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ABSTRACT

It is generally believed that robust training of extremely large networks is critical
to their success in real-world applications. However, when taken to the extreme,
methods that promote robustness can hurt the model’s sensitivity to rare or under-
represented patterns. In this paper, we discuss this trade-off between robustness
and sensitivity by introducing two notions: contextual feature utility and contextual
feature sensitivity. We propose Feature Contrastive Learning (FCL) that encour-
ages the model to be more sensitive to the features that have higher contextual
utility. Empirical results demonstrate that models trained with FCL achieve a better
balance of robustness and sensitivity, leading to improved generalization in the
presence of noise.

1 INTRODUCTION

Deep learning has shown unprecedented success in numerous domains (Krizhevsky et al., 2012;
Szegedy et al., 2015; He et al., 2016; Hinton et al., 2012; Sutskever et al., 2014; Devlin et al., 2018),
and robustness plays a key role in the success of neural networks. When we seek robustness, we
are interested in having the same model prediction for small perturbations of the inputs. However
such invariance to small perturbations can prove detrimental in some cases. As an extreme example,
it is sometimes possible that a small perturbation to the input changes the human perceived class
label, but the model is insensitive to this change (Tramèr et al., 2020). In this paper, we focus on
balancing this tradeoff between robustness and sensitivity by developing a contrastive learning method
that promotes the change in model prediction for certain perturbations, and inhibits the change for
certain other perturbations. Note that we are only referring to non-adversarial robustness in this
paper, i.e., we are not making any effort to improve robustness to carefully designed adversarial
perturbations (Goodfellow et al., 2014).

To develop algorithms that balance robustness and sensitivity, we first formalize two measures: utility
and sensitivity. Utility refers to the change in the loss function when we perturb a specific input
feature. In other words, whether an input feature is useful for the model’s prediction. Sensitivity, on
the other hand, is the change in the learned embedding representation (before computing the loss)
when we perturb a specific input feature. In contrast to classical feature selection approaches (Guyon
& Elisseeff, 2003; Yu & Liu, 2004) that identify relevant and important features, our notions of
sensitivity and utility are context dependent and change from one image to another. Our goal is to
ensure that if an input feature has high utility, the model will also be sensitive to it, and if it has low
utility then the model won’t.

To explore and illustrate the notions of utility and sensitivity, we introduce a synthetic MNIST
dataset, as shown in Figure 1. In the standard MNIST, the goal is to classify 10 digits based on their
appearance. We modify it by adding a small random digit in the corner of some of the images and
increasing the number of classes by five. For digits 5-9 we never change the class labels even in the
presence of a corner digit, whereas digits 0-4 move to extended class labels 10-14 in the presence of
any corner digit. The small corner digits can have high or low utility depending on the context. If
the digit in the center is in 5-9 the corner digit has no bearing on the class, and will have low utility.
However, if the digit in the center of the image is in 0-4, the presence of a corner digit is essential to
determining the label, and thus has high utility. We would like to promote model sensitivity to the
small corner digits when they are informative, in order to improve predictions, but demote it when
they are not, in order to improve robustness.
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(a) Classes 0-4 (b) Classes 5-9 (c) Classes 10-14

Figure 1: Synthetic MNIST data. We synthesize new images by adding a scaled down version of a
random digit to a random corner. Images synthesized from digits 5-9 keep their label (Figure 1b)
while images synthesized from digits 0-4 are considered to be of a different class (Figure 1c). In this
setup corner pixels are informative only in a certain context.

Feature attribution methods. Our notions of utility and sensitivity are related to feature attribution
methods. Given an instance x and a model f , feature based explanation aims to attribute the prediction
of f(x) to each feature. There have been two different approaches to understand the role of features.
In the former, we compute the derivative of f(x) with respect to each feature, which is similar to the
sensitivity measure proposed in this paper (Shrikumar et al., 2017; Smilkov et al., 2017; Simonyan
et al., 2013; Sundararajan et al., 2016). The latter methods measure the importance by removing a
feature or comparing it with a reference point (Samek et al., 2016; Fong & Vedaldi, 2017; Dabkowski
& Gal, 2017; Ancona et al., 2018; Yeh et al., 2019; Zeiler & Fergus, 2014; Zintgraf et al., 2017). For
example, the idea of prediction difference analysis is to study the regions in the input image that
provide the best evidence for a specific class or object by studying how the prediction changes in
the absence of a specific feature. While many of the existing methods look at the interpretability of
the model predictions, our work proposes loss functions in the training stage to adjust the sensitivity
according to their utility in a context-dependent manner.

Robustness. It is widely believed that imposing robustness constraints or regularization to neural
networks can improve their performance. Taking the idea of robustness to the extreme, adversarial
training algorithms aim to make neural networks robust to any perturbation within an ε-ball (Goodfel-
low et al., 2014; Madry et al., 2017). The certified defense methods pose an even stronger constraint
in training, i.e., the improved robustness has to be verifiable (Wong & Kolter, 2018; Zhang et al.,
2019b). Despite being successful in boosting accuracy under adversarial attacks, they come at the cost
of significantly degrading clean accuracy (Madry et al., 2017; Zhang et al., 2019a; Wang & Zhang,
2019). Several theoretical works have demonstrated that a trade-off between adversarial robustness
and generalization exists (Tsipras et al., 2018; Schmidt et al., 2018). Recent papers (Laugros et al.,
2019; Gulshad et al., 2020) also discuss the particular relationship between adversarial robustness
and natural perturbation robustness, and find that they are usually poorly correlated. For example,
Laugros et al. (2019) shows models trained for adversarial robustness that are not more robust than
standard models on common perturbation benchmarks and the converse holds as well. (Gulshad
et al., 2020) also found a similar trend while natural robustness can commonly improve adversarial
robustness slightly. While adversarial robustness is important in its own way, this paper mainly
focus on natural perturbation robustness. In fact, our goal of “making models sensitive to important
features” implies that the model should not be adversarially robust on high utility features.

