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ABSTRACT

Developing generalist large language models (LLMs) capable of complex bio-
logical reasoning is a central challenge in computational biology. While existing
LLMs excel at predictive tasks like cell type annotation and logically-constrained
problems, enabling open-ended and mechanistic reasoning remains a challenge. A
promising direction is Reinforcement Learning from Verifiable Rewards (RLVR),
which has been shown to significantly enhance complex reasoning in general do-
mains like mathematics and code synthesis. However, its application in biology
is hindered, as most biological outcomes are non-verifiable. For example, verify-
ing a generated gene sequence is usually infeasible. In this paper, we introduce
CellDuality, a self-supervised framework that enables LLM agents for robust
reasoning in single-cell biology. Our framework is built on the principle of com-
plementary task duality, a self-verification process that leverages a bidirectional
reasoning loop. First, the model performs a forward reasoning task by predicting
a biological outcome (e.g., a cell’s response to a drug). Then, in a complemen-
tary inverse task, it must reason backward from its own prediction to reconstruct
the initial conditions (e.g., the original drug perturbation). The fidelity of this
reconstruction serves as an intrinsic reward signal, creating a feedback loop that
enforces logical and biological consistency. We use these intrinsic rewards to align
the base LLM via reinforcement learning, without requiring ground-truth verifi-
cation labels. We demonstrate that CellDuality achieves state-of-the-art per-
formance and provides coherent biological explanations across a diverse suite of
single-cell reasoning tasks. Critically, on the challenging out-of-distribution per-
turbation prediction benchmark, our self-supervised approach significantly out-
performs the standard fine-tuning baseline and narrows the performance gap to
a supervised RLVR baseline. Our work showcases a new path toward scalable
training of biological foundation models.

1 INTRODUCTION

Developing generalist large language models (LLMs) capable of biological reasoning is a central
goal of computational biology (Fang et al., 2025b; Istrate et al., 2025; Lotfollahi et al., 2019). This
reasoning ability involves inferring complex, mechanistic principles from cellular data (Fang et al.,
2025b; Matsumoto et al., 2025). This capability is paramount in single-cell biology, where under-
standing causal chains, such as how a cell responds to a drug, is key to therapeutic discovery (Fang
et al., 2025a). However, achieving robust biological reasoning is fundamentally challenging due to
the stochastic nature of cellular systems and the intricate, high-dimensional dependencies between
biological entities. This complexity creates a significant hurdle for current methods, especially the
foundation models (Hao et al., 2024; Cui et al., 2024), which we categorize into three limitations.

First, most models are optimized for prediction, not mechanistic reasoning. Architectures like
scGPT (Cui et al., 2024) and C2S-Scale (Rizvi et al., 2025) excel at learning correlational patterns
for tasks like cell type annotation but are not explicitly trained to generate the coherent, explana-
tory steps that capture underlying biological pathways. Second, existing reasoning-aware models
often operate in logically-constrained paradigms. For instance, Cell-o1 (Fang et al., 2025b) models
a deductive puzzle-solving process rather than the open-ended, hypothesis-driven inquiry of scien-
tific exploration. Finally, there exists a trade-off between depth and generality. Specialized models
achieve deep reasoning in a single task, while versatile, multi-task agents like InstructCell (Fang
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Figure 1: An overview of the CellDuality framework. Single-cell expression profiles are first
converted into ranked ”Cell Sentences,” which are inputs to our Unified Task Framework of four
reasoning tasks. A high-quality CoT dataset is generated using a teacher model and Reject Sam-
pling. This dataset is used for a Stage 1 SFT cold start of an LLaMA model. The model is then
further aligned in Stage 2 via self-supervised RL (GRPO) on large-scale unlabeled data. The core
innovation is our duality-based reward mechanism, which replaces the need for external Ground
Truth by rewarding the consistency between a Primal Task and its complementary Dual Task.

et al., 2025a) currently lack the same level of mechanistic insight. Therefore, a unifying frame-
work capable of deep reasoning across this diverse task landscape is still an open challenge. Such a
framework must achieve generality over two core biological themes: cell identity and cell dynamics.

A promising direction is Reinforcement Learning from Verifiable Rewards (RLVR), a paradigm that
has successfully enhanced LLMs’ general reasoning ability, such as mathematics and code synthe-
sis (Shao et al., 2024; Rafailov et al., 2023; Lee et al., 2023). However, its application in biology
is severely limited because most biological reasoning tasks are inherently non-verifiable. For exam-
ple, a specific gene sequence output of conditional cell generation has no single correct version for
a given cell type, making simple verification infeasible. This data-dependency fundamentally con-
strains the training of more ambitious, unified models on the open-ended, cause-and-effect scenarios
that would foster biological understanding.

