) = f
(
ETK∼ζπ

[
d̂TK

])
≤ ETK∼ζπ

[
f
(
d̂TK

)]
= fK(π),

where the inequality follows from Jensen’s inequality.

As a consequence, the theorem above suggests that, in gen-
eral, there may be a mismatch between the finite and infinite
trials formulations for GUMDPs. In the next section we
show that, indeed, fK(π) ̸= f∞(π) in general and further
investigate the impact of the number of trajectories in the
mismatch between the infinite and finite trials formulations
under both discounted and average occupancies.

4. Policy Evaluation in the Finite Trials
Regime

In this section, we investigate the mismatch between the
different GUMDP objectives introduced in the previous
section, while evaluating the performance of a fixed policy.
We consider convex objective functions. First, we focus
our attention on the discounted setting and show that, in
general, fK(π) ̸= f∞(π), for fixed π ∈ ΠS. Furthermore,
we provide a lower bound on the mismatch between fK(π)
and f∞(π), as well as an upper probability bound on the
absolute distance between f(d̂TK ,H) and f∞(π). Second,
we study policy evaluation under GUMDPs with average
occupancies. We investigate the mismatch between fK(π)
and f∞(π) for different classes of GUMDPs, also proving
a lower bound on the mismatch between fK(π) and f∞(π).
Finally, we provide a set of empirical results to support our
theoretical claims.
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4.1. The infinite-horizon discounted setting

We first consider the discounted setting. Thus, let dπ = dγ,π ,
as defined in (1). Also, we consider estimators d̂TK

and
d̂TK ,H as defined in (4) and (5) respectively. We prove the
following result.
Theorem 4.1. Under the discounted setting, it does not
always hold that fK(π) = f∞(π) for arbitrary π ∈ ΠS.

Proof. We prove the theorem by providing a GUMDP in-
stance where fK(π) ̸= f∞(π). We consider the GUMDP
Mf,3 (Fig. 1c). For simplicity, we let f and the occupancies
depend only on the states. Hence, d = [d(s0), d(s1), d(s2)].
We let f(d) = d⊤Ad, where A is the identity matrix
(hence, f is a strictly convex function). It holds that
dπ = [(1− γ), γπ(a0|s0), γπ(a1|s0)]. On the other hand,
let K = 1. It holds that, with probability π(a0|s0), the
trajectory gets absorbed into s1 and τ = (s0, s1, s1, . . .),
yielding d̂τ = [(1 − γ), γ, 0]. With probability π(a1|s0)
the trajectory gets absorbed into s2 and τ = (s0, s2, s2, . . .),
yielding d̂τ = [(1− γ), 0, γ]. Let p = π(a0|s0) and note
that π(a1|s0) = 1 − p. For any non-deterministic policy,
i.e., p ∈ (0, 1), it holds that

f∞(π) = f(dπ)

= f(p[(1− γ), γ, 0] + (1− p)[(1− γ), 0, γ])

< pf([(1− γ), γ, 0]) + (1− p)f([(1− γ), 0, γ])

= fK=1(π),

where the inequality holds since f is strictly convex.

As stated in the theorem above, under the discounted setting,
fK(π) ̸= f∞(π) in general. Thus, we further analyze the
impact of the number of trials, K, on the deviation between
fK(π) and f∞(π). To derive the result below, we assume f
is c-strongly convex, i.e., it exists c > 0 such that f(d1) ≥
f(d2)+∇f(d2)

⊤(d1−d2)+
c
2 ∥d1 − d2∥22 , for any d1, d2

belonging to the domain of f . We note that the objective
functions of all GUMDPs in Fig. 1 are c-strongly convex
(proof in appendix). We state the following result (full proof
in appendix).
Theorem 4.2. Let Mf be a discounted GUMDP with c-
strongly convex f and K ∈ N be the number of sampled
trajectories. Then, for any policy π ∈ ΠS it holds that

fK(π)− f∞(π) ≥ c

2K

∑
s∈S
a∈A

Var
T∼ζπ

[
d̂T (s, a)

]

=
c(1− γ)2

2K

∑
s∈S
a∈A

Var
T∼ζπ

[
Jγ,π
rs,a

]
,

where Jγ,π
rs,a =

∑∞
t=0 γ

trs,a(St, At) is the discounted return
for the MDP with reward function rs,a(s

′, a′) = 1 if s′ = s
and a′ = a, and zero otherwise.

Proof sketch. From the strongly convex assumption it holds,
for a random vector X , that

E[f(X)] ≥ f(E[X]) +
c

2
E
[
∥X − E[X]∥22

]
.

Using the inequality above, it holds that

fK(π)− f∞(π) = ETK

[
f(d̂TK

)
]
− f

(
ETK

[
d̂TK

])
≥ c

2
ETK

[∥∥∥d̂TK
− dπ

∥∥∥2
2

]
(a)
=

c

2

∑
s∈S,a∈A

VarTK

[
1

K

K∑
k=1

d̂Tk
(s, a)

]

=
c

2K

∑
s∈S,a∈A

VarT∼ζπ

[
d̂T (s, a)

]
,

where (a) follows from simplifying the previous expression
and substituting d̂TK

(s, a) = 1
K

∑K
k=1 d̂Tk

(s, a) where
d̂Tk

(s, a) = (1 − γ)
∑∞

t=0 γ
t1(Sk,t = s,Ak,t = a). The

result follows since d̂T (s, a) is equivalent to the discounted
return in an MDP with an indicator reward function.

As stated in the theorem above, the difference between
fK(π) and f∞(π) can be lower bounded by the sum of
the variances of the discounted returns for the MDPs with
reward functions rs,a, as defined above. We refer to Ben-
ito (1982); Sobel (1982); Sitař (2006) for an expression to
calculate the variance of discounted returns in MDPs. We
highlight the 1/K dependence on the number of trajectories.
Therefore, the result above shows that, for a low number
of trajectories, the mismatch between the objectives can be
significant, linearly decaying as K increases.

Finally, we provide a probability bound on the absolute
deviation between f(d̂TK

) and f∞(π), for fixed π ∈ ΠS. To
derive our result, we assume f is L-Lipschitz, i.e., |f(d1)−
f(d2)| ≤ L∥d1 − d2∥1, for any d1, d2 belonging to the
domain of f . We prove the following result (full proof in
Appendix).

Theorem 4.3. Let Mf be a discounted GUMDP with con-
vex and L-Lipschitz f , K ∈ N be the number of sampled
trajectories, each with length H ∈ N. Then, for any policy
π and δ ∈ (0, 1] it holds with probability at least 1− δ

|f∞(π)−f(d̂TK ,H)| ≤ L

(√
2|S||A| log(2H/δ)

K
+ 2γH

)
.

Proof sketch. Via the application of successive inequalities,
it can be shown that, for any π,

|f∞(π)− f(d̂TK ,H)| ≤

L

(
max

t∈{0,...,H−1}

∥∥∥d̂K,t − dπ,t

∥∥∥
1
+ 2γH

)
. (7)
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Using a union bound and the fact that
P
(∥∥∥dπ,t − d̂K,t

∥∥∥ > ϵ′
)

≤ 2 exp
(
− 1

2|S||A|K(ϵ′)2
)

(Efroni et al., 2020, Lemma 16) we have that, with
probability at least 1− δ,

max
t∈{0,...,H−1}

∥∥∥d̂K,t − dπ,t

∥∥∥
1
≤
√

2|S||A| log(2H/δ)

K
.

Substituting the result above in (7) yields our result.

As shown above, for fixed H ∈ N, the bound becomes
arbitrarily tight up to a factor of 2LγH as we increase the
number of sampled trajectories K; factor 2LγH is due to
the bias of our estimator, which exponentially vanishes as H
increases. However, the bound highlights a 1/

√
K depen-

dence on K, suggesting that for low K values the mismatch
between f∞(π) and f(d̂TK ,H) can become significant. Fi-
nally, the upper bound does not get tighter as H increases,
for fixed K ∈ N.

In summary, our results under the discounted setting show
that, indeed, a mismatch between fK and f∞ exists, as
showcased in Theo. 4.1, where we provided a GUMDP un-
der which fK ̸= f∞, and in Theo. 4.2, where we proved
a lower bound on the deviation between fK and f∞. Fi-
nally, Theo. 4.3 further analyses how f(d̂TK ,H) concen-
trates around f∞(π) depending on the number of trajecto-
ries K, as well as the length of each trajectory H .

4.2. The infinite-horizon average setting

We now study the mismatch between the infinite and finite
trials formulations of GUMDPs under the case of average
occupancies. Hence, we consider estimator d̂TK

as defined
in (6) and dπ = davg,π. We always consider infinite-length
trajectories. We investigate which properties of the GUMDP
contribute to the mismatch between infinite and finite trials.

We start by focusing our attention on unichain GUMDPs,
i.e., GUMDPs such that, for all π ∈ ΠD

S , the Markov chain
with transition matrix Pπ has at most one recurrent class
plus a possibly empty set of transient states. To prove the
next result (full proof in appendix), we assume f is contin-
uous and bounded in its domain. All objective functions
in Fig. 1 are continuous and bounded, however, for the
case of the KL-divergence in Mf,2 we need to ensure dβ is
lower-bounded to meet our assumptions.