With the goal of improving generalization instead of adversarial robustness, several other works
enforce a weaker notion of robustness. A simple approach is to add Gaussian noise to the input
features in the training phase. Lopes et al. (Lopes et al., 2019) recently showed that Gaussian data
augmentation with randomly chosen patches can improve generalization. (Xie et al., 2020) showed
that adversarial training with a dual batch normalization approach can improve the performance of
neural networks. It is worth noting a closely related work (Kim et al., 2020), which also employs
contrastive learning for robustness (See Section 3 for details); however, it differs in three main
aspects: a) their paper focuses on adversarial robustness while ours focuses on robustness to natural
perturbations b) their contrastive learning always suppresses the distance between the original and an
adversarially perturbed image while our proposal encourages to differ for high-utility perturbation
pairs and suppress for the low-utility pairs c) their perturbation is based on an unsupervised loss,
while we rely on class labels to identify low and high utility features with respect to the classification
task.

In summary, all the previous works in robust training aim to make the model insensitive to perturbation,
while we argue that a good model (with better generalization performance) should be robust to
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unimportant features while being sensitive to important features. A recent paper in the adversarial
robustness community also pointed out this issue (Tramèr et al., 2020), where they showed that
existing adversarial training methods tend to make models overly robust to certain perturbations that
the models should be sensitive to. However, they did not provide any solution to the problem of how
to balance robustness and sensitivity.

Main contributions

• We propose contextual sensitivity and contextual utility metrics that allows to measure and
identify high utility features and their associated model sensitivity.

• We propose Feature Contrastive Learning (FCL) that promotes model sensitivity to pertur-
bations of high utility features, and inhibits model sensitivity to perturbations of low utility
features.

• We demonstrate practical utility of our approach on a synthetic dataset as well as real-
world CIFAR-10, CIFAR-100, and ImageNet datasets (with noise injection and corruption
patterns).

2 ROBUSTNESS AND SENSITIVITY

2.1 BACKGROUND AND NOTATION

Before we formally define contextual utility and contextual sensitivity, we consider a simple scenario
for motivation. Consider binary classification of images with 0/1 loss. For a specific input image,
changing a pixel a little could lead to a change in the model’s prediction (i.e. best guess) or the label.
When the prediction changes, we say that the model is contextually sensitive to this pixel. Sensitivity
is thus independent of the label. The change in the pixel may or may not affect the loss, since the
label may change as well. We measure the contextual utility of the pixel with respect to its effect
on the loss on the specific image. While utility and sensitivity are related, neither implies the other:
Binary loss does not change when both the prediction and the label change. In this case, the model is
sensitive to the pixel, but the pixel utility (for the specific image) is zero. On the other hand, when
only the label changes, the model is not sensitive to the pixel, but the pixel has high utility. Ideally,
we would like the model to be sensitive to pixels that have high utility. For the same pixel in the same
image, both utility and sensitivity depend on the model parameters and hence evolve along with the
model in the training stage.

We generalize these concepts to multi-class classification with loss functions that are differentiable
with respect to input features. We also relate sensitivity to the model’s probability distribution over
the classes - rather than focusing on its best guess. We can define it with respect to change in the
probability distribution. We can also define it relative to a specific model architecture. For example,
sensitivity can be defined with respect to change in the logits or in the embedding representation at a
specific layer (typically the layer before the logits) in deep neural networks. We highlight one choice
in the formal definition later in this section and use it in all our experiments.

Multiclass classification Let us consider a classification setting with L classes. We are given a
finite set of n training samples S = {(x1, y1), . . . , (xn, yn)}, where xi ∈ X and yi ∈ Y . Here X and
Y denote the instance and output spaces with dimensions D and L respectively. The output vector yi
is treated as the 1-hot encoding of the class labels. Let f : X → RL be the function that maps the
input vector to one of the L classes. Accordingly, given a loss function ` : {0, 1}L × RL → R+, our
goal is to find the parameters w∗ that minimize the expected loss:

w∗ = argmin
w

Ey∼Y,x∼X `(y, f(x;w)).

In this work, we consider the cross entropy loss function `(y, fw(x)) =
∑
c 1y=c log f(x;w)c,

but our formulation is not restricted to this loss. The model f(x) : X → RL can be seen as the
composition of an embedding function φ : X → RE that maps an input to an E-dimensional feature,
and a discriminator function h : RE → RL that maps a learned embedding to an output. In other
words, f(x;w) = (h ◦ φ)(x;wφ, wh) and w = {wφ, wh}.
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Given a finite training set S, we minimize the following empirical risk to learn the parameters:

w∗ = argmin
w

1

N

∑
(xi,yi)∼S

` (yi, f(xi;w)) .