To address this challenge, we introduce CellDuality, a generalist agent for open-ended biological
reasoning. It operates within a unified framework of four core tasks designed to span the fundamen-
tal biological themes of cell identity and cell dynamics (details in Sec. 3.1). Crucially, CellDuality
is trained via a novel self-supervised paradigm built on the principle of Complementary Task Dual-
ity (She et al., 2025). This framework leverages a bidirectional reasoning loop to generate its own
supervisory signals: first, the model performs a forward reasoning task (e.g., predicting a cell’s re-
sponse to a drug); then, in a complementary inverse task, given generated results and known input
conditions, it will reason backward to reconstruct the unknown input conditions. The reward is then
determined by directly comparing the reconstructed input with the original. This consistency score
becomes the intrinsic reward signal, compelling the model to produce forward predictions that are
accurate and logically reversible, without needing ground-truth labels for the predictions themselves.

We implement this principle in a two-stage training paradigm. An initial Supervised Fine-Tuning
(SFT) stage on a small, curated set of examples, containing both forward and inverse reasoning
traces. This stage serves to cold-start the model, teaching it the language and format of biological
reasoning. This is followed by a large-scale, self-supervised Reinforcement Learning (RL) stage,
where the model is aligned using these intrinsic rewards on vast unlabeled data. This stage refines
the model’s ability to produce outputs that are not only stylistically correct but also biologically and
logically coherent.
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Empirical evaluations demonstrate that CellDuality, despite being trained without any ground-
truth verification during its RL phase, substantially outperforms its SFT-only counterpart. Critically,
on the challenging OOD perturbation benchmark, our self-supervised approach closes XX% of the
performance gap to a fully-supervised RLVR model that was trained with ground-truth rewards.
This showcases the remarkable sample efficiency and generalization capabilities of our framework.
Our main contributions are:

• We propose a novel, unified framework that structures complex biological inquiry into four core
reasoning tasks spanning both cell identity and cell dynamics. This provides the first clear
roadmap for developing and evaluating true generalist agents in single-cell biology.

• We introduce the principle of Complementary Task Duality, a new mechanism for generating
annotation-free rewards. This framework incentivizes LLMs to learn the intrinsic, causal consis-
tency of biological processes by rewarding the fidelity of a bidirectional reasoning loop, eliminat-
ing the need for ground-truth labels during the RL phase.

• We show empirically that the generalist model significantly outperforms standard SFT baselines
and narrows the performance gap to a fully-supervised oracle model on the challenging out-of-
distribution perturbation prediction benchmark.

2 RELATED WORK

Foundation Models in Single-Cell Biology. Foundation models are revolutionizing single-cell bi-
ology by learning representations from massive transcriptomic data (Cui et al., 2024; Theodoris
et al., 2023). The field has rapidly progressed from models focused on predictive tasks, such as
scGPT (Cui et al., 2024) for annotation and C2S-Scale (Rizvi et al., 2025) for multi-task general-
ity, to those attempting explicit reasoning. However, these reasoning-aware models often operate
in narrow paradigms; for instance, Cell-o1 (Fang et al., 2025b) frames reasoning as a logically-
constrained puzzle, while agentic frameworks like ESCARGOT (Matsumoto et al., 2025) rely on
external knowledge graphs. A key challenge remains in developing a single, generalist agent that
can perform open-ended, mechanistic reasoning directly from cellular data. Our work addresses this
gap, aiming for the generality of models like InstructCell (Fang et al., 2025a) but with a training
objective that explicitly fosters deep, intrinsic reasoning.

Reinforcement Learning from Verifiable Rewards . Reinforcement learning is increasingly used
to refine LLMs beyond standard SFT, with paradigms evolving to reduce reliance on external super-
vision (Ouyang et al., 2022; Shao et al., 2024). A particularly scalable paradigm is Reinforcement
Learning from Verifiable Rewards (RLVR), which replaces subjective feedback (Bai et al., 2022)
with objective, ground-truth-based rewards from deterministic verifiers (Shao et al., 2024). How-
ever, the prerequisite of a verifiable output severely limits RLVR’s application in biology, where
outcomes are inherently stochastic. Recent work has sought to address this by generating self-
supervised rewards through task duality. For instance, the DuPO (She et al., 2025) framework
introduced a generalized duality for non-invertible tasks, such as mathematical reasoning, by recon-
structing input components to create a reward signal. Building upon this direction, our work adapts
this principle to the unique challenges of biology. We introduce Complementary Task Duality to
generate intrinsic, self-verifiable rewards from the internal consistency of cellular processes, thus
extending the RLVR paradigm to the non-verifiable biological domain.

