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Abstract

Most work on the formal verification of neural networks has focused on bounding
the set of outputs that correspond to a given set of inputs (for example, bounded
perturbations of a nominal input). However, many use cases of neural network
verification require solving the inverse problem, or over-approximating the set
of inputs that lead to certain outputs. We present the INVPROP algorithm for
verifying properties over the preimage of a linearly constrained output set, which
can be combined with branch-and-bound to increase precision. Contrary to other
approaches, our efficient algorithm is GPU-accelerated and does not require a linear
programming solver. We demonstrate our algorithm for identifying safe control
regions for a dynamical system via backward reachability analysis, verifying
adversarial robustness, and detecting out-of-distribution inputs to a neural network.
Our results show that in certain settings, we find over-approximations over 2500×
tighter than prior work while being 2.5× faster. By strengthening robustness
verification with output constraints, we consistently verify more properties than
the previous state-of-the-art on multiple benchmarks, including a large model with
167k neurons in VNN-COMP 2023. Our algorithm has been incorporated into the
α,β-CROWN verifier, available at https://abcrown.org.

1 Introduction

Applying neural networks to safety-critical settings often requires reasoning about constraints on
the inputs and outputs of a neural network. For example, for a physical system controlled by a
neural network policy, it is of interest to understand which initial states will lead to an unsafe state
such as colliding with an obstacle. Formal verification of neural networks seeks to provide provable
guarantees demonstrating that networks satisfy formal specifications on their inputs and outputs.
Most work to date has focused on developing algorithms that can bound the outputs of a neural
network given constraints on the inputs, which can be used for applications such as analyzing the
robustness of a neural network to perturbations of a given input [Wong and Kolter, 2018, Dvijotham
et al., 2018, Zhang et al., 2018a, Raghunathan et al., 2018, Gehr et al., 2018].
In this work, we address the inverse problem of over-approximating a neural network’s preimage:
given a set of outputs Sout (described by linear constraints on the network output), we seek to find a
set that provably contains all inputs that lead to such outputs. For example, for our neural network
policy, this would correspond to the states that collide with an obstacle one step in the future. Though
the verification problem is already challenging due to non-convexity and high dimensionality, this
new problem is even more difficult since neural networks are generally not invertible.
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Specifically, representative efficient verifiers (such as state-of-the-art bound-propagation-based meth-
ods [Zhang et al., 2022]) can only compute bounds utilizing constraints on the input and critically
depend on having tight bounds on intermediate activations. In the setting of this paper, however, the
bounds derived from the input constraints are almost vacuous, since the only constraints on the input
are that it should be from the valid input domain. We efficiently solve this problem by significantly
generalizing the existing bound propagation-based verification framework, allowing one to leverage
output constraints when tightening the intermediate activations. Our contributions are as follows:

• We develop an effective bound propagation framework, Inverse Propagation for Neural Network
Verification (INVPROP), for the inverse verification problem for neural networks, i.e., the problem
of over-approximating the set of inputs that leads to a given set of outputs. Importantly, INVPROP
requires no linear programming solver and can compute bounds on any intermediate layer.

• We unify INVPROP and traditional bound propagation into a more general verification framework,
allowing us to connect our method to standard tools, such as the state-of-the-art bound propagation
tool α,β-CROWN [Zhang et al., 2018a, Xu et al., 2021, Wang et al., 2021, Zhang et al., 2022, Brix
et al., 2023, Müller et al., 2023]. Our contribution allows α,β-CROWN to tighten intermediate
bounds with respect to output constraints, which could not be done by the original tool.

• We demonstrate that tight inverse verification requires multiple iterative refinements of intermediate
bounds. While layer bounds in standard bound propagation only depend on the bounds of their
predecessors, INVPROP incorporates bounds of all layers in the network.

• We improve the state of the art on a control benchmark [Rober et al., 2022a,b] by providing 2500×
tighter bounds, 2.5× faster, for a Double Integrator and 257× tighter bounds, 3.29× faster, for a
6D Quadrotor. Furthermore, we demonstrate that INVPROP can strengthen robustness verification
with output constraints and verify more robustness properties in less time compared to existing tools.
Finally, we demonstrate its applicability in OOD detection.

2 Background and Problem Setup

2.1 Notation

We use [L] for L ∈ N to refer to the set {1, 2, . . . , L}, W(i)
:,j to refer to column j of the matrix W(i),

[·]+ to refer to max(0, ·), and [·]− to refer to −min(0, ·). We use boldface symbols for vectors and
matrices (such as x(i) and W(i)) and regular symbols for scalars (such as x(i)

j ). We use x ⊙ y to
denote element-wise multiplication of vectors x,y.
We define an L layer ReLU neural network by its weight matrices W(i) and bias vectors b(i)

for i ∈ [L]. The output of the neural network for the input x̂(0) from a bounded input domain
X is computed by alternately applying linear layers x(i) = W(i)x̂(i−1) + b(i) and ReLU layers
x̂(i) = max(0,x(i)) until we receive the output x(L) (which we refer to as the logits). Note that we
treat softmax as a component of the loss function, not the neural network.

2.2 Problem Statement

Given a neural network f : X ⊆ Rin → Rout and an output constraint Sout ⊆ Rout, we want
to compute f−1(Sout) ⊆ X . Since precisely computing or expressing f−1(Sout) is an intractable
problem in general, we strive to compute a tight over-approximation Sover such that f−1(Sout) ⊆ Sover.
In particular, we target the convex hull of the preimage via a cutting-plane representation. Sout will
be defined by a set of linear constraints parameterized by Hf (x) + d ≤ 0 in this work.