2.2 CONTEXTUAL FEATURE UTILITY

Definition 1 (Contextual feature utility). Given a model f : X → RL and a loss function ` :
{0, 1}L × RL → R+, the contextual utility vector associated with a training sample (xi, yi) ∈ S, is
given by:

ui =

∣∣∣∣∂`(yi, f(xi;w))∂xi

∣∣∣∣ , (1)

where i denotes the index of a specific training sample. The element uij in the vector ui denotes
the utility along the relevant input dimension j. Note that the contextual feature utility vector is
nothing but the absolute value of Jacobian of the loss function with respect to the input vector, and
the Jacobian has been shown to be closely related to stability of the network (Jakubovitz & Giryes,
2018).

The contextual utility uij denotes the change in the loss function ` with respect to perturbation of the
input sample xi along the dimension j. A perturbation of the high utility feature leads to a larger
change in loss compared to the perturbation of the low utility feature. Please note that this utility
function is context sensitive, i.e., the dimension having high utility for one training sample may have
low utility for another sample.

2.3 CONTEXTUAL FEATURE SENSITIVITY

Definition 2 (Contextual feature sensitivity). Given an embedding function φ : X → RL, the
sensitivity sij associated with a training sample (xi, yi) ∈ S is as follows:

sij =

∥∥∥∥∂φ(xi, wφ)∂xij

∥∥∥∥ (2)

Sensitivity is nothing but the norm of the Jacobian of the embedding function with respect to the
input. The notion of sensitivity captures how the features corresponding to an input xi change for
small perturbations of the input along dimension j. Similar to utility, the sensitivity is also context
dependent and changes from one training sample to another. Note that the sensitivity could also
be defined on the embeddings from intermediate layers, as well as the final output space. Driven
by the empirical success of other stability training (Zheng et al., 2016) and contrastive learning
methods (Chen et al., 2020), we choose to develop contrastive loss functions in the embedding
space defined by the penultimate layer of the network. In contrast to the feature utility vector that
depends on the true class labels, the feature sensitivity is independent of the class labels. Please see
Appendix A for a more detailed discussion of the relationship between contextual feature utility and
sensitivity.

3 FEATURE CONTRASTIVE LEARNING

Our goal is to learn an embedding function φ : X → RL that is more sensitive to the features with
higher contextual utility than the ones with lower contextual utility. That is, we want embeddings of
examples perturbed along low utility dimensions to remain close to the original embeddings, and
embeddings of examples perturbed along high utility dimensions to be far. Our formulation utilizes
the contextual utility and sensitivity and the interplay between them. The utility is used for selecting
the features, and the associated sensitivity values are adjusted by applying the contrastive loss.

We now describe a method to achieve this goal, using a contrastive loss on embeddings, derived from
utility-aware perturbations. In typical contrastive learning methods (Chen et al., 2020), positive and
negative pairs are generated using data augmentations of the inputs, and the contrastive loss function
minimizes the distance between embeddings from positive pairs, and maximizes the distances between
embeddings from negative pairs. We follow the same path, but use contextual utility to define the
positive and negative sets.
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Algorithm 1 FCL algorithm

Initialize model f : X → RL with parameters w0

for Sample minibatch S = [(x1, y1), ...(xn, yn)] from S do
∀i ui =

∣∣∣∂`(yi,f(xi;w))
∂xi

∣∣∣ ,
for i ∈ {1, ...n} do
zi = φ(xi, wφ)
z+i = φ(xi + ε(BOTTOMk(ui)), wφ)
z−i = φ(xi + ε(TOPk(ui)), wφ)

end for
Let `FCL =

∑
i `
i
xe or `FCL =

∑
i `
i
margin

Update model parameters: wt+1 ← wt − η ∂`+λ`FCL
∂w .

end for

Definition 3 (Utility-aware perturbations). Let TOPk(v) and BOTTOMk(v) denote the largest and
smallest k indices of vector v (ties resolved arbitrarily), respectively. Let ε(S) denote perturbation
vectors of dimension D such that

ε(S)i
{
∼ N (0, σ2), if i ∈ S
= 0, otherwise

(3)

Using the utility vector ui for a training sample xi, we refer to ε(TOPk(ui)) as the high-utility
perturbation, and ε(BOTTOMk(ui)) as the low-utility perturbation.

For simplicity, let us use z = φ(x,wφ) to denote the embedding associated with the input x.
In order to increase the sensitivity along high utility features, we add a high-utility perturbation,
z−i = φ(xi + ε(TOPk(ui)), wφ). Similarly, in order to decrease the sensitivity along low utility
features, we add a low-utility perturbation, z+i = φ(xi + ε(BOTTOMk(ui)), wφ). Our key idea is to
treat (zi, z+i ) as a positive pair, and (zi, z

−
i ) as a negative pair in a contrastive loss. In other words,

we want to do deep metric learning such that the high-utility perturbations lead to distant points and
low-utility perturbations lead to nearby points in the embedding space.

For a given sample xi, we have a single positive pair Pi = {(zi, z+i )} and a set of negative pairs Ni,
which consists of (zi, z−i ) and (zi, zj) where j 6= i.