3 METHODOLOGY

This section delineates the methodology for training our single-cell biological reasoning model. An
overview of our entire framework is presented in Figure 1. We first define the concepts and the uni-
fied task framework. We then introduce the generalized framework for self-supervision. Finally, we
detail our training pipeline: an initial cold start stage, followed by a self-supervised Reinforcement
Learning stage that uses our duality principle to enhance the model for deeper reasoning.

3.1 PRELIMINARIES AND A UNIFIED TASK FRAMEWORK

We denote the LLM policy as πθ, parameterized by θ. Let V be the global vocabulary of all consid-
ered gene names. Our work addresses a unified set of four core single-cell reasoning tasks, structured
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Table 1: The Unified Task Framework for Single-Cell Reasoning.

Theme Classification Tasks Generative Tasks

Cell Identity Cell Type Annotation
(Input: Cell, Output: Label)

Conditional Cell Generation
(Input: Label, Output: Cell)

Cell Dynamics Drug Sensitivity Prediction
(Input: Cell + Drug, Output: Label)

Perturbation Response Generation
(Input: Cell + Drug, Output: New Cell)

into a 2x2 matrix spanning two fundamental biological themes: Cell Identity and Cell Dynamics.
The core data structures for these tasks are defined as follows:

• Cell Representation: A cell c = {g1, g2, . . . , gK} is represented as an descending order sequence
of its top K expressed genes, where each gene gi ∈ V .

• Perturbation: A perturbation p is a structured tuple describing an intervention, e.g., p =
{operation, target}, where operation ∈ {knockdown, overexpression} and target ∈ V .

• Cell Type and Sensitivity Labels: A cell type t, is a categorical label from a predefined set T .
Similarly, a drug sensitivity label, s, is a categorical label from a set S.

All inputs to the LLM are constructed as textual prompts x that combine these components. The
model’s output is a textual response y, generated autoregressively according to the policy y ∼
πθ(·|x). A response may include a reasoning trace z and a final answer a, i.e., y = {z,a}.

3.2 THE PRINCIPLE OF COMPLEMENTARY TASK DUALITY

A primary obstacle to applying Reinforcement Learning (RL) to the four tasks defined above is the
absence of a scalable reward source. In single-cell biology, obtaining ground-truth signals from
experiments is prohibitively expensive and slow. Our work is motivated by a central question:
Can we generate a reliable, intrinsic reward signal directly from the structure of these biological
problems themselves, thus enabling RL without external supervision?

To achieve this, inspired by (She et al., 2025), we introduce a self-supervised reward generation
framework. The core idea is to reframe a single biological question into a pair of mutually-verifying
tasks, a primal task and a complementary dual task. This creates an internal logic loop that the model
must satisfy, providing a natural source for an RL reward.
Definition 3.1 (Complementary Task Duality). Let the input space X of a primal task Tp be decom-
posed into disjoint subspaces: Xk (known components) and Xu (unknown components), such that
X = Xk ∪ Xu. The primal task Tp is a mapping from Tp : X → Y . Its complementary dual task
Tcd is a mapping that leverages the primal output y and the known component xk to reconstruct the
unknown component x̂u:

Tcd : (y,xk) 7→ x̂u.

Pair (Tp, Tcd) forms a generalized dual pair if it satisfies the complementary consistency principle:

∀x ∈ X , y = Tp(x) : d
(
xu, Tcd(y,xk)

)
≤ ϵ,

where d(·, ·) : Xu ×Xu is a domain-specific distance metric, and ϵ ≥ 0 is a tolerance threshold.

The power of this framework lies in its ability to transform an unsupervised problem into a self-
verifying one. The consistency principle defined above provides the mechanism to generate rewards:
the fidelity of the dual task’s reconstruction, d(xu, x̂u), serves as a direct, intrinsic measure of the
logical and biological coherence of the primal task’s output y. This approach elegantly sidesteps
the challenges of classical dual learning (irreversibility and asymmetry) by leveraging the known
component xk as a contextual anchor, ensuring the dual task is well-posed.