2.3 Applications

Backward Reachability Analysis for Neural Feedback Loops. Establishing safety guarantees
for neural network policies is a challenging task. One problem of interest is to find a set of initial
states that does not reach a particular set of future states under the neural network policy. This can be
helpful in collision avoidance or control with safety constraints. For example, consider a discrete-time
double integrator controller [Hu et al., 2020] where the state at time t+ 1 can be directly computed
based on state at time t following the equation

xt+1 = f(xt) =

[
1 1
0 1

]
xt +

[
0.5
1

]
π(xt)
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with policy π : R2 → R. If there is an obstacle in the room covering the region [4.5, 5.0] ×
[−0.25, 0.25], it is of interest to understand which states will enter the unsafe region in the next
time-step. We can represent this obstacle set with linear constraints that define Sout.
f−1(Sout) denotes the set of states xt such that xt+1 lies in the unsafe region given the control policy
π. Overapproximating this set allows us to define the set of states to avoid one timestep in advance.
We can compose f−1 with itself t times to obtain the set of initial states where π would drive the
system to the unsafe set after t steps.

Robustness Verification Adversarial robustness is one classic problem for neural network ver-
ification where verifiers assess whether all perturbations of an input yield the same classification.
INVPROP can be used to speed up this verification by exploiting an implicit output constraint.
We follow Wang et al. [2021] and use the canonical form of verifying a property by proving that
minx∈X f(x) > 0. f(x) will be negative if and only if x is an adversarial example. This mini-
mization problem can be rewritten as infx∈X∧f(x)≤0 f(x) [Yang et al., 2021b]. If no adversarial
example exists, the infimum is computed over an empty set and returns positive infinity, indicating
local robustness. If at least one adversarial example exists, the result is guaranteed to be negative.
With the output constraint f(x) ≥ 0, we only analyze inputs that yield an incorrect classification,
reducing the search space and tightening verification bounds.

Determining what inputs lead to confident predictions. It is challenging to train a classifier that
knows when it doesn’t know. A simple and effective approach is to train with an additional logit
representing OOD abstention. Labeled data for this additional class is generated via outlier exposure,
or adding synthetic training data known to be OOD [Hendrycks et al., 2018, Chen et al., 2021].
Consider the logits y produced by a binary classifier trained in this manner. The classifier can classify
in-distribution data by comparing y0 and y1, the logits corresponding to the two in-distribution labels.
The quantity max(y0, y1)− y2, known as the logit gap, can be used to identify out-of-distribution
data (Fig. 7 in Appendix A). Can the logit gap correctly identify data far from the training data as
being OOD? To answer this quesiton, we can compute the preimage of the set

Sout = {y : max(y0, y1) ≥ y2}

We detail how to model this set with linear constraints in Appendix F.1. INVPROP enables us to
over-approximate f−1(Sout), answering whether the classifier learned to correctly identify OOD data.

3 Approach

3.1 Convex over-approximation

Suppose we want to find a convex over-approximation of f−1(Sout). The tightest such set is its
convex hull, which is the intersection of all half-spaces that contain f−1(Sout) [Boyd et al., 2004].
This intersection is equivalent to

⋂
c∈Rin{x : c⊤x ≥ minf(x′)∈Sout

c⊤x′}, which means that we can
build an over-approximation by taking this intersection for finitely many c. Furthermore, replacing
the minimization problem with a lower bound to its value still yields a valid half-space, where a
tighter bound yields a tighter approximation.
We focus on convex over-approximations for two reasons: First, checking that the preimage satisfies
a linear constraint c⊤x+ d ≥ 0 is equivalent to minimizing the linear function x 7→ c⊤x over the
preimage, which is in turn equivalent to minimizing the linear function over CONV

(
f−1(Sout)

)
[Boyd et al., 2004]. Second, the convex hull and its tractable over-approximations are conveniently
represented as intersections of linear constraints on the preimage, each of which can be quickly
computed after a single precomputation phase to tighten bounds on intermediate neurons using the
INVPROP algorithm outlined in the next section.
For the above reasons, we will focus on solving the following constrained optimization problem.

min
x

c⊤x; s.t. x ∈ X ; f (x) ∈ Sout (1)

Note that this differs from the widely studied forward verification problem, which can be phrased as

min
x∈Sin

c⊤f (x)

where Sin is a set representing constraints on the input, and the goal of the verification is to establish
that the output f (x) satisfies a linear constraint of the form c⊤f (x) ≥ d for all x ∈ Sin.
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Figure 1: Visualization of relaxations. The in-
ner green region depicts the true f−1(Sout), the
blue relaxation depicts the intersection of finite
half-spaces solved via MILP, the red relaxation dis-
plays the same via LP, and the purple relaxation
displays the same via INVPROP. Though this dia-
gram displays looseness, we provide a comprehen-
sive methodology to reduce the error in all three
relaxations up to arbitrary precision (Section 3.3).

3.2 The INVPROP Algorithm

As a brief overview of our method, we first construct the Mixed Integer Linear Program (MILP)
for solving this optimization problem, which generates the over-approximation SMILP when solved
for finitely many c. Then, we relax the MILP to a Linear Program (LP), which can construct the
over-approximation SLP. Finally, we relax the LP via its Lagrangian dual, which will be used to
construct our over-approximation Sover. This chain of relaxations is visualized in Figure 1.