We can now adapt any contrastive loss from the literature to our positive and negative pairs. We
define two versions to show the flexibility, but focus on one of them for all our experiments.
Definition 4 (Feature Contrastive Loss). Given the positive pair Pi and the set of negative pairs Ni
for a sample xi, we define the two variants for the Feature Contrastive Loss (`FCL) as follows:

`imargin = dist(zi, z
+
i )

2 +
∑

(zi,zj)∈Ni

max(0, γ − dist(zi, zj))
2, (4)

`ixe = − log
e(1−dist(zi,z

+
i ))/τ

e(1−dist(zi,z
+
i ))/τ +

∑
(zi,zj)∈Ni

e(1−dist(zi,zj))/τ
, (5)

where the first loss is the contrastive loss based on margin γ, similar to the one proposed in (Chopra
et al., 2005), and the second variant is based on a recent contrastive learning method (Chen et al.,
2020). Here dist(a, b) denotes the cosine distance given by 1− aT b

|a||b| . Once the positive and negative
pairs are generated using our formulation, we can use different variants of contrastive loss functions.

Equation 4 and Equation 5 solve the same problem with different approaches. Equation 4 strictly
minimizes the distance between the zi and z+i and encourages a margin of at least γ between zi and
zj ∈ Ni. Equation 5, on the other hand, applies a softer contrast between the rankings of dist(zi, z+i )
and dist(zi, zj ∈ Ni) similar to the softmax cross entropy loss. We choose this version for all our
experiments, after observing comparable performance on the synthetic MNIST experiments described
in Section 4.1.
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Algorithm 1 describes the details of FCL algorithm. It’s important to note that during early stages of
training, the utility is likely to fluctuate and be very noisy. Imposing sensitivity constraints based
on the early stage utility can be detrimental. We therefore use a warm-up schedule. We keep λ = 0
until a certain number of training epochs and then switch it to a fixed positive value for the rest of the
training.

4 EXPERIMENTS

4.1 SYNTHETIC MNIST CLASSIFICATION

To illustrate how FCL can balance robustness and sensitivity, we generate a synthetic dataset based on
MNIST digits (LeCun et al., 1989). We set up the task so that some patterns are not useful most of the
time, but are very informative in a certain context, which occurs rarely. We show that by using FCL,
our models i) maintain sensitivity in the right context and ii) become more robust by suppressing
uninformative features.

(a) Train split (log scale) (b) Test split

Figure 2: Class distribution. Train split is highly
unbalanced with classes 10-14 appearing rarely.

(a) Uniform noise (b) Non-uniform noise

Figure 3: Two types of random noise, used to
evaluate notions of robustness.

Data generation The original MNIST images consist of a single digit centered over a uniform
background, the corners of the image are empty in almost all examples, as seen in Figure 1a. We
synthesize new images by adding a scaled down version of a random digit to a random corner, as
seen in Figures 1b and 1c. The images synthesized from digits 0-4 are considered to be new classes,
classes 10-14 respectively. Examples are shown in Figure 1c. In contrast, images synthesized from
digits 5-9 do not change the class label, as shown in Figure 1b. For the new images, the small digits in
the corners are uninformative except in a certain context. If the digit in the center is in 5-9 the corner
digit has no bearing on the class, but if the digit in the center of the image is in 0-4, the presence of a
corner digit is essential to determining if the image should be labeled as 0-4 or as 10-14.

Experiment We generate a training set in which the new classes, classes 10-14 are very rare (see
Figure 2a), appearing with a ratio of approximately 1/100 compared to classes 0-9. Classes 0-9 have
approximately 5000 examples each, while classes 10-14 have approximately 50 each. The challenge
for models trained with this data is that the small digits in the corners are going to be completely
uninformative 100 out of 101 times they appear. To emphasize the importance of learning the rare
classes, our test (and validation) sets have a balanced distribution over all classes (Figure 2b). The
balanced test set is labeled ‘BAL’. In total, we have roughly 50k training examples, 15k validation
examples and 15k test examples. The validation set has a distribution similar to the test set’s and was
used to tune hyper-parameters.

To demonstrate that FCL increases robustness to noise, we also prepare two noisy versions of the
balanced test set. In both of these test sets we replace 15% of the pixels, with a uniformly chosen
random gray level. For the uniform noise test set (shown in Figure 3a) the location of the noisy pixels
is chosen uniformly. We label this set ‘BAL+UN’. For the non-uniform noise test set, ‘BAL+NUN’,
(shown in Figure 3b) the probability of a pixel being replaced with noise is inversely proportional to
its sample standard deviation (over training images). The intuition is that in this set, noise will be
concentrated in less “informative” pixels.

We train a LeNet-like convolutional neural network (CNN) (LeCun et al., 1989). The network is
trained for 20 epochs using the Adam optimizer (Kingma & Ba, 2014), with an initial learning rate
of 0.01 and exponential decay at a rate of 0.89 per epoch. FCL is turned on after 2 epochs with a
linear warmup of 2 epochs. We set k = 256, λ = 0.001, τ = 0.1 and σ = 0.5 (image values are in
[0, 1]). These values were determined empirically using the validation set. In later stages of training
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Figure 4: Visualization of utility averaged over classes (modulo 10) within one batch. Each of the
ten panels shows the average image on the left, and the average utility on the right. We can see that
the corner pixels have high utility only in a certain context. When the central digit is 0-4, the corner
pixels are important, since they can flip the class, but when the central digit is 5-9 they are not.