3.3 TRAINING STAGE 1: SUPERVISED FINE-TUNING FOR CAPABILITY COLD-START

Before RL Training, we first initialize the base LLM with foundational biological knowledge and
reasoning patterns through Supervised Fine-Tuning (SFT). This essential cold-start phase ensures
the model can effectively engage with the complex, self-supervised tasks in the subsequent align-
ment stage. The process involves two key steps: generating a high-quality Chain-of-Thought dataset,
and then using it to train the model.
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3.3.1 CHAIN-OF-THOUGHT REASONING DATASET GENERATION

We construct a comprehensive SFT dataset, DSFT, by leveraging powerful teacher models (e.g.,
GPT-4o, Gemini 2.5 Pro) to generate Chain-of-Thought (CoT) reasoning traces. A critical aspect
of our approach is that DSFT must equip our model with capabilities for both the primal (forward)
reasoning and the complementary dual (inverse) reasoning required in our RL stage. Therefore, we
generate and curate distinct data subsets for each direction.

Primal Task SFT Data. For each of our four core tasks, we generate primal task data. Given an
input prompt xi, we prompt a teacher model πteacher to generate N candidate responses {yi,k =
(zi,k,ai,k)}Nk=1. We then apply task-specific filtering to select high-quality instances for our primal
SFT set, Dprimal

SFT .

• For Classification Tasks (Annotation & Sensitivity): We use a strict Rejection Sampling proto-
col. A candidate yi,k is accepted if its final answer ai,k exactly matches the ground-truth label a∗i .
We define an indicator for correctness as ϵi,k = I(ai,k = a∗i ). The accepted set for prompt xi is
{yi,k|ϵi,k = 1}. This ensures all training examples are factually correct.

• For Generative Tasks (Cell & Response Generation): As no single, unique ground-truth se-
quence exists for these tasks, a simple exact match is infeasible. Instead, we adopt a Rank-Aware
Filtering protocol. For each prompt xi with a corresponding ground-truth cell sequence a∗i , the
teacher model generates a candidate response (zi,ai). The candidate is accepted into DSFT only
if the generated cell sequence ai demonstrates high fidelity to the ground truth in terms of both
gene overlap and expression ranking. We quantify this using our proposed Rank-Weighted Jac-
card Similarity metric (detailed in Appendix. A). A candidate is accepted only if its similarity
score exceeds a predefined threshold.

Dual Task SFT Data. To explicitly teach the model the inverse reasoning required for our duality
framework, we construct a corresponding dual task SFT set, Ddual

SFT . For each instance in our curated
primal set, we formulate its complementary dual problem.

• For a primal instance (x = (xk,xu),y
∗), we construct a dual prompt xdual = (y∗,xk). The

ground-truth answer for this dual task is the original unknown component, y∗
dual = xu.

• For example, for a perturbation response instance where xk = cpre, xu = p, and y∗ = c∗post, the
dual SFT sample would be: prompt (c∗post, cpre) paired with the ground-truth answer p.

The teacher model is then prompted to generate CoT reasoning for these dual problems. The final
SFT dataset is the union DSFT = Dprimal

SFT ∪Ddual
SFT . This hybrid strategy ensures the model is proficient

in both forward and inverse reasoning before entering the RL stage.

3.3.2 SUPERVISED FINE-TUNING OBJECTIVE

The model is then trained on DSFT by minimizing the standard negative log-likelihood loss LSFT(θ)
over the complete reasoning trajectories:

LSFT(θ) = −E(xi,y∗
i )∼DSFT

|y∗
i |∑

j=1

log πθ(y
∗
i,j |xi,y

∗
i,<j)

 . (1)

The resulting model, πSFT, possesses the baseline capabilities required for the subsequent self-
supervised alignment.

3.4 STAGE 2: SELF-SUPERVISED DUALITY-GUIDED REINFORCEMENT LEARNING

This stage constitutes the core of our self-supervised methodology. We refine the capabilities of the
SFT-initialized model, πSFT, by aligning it with the principle of complementary consistency. This
is achieved through a Reinforcement Learning (RL) framework that operates on a large, unlabeled
dataset DRL and is guided by intrinsic rewards, eliminating the need for any ground-truth data.