The Mixed Integer Linear Programming (MILP) Formulation For feed-forward ReLU neural
networks, the non-linearities from the max operator can be encoded via integer variables, and this
problem admits a MILP encoding similar to prior work in adversarial robustness [Tjeng et al., 2017].
Problem (1) is equivalent to:

min
x,x̂

c⊤x (2a)

s.t. x ∈ X ; x̂(0) = x; Hx(L) + d ≤ 0; (2b)

x(i) = W(i)x̂(i−1) + b(i) i ∈ [L]; (2c)

x̂(i) = max(0,x(i)); i ∈ [L− 1] (2d)

The Linear Programming (LP) Formulation Unfortunately, finding an exact solution to this
MILP is NP-complete [Katz et al., 2017]. To sidestep the intractability of exact verification, we can
compute lower bounds for this program via its convex relaxation. We consider bounds on the outputs
of intermediate layers:

l
(i)
j ≤ x

(i)
j ≤ u

(i)
j

Based on these bounds, we can take the ReLU triangle relaxation [Ehlers, 2017] to get the LP

min
x,x̂

c⊤x (3a)

s.t. x ∈ X ; l(0) ≤ x ≤ u(0); x̂(0) = x; Hx(L) + d ≤ 0 (3b)

x(i) = W(i)x̂(i−1) + b(i) (3c)

0 ≤ x̂(i); x(i) ≤ x̂(i); x̂(i) ≤ u(i)

u(i) − l(i)
⊙
(
x(i) − l(i)

)
; i ∈ [L] (3d)

where the bounds l(0) ≤ x ≤ u(0) are either the bounds implicit in X , or a refinement of these
obtained via previous rounds of bound propagation or input branching (see Algorithm 1 for details).
Most efficient neural network verifiers do not solve an LP formulation of verification directly because
LP solvers are often slow for problem instances involving neural networks. Instead, the bound
propagation framework [Zhang et al., 2018a, Wang et al., 2021, Zhang et al., 2022] is a practical
and efficient way to lower bound the LP relaxation of the forward verification problem. However,
there are two major roadblocks to applying existing methods here: Typical bound-propagation cannot
directly handle the output constraints (Eq. 3b) and the objective involving input layer variables (Eq.
3a). This is true for optimizing bounds on the input, intermediate layers, and the output layer, all of
which need to be iteratively tightened as demonstrated later.
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The Inverse Propagation (INVPROP) Formulation By changing the LP above to optimize the
quantity x̂

(0)
j (input layer) or x(i)

j (intermediate layers) for i ∈ [L− 1], the bounds for the j-th neuron
of layer i can be tightened in separate LP calls. However, this program is too expensive to be run
multiple times for each neuron.
Inspired by the success of CROWN-family neural network verifiers [Zhang et al., 2018a, Xu et al.,
2021, Wang et al., 2021, Zhang et al., 2022], we efficiently lower bound the solution of the LP by
optimizing its Lagrangian dual. This dual is highly structured [Wong and Kolter, 2018], allowing us
to bound input half-spaces c⊤x and intermediate bounds l(i)j , u

(i)
j by closed-form expressions of the

dual variables. Our main generalization is the ability to optimize input or intermediate layer bounds
with the output constraints after them in the neural network, as shown in the following theorem.

Theorem 1 (Bounding input half-spaces). Given an output set Sout = {y : Hy+d ≤ 0} and vector
c, gc(α,γ) is a lower bound to the linear program in (3) for 0 ≤ α ≤ 1, γ ≥ 0, and gc defined via

gc(α,γ) =
[
c⊤ − ν(1)⊤W(1)

]
+
l(0) −

[
c⊤ − ν(1)⊤W(1)

]
−
u(0)

−
L∑

i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

[
u
(i)
j l

(i)
j [ν̂

(i)
j ]+

u
(j)
i − l

(j)
i

]

where every term can be directly recursively computed via

I−(i) = {j : u(i)
j ≤ 0}; I+(i) = {j : l(i)j ≥ 0}; I±(i) = {j : l(i)j < 0 < u

(i)
j }

ν(L) = −γ; ν̂
(i)
j = ν(i+1)⊤W

(i+1)
:,j ∀i ∈ [L− 1]

ν
(i)
j =


ν̂
(i)
j , j ∈ I+(i)

0, j ∈ I−(i)

u
(i)
j

u
(j)
i −l

(j)
i

[ν̂
(i)
j ]+ − α

(i)
j [ν̂

(i)
j ]−, j ∈ I±(i)

∀i ∈ [L− 1]

Proof. Full proof is presented in Appendix D.

In Appendix C, we show how to bound intermediate neurons in the network using a similar approach.
Since the intermediate bounds might depend on bounds on neurons in subsequent layers (due to the
output constraint), we cannot simply optimize bounds in a single forward pass layer by layer, unlike
prior work such as α-CROWN [Xu et al., 2021]. Instead, we must iteratively tighten intermediate
layer bounds with respect to the tightest bounds on all neurons computed thus far. This iterative
approach can tighten the initially loose bounds by several orders of magnitude, as shown in Figure 2.
After performing this procedure once, the intermediate bounds can be used to tightly lower bound
c⊤x for any c via Theorem 1. Therefore, this computation can be shared across all the constraints
c we use to describe Sover. Our algorithm can be expressed in terms of forward/backward passes
through layers of the neural network and implemented via standard deep learning modules in libraries
like PyTorch [Paszke et al., 2019]. Since all of the operations are auto-differentiable, we can tighten
our lower bound using standard gradient ascent (projected by the dual variable constraints).
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Figure 2: Necessity of Iterative Tightening. Our
approach enables us to iteratively tighten the
bounds of all layers, with each iteration allow-
ing for a smaller approximation ratio with respect
to the true preimage. Green: Sum of bound in-
tervals for all neurons in the third layer (second
hidden layer); Blue: ratio between volumes of over-
approximation and preimage. Measured for step
t = 10 of the control benchmark defined in Sec-
tion 4.1. Note that the improvement from iterative
tightening is two orders of magnitude for interme-
diate bounds, and four orders of magnitude for the
volume of the over-approximation.
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Algorithm 1 INVPROP. Can be applied to branches for non-convex overapproximations. Lower and
upper bound of all neurons and all constraints are optimized using distinct α and γ values in g.