Theorem 4.4. If the average GUMDP Mf is unichain and
f is bounded and continuous in its domain, then fK(π) =
f∞(π) for any π ∈ ΠS.

Proof sketch. Consider the case where the occupancies are
only state-dependent. For any π ∈ ΠS, in a unichain
GUMDP, the Markov chain with transition matrix Pπ and
initial distribution p0 has a unique stationary distribution

µπ ∈ ∆(S). Let ZH,k be the random vector with compo-
nents ZH,k(s) =

1
H

∑H−1
t=0 1(Sk,t = s). It holds that,

fK(π) = ETK

[
f

(
1

K

K∑
k=1

lim
H→∞

ZH,k

)]
(a)
= f(µπ) = f∞(π),

where (a) holds because: (i) from the Ergodic theorem for
Markov chains (Levin et al., 2006), ZH,k → µπ almost
surely ∀k ∈ {1, . . . ,K}; (ii) since f is continuous, it also
holds that f( 1

K

∑K
k=1 ZH,k) → f(µπ) almost surely; and

(iii) from (ii) and the fact that f is bounded, the bounded
convergence theorem (Durrett, 2019, Theo. 1.6.7.) allows
to simplify the expectation. We then generalize the result
for the case of state-action dependent occupancies by con-
sidering a Markov chain defined over S ×A.

The result above states that, under unichain GUMDPs with
continuous and bounded f , all objectives are equivalent.
We now address the case of multichain GUMDPs, i.e.,
GUMDPs that are not unichain and, therefore, the Markov
chain Pπ contains two or more recurrent classes.

Theorem 4.5. If the average GUMDP Mf is multichain,
then it does not always hold that fK(π) = f∞(π) for arbi-
trary π ∈ ΠM.

Proof. We prove the theorem above by providing a GUMDP
instance where fK(π) ̸= f∞(π). We consider the GUMDP
Mf,3 (Fig. 1c), which is multichain. For simplicity, we
let f and the occupancies depend only on the states. Thus,
d = [d(s0), d(s1), d(s2)]. We let f(d) = d⊤Ad, where A
is the identity matrix (hence, f is a strictly convex function).
It holds that dπ = [0, π(a0|s0), π(a1|s0)]. On the other
hand, let K = 1. With probability π(a0|s0), the trajectory
gets absorbed into s1 and τ = (s0, s1, s1, . . .), yielding
d̂τ = [0, 1, 0]. With probability π(a1|s0) the trajectory
gets absorbed into s2 and τ = (s0, s2, s2, . . .), yielding
d̂τ = [0, 0, 1]. Let p = π(a0|s0) and note that π(a1|s0) =
1− p. For any non-deterministic policy, i.e., p ∈ (0, 1), it
holds that

f∞(π) = f(dπ) = f([0, p, (1− p)])

= f(p[0, 1, 0] + (1− p)[0, 0, 1])

< pf([0, 1, 0]) + (1− p)f([0, 0, 1]) = fK=1(π),

where the inequality holds since f is strictly convex.

The result above shows that, under multichain GUMDPs,
fK(π) ̸= f∞(π) in general. The intuition is that each
trajectory eventually gets absorbed into one of the recurrent
classes and, therefore, multiple trajectories may be required
so that d̂TK

≈ dπ and, hence, f(d̂TK
) ≈ f(dπ). Therefore,

6
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we now further investigate the mismatch between the finite
and infinite objectives by proving a lower bound on the
deviation between fK(π) and f∞(π) while assuming f is
c-strongly convex (full proof in appendix).

Theorem 4.6. Let Mf be an average GUMDP with c-
strongly convex f and K ∈ N be the number of sampled
trajectories. Consider also the Markov chain with state-
space S , transition matrix Pπ and initial states distribution
p0. Let R be set of all recurrent states of the Markov chain
and R1, . . . ,RL the sets of recurrent classes, each associ-
ated with stationary distribution µl. Then, for any policy
π ∈ ΠS, it holds that

fK(π)− f∞(π) ≥
c

2K

L∑
l=1

VarB∼Ber(αl) [B]
∑
s∈Rl

∑
a∈A

π(a|s)2µl(s)
2,

where B ∼ Ber (p) denotes that B is distributed according
to a Bernoulli distribution such that P(B = 1) = p and

αl = lim
t→∞

P(St ∈ Rl|S0 ∼ p0)

is the probability of absorption to Rl when S0 ∼ p0.

Proof sketch. Let d̂T (s, a) = limH→∞ ZH(s, a) where
ZH(s, a) = 1

H

∑H−1
t=0 1(St = s,At = a). Under a multi-

chain GUMDP, ZH(s, a) → Ysπ(a|s) almost surely where
Ys is a random variable such that: (i) if s is transient,
P(Ys = 0) = 1; and (ii) if s is recurrent, Ys = µl(s)(s)
with probability αl(s) and Ys = 0 with probability 1−αl(s),
where l(s) denotes the index of the recurrent class to which
state s belongs. Then,

fK(π)− f∞(π) = ETK

[
f(d̂TK

)
]
− f

(
ETK

[
d̂TK

])
(a)
≥ c

2
ETK

[∥∥∥d̂TK
− dπ

∥∥∥2
2

]
=

c

2K

∑
s∈S,a∈A

VarT∼ζπ

[
d̂T (s, a)

]
(b)
=

c

2K

∑
s∈S,a∈A

π(a|s)2Var [Ys]

(c)
=

c

2K

L∑
l=1

VarB∼Ber(αl) [B]
∑
s∈Rl
a∈A

π(a|s)2µl(s)
2

where: (a) follows from the c-strongly convex assumption;
in (b) we used the fact that ZH(s, a) → Ysπ(a|s) almost
surely and the bounded convergence theorem (Durrett, 2019,
Theo. 1.6.7.) to simplify the variance term; and (c) follows
from rewriting Ys using a Bernoulli random variable, noting
that Var (Ys) = 0 for transient states, and simplifying the
resulting expression.
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Figure 2: Empirical study of f(d̂TK ,H) for different K, H
and γ values under Mf,1.

Intuitively, the result above shows that the gap between
fK(π) and f∞(π) can be lower bounded by a weighted sum
of the variances of the probabilities of getting absorbed into
each of the recurrent classes. Thus, we expect the gap to
exist whenever the sampled trajectories can get absorbed
into different recurrent classes. Also, we highlight the 1/K
dependence on the number of sampled trajectories. Finally,
we note that, in the case of unichain GUMDPs, since the
unique recurrent class is reached with probability one, the
lower bound above equals zero, agreeing with Theo. 4.4.

4.3. Empirical results

We now empirically assess the impact of different param-
eters in the mismatch between fK,H(π) and f∞(π) for
arbitrary fixed π. Under the discounted setting, we con-
sider d̂TK ,H as defined in (5). We also use d̂TK ,H to study
the average setting by letting H → ∞ and γ → 1, since
limH→∞ limγ→1 (5) = (6). We consider the GUMDPs de-
picted in Fig. 1. Under Mf,1, π(left|s0) = π(right|s0) =
0.5, and π(right|s1) = π(left|s2) = 1; for Mf,2 and Mf,3,
π is uniformly random. We consider 100 random seeds and
report 95% bootstrapped confidence intervals (shaded areas
in plots). Complete experimental results are in the appendix.
The code used can be found in the following repository.

Discounted setting (γ < 1) In Fig. 2, a set of plots dis-
plays the average finite trials objective function, f(d̂TK ,H),
in comparison to the infinite trials objective f(dπ), under
GUMDP Mf,1. As can be seen, the results highlight that
f(d̂TK ,H) can significantly differ from f(dπ). Also, for the
displayed γ values, both the trajectories’ length H and the
number of trajectories K need to be sufficiently high for the
mismatch between f(d̂TK ,H) and f(dπ) to fade away. This
is suggested by Theo. 4.3 since both K and H contribute to
the tightness of the upper bound. We display the results for
estimator d̂TK ,H under all GUMDPs in the appendix.

In Fig. 3a, we display a set of plots comparing f(d̂TK ,H=∞)
and f(dπ) for the different GUMDPs, under infinite-length
trajectories. As can be seen when γ < 1, even for H =
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(a) Standard transition matrices.
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(b) Noisy transition matrices.
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Figure 3: Empirical study of f(d̂TK ,H=∞) for different K and γ values, with H = ∞.

∞, f(d̂TK ,H=∞) can significantly differ from f(dπ) if the
number of sampled trajectories is low. Such results support
the fact that K plays a key role in regulating the mismatch
between the different objectives for discounted GUMDPs
and are in line with our theoretical analysis.