Dataset Method BAL BAL+UN BAL+NUN

Synthetic MNIST XE 0.9250 ±0.0088 0.4123 ±0.1176 0.5473 ±0.0703
Synthetic MNIST FCLxe 0.9207 ±0.0129 0.6384 ±0.0530 0.6896 ±0.0349

Table 1: Average accuracy and standard deviation over 10 runs, on the synthetic MNIST test sets.

the utility values become very small. To avoid numerical issues we drop high utility perturbations if
the max utility value is smaller than ε = 10−12. Each experiment is repeated 10 times.

Results The mean accuracy and the standard deviation are shown in Table 1. Results on the noisy
test sets ‘BAL+NU’ and ‘BAL+NUN’ show that using FCL can significantly improve robustness
to noise while maintaining sensitivity. Figure 4 illustrates the context dependent utility of the small
digits in the corners of the image. This is the signal used by FCL to emphasize contextual sensitivity.
Note that the models don’t see any noisy images in training, they can however learn which pixels are
less informative in certain contexts and suppress reliance on those.

4.2 LARGER-SCALE EXPERIMENTS

To evaluate FCL’s performance on general tasks, we conducted experiments on public large-scale
image datasets (CIFAR-10, CIFAR-100, ImageNet) with synthetic noise injection similar to Sec-
tion 4.1, and with the 19 predefined corruption patterns from (Hendrycks & Dietterich, 2019) –
called CIFAR-10-C, CIFAR-100-C and ImageNet-C. We show that FCL can significantly improve
robustness to these noise patterns, with minimal, if any, sacrifice in accuracy.

Baselines Apart from the standard cross-entropy baseline ‘XE’, we consider three other baselines
‘XE+Gaussian’, ‘CL+Gaussian’ and ‘Patch Gaussian+XE’. In ‘XE+Gaussian’, all the image pixels are
perturbed by Gaussian noise, and an additional cross-entropy term (weighted by a scalar λ) is applied
to perturbed versions of the image, keeping the original label. In ‘CL+Gaussian’, we add a contrastive
loss similar in form to `xe (Equation 5) to the original cross-entropy classification loss. We use the
same weight λ as in FCLxe but with a random Gaussian perturbed image as the positive pair instead
of the utility-dependent perturbation. ‘Patch Gaussian’, recently proposed by (Lopes et al., 2019) is a
data augmentation technique. An augmentation is generated by adding a patch of random Gaussian
noise to a random position in the image. This technique achieved state-of-the-art performance on
CIFAR-10-C. In ‘XE+Gaussian’ the perturbation is applied to all features, in ‘Patch Gaussian+XE’ it
is applied to a subset of the pixels, chosen at random, while FCL applies perturbations to a subset
of pixels based on contextual utility. Note that since Patch Gaussian is purely a data augmentation
technique, it can easily be combined with FCL, as we do in ‘Patch Gaussian+FCLxe’.

Model and hyperparameters ResNet-56 was used for CIFAR experiments and ResNet-v2-50
for the ImageNet experiment. We used the same common hyper-parameters such as learning rate
schedule and the use of SGD momentum optimizer (0.9 momentum) across all experiments. Details
on hyper-parameters, learning rate schedules and optimization can be found in Appendix B. Models
are trained for 450 epochs and contrastive learning losses (FCL and CL+Gaussian) are applied
after 300 epochs (CIFAR) or 60 epochs (ImageNet). We kept all standard CIFAR/ImageNet data
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Dataset Method Clean UN NUN

Noisy
CIFAR-10

XE 0.9389 ±0.0014 0.1317 ±0.0135 0.1256 ±0.0089
XE+Gaussian 0.9375 ±0.0016 0.3409 ±0.0580 0.3175 ±0.0532
CL+Gaussian 0.9362 ±0.0009 0.2646 ±0.0165 0.2464 ±0.0159
FCLxe 0.9375 ±0.0010 0.3749 ±0.0293 0.3432 ±0.0231

Patch Gaussian+XE 0.9334 ±0.0035 0.7842 ±0.0087 0.7669 ±0.0086
Patch Gaussian+FCLxe 0.9354 ±0.0023 0.8210 ±0.0013 0.8066 ±0.0033

Noisy
CIFAR-100

XE 0.7323 ±0.0052 0.0366 ±0.0078 0.0356 ±0.0084
XE+Gaussian 0.7297 ±0.0057 0.0806 ±0.0187 0.0763 ±0.0162
CL+Gaussian 0.7294 ±0.0022 0.0668 ±0.0122 0.0640 ±0.0134
FCLxe 0.7252 ±0.0076 0.1477 ±0.0227 0.1007 ±0.0160

Patch Gaussian+XE 0.7315 ±0.0028 0.0385 ±0.0102 0.0377 ±0.0091
Patch Gaussian+FCLxe 0.7254 ±0.0045 0.1590 ±0.0200 0.1033 ±0.0174

Table 2: Average accuracy and standard deviation over 5 runs on the noisy CIFAR test sets. Gaussian
is adding the Gaussian noise uniformly across all feature dimensions and Patch Gaussian data
augmentation is from (Lopes et al., 2019).

augmentations (random cropping and flipping) across all runs and added Patch Gaussian before or
after the standard data augmentation as in (Lopes et al., 2019) when specified. For both Gaussian
noise baselines, we swept σ = [0.1, 0.3, 0.5] to choose the best performing parameter. For the Patch
Gaussian, we used the code and the recommended configurations from (Lopes et al., 2019) – CIFAR-
10: patch size=25, σ = 0.1, ImageNet: patch size≤ 250, σ = 1.0. Since CIFAR-100 parameters
were not provided from the paper, we started from CIFAR-10 parameters and made our best effort to
sweep the parameters (patch size=[15...25], σ = [0.01...0.1]). For contrastive learning methods, we
swept λ = [0.0001...0.0004] and τ = [2, 1, 0.5, 0.1]. For FCL, we swept k = [256, 512, 1024, 2048]
and σε = [0.1, 0.3, 0.5]. We repeated all experiments 5 times.