Initialize l(i),u(i) via cheap bound propagation methods for the forward verification problem
while lower bounds for c⊤x̂(0) are improving do

for i ∈ {L− 1, L− 2, . . . , 1, 0} do
for j ∈ layer i neurons, b ∈ {lower, upper} do

Optimize gbij from Theorem 2 via gradient ascent to improve bound on neuron j in layer i
with sense b (lower/upper)
if b =upper then update u

(i)
j else update l

(i)
j

Optimize gc from Theorem 2 via gradient ascent to improve lower bound on c⊤x for all c

Connection to forward verification Our bound in Theorem 1 introduces the dual variable γ, which
enforces the output constraint during optimization. In fact, we can use this variable to get a better
conceptual interpretation of our result. For the optimization problem in (1), taking the dual with
respect to the constraint Hf (x) + d ≤ 0 yields the lower bound

max
γ

min
x

c⊤x+ γ⊤ (Hf (x) + d)

s.t. x ∈ X ; γ ≥ 0

The objective can be represented as minimizing a linear function of the output of a residual neural
network with a skip connection from the input to the output layer, subject to constraints on the input.
Now, f(x) appears in the objective, similar to the standard forward verification problem with an
augmented network architecture. Similarly, optimizing an intermediate bound is equivalent to a skip
connection from layer i to the output (Appendix E). These connections allow us to implement our
method using standard verification tools [Brix et al., 2023, Xu et al., 2021, 2020].
When f is a feedforward ReLU network, the lower bound described in this section is precisely the
same as Theorem 1 (since both are solving the dual of the same linear program). This shows that the
introduction of γ constitutes our generalization to the bound propagation framework.

Selection of c The dependence of the optimization on c is not a major limitation. The bounds
of all intermediate neurons are optimized only with respect to the input and output constraints, not
the hyperplanes used to describe the input half-space. Thus, their optimized bounds can be shared
across the optimization of all input hyperplanes. For applications such as adversarial robustness, the
box constraint of two hyperplanes per dimension could be chosen to scalably bound the input. The
selection of appropriate c depends on the application and is not our main focus.

3.3 Branch and Bound

Though more rounds of iterative tightening will lower the gap in Sover ⊇ SLP, our current formulation
still faces two sources of looseness: the gap in SLP ⊇ SMILP and the gap in SMILP ⊇ f−1(Sout). To
overcome both of these issues, we can make use of branching [Bunel et al., 2020]. While there are
several possibilities here, we focus on input branching, which gave the biggest empirical gains in our
experiments described in Section 4. More concretely, we divide the input domain X = [l(0),u(0)]
into several regions by choosing a coordinate i and computing

Xa = X ∩ {x : xi ≥ si},Xb = X ∩ {x : xi ≤ si}

so that X = Xa ∪ Xb. Doing this recursively, we obtain several regions and can compute an
overapproximation of f−1(Sout) when the input is in each of those regions, and take a union of the
resulting sets. The finer the input domain of our over-approximation, the tighter the approximation.

4 Results

We evaluate INVPROP on three different benchmarks. Across benchmarks, we find orders of
magnitude improvement over prior work, and our methods work even for relatively large networks
(167k neurons) and high dimensionality inputs (8112 dimensions). All implementation details are
described in Appendix F and the utilized hardware is described in Appendix G.
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(a) ReBreach-LP (b) INVPROP

Figure 3: Double Integrator. Each green region
represents the preimage of the system one to ten steps
back from the obstacle (red box). Each preimage is
approximated 1 million samples. The blue bounding
boxes represent over-approximations, and INVPROP
tightly over-approximates preimages even ten steps
back.

Table 1: Double Integrator Results. IN-
VPROP vs SOTA (from Figure 3). We
are significantly tighter and faster than
ReBreach-LP method even without input
branching.

METHOD REBREACH-LP INVPROP

INPUT BRANCHING YES NO
APPROX RATIO ↓ 4021.47 1.46
TIME (SEC) 42.86± 0.04 17.89± 0.03

4.1 Backward Reachability Analysis for Neural Feedback Loops

Double Integrator After combining the state-feedback control policy π of the benchmark with
the state transition function from Section 2.3, (see Section F.2), we get a three layer MLP with 12,
7, and 2 neurons, which is typical for applications in this setting. We model multiple time steps via
composing copies of this function.1 Moreover, we leverage intermediate bounds for time step t to
bound the t+ 1 time step transition. We measure the tightness of an over-approximation using its
Approximation Ratio, defined as vol(Sover)

vol(f−1(Sout))
. Both of these volumes are heuristically estimated with

1 million samples of the input space. While INVPROP allows the optimization of arbitrary input
cutting planes, we use 40 planes with slopes of equally distributed angles.
We find that INVPROP is significantly tighter and faster than ReBreach-LP, the SOTA available
method for this problem [Rober et al., 2022a,b].2 As evident in Figure 3, ReBreach-LP suffers from
increasingly weak bounds as t increases, whereas our approach is able to compute tight bounds for
all t. Different to their implementation, we are able to leverage the output constraint to improve
the intermediate neuron bounds. Furthermore, we can iteratively tighten these bounds with respect
to each other. Even though we optimize many more quantities, our efficient bound propagation
allows us to solve the problem faster overall. We provide a visualization of the improvement of
the approximation ratio score and intermediate bounds over time in Figure 2. Both our increased
tightness and speed are quantified in Table 1.