5
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3.4.1 SELF-SUPERVISED REWARD GENERATION

The cornerstone of our alignment stage is the generation of intrinsic rewards derived from the com-
plementary duality principle. For any prompt x = (xk,xu) and a model-generated primal output y,
we compute a reward by executing the complementary dual task and measuring its reconstruction
fidelity. We employ two types of rewards, categorical and sequence-based, tailored to the nature of
our core tasks.

Categorical Rewards from Inverse Task Consistency. For generative tasks such as Perturbation
Response Generation and Conditional Cell Generation, the duality provides a clean, categorical
reward signal. In both cases, the primal task generates a high-dimensional cell sequence (cpost or c),
and the complementary dual task attempts to reconstruct a categorical input label (the sensitivity s
or the cell type t). The reward is a binary signal based on the exact reconstruction of this label:

r(y|x) = I(x̂u = xu), (2)

where xu is the original categorical input (e.g., t) and x̂u is its reconstruction (e.g., t̂). This re-
ward directly measures the logical consistency of the generated output: a biologically plausible cell
sequence should unambiguously encode the conditions that generated it.

Continuous Rewards from Conditional Inpainting. For classification tasks such as Cell Type
Annotation and Drug Sensitivity Prediction, where the primal output is a low-information label, we
design a reward based on a conditional gene inpainting objective. Here, the input cell sequence
is artificially decomposed into an observed part cobs and a hidden part chid, which serves as the
unknown component xu. The dual task is to reconstruct ĉhid conditioned on both the observed genes
cobs and the model’s predicted primal label (t̂ or ŝ). The reward is a continuous score reflecting
the quality of this reconstruction: r(t̂|c) = RWJS(chid, ĉhid). Here, we use Rank-Weighted Jaccard
Similarity (detailed in Appendix. A) to measure the similarity between the original hidden genes
and the reconstructed ones. This reward incentivizes the model to base its classification on a deep
understanding of the cell’s underlying gene signature, as a correct label should provide the necessary
context for accurate gene inpainting.

3.4.2 POLICY OPTIMIZATION WITH GRPO

We optimize the policy πθ to maximize the expected self-supervised reward J (θ) =
Ex∼DRL [r(y|x)]. We employ Group Relative Policy Optimization (GRPO), a memory-efficient and
stable critic-free RL algorithm. The optimization follows an iterative, online process: for each
prompt, the current policy πθ generates a group of G candidate responses, each of which is then
assigned a self-supervised reward based on its dual-task performance. This group of responses and
rewards is then used to update the policy as follows.

Advantage Estimation. For each prompt, after generating a group of G responses and their cor-
responding rewards {rk}Gk=1, we compute the advantage for each candidate. This is achieved by
normalizing the rewards relative to the group’s performance, which serves as an empirical baseline,
thus obviating the need for a separate value function:

Ak =
rk −mean({rj}Gj=1)

std({rj}Gj=1) + ϵ
. (3)

Objective Function. The policy is updated by maximizing the GRPO objective, which includes a
clipped surrogate objective to stabilize training and a KL penalty to prevent large deviations from a
reference policy πref (typically the initial SFT model πSFT):

JGRPO(θ) = E [min (ρt(θ)At, clip(ρt(θ), 1− ϵc, 1 + ϵc)At)− βDKL(πθ∥πref)] , (4)

where ρt(θ) = πθ(yt|x)/πθold(yt|x) is the probability ratio, At is the advantage at token t (in our
case, Ak is applied to all tokens of response k), ϵc is the clipping ratio, and β is the KL coeffi-
cient. This iterative, multi-task training process progressively refines the model’s ability to generate
biologically coherent and logically consistent responses.

6
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4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. Our evaluation is centered around the four core single-cell reasoning tasks
introduced in our framework. To ensure fair and direct comparison with state-of-the-art models, we
adopt the exact datasets and train/test splits used in seminal works, including C2S-Scale (Rizvi et al.,
2025) and InstructCell (Fang et al., 2025a). Our training strategy involves fine-tuning a single base
model on a designated primary training set for each task theme, and then evaluating its performance
on both in-distribution (ID) and out-of-distribution (OOD) test sets.

• Cell Identity Tasks (Annotation & Generation):
– Training Dataset: To build a robust generalist model for cell identity, we construct a mixed

training dataset by combining the training splits of four diverse public benchmarks: He-
2020-Liver (He et al., 2020), Segerstolpe-2016 (Segerstolpe et al., 2016), Xin-2016 (Xin
et al., 2016), and Human Immune Tissue Dataset (Domı́nguez Conde et al., 2022). This
mixed dataset serves as the sole source of supervision for our model on all identity tasks.