Average setting (γ → 1, H → ∞) As can be seen in
Fig. 3a, under Mf,1 and Mf,2, we have that the difference
between f(d̂TK ,H=∞) and f(dπ) fades away when γ → 1.
However, this is not the case for Mf,3. Under Mf,1 and
Mf,2, we obtain such results because, given the choice of
policies, the induced Markov chains have a single recurrent
class. Hence, since there exists a unique stationary distri-
bution, d̂TK ,H=∞ converges to dπ irrespective of K and
the different objectives become equivalent. However, under
Mf,3 and for the chosen policy, the induced Markov chain
has two recurrent classes and, hence, there exist multiple sta-
tionary distributions. Thus, a low number of trajectories (K
value) does not suffice to evaluate the non-linear objective.

Our results are in line with the theoretical results from the
previous section. We note that all GUMDPs in Fig. 1 are
multichain. Hence, from Theo. 4.5, it not always holds that
f(d̂TK ,H=∞) = f(dπ) in general. Our results for Mf,3

exemplify that such a mismatch can occur. Naturally, be-
ing multichain does not imply that f(d̂TK ,H=∞) ̸= f(dπ)
for: (i) all policies; or (ii) any policy. For (i), take our re-
sults under Mf,1 as an example. For (ii), consider Mf,2.
For all policies except π(left|s1) = 1 (zero otherwise) and
π(right|s2) = 1 (zero otherwise), the induced Markov chain
has a single recurrent class and, hence, f(d̂TK ,H=∞) =
f(dπ). However, under the policy just described, even
though the induced Markov chain has two recurrent classes,
one of them is unreachable given the distribution of initial
states and, hence, it also holds that f(d̂TK ,H=∞) = f(dπ).
Thus, for Mf,2, the different objectives are equivalent for
all policies.

Average setting (γ → 1, H → ∞) with noisy transitions
We consider the GUMDPs in Fig. 1, but add a small amount

of noise to the transition matrices so that there is a non-zero
probability of transitioning to any other arbitrary state. All
GUMDPs now become unichain. In Fig. 3b, we display the
results obtained for different γ values with trajectories of
infinite length. As can be seen, for the discounted setting
(γ < 1), it continues to exist a mismatch between the objec-
tives. However, under the average setting (γ → 1), the gap
between the objectives fades away for all GUMDPs. Such
results are in line with Theo. 4.4, where we showed that the
different objectives are equivalent for unichain GUMDPs.

5. Related Work
To the authors’ knowledge, Derman (1970, Chap. 7) was
the first to highlight the mismatch between objectives that
depend on empirical average occupancies in comparison
to objectives that depend on expected average occupancies.
The author notes that minimizing an objective function that
depends on empirical average occupancies is distinct from
minimizing an objective function that depends on expected
average occupancies. However, the author does not provide
concrete examples of this mismatch, nor characterizes the
mismatch depending on different properties of the underly-
ing GUMDP and the number of sampled trajectories.

Other works consider the case of empirical occupancies
instead of expected occupancies. As an example, Ross &
Varadarajan (1989; 1987; 1991); Haviv (1996) study aver-
age MDPs with sample-path constraints where the empirical
cost induced by a trajectory needs to be below a certain
threshold with probability one. Other works further char-
acterize the convergence of empirical average occupancies
in MDPs (Altman & Zeitouni, 1994; Mannor & Tsitsiklis,
2005; Tracol, 2009).

More recently, Mutti et al. (2023) show that finite-horizon
GUMDPs implicitly make an infinite trials assumption, i.e.,
finite-horizon GUMDPs implicitly assume the performance
of a given policy is evaluated under an infinite number of
episodes of interaction with the environment. The authors
introduce a modification of GUMDPs where the objective

8
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Table 1: Are the infinite and finite trials formulations equivalent? (✓= yes, ✗= no)

Discounted setting Average setting

Objective function (f ) Unichain Multichain

Linear ✓ [Remark 3.1] ✓ [Remark 3.1] ✓ [Remark 3.1]

Non-linear ✗ [Theo. 4.1] ✓ [Theo. 4.4] ✗ [Theo. 4.5]

function depends on the empirical state-action occupancy
induced over a finite number of episodes. Under the intro-
duced finite trials formulation, the authors show that the
class of Markovian policies does not suffice, in general, to
achieve optimality and that non-Markovian policies may
need to be considered.

In our work, we extend the work developed by (Mutti et al.,
2023) by considering the infinite-horizon setting. We start
by showing that, under the infinite-horizon, there still exists,
in general, a mismatch between the finite trials objective
and the infinite trials objective. After establishing the exis-
tence of the mismatch for both the discounted and average
settings, we further provide upper and lower bounds that
allow to better understand how such a mismatch depends
on the number of sampled trajectories. We also elaborate
on how our bounds and the mismatch between the finite
and infinite trials formulations depend on certain properties
of the underlying GUMDP. We are the first work to pro-
vide lower bounds on the mismatch between the finite and
infinite trials objectives, as Mutti et al. (2023) only prove
upper bounds in the context of policy optimization. Also,
while Mutti et al. (2023) show that, in general, there exists a
mismatch between the finite and infinite trials formulations
under finite-horizon settings, our Theo. 4.4 states that under
certain conditions (the GUMDP being unichain), there ex-
ists no mismatch. Hence, the nature of our results and those
in Mutti et al. (2023) greatly differ.

6. Conclusion
In this work, we provided clear evidence, both theoretically
and empirically, that the number of trials matters in infinite-
horizon GUMDPs. First, under the discounted setting, we
showed that a mismatch between the finite and infinite trials
formulations exists in general. We also provided upper and
lower bounds to quantify such mismatch as a function of the
number of sampled trajectories. Second, under the average
setting, we showed how the structure of the underlying
GUMDP influences the mismatch between the finite and
infinite trials formulations: (i) for unichain GUMDPs, the
infinite and finite trials formulations are equivalent; and (ii)
for multichain GUMDPs there is, in general, a mismatch
between the different objectives. Finally, we provided a set
of empirical results to support our theoretical claims. We

summarize our results in Table 1.

While we focused on the case of policy evaluation, we
expect the mismatch between the finite and infinite trials
to also impact policy optimization. For example, under a
generalized policy iteration scheme (Sutton & Barto, 2018),
we expect the mismatch between the infinite and finite trials
formulations at the policy evaluation stages to impact the
resulting optimal policies. Future work should study policy
optimization in the finite trials regime.
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A. Empirical State-Action Occupancies
Given a random trajectory T = (S0, A0, S1, A1, . . .), we note that

Pπ(St = s,At = a|S0 ∼ p0) = ET∼ζπ [1(St = s,At = a)] =
∑
τ

ζπ(τ)1(st = s, at = a),

where ζπ(τ) denotes the probability of trajectory τ = (s0, a0, s1, a1, . . .) under policy π.

A.1. Discounted occupancies

Given a random trajectory T = (S0, A0, S1, A1, . . .), consider the estimator d̂T (s, a) defined as

d̂T (s, a) = (1− γ)

∞∑
t=0

γt1(St = s,At = a). (8)

It holds that, for all s ∈ S and a ∈ A,

ET∼ζπ

[
d̂T (s, a)

]
= ET∼ζπ

[
(1− γ)

∞∑
t=0

γt1(St = s,At = a)

]

= (1− γ)
∑
τ

ζπ(τ)

∞∑
t=0

γt1(st = s, at = a)

= (1− γ)

∞∑
t=0

γt
∑
τ

ζπ(τ)1(st = s, at = a)

= (1− γ)

∞∑
t=0

γtPπ(St = s,At = a|s0 ∼ p0)

= dπ(s, a),

i.e., d̂T is an unbiased estimator for dπ . Given a set of K random trajectories TK = {T1, . . . , TK}, consider estimator

d̂TK
(s, a) =

1

K

K∑
k=1

d̂Tk
(s, a),

for d̂Tk
as defined in (8). We note again that, for all s ∈ S and a ∈ A, and any K ∈ N,

ETK

[
d̂TK

(s, a)
]
= ETK

[
1

K

K∑
k=1

d̂Tk
(s, a)

]

=
1

K

K∑
k=1

ETk∼ζπ

[
d̂Tk

(s, a)
]

= dπ(s, a),

i.e., the estimator d̂TK
is unbiased. We now show that estimator d̂TK

is also consistent.

Remark A.1. (d̂TK
is a consistent estimator) For any s ∈ S and a ∈ A, the estimator d̂TK

(s, a) is consistent in probability
for dπ(s, a), i.e., limK→∞ P

(∣∣∣d̂TK
(s, a)− dπ(s, a)

∣∣∣ > ϵ
)

= 0,∀ϵ > 0. This is true because the estimator consists of

a sample average of random variables d̃k(s, a) = d̂Tk
(s, a) (we note that d̂Tk

(s, a) is a random variable since it is the
result of applying a function to the random trajectory Tk). In particular, since random variables d̃k(s, a) are i.i.d. and
E
[
d̃k(s, a)

]
= dπ(s, a) < ∞, for all k, the weak law of large numbers states that 1

K

∑K
k=1 d̃k(s, a) converges in probability

to dπ(s, a) when K → ∞.