6D Quadrotor We consider over-approximating the preimage of the linearized quadrotor discussed
in Figure 15 of Rober et al. [2022b]. This quadrotor has a 6-dimensional state space with 3 dimensions
dedicated to position and is given by the dynamics

xt+1 =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

xt +


0.5 0 0
0 0.5 0
0 0 0.5
1 0 0
0 1 0
0 0 1

π(xt)

The policy, after performing the same encoding as the double integrator and clipping policy outputs,
forms a five layer MLP with 26, 26, 9, 9, and 3 neurons. For these dynamics, we want to prove that
the initial state range of [−5.25,−4.75]× [−.25, .25]× [2.25, 2.75]× [0.95, 0.99]× [−0.01, 0.01]×
[−0.01, 0.01] (black box in Figure 4) will never collide with the obstacle at [−1, 1] × [−1, 1] ×
[1.5, 3.5] × [−1, 1] × [−1, 1] × [−1, 1] (red box). We try to find the tightest bounding box in the
3 position dimensions, reflecting a total of 6 input cutting planes (one for each direction in each
dimension). To benchmark against prior work, we run ReBreach-LP with no output partitioning and

1For example, the 10 time step transition function can be represented as a 21 layer MLP (after fusing
consecutive linear layers in the composition).

2We do not compare with Everett et al. [2022] which improves upon ReBreach-LP, as their implementation
faces numerical instability when applied for ten timesteps. However, preliminary experiments show that we also
outperform their bounds.
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(a) ReBreach-LP no partitions (b) ReBreach-LP 15625 partitions (c) INVPROP

Figure 4: 6D Quadrotor. We visualize the three dimensions of the 6D quadrotor that specify
physical position. We consider the initial state range of the black box and simulate a few one-step
trajectories, indicated by the orange lines. Our obstacle is the red box. For the three images, the
blue box represents the over-approximation computed by (a) ReBreach-LP with no partitioning, (b)
ReBreach-LP with 15625 partitions, and (c) INVPROP, respectively. A tighter blue box is better.

Table 2: Quadrotor Results.
We compare the tightness of
the over-approximations and
run time (mean and std taken
over 5 runs).

METHOD REBREACH-LP REBREACH-LP INVPROP

PARTITIONS N/A 15625 N/A
APPROX VOL ↓ 64 0.064 0.0000249
TIME (SEC) 11.8 ± 2.2 662.2 ± 31.4 213.8 ± 11.1

ReBreach-LP with 15625 output partitions. We run our algorithm with no branching. In Figure 4, we
compare these three strategies, and we find that our over-approximation of the pre-image (in blue)
is smaller than the state-of-the-art over-approximations by 257 times while being 3.29 times faster.
Therefore, our algorithm scales well to higher dimensional control examples.

4.2 Robustness Verification

Similar to us, Yang et al. [2021b] encode the implicit output constraint of the local robustness
verification query to tighten the bounds on neurons. However, they need an LP solver, which does not
scale to large problems. The state-of-the-art verification toolkit α,β-CROWN [Zhang et al., 2018a,
Xu et al., 2021, Wang et al., 2021, Zhang et al., 2022] is able to scale to large networks, but does not
currently utilize the implicit output constraint. We demonstrate the benefit of encoding the output
constraint by extending α,β-CROWN and comparing the performance on the benchmark used by
Yang et al. [2021b] as well as benchmarks from the VNN-COMP 2023 [Brix et al., 2023].

MNIST Yang et al. [2021b] provides four networks with ReLU activation functions and dense
linear layers of 2/6/6/9 layers of 100/100/200/200 neurons, each trained on MNIST. For each network,
50 inputs were tested for local robustness. For the complete benchmark definition, we refer to
Yang et al. [2021b]. The DeepSRGR results are taken from Yang et al. [2021b], they do not report
a timeout for their experiments. Both α,β-CROWN and α,β-CROWN+INVPROP were run with
a per-input timeout of 5 minutes. Except for the input bounds, all bounds of all layers of each
network are tightened using output constraints. We report the results in Table 3. Notably, we
can verify more instances than the SOTA tool α,β-CROWN, in sometimes less than one fifth the
average runtime. We include a more detailed comparison between the results for α,β-CROWN and
α,β-CROWN+INVPROP in Appendix H.

VNN-COMP ’23: YOLO In 2023, the VNN-COMP contained YOLO as an unscored benchmark
for object detection. It is a modified version of YOLOv2 [Redmon and Farhadi, 2016] with a network
of 167k neurons and 5 residual layers, and is available at [Zhong, 2023, Brix, 2023]. The network
processes 3× 52× 52 images and uses convolutions, average pooling and ReLU activations. This
benchmark is well suited for INVPROP, as the definition of the adversarial examples is a conjunction
of constraints over the output. Therefore, a strong output constraint can be used to tighten the bounds
of intermediate layers. The benchmark consists of 464 instances, of which 72 were randomly selected
for the VNN-COMP. For our comparison, we remove those 348 instances that α,β-CROWN verifies
as robust without tightening the bounds of any intermediate layer. Those instances are verified within

8



 1

 10

 100

 10  20  30  40  50

Five Minutes

Number of Instances Verified

α,β-CROWN + INVPROP
α,β-CROWN

Figure 5: YOLO Results. Runtime comparison of α,β-
CROWN and α,β-CROWN+INVPROP on the YOLO bench-
mark (167k neurons and 5 residual layers). For the com-
parison, only those test instances were used that could
not immediately be verified by α,β-CROWN without any
iterative tightening of intermediate layer bounds. α,β-
CROWN+INVPROP can verify more properties and is faster
for almost all instances.