– ID Test Set: For the cell type annotation task, we use the held-out test splits of the three
datasets included in our training mix (He-2020-Liver, Segerstolpe-2016, Xin-2016). For cell
generation, we use the held-out test splits of Human Immune Datasets.

– OOD Test Set: We use two datasets entirely unseen during training: Ma-2020 (Ma et al.,
2020) and Bastidas-Ponce-2019 (Bastidas-Ponce et al., 2019).

• Cell Dynamics Tasks (Sensitivity Prediction & Response Generation):
– Training Dataset: We construct a comprehensive mixed training dataset by combining three

distinct perturbation benchmarks: the L1000 dataset (Subramanian et al., 2017), which
covers two human drug response datasets, GSE149383 (Lung) (Aissa et al., 2021) and
GSE117872 (Oral Cavity) (Sharma et al., 2018). This diverse dataset, containing exam-
ples for both response generation and sensitivity classification, serves as the sole source of
supervision for our model on all dynamics-related tasks.

– ID Test Sets: The held-out test splits of the two datasets explicitly included for the classifi-
cation task: GSE149383 and GSE117872.

– OOD Test Sets: We use two benchmarks entirely unseen during training. For cross-species
classification, we use the complete GSE110894 (Mouse Bone Marrow) dataset (Bell et al.,
2019). For generative causal reasoning, we use the OOD splits of the sci-Plex3 Human
Perturbation dataset (Srivatsan et al., 2020).

Evaluation Metrics.

• For Classification Tasks (Cell Type Annotation, Drug Sensitivity): We report Accuracy as the
primary metric. We also include the Macro F1-score to account for class imbalance.

• For Generative Tasks (Conditional Generation, Perturbation Response): For Perturbation Re-
sponse Generation, we follow C2S-Scale (Rizvi et al., 2025) and report distribution-based metrics
(scFID and MMD) calculated in a pre-trained embedding space (scGPT (Cui et al., 2024)) to as-
sess the quality and realism of generated cell populations. For Conditional Cell Generation, we
follow Cell2Sentence (LeVine et al., 2024) and report Gromov-Wasserstein (GW) Distance and k-
NN Accuracy. The k-NN classifier is evaluated with multiple neighbor values (k ∈ {3, 5, 10, 25}).

Baseline Models. We benchmark CellDuality against a comprehensive set of state-of-the-art
models, with all performance metrics cited directly from the original publications for fair com-
parison. For classification tasks (Annotation and Sensitivity), we compare against domain-specific
foundation models such as scGPT (Cui et al., 2024) and Geneformer (Theodoris et al., 2023), as
well as LLM-based agents like InstructCell (Fang et al., 2025a). For generative tasks (Cell and
Response Generation), baselines include specialized generative models like scGen (Lotfollahi et al.,
2019) and scDiffusion (Luo et al., 2024), and the powerful LLM-based framework C2S-Scale (Rizvi
et al., 2025).

Implementation Details. Our CellDuality model is based on the Llama-3.2-3B architecture. The
SFT stage is conducted for 3 epochs with a learning rate of 1e− 5. The subsequent self-supervised

7
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Table 2: Performance comparison on the Cell Type Annotation task. Baselines are trained on each
dataset individually. We report Accuracy (Acc.) and Macro F1-score (F1) for all five benchmarks,
differentiating between ID and OOD evaluation for our model.

Model
In-Distribution (ID) Evaluation Out-of-Distribution (OOD) Evaluation

He-2020-Liver Segerstolpe-2016 Xin-2016 Ma-2020 Bastidas-Ponce-2019
Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

scBERT 95.28 94.08 99.52 99.64 99.25 98.79 82.92 81.73 86.67 79.60
scGPT 94.88 91.75 98.09 97.82 99.10 98.40 82.84 79.40 91.43 87.01
Geneformer 96.06 92.57 99.52 99.49 99.70 99.39 85.79 84.89 88.50 83.81
Cell2Sentence 94.88 94.42 99.52 99.64 99.35 98.77 82.40 81.05 80.59 76.82
InstructCell-instruct 96.06 95.24 100.00 100.00 99.30 98.89 85.59 84.56 91.10 88.69
CellDuality (SFT-only) 94.83±0.21 94.67±0.18 98.76±0.08 98.73±0.09 99.45±0.12 99.01±0.15 80.22±0.34 74.95±0.41 72.87±0.28 57.24±0.33
CellDuality 96.34±0.19 95.41±0.16 99.81±0.07 99.78±0.08 99.52±0.11 99.08±0.13 82.03±0.32 81.78±0.39 88.45±0.26 78.12±0.31

Table 3: Performance comparison on the Drug Sensitivity Classification task. Baselines are trained
on each dataset individually. We report Accuracy (Acc.) and Macro F1-score (F1).