4.2.1 NOISY CIFAR IMAGES

We follow the same protocol described in the synthetic MNIST experiment (Section 4.1) to generate
uniform noise ‘UN’ and non-uniform noise ‘NUN’ test sets for CIFAR-10 and CIFAR-100. Table 2
demonstrates that FCLxe outperforms all baseline models with or without the PG data augmentation.

Noisy CIFAR-10 We can observe that Gaussian perturbation does improve performance in both UN
and NUN (XE vs. XE+Gaussian or XE vs. CL+Gaussian); however, FCL’s selective perturbation on
the high contextual utility features obtains a better improvement in all cases (both Gaussian baselines
vs. FCLxe). When combined with the PG data augmentation, the gap between the clean accuracy
versus ‘UN’ or ‘NUN’ narrows (0.93 vs 0.82). The combined version (Patch Gaussian+FCLxe)
achieves the best noisy CIFAR-10 performance (on ‘UN’ and ‘NUN’), without hurting the clean
accuracy .

Noisy CIFAR-100 Without the PG data augmentation, the pattern is similar to the case above;
however gaps between XE, Gaussian baselines and FCLxe are wider suggesting that FCL gives more
benefit when the number of classes is larger. PG did not work well in the 100 class setting, even
with extensive tuning (including the recommended configurations from (Lopes et al., 2019)). The
combination (Patch Gaussian+FCLxe) achieves the best performance on ‘UN’ and ‘NUN’.

4.2.2 CIFAR-10-C, CIFAR-100-C AND IMAGENET-C

We conducted a similar experiment on the public benchmark set of corrupted images (Hendrycks &
Dietterich, 2019). This benchmark set evaluates robustness to natural perturbations of a prediction
model by applying 19 common corruption patterns to CIFAR and ImageNet images. Table 3 shows
the averaged accuracy on all corruption patterns, as well as the averages from each corruption pattern
group. The full results are provided in Appendix C.
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Dataset Method All average Noise Blur Weather Digital

CIFAR-10-C XE 0.7137 ±0.0038 0.4967 0.6833 0.8309 0.7537
XE+Gaussian 0.7379 ±0.0089 0.5800 0.6967 0.8389 0.7572
CL+Gaussian 0.7253 ±0.0028 0.5446 0.6939 0.8312 0.7530
FCLxe 0.7446 ±0.0055 0.6416 0.6886 0.8338 0.7530

Patch Gaussian+XE 0.8311 ±0.0027 0.8951 0.7625 0.8540 0.8021
Patch Gaussian+FCLxe 0.8319 ±0.0029 0.8993 0.7639 0.8536 0.8000

CIFAR-100-C XE 0.4428 ±0.0038 0.2113 0.4323 0.5527 0.4855
XE+Gaussian 0.4512 ±0.0067 0.2502 0.4308 0.5524 0.4848
CL+Gaussian 0.4480 ±0.0057 0.2350 0.4350 0.5514 0.4865
FCLxe 0.4706 ±0.0031 0.3528 0.4355 0.5467 0.4847

Patch Gaussian+XE 0.4448 ±0.0030 0.2198 0.4344 0.5483 0.4896
Patch Gaussian+FCLxe 0.4742 ±0.0054 0.3699 0.4353 0.5490 0.4851

ImageNet-C XE 0.3406 ±0.0007 0.2615 0.2816 0.4214 0.3783
XE+Gaussian 0.3414 ±0.0012 0.2623 0.2829 0.4224 0.3783
CL+Gaussian 0.3418 ±0.0016 0.2658 0.2824 0.4223 0.3778
FCLxe 0.3437 ±0.0022 0.2696 0.2850 0.4188 0.3827

Patch Gaussian+XE 0.3625 ±0.0023 0.3053 0.3041 0.4300 0.3964
Patch Gaussian+FCLxe 0.3634 ±0.0045 0.3077 0.3034 0.4308 0.3976

Table 3: Image classification accuracy on the corrupted CIFAR and ImageNet image sets (Hendrycks
& Dietterich, 2019). The average column is based on all 19 corruption patterns and the other columns
averages each corruption pattern group. The full table is in Appendix C.

CIFAR-10-C The pattern is similar to the noisy CIFAR-10. Adding the Gaussian perturbation
improves the average performance, particularly in the noise-corruption pattern group and the blurring
group. FCLxe works much better than Gaussian baselines providing an additional large improvement
in the noise group. PG augmentation works really well for this task, particularly in the noise and
blur groups (currently it is a state-of-the-art). Nevertheless, adding FCLxe can still add some value
to some of the patterns. Appendix C shows FCL performs better for impulse noise and zoom blur
patterns, while the vanilla PG performs better in fog and pixelization.