Table 3: MNIST Results. Robustness verification with DeepSRGR (output constraints via LP solver),
α,β-CROWN (GPU support) and α,β-CROWN+INVPROP (output constraints with GPU support)

NETWORK DEEPSRGR α,β-CROWN α,β-CROWN + INVPROP
VERIF. AVG. TIME [S] VERIF. AVG. TIME [S] VERIF. AVG. TIME [S]

FFN4 (3X100) 35 781 45 7.4 45 6.4
FFN5 (6X100) 31 1689 38 6.7 39 8.7
FFN6 (6X200) 31 6178 29 5.4 30 1.0
FFN7 (9X200) 36 8960 37 3.2 40 1.9

less than four seconds each by both methods, with no room for improvement. We compare the
performance of α,β-CROWN and α,β-CROWN + INVPROP on the remaining 116 instances in
Figure 5. α,β-CROWN can verify 48 instances, all other instances reach the timeout of five minutes.
After extending α,β-CROWN with INVPROP on the last two intermediate layers, almost all instances
can be solved faster, and 6 previously timed out instances become verifiable.

4.3 OOD Detection

Consider the calibrated OOD detector presented as discussed in Section 2.3, encoded by a four
layer MLP with 200, 200, 3, and 2 neurons. We over-approximate the set of inputs which induce a
sufficiently high in-distribution (ID) confidence (measured by max{y0, y1} > y2) using 40 hyper-
planes of equal slope, pictured in green in Figure 6. This set is non-convex, making the convex hull a
poor over-approximation. With 4 input space branches, we get a much tighter over-approximation, as
shown in the right plot. We compare the performance of our approach with and without branching over
the input space with the MILP baseline (see Table 4). This demonstrates a simple proof-of-concept
for how INVPROP can be used for verifying some calibration properties.

5 Related Work
Formally Verified Neural Networks. There has been a large body of work on the formal veri-
fication of neural networks, tackling the problem from the angles of Interval Bound Propagation
[Gowal et al., 2018, Gehr et al., 2018], Convex Relaxations [Wong and Kolter, 2018, Shiqi et al.,
2018, Salman et al., 2019, Dvijotham et al., 2018], Abstract Interpretation [Singh et al., 2018], LP
[Ehlers, 2017], SDP [Raghunathan et al., 2018], SMT [Katz et al., 2017], and MILP [Tjeng et al.,
2017]. However, most of this work is for forward verification (i.e., bounding the NN output given a

(a) No branching (b) Branching

Figure 6: OOD Detection. Green: Empirical
ID inputs (1 million samples). Blue: border
of the verified preimage. Branching is union
of preimages for each of 4 quadrants.

Table 4: OOD Results. Comparison of methods for
over-approximating the preimage of the OOD region
(Figure 6). A lower approximation ratio (APPROX
RAT.) is better.

METHOD
INPUT

BRANCH.
APPROX
RATIO

TIME (SEC)

MILP NO 1.47 1562.26
INVPROP NO 4.39 3.77± 0.02
INVPROP YES 1.14 12.02± 0.06
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set of inputs). Our work strictly generalizes bound propagation as presented in Xu et al. 2021 since
setting γ = 0 in Theorem 1 recovers its results.

Formal Analysis of the Input Domain Prior work has studied trying to determine the inverse of a
neural network [Kindermann and Linden, 1990, Saad and Wunsch, 2007], though these methods are
prohibitively slow. Zhang et al. [2018b] used an LP solver to compute changes to a given input that
would lead to a change in the classification result while adhering to additional criteria. Yang et al.
[2021b] encode the overapproximated network in an LP problem to tighten bounds by incorporating
the output constraint. They require an LP solver and we compare our performance against theirs in
Section 4.2. Zhong et al. [2023], Wu et al. [2022] similarly tighten intermediate bounds by using an
LP solver. Dimitrov et al. [2022] compute input regions that only consist of adversarial examples (i.e.,
adhere to a given output constraint) that are maximized using an LP solver. Finally, a concurrent work
Zhang et al. [2023] targets under- and over-approximating the preimage via LiRPA-based forward
verification [Xu et al., 2020] with input-space and ReLU-space partitioning; since our work can
be viewed as a generalization of LiPRA, their work may benefit from our results of tightening the
intermediate layer bounds using output constraints during bound propagation.

Formal Verification for Neural Feedback Loops. Our control application was motivated by the
growing body of work on backward reachability analysis and over-approximating states that result in
a target set [Everett et al., 2021]. The original method solely utilized input constraints for deriving
intermediate bounds. The later development of Everett et al. 2022 improved upon this by optimizing
l(0) and u(0) with respect to output bounds but their implementation faces numerical instability when
applied for many iterations. We also support the partitioning over the input space introduced by
Rober et al. 2022a. The work of Vincent and Schwager 2021 explores utilizing an LP with complete
neuron branching to verify control safety, which can be viewed as a domain-specific implementation
of our MILP formulation of the inverse verification problem.

Certified OOD detection. There is a wide variety of OOD detection systems [Yang et al., 2021a,
Salehi et al., 2022]. Commonly, they are evaluated empirically based on known OOD data [Wang
et al., 2022, Liang et al., 2018, Chen et al., 2021]. Therefore, they fail to provide verified guarantees
for their effectiveness. In fact, many OOD detection systems are susceptible to adversarial attacks
[Sehwag et al., 2019, Chen et al., 2022]. Meinke et al. [2021] show how to verify robustness to
adversarial examples around given input samples. Berrada et al. [2021] develop a general framework
for certifying properties of output distributions of neural networks given constraints on the input
distribution. However, this work is still constrained to verifying properties of the outputs given
constraints (albeit probabilistic) on the inputs, and INVPROP is able to certify arbitrary regions of
the input space that lead to confident predictions.