12
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A.2. Average occupancies

Given a random trajectory T = (S0, A0, S1, A1, . . .), consider estimator d̂T (s, a) defined as

d̂T (s, a) = lim
H→∞

1

H

H−1∑
t=0

1(St = s,At = a). (9)

It holds that, for all s ∈ S and a ∈ A,

ET∼ζπ

[
d̂T (s, a)

]
= ET∼ζπ

[
lim

H→∞

1

H

H−1∑
t=0

1(St = s,At = a)

]

=
∑
τ

ζπ(τ) lim
H→∞

1

H

H−1∑
t=0

1(St = s,At = a)

= lim
H→∞

1

H

∑
τ

ζπ(τ)

H−1∑
t=0

1(St = s,At = a)

= lim
H→∞

1

H

H−1∑
t=0

∑
τ

ζπ(τ)1(St = s,At = a)

= lim
H→∞

1

H

H−1∑
t=0

Pπ(St = s,At = a)

= davg,π(s, a),

i.e., d̂T is an unbiased estimator for davg,π . Given a set of K random trajectories TK = {T1, . . . , TK}, consider estimator

d̂TK
(s, a) =

1

K

K∑
k=1

d̂Tk
(s, a),

for d̂Tk
as defined in (9). We note again that, for all s ∈ S and a ∈ A, and any K ∈ N,

ETK

[
d̂TK

(s, a)
]
= ETK

[
1

K

K∑
k=1

d̂Tk
(s, a)

]

=
1

K

K∑
k=1

ETk∼ζπ

[
d̂Tk

(s, a)
]

= davg,π(s, a),

i.e., the estimator d̂TK
is unbiased. Finally, similarly to the case of discounted occupancies, the average occupancy estimator

d̂TK
is also consistent, i.e., limK→∞ P

(∣∣∣d̂TK
(s, a)− dπ(s, a)

∣∣∣ > ϵ
)
= 0,∀ϵ > 0. The line of reasoning is the same as that

in Remark A.1.

B. Policy Evaluation in the Finite Trials Regime
Assumption B.1. We say that f is c-strongly convex if there exists c > 0 such that

f(d1) ≥ f(d2) +∇f(d2)
⊤(d1 − d2) +

c

2
∥d1 − d2∥22 , (10)

for any d1, d2 belonging to the domain of f . Equivalently, f is c-strongly convex if there exists c > 0 such that

∇2f(d) ⪰ cI, (11)

for all d belonging to the domain of f , where I is the identity matrix.

13
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Remark B.2. Consider the objective function f(d) = ⟨d, log(d)⟩. It holds that f is c-strongly convex and any c ∈ (0, 1]
satisfies (10) and (11).

Proof. It holds that ∇2f(d) = diag([1/d(1), 1/d(2), . . . ]) where diag(a) denotes the diagonal matrix with vector a in its
diagonal. From the strong convexity definition,

∇2f(d) ⪰ cI, ∀d
⇐⇒ ∇2f(d)− cI ⪰ 0, ∀d

⇐⇒ λi(d)− c ≥ 0, ∀i, ∀d
⇐⇒ λmin(d) ≥ c, ∀d

⇐⇒ min
i

1

d(i)
≥ c, ∀d,

where λi(d) are the eigenvalues of matrix ∇2f(d). Since d ∈ ∆(S ×A), it holds that mini
1

d(i) ≥ 1 for any d ∈ ∆(S ×A)

and, hence, f is c-strongly convex with any c ∈ (0, 1] satisfying (10) and (11).

Remark B.3. Consider the objective function f(d) = KL(d|dβ) =
∑

i d(i) log
(

d(i)
dβ(i)

)
, where dβ is fixed. It holds that f is

c-strongly convex and any c ∈ (0, 1] satisfies (10) and (11).

Proof. It holds that ∇2f(d) = diag([1/d(1), 1/d(2), . . . ]) where diag(a) denotes the diagonal matrix with vector a in its
diagonal. Thus, similar to the case of the entropy function, it holds that f is c-strongly convex with any c ∈ (0, 1] satisfying
(10) and (11).

Remark B.4. Consider the objective function f(d) = d⊤Ad. If A is positive definite, i.e., λmin(A) > 0 where λmin(A)
denotes the smallest eigenvalue of matrix A, then f is c-strongly convex. Furthermore, any c ∈ (0, 2λmin(A)] satisfies (10)
and (11).

Proof. It holds that ∇2f(d) = 2A. From the condition for strong convexity,

∇2f(d) ⪰ cI, ∀d
⇐⇒ 2A− cI ⪰ 0

⇐⇒ 2λi − c ≥ 0, ∀i
⇐⇒ 2λi ≥ c, ∀i

⇐⇒ 2λmin(A) ≥ c,

where λi are the eigenvalues of matrix A. If λmin(A) > 0, then any c ∈ (0, 2λmin(A)] satisfies the condition above.

B.1. Discounted setting

B.1.1. PROOF OF THEOREM 4.2

Theorem 4.2. Let Mf be a GUMDP with c-strongly convex f and K ∈ N be the number of sampled trajectories. Then, for
any policy π ∈ ΠS it holds that

fK(π)− f∞(π) ≥ c

2K

∑
s∈S
a∈A

Var
T∼ζπ

[
d̂T (s, a)

]

=
c(1− γ)2

2K

∑
s∈S
a∈A

Var
T∼ζπ

[
Jγ,π
rs,a

]
,

where Jγ,π
rs,a =

∑∞
t=0 γ

trs,a(St, At) is the discounted return for the MDP with reward function rs,a(s
′, a′) = 1 if s′ = s

and a′ = a, and zero otherwise.

14
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Proof. For any policy π ∈ ΠS it holds that

fK(π)− f∞(π) = ETK

[
f(d̂TK

)
]
− f

(
ETK

[
d̂TK

])
(a)
≥ c

2
ETK

[∥∥∥d̂TK
− dπ

∥∥∥2
2

]

=
c

2
ETK

 ∑
s∈S,a∈A

(
d̂TK

(s, a)− dπ(s, a)
)2

=
c

2

∑
s∈S,a∈A

ETK

[(
d̂TK

(s, a)− dπ(s, a)
)2]

=
c

2

∑
s∈S,a∈A

VarTK

[
d̂TK

(s, a)
]

=
c

2

∑
s∈S,a∈A

Var{T1,...,TK}

[
1

K

K∑
k=1

d̂Tk
(s, a)

]

=
c

2K

∑
s∈S,a∈A

VarT∼ζπ

[
d̂T (s, a)

]

=
c(1− γ)2

2K

∑
s∈S,a∈A

VarT∼ζπ

[ ∞∑
t=0

γt1(St = s,At = a)

]
,

=
c(1− γ)2

2K

∑
s∈S,a∈A

VarT∼ζπ

[
Jγ,π
rs,a

]
,

where (a) follows from the strongly convex assumption and the fact that

f(X) ≥ f(E[X]) +∇f(E[X])⊤(X − E[X]) +
c

2
∥X − E[X]∥22

=⇒ E[f(X)] ≥ f(E[X]) +
c

2
E
[
∥X − E[X]∥22

]
,

where X is a random vector. We refer to (Benito, 1982; Sobel, 1982; Sitař, 2006) for a closed-form expression for the
calculation of VarT∼ζπ

[
Jγ,π
rs,a

]
.

B.1.2. PROOF OF THEOREM 4.3

Theorem 4.3. Let Mf be a GUMDP with convex and L-Lipschitz f , K ∈ N be the number of sampled trajectories, each
with length H ∈ N. Then, for any policy π and δ ∈ (0, 1] it holds with probability at least 1− δ

|f∞(π)− f(d̂TK ,H)| ≤ L

(√
2|S||A| log(2H/δ)

K
+ 2γH

)
= EUpper(K,H).