Model
In-Distribution (ID) Evaluation Out-of-Distribution (OOD) Evaluation

GSE149383 (Human Lung) GSE117872 (Human Oral) GSE110894 (Mouse Bone)
Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

scBERT 99.56 99.56 95.42 96.01 95.80 95.79
scGPT 97.79 97.79 82.44 84.76 95.80 95.79
Geneformer 98.23 98.23 94.66 95.27 93.01 92.91
Cell2Sentence 93.36 93.36 90.84 90.72 95.10 95.08
InstructCell-instruct 97.35 97.34 100.00 100.00 97.20 97.19
CellDuality (SFT-only) 98.91±0.15 98.89±0.16 96.78±0.22 97.12±0.19 96.45±0.18 96.42±0.20
CellDuality 99.12±0.13 99.10±0.14 97.23±0.20 97.58±0.17 96.12±0.21 96.08±0.23

Table 4: Performance on Perturbation Response Generation (sci-Plex3 benchmark). Our model was
trained on a separate perturbation dataset, while baselines were trained on the in-distribution splits
of sci-Plex3. Lower scores are better for distribution-based metrics.

Model Supervision Type scFID (↓) MMD (↓) Wasserstein (↓)
scGen Supervised 0.95 1.05 0.98
CellOT Supervised 0.88 1.03 0.95
scGPT Supervised 0.29 0.42 0.54
C2S-Scale 1B (SFT) Supervised 0.02 0.01 0.21
C2S-Scale (GRPO w/ GT) Ground-Truth RL 0.02 0.01 0.21
CellDuality (SFT-only) Supervised 0.045±0.003 0.028±0.002 0.267±0.012
CellDuality Self-Supervised 0.038±0.002 0.019±0.001 0.245±0.011

RL alignment is performed using GRPO with a group size of G = 8. All experiments are conducted
on 8x A6000 GPUs. All our scores are shown as mean ± std over 5 runs.

4.2 MAIN RESULTS

Across all four reasoning tasks, our self-supervised framework, Cell-Duality, demonstrates
highly competitive performance against a wide range of state-of-the-art baselines. As detailed in Ta-
bles 2 through 5, our generalist model, trained on mixed datasets, consistently matches or surpasses
specialist models that were trained on individual benchmarks. This is particularly evident in the
classification tasks (Cell Type Annotation and Drug Sensitivity), where CellDuality shows robust
generalization to out-of-distribution and even cross-species datasets.

The most significant impact of our self-supervised approach is observed in the generative tasks
requiring deep causal reasoning. For Perturbation Response Generation, the duality-guided RL stage
provides a substantial performance boost over the already strong SFT baseline. Critically, our self-
supervised model successfully narrows the performance gap to a fully-supervised oracle that requires
ground-truth labels for alignment, proving the efficacy of our annotation-free strategy. While our
model also demonstrates strong performance on Conditional Cell Generation by outperforming most
classical and deep learning-based generative models, its primary strength lies in its ability to learn the
intrinsic, mechanistic consistency of biological processes, showcasing a new path toward scalable
and robust scientific reasoning agents.
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Table 5: Performance on Conditional Cell Generation on the Human Immune dataset (In-
Distribution). Baseline results are cited from Cell2Sentence (LeVine et al., 2024). k-NN Accuracy
is reported for multiple values of k.

Model k-NN Accuracy (%) ↑ GW Distance (↓)
k=3 k=5 k=10 k=25

scVI 24.36±0.0062 24.00±0.0064 24.25±0.0034 23.48±0.0032 302.13±0.9338
scGen 23.76±0.0112 23.30±0.0093 23.77±0.0053 23.35±0.0041 315.95±1.2431
scDiffusion 23.35±0.0125 22.88±0.0111 23.68±0.0067 23.06±0.0049 72.02±0.3937
scGPT 18.38±0.0086 17.88±0.0169 18.11±0.0149 18.82±0.0071 2989.81±4.9229
Cell2Sentence-160M 25.88±0.0061 25.65±0.0060 27.46±0.0073 27.15±0.0070 54.30±0.3410
CellDuality (SFT-only) 24.92±0.0058 24.71±0.0055 25.83±0.0062 25.49±0.0059 63.87±0.0421
CellDuality 26.34±0.0056 25.92±0.0053 26.21±0.0060 25.98±0.0057 61.45±0.0408

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.0

0.5

1.0

(a) Categorical Reward (Generative Tasks)

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.0

0.5

1.0

(b) Continuous Reward (Classification Tasks)

Figure 2: Training dynamics of self-supervised rewards during the RL alignment stage. The
plots show the moving average of (a) the categorical accuracy-based reward for generative tasks and
(b) the continuous RWJS-based reward for classification tasks.