6 Discussion
We present the challenge of over-approximating neural network preimages and provide an efficient
algorithm to solve it. By doing so, we demonstrate strong performance on multiple application areas.
We believe there is a large scope for future investigation and new applications of INVPROP.

Limitations For higher-dimensional instances, our method would best work for box over-
approximations (2d hyperplanes in d dimensions) and would struggle at more complicated shapes
such as spheres. We expect more complex problems will benefit from a domain-specific strategy.
Moreover, iteratively refining all of the intermediate bounds utilizing INVPROP faces a quadratic
dependence on network depth, as opposed to a linear dependence in traditional forward verification.
To mitigate this, output constraints could only be applied to layers close to the output, as we used
for robustness. Finally, our branching strategy might not scale to higher dimensions, though this
trade-off is well-studied [Bunel et al., 2020, Wang et al., 2021, Palma et al., 2023].

Potential Negative Social Impact Our work improves reliable ML through facilitating systems
that provably align with practitioner expectations and we expect INVPROP to have positive societal
impact. We acknowledge that our improvements may be repurposed as model attacks, though we
believe the positive use cases of our technique greatly outweigh current speculation of misusage.

Acknowledgements We thank Michael Everett and Nicholas Rober for helpful discussion and
feedback on the paper. Huan Zhang acknowledges the support of the Schmidt Futures AI2050 Early
Career Fellowship.
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A OOD Detection

Figure 7: To improve our model’s ability to detect data outside the training distribution (of green and
red points), we randomly sample points that are far from every training point. In the right contour,
we see that the model’s confidence of in-distribution increases as we approach the centers of the
distribution, demonstrating our model is more calibrated.

For the OOD benchmark, we train a neural network on two clusters of data. Standard training
would lead to an uncalibrated predictor, we add in OOD data through sampling the input space and
rejecting inputs that are too close to any training data point. Training a classifier on this dataset
induces the contour on the right, which is a calibrated classifier we can certify properties over.
For our experiments, we consider a high-confidence output as 90% confidence of the data being
in-distribution.

B Example

Example 1. Consider the toy neural network in Figure 8 under X = [−2, 2] and Sout = {y : 1 ≤ y ≤
1.02}. Suppose we wanted to find the tightest [l(1)0 , u

(1)
0 ] (bounds on x

(1)
0 ). If we only enforce the

constraints preceding the ReLU (standard bound propagation), we get [−2, 2]. If we only enforce the
constraints following the ReLU, we get (−∞, 1.02]. However, when we utilize all of the constraints,
we find that the true intermediate bounds are [0, 0.01], which is over 100 times tighter than the
intersection of the two previous methods (all derivations provided below). Therefore, new techniques
are necessary for optimizing intermediate bounds in this setting.

B.1 Deriving Intermediate Bounds for Example B

Preceding Constraints. The linear layer gives us x(1)
0 = x̂

(0)
0 . Since the only constraint we have

is x̂(0)
0 ∈ [−2, 2], the tightest intermediate bounds we can derive are [−2, 2].

Following Constraints. Since the output of a ReLU is non-negative, we know that x̂(1)
0 , x̂

(1)
1 ≥ 0.

Since x(2)
0 = x̂

(1)
0 + x̂

(1)
1 and the output constraint enforces x(2)

0 ≤ 1.02, we derive that x̂(1)
0 ≤ 1.02.

If we set x̂(1)
0 = 1.02− x̂

(1)
1 , we see that x̂(1)

0 can take the entire interval [0, 1.02]. Since the only
constraint we have on x

(1)
0 is that ReLU(x̂(1)

0 ) = x(1), our desired interval is the preimage of [0, 1.02].
This means that x(1)

0 can take any value in the interval (−∞, 1.02].

All Constraints. We first note that by the first linear layer, we have x
(1)
1 = x

(1)
0 + 1. Therefore, if

x
(1)
0 is less than 0, then x

(1)
1 is less than 1, which means ReLU(x(1)

0 ) + ReLU(x
(1)
1 ) is less than 1,

which contradicts the output constraint. If x(1)
0 is always non-negative, then we have that the output

is equivalent to ReLU(x
(1)
0 )+ReLU(x

(1)
0 +1) = 2x

(1)
0 +1. Therefore, the output constraint implies

x
(1)
0 ≤ 0.01. Any x

(1)
0 ∈ [0, 0.01] is achievable by setting the input to the desired value.
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Figure 8: A simple neural network from R to R. Every node is the sum of its incoming nodes unless
the edge is labeled ReLU.

C Optimizing Intermediate Bounds

We present a generalized theorem which provides a lower bound for any linear combination of x̂(0)

and x(i). We prove this theorem in Appendix D. We note that by selecting the coefficients of these
variables (named c(i) for i ∈ {0, 1, . . . , L− 1}), we recover the two following functionalities which
we name gc(α,γ) and gbi,j(α,γ) (respectively).

• When the only nonzero coefficients are c(0) = c, we recover Theorem 1. We refer to this
bound as gc(α,γ)

• When the only nonzero coefficient is c(i)j = 1, we can lower bound l
(i)
j by glower

i,j (α,γ). If

we set c(i)j = −1, we can upper bound u
(i)
j by −gupper

i,j (α,γ).

With this, we present our generalized theorem.