CIFAR-100-C Without PG, the improvement of FCLxe over the other baselines is even larger
than for CIFAR-10-C, with a drastic improvement on the noisy corruption group. Similar to Noisy
CIFAR-100, PG did not perform well in this setting, while PG+FCLxe still was able to perform well,
achieving even better accuracy than without PG.

ImageNet-C With or without PG, FCLxe outperforms the baselines with the large improvements
on ‘digital’, and ‘noise’ corruption patterns. Among individual patterns (reported in Appendix C),
FCL performs particularly well on the ‘shot’ corruption pattern.

5 SUMMARY

In this paper, we propose Feature Contractive Learning (FCL), a novel approach to balance robustness
and sensitivity in deep neural network training. Unlike previous work that only enforces robustness,
FCL aims to promote model sensitivity to perturbations of high utility features, and inhibit model
sensitivity to perturbations of low utility features. The performance of FCL is validated on both
synthetic and real image classification datasets.
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A CONNECTION BETWEEN CONTEXTUAL FEATURE UTILITY AND SENSITIVITY

Consider a classification task with cross entropy loss, and let f() be the output of the network
after applying a softmax. In this setting, the loss is minus log probability of the correct label. The
contextual utility of f() for a given feature is defined by

u =

∣∣∣∣∂`(y, f(x;w))∂x

∣∣∣∣ = ∣∣∣∣∂ log[f(x;w)y]∂x

∣∣∣∣ = 1

f(x;w)y

∣∣∣∣∂f(x;w)y∂x

∣∣∣∣ . (6)

Also recall that the contextual sensitivity of f() for a given feature is given by

s =

∥∥∥∥∂f(x;w)∂x

∥∥∥∥ =

√√√√∂f(x;w)2y
∂x

+
∑
c 6=y

∂f(x;w)2c
∂x

. (7)

We can see that the contextual feature utility is a product of two terms. The first is the reciprocal of
the networks’ prediction for the correct class, and the second is a sensitivity-like term specific to the
correct class. When the network’s prediction is correct the utility is proportional to the ground truth
class’s sensitivity. If changing the feature will not affect the correct prediction it doesn’t have much
utility and vice versa. On the other hand, when the network makes a mistake, the utility will be large
regardless of the ground truth class’s sensitivity. Our algorithm takes advantage of this behavior to
promote robustness and maintain contextual sensitivity.

B EXPERIMENTAL SETUP

Architecture For CIFAR experiments, we used a ResNet-56 architecture, with the following
configuration for each ResNet block (nlayer, nfilter, stride): [(9, 16, 1), (9, 32, 2), (9, 64, 2)].

For ImageNet experiments, we used a ResNet-v2-50 architecture, with the following configuration
for the ResNet block (nlayer, nfilter, stride): [(3, 64, 1), (4, 128, 2), (6, 256, 2), (3, 512, 2)].

Optimization For CIFAR, we used SGD momentum optimizer (Nesterov=True, momentum=0.9)
with a linear learning rate ramp up for 15 epochs (peaked at 1.0) and a step-wise decay of factor 10 at
epochs 200, 300, and 400. In total, we train for 450 epochs with a batch size of 1024.

For ImageNet, we also used SGD momentum optimizer (Nesterov=False, momentum=0.9) with a
linear learning rate ramp up for the first 5 epochs (peaked at 0.8) and decayed by a factor of 10 at
epochs 30, 60 and 80. In total, we train for 90 epochs with a batch size of 1024.

Hyperparameters We provide additional hyperparameter details for the experiments. (PG stands
for Patch Gaussian):

• MNIST
FCL σ = 0.5, τ = 0.1, λ = 0.001

• Noisy CIFAR-10
XE+Gaussian σ = 0.3, λ = 0.0001
CL+Gaussian σ = 0.5, τ = 0.5, λ = 0.0001, ramp up=14000steps
FCL k = 256, σ = 0.5, τ = 2, λ = 0.0001, ramp up=14000steps
PG σ = 0.1, patch size=25
PG+FCL k = 256, σ = 0.5, τ = 1, λ = 0.0001, ramp up=14000steps (PG σ = 0.1,
patch size=25)

• Noisy CIFAR-100
XE+Gaussian σ = 0.3, λ = 0.0001
CL+Gaussian σ = 0.5, τ = 0.5, λ = 0.0001, ramp up=10000steps
FCL k = 256, σ = 0.5, τ = 0.1, λ = 0.0001, ramp up=10000steps
PG σ = 0.05, patch size=25
PG+FCL k = 256, σ = 0.5, τ = 0.1, λ = 0.0001, ramp up=10000steps (PG σ = 0.05,
patch size=25)
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• CIFAR-10-C
XE+Gaussian σ = 0.3, λ = 0.0001
CL+Gaussian σ = 0.5, τ = 0.5, λ = 0.0001, ramp up=14000steps
FCL k = 256, σ = 0.5, τ = 2, λ = 0.0001, ramp up=14000steps
PG σ = 0.1, patch size=25
PG+FCL k = 256, σ = 0.5, τ = 1, λ = 0.0001, ramp up=10000steps (PG σ = 0.1,
patch size=25)
• CIFAR-100-C

XE+Gaussian σ = 0.3, λ = 0.0001
CL+Gaussian σ = 0.5, τ = 0.5, λ = 0.0001, ramp up=10000steps
FCL k = 256, σ = 0.5, τ = 0.1, λ = 0.0001, ramp up=10000steps
PG σ = 0.1, patch size=25
PG+FCL k = 256, σ = 0.5, τ = 0.1, λ = 0.0001, ramp up=10000steps (PG σ = 0.05,
patch size=25)
• ImageNet-C