For fixed H ∈ N it holds that

lim
K→∞

EUpper(K,H) = 2LγH ,

and for fixed K ∈ N

lim
H→∞

EUpper(K,H) = ∞.
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Proof. For any policy π and H ∈ N, we have∣∣∣f∞(π)− f(d̂TK ,H)
∣∣∣ = ∣∣∣f(dπ)− f(d̂TK ,H)

∣∣∣
(a)
≤ L

∥∥∥dπ − d̂TK ,H

∥∥∥
1

(b)
= L

∥∥∥∥∥(1− γ)

∞∑
t=0

γtdπ,t −
(1− γ)

1− γH

H−1∑
t=0

γtd̂K,t

∥∥∥∥∥
1

= L

∥∥∥∥∥ 1− γ

1− γH

H−1∑
t=0

γt
((

1− γH
)
dπ,t − d̂K,t

)
+ (1− γ)

∞∑
t=H

γtdπ,t

∥∥∥∥∥
1

(c)
≤ L

∥∥∥∥∥ 1− γ

1− γH

H−1∑
t=0

γt
((

1− γH
)
dπ,t − d̂K,t

)∥∥∥∥∥
1

+ γH

(d)
≤ L

(
1− γ

1− γH

H−1∑
t=0

γt
∥∥∥(1− γH

)
dπ,t − d̂K,t

∥∥∥
1
+ γH

)
(e)
≤ L

(
1− γ

1− γH

H−1∑
t=0

γt
(∥∥∥d̂K,t − dπ,t

∥∥∥
1
+
∥∥γHdπ,t

∥∥
1

)
+ γH

)

≤ L

(
1− γ

1− γH

H−1∑
t=0

γt
∥∥∥d̂K,t − dπ,t

∥∥∥
1
+ 2γH

)

≤ L

(
max

t∈{0,...,H−1}

∥∥∥d̂K,t − dπ,t

∥∥∥
1
+ 2γH

)
where: (a) is due to the L-Lipschitz assumption; in (b) we used dπ = (1− γ)

∑∞
t=0 γ

tdπ,t where dπ,t denotes the expected
occupancy under policy π at timestep t, and d̂TK ,H = (1− γ)/(1− γH)

∑H−1
t=0 γtd̂K,t where d̂K,t denotes the empirical

distribution induced by the K random trajectories at timestep t; and (c), (d) and (e) follow from the triangular inequality.
We aim to bound the last inequality above with high probability; to do so, we note that

P
(

max
t∈{0,...,H−1}

∥∥∥d̂K,t − dπ,t

∥∥∥
1
> ϵ′

)
≤ P

(
H−1⋃
t=0

∥∥∥d̂K,t − dπ,t

∥∥∥
1
> ϵ′

)
(a)
≤

H−1∑
t=0

P
(∥∥∥d̂K,t − dπ,t

∥∥∥
1
> ϵ′

)
(b)
≤

H−1∑
t=0

2 exp

(
− 1

2|S||A|K(ϵ′)2
)

= 2H exp

(
− 1

2|S||A|K(ϵ′)2
)
.

where: (a) follows from a union bound, and (b) from the fact that P
(∥∥∥dπ,t − d̂K,t

∥∥∥ > ϵ′
)
≤ 2 exp

(
− 1

2|S||A|K(ϵ′)2
)

(Lemma 16 in (Efroni et al., 2020)). Thus, it holds with probability at least 1− δ

max
t∈{0,...,H−1}

∥∥∥d̂K,t − dπ,t

∥∥∥
1
≤
√

2|S||A| log(2H/δ)

K
.

Given the above we conclude that, with probability at least 1− δ,

∣∣∣f∞(π)− f(d̂TK ,H)
∣∣∣ ≤ L

(√
2|S||A| log(2H/δ)

K
+ 2γH

)
.
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For the limits we have, for fixed H ∈ N,

lim
K→∞

EUpper(K,H) = lim
K→∞

L

(√
2|S||A| log(2H/δ)

K
+ 2γH

)

= L lim
K→∞

√
2|S||A| log(2H/δ)

K
+ 2LγH

= 0 + 2LγH .

For fixed K ∈ N,

lim
H→∞

EUpper(K,H) = lim
H→∞

L

(√
2|S||A| log(2H/δ)

K
+ 2γH

)

= L lim
H→∞

√
2|S||A| log(2H/δ)

K
+ 2L lim

H→∞
γH

= L

√
2|S||A|

K
lim

H→∞

√
log(2H/δ) + 0

= L

√
2|S||A|

K

√
lim

H→∞
log(2H/δ) + 0

= L

√
2|S||A|

K
· ∞+ 0

= ∞

B.2. Average setting

B.2.1. PROOF OF THEOREM 4.4

Theorem 4.4. If the GUMDP Mf is unichain and f is bounded and continuous in its domain, then fK(π) = f∞(π) for any
π ∈ ΠS.

Proof. We start by focusing on the case of state-dependant occupancies and later generalize our result for the case of
state-action-dependant occupancies.

For any π ∈ ΠS, in a unichain GUMDP, the Markov chain with transition matrix Pπ and initial states distribution p0 contains
a single recurrent class R, and a possibly non-empty set of transient states Z . Associated to the unique recurrent class is
µπ ∈ ∆(S), the unique stationary distribution of the Markov chain, which satisfies µπ(s) > 0 for s ∈ R and µπ(s) = 0 for
s ∈ Z . Furthermore, the unique stationary distribution µπ satisfies∑

s′∈S
Pπ(s|s′)µπ(s

′) = µπ(s), ∀s ∈ S∑
s∈S

µπ(s) = 1.

All aforementioned facts can be found in textbooks such as (Puterman, 2014).

Now, for a fixed policy π ∈ ΠS , consider the estimator

d̂T (s) = lim
H→∞

1

H

H−1∑
t=0

1(St = s), (12)

where T = (S0, S1, . . .) denotes a random trajectory from the Markov chain with transition matrix Pπ and initial distribution
p0. Since there is a single recurrent class, independent of the initial state distribution, a random trajectory drawn from the
Markov chain will eventually get absorbed into the unique recurrent class in a finite number of steps. Hence:
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• for any transient state s ∈ Z of the Markov chain, we have that d̂T (s) = 0 almost surely. From the definition of a
transient state, it holds that

∑∞
t=0 1(St = s) < ∞ with probability one, yielding

d̂T (s) = lim
H→∞

1

H

H−1∑
t=0

1(St = s) ≤ lim
H→∞

1

H

∞∑
t=0

1(St = s) = 0.

• for any recurrent state s ∈ R belonging to the unique recurrent class of the Markov chain, we have that d̂T (s) = µπ(s)
almost surely. Recurrent classes within a larger Markov chain can be seen as independent Markov chains (Puterman,
2014). Let PR→R denote the transition matrix for the states belonging to the recurrent class of the Markov chain. Then,
since PR→R is an irreducible Markov chain (any state is reachable from any other state), from the ergodic theorem for
Markov chains (Levin et al., 2006) it holds that, for any initial distribution,

P
(
d̂T (s) = µπ(s)

)
= P

(
lim

H→∞

1

H

H−1∑
t=0

1(St = s) = µπ(s)

)
= 1.

Now, we use the fact that estimator d̂T (s) converges almost surely to µπ(s) in order to show the equivalence between fK(π)
and f∞(π). For now, we assume f is defined over state-dependant occupancies and later extend our analysis for the case of
state-action-dependant occupancies. Let ZH,k be the random vector with components ZH,k(s) =

1
H

∑H−1
t=0 1(Sk,t = s).

Since, for each s ∈ S and k ∈ {1, . . . ,K}, it holds that ZH,k(s) → µπ(s) almost surely, we have that random vector
ZH,k → µπ almost surely, for any k ∈ {1, . . . ,K}, i.e.,

P
(

lim
H→∞

ZH,k = µπ

)
= 1, ∀k ∈ {1, . . . ,K}.

By the definition of the finite trials objective (considering a state-dependant occupancy and objective function), it holds that

fK(π) = ETK

[
f(d̂TK

)
]
= ETK

[
f

(
1

K

K∑
k=1

lim
H→∞

ZH,k

)]
.

Since ZH,k → µπ almost surely for any k ∈ {1, . . . ,K}, it also holds that 1
K

∑K
k=1 ZH,k → µπ almost surely since the K

trajectories are independently sampled. Assuming f is continuous, it holds that f( 1
K

∑K
k=1 ZH,k) → f(µπ) almost surely.

Since f is bounded in its domain by assumption it also implies that
∣∣∣f ( 1

K

∑K
k=1 ZH,k

)∣∣∣ is bounded for any H ∈ N. Thus,
from the dominated/bounded convergence theorem (Durrett, 2019, Theo. 1.6.7.), it holds that

ETK

[
f

(
1

K

K∑
k=1

lim
H→∞

ZH,k

)]
= E [f(µπ)] = f(µπ),

where the second equality holds because f( 1
K

∑K
k=1 ZH,k) converges almost surely to f(µπ), which is a non-random

quantity.