Table 6: Core ablation study comparing Self-Supervised RL against a Ground-Truth Supervised
oracle. All models are initialized from the same SFT checkpoint and evaluated on their respective
in-distribution (ID) test sets.

Method Configuration He-2020-Liver GSE149383 (Lung) sci-Plex3
Acc. (↑) F1 (↑) Acc. (↑) F1 (↑) scFID (↓) MMD (↓)

Llama-3.2-3B-Instruct 22.45±1.23 52.82±1.45 29.67±0.89 61.34±1.12 - -
SFT-only 95.83±0.21 94.67±0.18 98.91±0.15 98.89±0.16 0.045±0.003 0.028±0.002
RL with Ground-Truth 97.21±0.16 94.85±0.14 99.34±0.12 99.31±0.13 0.025±0.001 0.012±0.001
Ours (Self-Supervised RL) 96.34±0.19 95.41±0.16 99.12±0.13 99.10±0.14 0.038±0.002 0.019±0.001

4.3 ABLATION STUDY

Self-Supervised vs. Ground-Truth Supervised RL To rigorously quantify the efficacy of our self-
supervised alignment strategy, we conduct a head-to-head comparison against a standard supervised
RL approach. We evaluate three key models on their respective in-distribution test sets: (1) the
SFT-only baseline, (2) a supervised RL oracle trained with ground-truth rewards, and (3) our self-
supervised CellDuality model. As shown in Table 6, our self-supervised RL approach consistently
and significantly boosts performance over the SFT-only baseline across all tasks. Critically, our
annotation-free method substantially narrows the performance gap to the fully-supervised oracle,
and even surpasses the oracle’s Macro F1-score on the He-2020-Liver annotation task, suggesting it
learns more robust decision boundaries.

5 CONCLUSION

We introduced CellDuality, a generalist agent that learns complex biological reasoning through
a novel self-supervised framework. Our core contribution, the principle of complementary task
duality, enables reinforcement learning alignment on non-verifiable single-cell tasks by generating
intrinsic rewards from a bidirectional reasoning loop. Trained via our sample-efficient, two-stage
paradigm, CellDuality achieves state-of-the-art performance across four distinct reasoning tasks,
providing coherent biological explanations. Critically, our self-supervised approach demonstrates
its efficacy by narrowing the performance gap to a supervised RLVR baseline. This work presents a
significant step toward scalable foundation models in biology, offering a new paradigm that learns
to reason from the intrinsic logical structure of scientific problems, rather than from external labels.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. No private, sensitive, or personally identifiable data are in-
volved. Our work does not raise foreseeable ethical concerns or produce harmful societal outcomes.

REPRODUCIBILITY STATEMENT

Reproducibility is central to our work. All datasets used in our experiments are standard benchmarks
that are publicly available. We provide full details of the training setup, model architectures, and
evaluation metrics in the main paper and appendix. Upon acceptance, we will release our codebase,
including scripts for preprocessing, training, and evaluation, along with configuration files and doc-
umentation to facilitate exact reproduction of our results. Random seeds and hyperparameters will
also be included to further ensure reproducibility.

REFERENCES

Alexandre F Aissa, Abul BMMK Islam, Majd M Ariss, Cammille C Go, Alexandra E Rader,
Ryan D Conrardy, Alexa M Gajda, Carlota Rubio-Perez, Klara Valyi-Nagy, Mary Pasquinelli,
et al. Single-cell transcriptional changes associated with drug tolerance and response to combi-
nation therapies in cancer. Nature communications, 12(1):1628, 2021.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Aimée Bastidas-Ponce, Sophie Tritschler, Leander Dony, Katharina Scheibner, Marta Tarquis-
Medina, Ciro Salinno, Silvia Schirge, Ingo Burtscher, Anika Böttcher, Fabian J Theis, et al.
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