XE+Gaussian σ = 0.5, λ = 0.0001
CL+Gaussian σ = 0.5, τ = 0.5, λ = 0.0001, ramp up=78000steps
FCL k = 512, σ = 1.0, τ = 0.5, λ = 0.0002
PG σ = 1.0, patch size ≤ 250
PG+FCL k = 2048, σ = 0.5, τ = 1.0, λ = 0.0004, ramp up=78000steps (PG σ = 1.0,
patch size ≥ 250)
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C FULL CIFAR-10-C, CIFAR-100-C AND IMAGENET-C ACCURACY

Dataset Method Noise Blur
gauss. shot impulse defocus glass motion zoom

CIFAR-10-C XE 0.4049 0.5374 0.5477 0.7912 0.4846 0.7350 0.7222
XE+Gaussian 0.5029 0.6221 0.6149 0.7992 0.5192 0.7315 0.7369
CL+Gaussian 0.4767 0.5922 0.5650 0.7919 0.5383 0.7238 0.7215
FCL 0.5505 0.6431 0.7311 0.7922 0.5140 0.7273 0.7210

PG+XE 0.8995 0.9082 0.8776 0.8252 0.6731 0.7634 0.7883
PG+FCL 0.8983 0.9078 0.8918 0.8268 0.6764 0.7601 0.7924

CIFAR-100-C XE 0.1644 0.2446 0.2249 0.5577 0.2022 0.4884 0.4808
XE+Gaussian 0.2024 0.2816 0.2667 0.5557 0.2055 0.4812 0.4807
CL+Gaussian 0.1880 0.2668 0.2502 0.5562 0.2110 0.4903 0.4827
FCL 0.2551 0.3186 0.4847 0.5571 0.2137 0.4861 0.4852

PG+XE 0.1773 0.2542 0.2279 0.5596 0.2001 0.4897 0.4883
PG+FCL 0.2729 0.3349 0.5020 0.5487 0.2310 0.4845 0.4768

ImageNet-C XE 0.2860 0.2651 0.2335 0.2945 0.2312 0.2844 0.3163
XE+Gaussian 0.2876 0.2654 0.2339 0.2978 0.2293 0.2851 0.3193
CL+Gaussian 0.2898 0.2694 0.2383 0.2955 0.2290 0.2873 0.3177
FCL 0.2954 0.2738 0.2395 0.2989 0.2374 0.2861 0.3176

PG+XE 0.3265 0.3070 0.2822 0.3333 0.2571 0.2923 0.3337
PG+FCL 0.3304 0.3107 0.2821 0.3344 0.2571 0.2920 0.3302

Dataset Method Weather Digital
snow forest fog bright contrast elastic pixel JPEG

CIFAR XE 0.7933 0.7486 0.8587 0.9231 0.7310 0.8092 0.6991 0.7756
-10-C XE+Gaussian 0.8027 0.7711 0.8601 0.9218 0.7240 0.8104 0.7195 0.7750

CL+Gaussian 0.7930 0.7589 0.8542 0.9189 0.7267 0.8023 0.7083 0.7747
FCL 0.7988 0.7555 0.8590 0.9217 0.7233 0.8092 0.7036 0.7758

PG+XE 0.8306 0.8353 0.8303 0.9198 0.7085 0.8417 0.7919 0.8664
PG+FCL 0.8324 0.8374 0.8256 0.9189 0.6937 0.8416 0.7994 0.8652

CIFAR XE 0.5023 0.4370 0.5874 0.6842 0.4884 0.5458 0.4500 0.4578
-100-C XE+Gaussian 0.5061 0.4403 0.5825 0.6805 0.4793 0.5431 0.4582 0.4585

CL+Gaussian 0.5034 0.4392 0.5822 0.6807 0.4796 0.5484 0.4560 0.4621
FCL 0.5007 0.4333 0.5748 0.6779 0.4640 0.5441 0.4583 0.4724

PG+XE 0.4970 0.4308 0.5834 0.6819 0.4843 0.5483 0.4635 0.4623
PG+FCL 0.5050 0.4403 0.5756 0.6750 0.4687 0.5394 0.4634 0.4688

ImageNet XE 0.2773 0.3304 0.4695 0.6083 0.3273 0.4096 0.2998 0.4763
-C XE+Gaussian 0.2748 0.3323 0.4736 0.6088 0.3298 0.4101 0.2989 0.4743

CL+Gaussian 0.2745 0.3327 0.4728 0.6091 0.3309 0.4060 0.2978 0.4768
FCL 0.2739 0.3297 0.4674 0.6044 0.3278 0.4143 0.3111 0.4777

PG+XE 0.2891 0.3464 0.4735 0.6110 0.3352 0.4331 0.3232 0.4939
PG+FCL 0.2880 0.3495 0.4761 0.6097 0.3368 0.4313 0.3290 0.4934

Table 4: Image classification accuracies on the CIFAR-10-C, CIFAR-100-C and ImageNet-C sets
(Hendrycks & Dietterich, 2019). PG stands for Patch Gaussian data augmentation (Lopes et al.,
2019). All FCL means FCLxe. All numbers are averaged by 5 runs.
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