Finally, it remains to show that the result above also holds for the case of state-action occupancies. Consider a second
Markov chain, which we call the extended Markov chain, that has state space S̃ = S ×A3, transition matrix P̃ (s′, a′|s, a) =
p(s′|s, a)π(a′|s′), and p̃0(s, a) = p0(s)π(a|s). This Markov chain encapsulates both the transition dynamics p and the
policy π within the transition matrix P̃ and it should be clear that a random trajectory from the extended Markov chain
((S0, A0), (S1, A1), . . .) precisely describes a random sequence of state-action pairs when using π ∈ ΠS to interact with the
GUMDP. It holds that the extended Markov chain has a unique stationary distribution µ̃π(s, a) = µπ(s)π(a|s). This is true

3We denote a state of the extended Markov chain with the tuple (s, a). However, to make the notation simpler, we usually drop the
parenthesis from the (s, a) tuple, thus writing p0(s, a) instead of p0((s, a)), P̃ (s′, a′|s, a) instead of P̃ ((s′, a′)|(s, a)), µπ(s, a) instead
of µπ((s, a)), etc.
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because µ̃π is a stationary distribution for the extended Markov chain if it satisfies

µ̃π(s
′, a′) =

∑
s∈S

∑
a∈A

P̃ (s′, a′|s, a)µ̃π(s, a), ∀s′, a′ (13)

1 =
∑
s∈S

∑
a∈A

µ̃π(s, a). (14)

Letting µ̃π(s, a) = µπ(s)π(a|s) satisfies (13) since, when π(a′|s′) > 0,

µπ(s
′)π(a′|s′) =

∑
s∈S

∑
a∈A

π(a|s)P̃ (s′, a′|s, a)µπ(s)

⇐⇒ µπ(s
′)π(a′|s′) =

∑
s∈S

∑
a∈A

π(a|s)π(a′|s′)p(s′|s, a)µπ(s)

⇐⇒ µπ(s
′) =

∑
s∈S

∑
a∈A

π(a|s)p(s′|s, a)µπ(s)

⇐⇒ µπ(s
′) =

∑
s∈S

Pπ(s′|s)µπ(s),

and the last equality above holds since µπ is the stationary distribution of the Markov chain with transition matrix Pπ.
If π(a′|s′) = 0, then (13) also holds given that µ̃π(s

′, a′) = µπ(s
′)π(a′|s′) = 0. Equation (14) is also straightforwardly

satisfied. It can also be seen from the equations above that the stationary distribution µ̃π is unique. Assume the opposite, i.e.,
there exist multiple stationary distributions for the extended Markov chain. This would imply that it also exist multiple
vectors satisfying the last equation above, which we know it is not possible because the Markov chain with transition matrix
Pπ has a unique stationary distribution.

Consider estimator

d̂T (s, a) = lim
H→∞

1

H

H−1∑
t=0

1(St = s,At = a), (15)

where T = (S0, A0, S1, A1, . . .) denotes a random sequence of state-action pairs from the extended Markov chain. Since
there is a single recurrent class (associated with the unique stationary distribution of the extended Markov chain), independent
of the initial state distribution, a random trajectory drawn from the extended Markov chain will eventually get absorbed into
the unique recurrent class in a finite number of steps. Hence:

• if π(a|s) = 0 for some state-action pair (s, a), then (s, a) is never visited in the extended Markov chain under any
distribution of initial states and, hence, P

(
d̂T (s, a) = 0

)
= 1.

• for any state-action pair (s, a) such that π(a|s) > 0, if (s, a) is transient in the extended Markov chain (equivalent to s

being transient in the Markov chain Pπ), then P
(
d̂T (s, a) = 0

)
= 1.

• for any state-action pair (s, a) such that π(a|s) > 0, if (s, a) is recurrent in the extended Markov chain (equivalent to s
being recurrent in the Markov chain Pπ), then from the Ergodic theorem for Markov chains (Levin et al., 2006)

P
(
d̂T (s, a) = µ̃π(s, a)

)
= P

(
lim

H→∞

1

H

H−1∑
t=0

1(St = s,At = a) = µ̃π(s, a)

)
= 1.

Thus, noting that µ̃π(s, a) = µπ(s)π(a|s) = dπ(s, a) and following the same line of reasoning as we did for the case of
state-dependant occupancies, we can use the fact that estimator d̂T (s, a) converges almost surely to dπ(s, a) to show the
equivalence between fK(π) and f∞(π).

Lemma B.5. Consider a Markov chain with finite state-space S and transition matrix P . Let p0 ∈ ∆(S) be the distribution
of initial states of the Markov chain, i.e., S0 ∼ p0, and afterwards St ∼ P (·|St−1), for all t > 0. Assume that the state-space
can be partitioned into L disjoint recurrent classes R1, . . . ,RL and a set of transient states Z . For each recurrent state
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s ∈ R1 ∪ . . . ∪ RL, we let l(s) denote the index of the recurrent class to which state s belongs. Let also µl denote the
unique stationary distribution associated with each recurrent class Rl. It holds, for any s ∈ S, that

P

(
lim

H→∞

1

H

H−1∑
t=0

1(St = s) = Ys

)
= 1,

where Ys is a random variable such that, if s ∈ Z then P(Ys = 0) = 1, and if s is recurrent then

P (Ys = y) =


αl(s), if y = µl(s)(s),

1− αl(s), if y = 0,

0, otherwise,

and
αl(s) = lim

t→∞
P(St ∈ Rl(s)|S0 ∼ p0)

denotes the probability of absortion into recurrent class Rl(s), i.e., the recurrent class to which recurrent state s belongs,
when the initial state S0 is distributed according to p0 and can be calculated in a closed-form manner (Kallenberg, 1983,
Theo. 2.3.4.). In other words, limH→∞

1
H

∑H−1
t=0 1(St = s) converges almost surely to random variable Ys, which

describes the asymptotic proportion of time the chain spends in any state s ∈ S.

Proof. The state-space S of every finite-state Markov chain can be partitioned into L disjoint recurrent classes R1, . . . ,RL

and a set of transient states Z . For each recurrent state s ∈ R1 ∪ . . .∪RL, we let l(s) denote the index of the recurrent class
to which state s belongs. Every recurrent class Rl can be treated as an independent Markov chain, associated with a unique
stationary distribution µl, which satisfies µl(s) > 0 for all s ∈ Rl and µl(s) = 0 for all s /∈ Rl (Puterman, 2014). Once
absorbed into a given recurrent class, the chain cannot leave the recurrent class and will visit every state in the recurrent
class infinitely often.

Let d̂T (s) = limH→∞
1
H

∑H−1
t=0 1 (St = s) denote the asymptotic proportion of time the chain spends in any state s ∈ S.

It holds that:

• for any transient state s ∈ Z of the Markov chain, we have that d̂T (s) = 0 almost surely. From the definition of a
transient state, it holds that

∑∞
t=0 1(St = s) < ∞ with probability one, yielding

d̂T (s) = lim
H→∞

1

H

H−1∑
t=0

1(St = s) ≤ lim
H→∞

1

H

∞∑
t=0

1(St = s) = 0.

• for each recurrent class Rl, if the Markov chain gets absorbed into Rl, then it holds that

P

(
lim

H→∞

1

H

H−1∑
t=0

1(St = s) = µl(s)

)
= 1, for s ∈ Rl,

i.e., the asymptotic proportion of time the chain spends in each state s ∈ Rl converges almost surely to µl(s) for all
s ∈ Rl. This result follows from the ergodic theorem for Markov chains (Levin et al., 2006).

• for each recurrent class Rl, if the Markov chain gets absorbed into another recurrent class l′ ̸= l then it holds that
d̂T (s) = 0 for all s ∈ Rl since, once absorbed into class Rl′ the chain cannot leave the recurrent class (by definition).

Therefore, the chain starts in an arbitrary state S0 ∼ p0 and eventually gets absorbed with probability one into a given
recurrent class Rl. Once absorbed into Rl, the chain behaves as an independent Markov chain defined only on states Rl

and: (i) the chain cannot leave the recurrent class, hence d̂T (s) = 0 for all s /∈ Rl; and (ii) d̂T (s) converges almost surely to
µl(s) for every s ∈ Rl. Thus, it holds that limH→∞

1
H

∑H−1
t=0 1(St = s) can be described, in the almost surely sense, by a

random variable Ys such that: (i) if s ∈ Z then Ys = 0 almost surely; (ii) if s ∈ Rl, i.e., if s belongs to some recurrent class
Rl, and the chain gets absorbed into Rl, then Ys = µl(s) almost surely; and (iii) if s ∈ Rl but the chain gets absorbed into
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other recurrent class Rl′ , then Ys = 0. Therefore, the probability density function of Ys can be described as follows: if
s ∈ Z , i.e., if s is transient, then P (Ys = 0) = 1. On the other hand, if s is recurrent

P (Ys = y) =


αl(s), if y = µl(s)(s),

1− αl(s), y = 0,

0, otherwise,

where
αl(s) = lim

t→∞
P(St ∈ Rl(s)|S0 ∼ p0)

is the probability of absorption to recurrent class Rl(s), i.e., the recurrent class to which recurrent state s belongs, when
S0 ∼ p0 and can be calculated in a closed-form manner (Kallenberg, 1983, Theo. 2.3.4.)

Lemma B.6. Consider a GUMDP with finite state-space S, finite action-space A, transition probability function p :
S × A → ∆(S), and let p0 ∈ ∆(S) be the distribution of initial states. For any fixed stationary policy π ∈ ΠS, the
interaction between the policy and the GUMDP gives rise to a random sequence of state-action pairs S0, A0, S1, A1, . . ..
Consider also the Markov chain with state space S, transition matrix Pπ(s′|s) =

∑
a∈A p(s′|s, a)π(a|s), and initial

distribution p0. It holds, for any s ∈ S and a ∈ A, that

P

(
lim

H→∞

1

H

H−1∑
t=0

1(St = s,At = a) = Ysπ(a|s)
)

= 1,

where Ys is the random variable defined in Lemma B.5 by considering the Markov chain with transition matrix Pπ .

Proof. For a given fixed policy π ∈ ΠS, consider two Markov chains:

• the first Markov chain has state space S , transition matrix Pπ(s′|s) =∑a∈A p(s′|s, a)π(a|s) and p0 as defined in the
original GUMDP. Assume this Markov chain can be partitioned into L disjoint recurrent classes R1, . . . ,RL and a set
of transient states Z . For each recurrent state s ∈ R1 ∪ . . . ∪RL, we let l(s) denote the index of the recurrent class to
which state s belongs. Let αl denote the probability of absorption to recurrent class Rl given p0. Every recurrent class
Rl can be treated as an independent Markov chain, associated with a unique stationary distribution µl, which satisfies
µl(s) > 0 for all s ∈ Rl and µl(s) = 0 for all s /∈ Rl (Puterman, 2014).

• the second Markov chain, which we call extended Markov chain, has state space S̃ = S × A (hence we denote
with the pair (s, a) a given state of the extended Markov chain), transition matrix P̃ (s′, a′|s, a) = p(s′|s, a)π(a′|s′),
and p̃0(s, a) = p0(s)π(a|s). This Markov chain encapsulates both the transition dynamics p and the policy π
within the transition matrix P̃ . It should also be clear that a random trajectory from the extended Markov chain
((S0, A0), (S1, A1), . . .) precisely describes a random sequence of state-action pairs when using π ∈ ΠS to interact
with the GUMDP. Assume we can partition the extended Markov chain into L disjoint recurrent classes R̃1, . . . , R̃L

and a set of transient states Z̃ . For each recurrent state (s, a) ∈ R̃1 ∪ . . . ∪ R̃L, we let l̃(s, a) denote the index of
the recurrent class to which state (s, a) belongs. Let also α̃l denote the probability of absorption to recurrent class
R̃l. Every recurrent class R̃l can be treated as an independent Markov chain, associated with a unique stationary
distribution µ̃l, which satisfies µ̃l(s, a) > 0 for all s ∈ R̃l and µl(s, a) = 0 for all s /∈ R̃l (Puterman, 2014).

We are now interested in understanding how the long-term behavior of both chains is related, for fixed π ∈ ΠS. We make
the following remarks:

1. if π(a|s) = 0 for some state-action pair (s, a), then (s, a) is never visited in the extended Markov chain for any
distribution of initial states p0.

2. For each (s, a) such that π(a|s) > 0, if (s, a) is transient, then all states (s, a′) for a′ ∈ A such that π(a′|s) > 0 are
also transient. This is true because if some pair (s, a) is only finitely visited (from the definition of a transient state) it
implies that state s is also finitely visited and, therefore, all pairs (s, a′) for a′ ∈ A such that π(a′|s) > 0 need also to
be finitely visited. For each (s, a) such that π(a|s) > 0, if (s, a) is recurrent, then all states (s, a′) for a′ ∈ A such
that π(a′|s) > 0 are also recurrent. This is true because, if some pair (s, a) is infinitely visited (from the definition
of a recurrent state) it implies that state s is also infinitely visited and, therefore, all pairs (s, a′) for a′ ∈ A such that
π(a′|s) > 0 need also to be infinitely visited.
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3. A given state s is transient for Pπ if and only if states {(s, a) : π(a|s) > 0} are transient for P̃ . A given state s is
recurrent for Pπ if and only if states {(s, a) : π(a|s) > 0} are recurrent for P̃ .

4. Two states s and s′ are reachable from each other for Pπ if and only if all states in {(s, a) : π(a|s) > 0} and all states
in {(s′, a) : π(a|s′) > 0} are reachable from each other for P̃ .

5. Given the point above, a given set of states C is communicating for Pπ, i.e., all states in C are reachable from each
other according to Pπ , if and only if the set of states {(s, a) : s ∈ C and π(a|s) > 0} is communicating for P̃ .

6. A communicating class C is closed for Pπ, i.e., it is impossible to leave C, if and only if the set of states {(s, a) : s ∈
C and π(a|s) > 0} is closed for P̃ .

7. Since a recurrent class is a set of states that is communicating and closed, given the two points above, there exists a
one-to-one correspondence between the recurrent classes R1, . . . ,RL and R̃1, . . . , R̃L. In particular, R̃l = {(s, a) :
s ∈ Rl and π(a|s) > 0} and Rl = {s : (s, a) ∈ R̃l and π(a|s) > 0}.

8. The probabilities of absorption into any of the recurrent classes are the same for both Markov chains, i.e., αl = α̃l for
all l ∈ {1, . . . , L}. Let αs,l denote the probability of absorption into recurrent class Rl in the Markov chain Pπ when
the initial state is s, and α̃(s,a),l denote the probability of absorption into recurrent class R̃l in the extended Markov
chain when the initial state is (s, a). It holds, for any l ∈ {1, . . . , L}, that

αl =
∑
s∈S

p0(s)αs,l (16)

and

α̃l =
∑
s∈S

∑
a∈A

p0(s, a)α̃(s,a),l

=
∑
s∈S

∑
a∈A

p0(s)π(a|s)α̃(s,a),l.

It should also be clear that αs,l =
∑

a∈A π(a|s)α̃(s,a),l given the one-to-one correspondence between the recurrent
classes of both Markov chains. Replacing αs,l =

∑
a∈A π(a|s)α̃(s,a),l in (16) yields α̃l and, hence, αl = α̃l. We refer

to (Kallenberg, 1983, Theo. 2.3.4.) for a closed-form expression to calculate the probabilities of absorption into each
recurrent class.

9. For every recurrent class R̃l of the extended Markov chain it holds that µ̃l(s, a) = µl(s)π(a|s). This is true because
µ̃l is a stationary distribution for the extended Markov chain if it satisfies

µ̃l(s
′, a′) =

∑
s∈S

∑
a∈A

P̃ (s′, a′|s, a)µ̃l(s, a), ∀s′, a′ (17)

1 =
∑
s∈S

∑
a∈A

µ̃l(s, a). (18)

Letting µ̃l(s, a) = µl(s)π(a|s) satisfies (17) since, when π(a′|s′) > 0,

µl(s
′)π(a′|s′) =

∑
s∈S

∑
a∈A

π(a|s)P̃ (s′, a′|s, a)µl(s)

⇐⇒ µl(s
′)π(a′|s′) =

∑
s∈S

∑
a∈A

π(a|s)π(a′|s′)p(s′|s, a)µl(s)

⇐⇒ µl(s
′) =

∑
s∈S

∑
a∈A

π(a|s)p(s′|s, a)µl(s)

⇐⇒ µl(s
′) =

∑
s∈S

Pπ(s′|s)µl(s),

and the last equality above holds since µl is the stationary distribution of the Markov chain with transition matrix Pπ .
If π(a′|s′) = 0, then (17) also holds given that µ̃l(s

′, a′) = µl(s
′)π(a′|s′) = 0. Equation (18) is also straightforwardly

satisfied. It can also be seen from the equations above that the stationary distribution µ̃π is unique.
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In summary, the limiting behavior of the extended Markov chain can be described by the Markov chain with transition matrix
Pπ since the recurrent classes of both Markov chains are intrinsically related (with the same probabilities of absorption), and
the stationary distributions for each of the recurrent classes R̃l of the extended Markov chain satisfy µ̃l(s, a) = µl(s)π(a|s).

Thus, for the extended Markov chain and any (s, a), according to Lemma B.5, it holds that

P

(
lim

H→∞

1

H

H−1∑
t=0

1(St = s,At = a) = Ỹ(s,a)

)
= 1,

where Ỹ(s,a) is a random variable such that, if (s, a) ∈ Z̃ then P(Ỹ(s,a) = 0) = 1, and if (s, a) belongs to recurrent class R̃l

P
(
Ỹ(s,a) = y

)
=


α̃l, if y = µ̃l(s, a),

1− α̃l, if y = 0,

0, otherwise,

and

α̃l = lim
t→∞

P(S̃t ∈ R̃l|S̃0 ∼ p̃0)

denotes the probability of absortion into recurrent class R̃l when the initial state S̃0 is distributed according to p̃0. Since
there exists a one-to-one equivalence between the sets of recurrent classes of both Markov chains, the probabilities of
absorption into each recurrent class are the same in both Markov chains, and µ̃l(s, a) = µl(s)π(a|s), it holds that random
variable Ỹ(s,a) can be equivalently described by Ysπ(a|s), where Ys is the random variable defined in Lemma B.5 for the
Markov chain with transition matrix Pπ .

B.2.2. PROOF OF THEOREM 4.6

Theorem 4.6. Let Mf be an average GUMDP with c-strongly convex f and K ∈ N be the number of sampled trajectories.
Consider also the Markov chain with state-space S , transition matrix Pπ and initial states distribution p0. Let R be the set
of all recurrent states of the Markov chain and R1, . . . ,RL the sets of recurrent classes, each associated with stationary
distribution µl. For each s ∈ R, let l(s) denote the index of the recurrent class to which s belongs. Then, for any policy
π ∈ ΠS, it holds that

fK(π)− f∞(π) ≥ c

2K

∑
s∈R
a∈A

π(a|s)2
(
µl(s)(s)

)2
Var

B∼Ber(αl(s))
[B] ,

where B ∼ Ber (p) denotes that B is distributed according to a Bernoulli distribution such that P(B = 1) = p and

αl(s) = lim
t→∞

P(St ∈ Rl(s)|S0 ∼ p0)

is the probability of absorption to recurrent class Rl(s) when S0 ∼ p0.
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Proof. For any policy π ∈ ΠS it holds that

fK(π)− f∞(π) = ETK

[
f(d̂TK

)
]
− f

(
ETK

[
d̂TK

])
(a)
≥ c

2
ETK

[∥∥∥d̂TK
− dπ

∥∥∥2
2

]

=
c

2
ETK

 ∑
s∈S,a∈A

(
d̂TK

(s, a)− dπ(s, a)
)2

=
c

2

∑
s∈S,a∈A

ETK

[(
d̂TK

(s, a)− dπ(s, a)
)2]

=
c

2

∑
s∈S,a∈A

VarTK

[
d̂TK

(s, a)
]

=
c

2

∑
s∈S,a∈A

Var{T1,...,TK}

[
1

K

K∑
k=1

d̂Tk
(s, a)

]

=
c

2K

∑
s∈S,a∈A

VarT∼ζπ

[
d̂T (s, a)

]
=

c

2K

∑
s∈S,a∈A

(
ET∼ζπ

[
d̂T (s, a)

2
]
− ET∼ζπ

[
d̂T (s, a)

]2)
,

where (a) follows from the strongly convex assumption and the fact that

f(X) ≥ f(E[X]) +∇f(E[X])⊤(X − E[X]) +
c

2
∥X − E[X]∥22

=⇒ E[f(X)] ≥ f(E[X]) +
c

2
E
[
∥X − E[X]∥22

]
,

where X is a random vector.

Focusing on the term ET∼ζπ

[(
d̂T (s, a)

)2]
we have that

ET∼ζπ

[(
d̂T (s, a)

)2]
= ET∼ζπ

( lim
H→∞

1

H

H−1∑
t=0

1 (St = s,At = a)

)2


(a)
= EYs

[
(Ysπ(a|s))2

]
= π(a|s)2EYs

[
Y 2
s

]
.

Let ZH = 1
H

∑H−1
t=0 1 (St = s,At = a). Step (a) above holds because: (i) from Lemma B.6 it holds that

P (limH→∞ ZH = Ysπ(a|s)) = 1, i.e., ZH → Ysπ(a|s) almost surely (note also that |ZH | ≤ 1 for all H ∈ N); (ii)
since g(x) = x2 is continuous it holds that g(ZH) → g(Ysπ(a|s)) almost surely (note also that |g(ZH)| ≤ 1 for all
H ∈ N); (iii) from the bounded convergence theorem (Durrett, 2019, Theo. 1.6.7.) it holds that ET [g (limH→∞ ZH)] =
EYs [g(Ysπ(a|s))]. Also in (a), Ys is distributed according to the probability density function defined in Lemma B.5.

For the term ET∼ζπ

[(
d̂T (s, a)

)]2
, via similar arguments, it holds that

ET∼ζπ

[(
d̂T (s, a)

)]2
= EYs

[(Ysπ(a|s))]2 = π(a|s)2EYs
[(Ys)]

2
.
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Replacing both terms in our original lower bound yields

fK(π)− f∞(π) ≥ c

2K

∑
s∈S,a∈A

π(a|s)2
(
EYs

[
Y 2
s

]
− EYs [(Ys)]

2
)

=
c

2K

∑
s∈S,a∈A

π(a|s)2Var [Ys]

(a)
=

c

2K

∑
s∈R

∑
a∈A

π(a|s)2Var [Ys]

(b)
=

c

2K

∑
s∈R

∑
a∈A

π(a|s)2VarB∼Bernoulli(p=αl(s))
[
µl(s)(s)B

]
=

c

2K

L∑
l=1

VarB∼Ber(αl) [B]
∑
s∈Rl

∑
a∈A

π(a|s)2µl(s)
2

where in (a) we let R denote the set of all recurrent states for the Markov chain with transition matrix Pπ and the equality
holds because if s is transient then P(Ys = 0) = 1 and, hence, Var [Ys] = 0. In (b), the equality holds since we can rewrite
random variable Ys using a scaled Bernoulli random variable.

C. Empirical Results
In Algorithm 1 we present the pseudocode of the sampling scheme used to approximate the different GUMDPs formulations,
under both discounted and average occupancies. The different objectives can be approximated, for a sufficiently large
number of iterations N , by running Algorithm 1 with the desired K, H , and γ parameters. Under the discounted setting,
we vary parameters K, H , and γ. Under the average setting, we vary K while setting γ ≈ 1 and H = ∞. Under both the
average and discounted setting, we set K = ∞ and H = ∞ to compute the infinite trials objective.

Algorithm 1 Estimating fK,H(π) via samples.

1: Inputs: N ∈ N (num. of iterations), K ∈ N (num. of trajectories), H ∈ N (trajectories’ horizon), and γ (discount
factor).

2: f̂0 = 0
3: for n in {1, . . . , N} do
4: {τ1, . . . , τK} ∼ ζπ
5: d̂K(s, a) = 1−γ

1−γH
1
K

∑K
k=1

∑H−1
t=0 γt1(sk,t = s, ak,t = a), ∀s, a

6: f̂n = f̂n−1 +
f(d̂K)−f̂n−1

N
7: end for
8: Return: f̂N

C.1. Empirical results for the GUMDPs in Fig. 1

We consider the GUMDPs depicted in Fig. 1, representative of three tasks in the convex RL literature. Under Mf,1 we
let π(left|s0) = π(right|s0) = 0.5, π(right|s1) = 1 (zero otherwise), and π(left|s2) = 1 (zero otherwise); for both Mf,2

and Mf,3 we let π be the uniformly random policy. Figures 4, 5, and 6 display the results obtained under the different
GUMDPs illustrated in Fig. 1 for different γ, K and H values. Figure 7 displays the results obtained for the three GUMDPs
for different K and γ values with H = ∞.

C.2. Empirical results for the GUMDPs in Fig. 1 with noisy transitions

We consider again the three GUMDPs illustrated in Fig. 1, but add a small amount of noise to the transition matrices of
each GUMDP so that there is a non-zero probability, at each timestep, of transitioning from a given state to any other
arbitrary state. Under Mf,1 we let π(left|s0) = π(right|s0) = 0.5, π(right|s1) = 1 (zero otherwise), and π(left|s2) = 1
(zero otherwise); for both Mf,2 and Mf,3 we let π be the uniformly random policy. Figures 8, 9, and 10 display the results
obtained under the different GUMDPs illustrated in Fig. 1 for different γ, K and H values. Figure 11 displays the results
obtained for the three GUMDPs for different K and γ values with H = ∞ and noisy transitions.
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Figure 4: (Mf,1, standard transitions) Empirical study of f(d̂TK ,H) for different K, H and γ values under GUMDP Mf,1

with policy π(left|s0) = 0.5, π(right|s0) = 0.5, π(right|s1) = 1, π(left|s2) = 1. The results are computed over 100
random seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.
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Figure 5: (Mf,2, standard transitions) Empirical study of f(d̂TK ,H) for different K, H and γ values under GUMDP Mf,2

with a uniformly random policy. The results are computed over 100 random seeds. Shaded areas correspond to the 95%
bootstrapped confidence intervals.
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Figure 6: (Mf,3, standard transitions) Empirical study of f(d̂TK ,H) for different K, H and γ values under GUMDP Mf,3

with a uniformly random policy. The results are computed over 100 random seeds. Shaded areas correspond to the 95%
bootstrapped confidence intervals.
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Figure 7: (Standard transitions) Empirical study of f(d̂TK ,H=∞) for different K and γ values with H = ∞. The results are
computed over 100 random seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.
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Figure 8: (Mf,1, noisy transitions) Empirical study of f(d̂TK ,H) for different K, H and γ values under GUMDP Mf,1

with noisy transitions and policy π(left|s0) = 0.5, π(right|s0) = 0.5, π(right|s1) = 1, π(left|s2) = 1. The results are
computed over 100 random seeds. Shaded areas correspond to the 95% bootstrapped confidence intervals.
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Figure 9: (Mf,2, noisy transitions) Empirical study of f(d̂TK ,H) for different K, H and γ values under GUMDP Mf,2

with noisy transitions and a uniformly random policy. The results are computed over 100 random seeds. Shaded areas
correspond to the 95% bootstrapped confidence intervals.
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Figure 10: (Mf,3, noisy transitions) Empirical study of f(d̂TK ,H) for different K, H and γ values under GUMDP Mf,3

with noisy transitions and a uniformly random policy. The results are computed over 100 random seeds. Shaded areas
correspond to the 95% bootstrapped confidence intervals.
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Figure 11: (Noisy transitions) Empirical study of f(d̂TK ,H=∞) for different K and γ values with H = ∞ and noisy
transitions. The results are computed over 100 random seeds. Shaded areas correspond to the 95% bootstrapped confidence
intervals.
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