Theorem 2 (Lower-bounding combination of neurons). Given an output set Sout = {y : Hy+d ≤ 0}
and vector c, g(α,γ) is a lower bound to the linear program in (3) with objective c(0)⊤x̂(0) +∑L−1

i=1 c(i)⊤x(i) for 0 ≤ α ≤ 1, γ ≥ 0, and g defined via

g(α,γ) =
[
c(0)⊤ − ν(1)⊤W(1)

]
+
l(0) −

[
c(0)⊤ − ν(1)⊤W(1)

]
−
u(0)

−
L∑

i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

[
u
(i)
j l

(i)
j [ν̂

(i)
j ]+

u
(j)
i − l

(j)
i

]

where every term can be directly recursively computed via

I−(i) = {j : u(i)
j ≤ 0}

I+(i) = {j : l(i)j ≥ 0}

I±(i) = {j : l(i)j < 0 < u
(i)
j }

ν(L) = −γ

ν̂
(i)
j = ν(i+1)⊤W

(i+1)
:,j

ν
(i)
j =


ν̂
(i)
j − c

(i)
j , j ∈ I+(i)

−c
(i)
j , j ∈ I−(i)

u
(i)
j

u
(j)
i −l

(j)
i

[ν̂
(i)
j ]+ − α

(i)
j [ν̂

(i)
j ]− − c

(i)
j , j ∈ I±(i)
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D Dual Derivation

We first incorporate the output constraint Hx(L) + d ≤ 0 by folding in this linear transformation of
the output into the final linear layer of the network, as customary in prior work [Wang et al., 2021,
Zhang et al., 2022].
We now prove the generalized theorem as described in C. As a conceptual overview of our proof, we
take the Lagrange dual of the linear program to derive an unconstrained optimization problem. From
here, we derive constraints that must be satisfied in the maxmin formulation. These constraints yield
the bound propagation procedure we display in Theorem 1.
We start with the convex relaxation.

min
x,x̂

c(0)⊤x̂(0) +

L−1∑
i=1

c(i)⊤x(i)

s.t. l(0) ≤ x̂(0) ≤ u(0)

x(L) ≤ 0;

x(i) = W(i)x̂(i−1) + b(i); i ∈ [L],

x̂
(i)
j ≥ 0; j ∈ I±(i)

x̂
(i)
j ≥ x

(i)
j ; j ∈ I±(i)

(u
(i)
j − l

(i)
j )x̂

(i)
j ≤ u

(i)
j x

(i)
j − u

(i)
j l

(i)
j ; j ∈ I±(i)

x̂
(i)
j = x

(i)
j ; j ∈ I+(i)

x̂
(i)
j = 0; j ∈ I−(i)

From this, we take the Lagrange dual of most of the constraints. In doing so, we introduce a new dual
variable for each constraint. Note that we do not dualize every constraint since they can easily be
dealt with later.

min
x,x̂

max
ν,µ,τ ,γ,λ

c(0)⊤x̂(0) +

L−1∑
i=1

c(i)⊤x(i) + γ⊤x(L) +

L∑
i=1

ν(i)⊤
(
x(i) −W(i)x̂(i−1) − b(i)

)
+

L−1∑
i=1

∑
j∈I±(i)

[
µ
(i)
j

(
−x̂

(i)
j

)
+ τ

(i)
j

(
x
(i)
j − x̂

(i)
j

)
+ λ

(i)
j

(
(u

(i)
j − l

(i)
j )x̂

(i)
j − u

(i)
j x

(i)
j + u

(i)
j l

(i)
j

)]
s.t. l(0) ≤ x̂(0) ≤ u(0); x̂

(i)
j = 0, j ∈ I−(i); x̂

(i)
j = x

(i)
j , j ∈ I+(i)

µ ≥ 0; τ ≥ 0; γ ≥ 0; λ ≥ 0

Since we took the dual of a linear program, the solution to the min-max optimization is equivalent to
the solution of the max-min optimization by strong duality. Therefore, we can solve the following
program (equivalent up to rearrangement).
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max
ν,µ,τ ,γ,λ

min
x,x̂

(
ν(L) + γ

)⊤
x(L) +

(
c(0)⊤ − ν(1)⊤W(1)

)
x̂(0)

+

L−1∑
i=1

∑
j∈I+(i)

(
ν
(i)
j − ν(i+1)⊤W

(i+1)
:,j + c

(i)
j

)
x
(i)
j +

L−1∑
i=1

∑
j∈I−(i)

(
ν
(i)
j + c

(i)
j

)
x
(i)
j

+

L−1∑
i=1

∑
j∈I±(i)

[(
ν
(i)
j + τ

(i)
j − λ

(i)
j u

(i)
j + c

(i)
j

)
x
(i)
j

+
(
−ν(i+1)⊤W

(i+1)
:,j − µ

(i)
j − τ

(i)
j + (u

(i)
j − l

(i)
j )λ

(i)
j

)
x̂
(i)
j

]
−

L∑
i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

λ
(i)
j u

(i)
j l

(i)
j

s.t. l(0) ≤ x̂(0) ≤ u(0)

µ ≥ 0; τ ≥ 0; γ ≥ 0; λ ≥ 0

To minimize
(
c(0)⊤ − ν(1)⊤W(1)

)
x̂(0) subject to l(0) ≤ x̂(0) ≤ u(0), we can consider the choice

we must make in each dimension. If the jth entry of the coefficient is positive, we should set
x̂
(0)
j = l

(0)
j . Otherwise, we should set x̂(0)

j = u
(0)
j .

max
ν,µ,τ ,γ,λ

min
x,x̂

(
ν(L) + γ

)⊤
x(L) +

[
c(0)⊤ − ν(1)⊤W(1)

]
+
l(0) −

[
c(0)⊤ − ν(1)⊤W(1)

]
−
u(0)

+

L−1∑
i=1

∑
j∈I+(i)

(
ν
(i)
j − ν(i+1)⊤W

(i+1)
:,j + c

(i)
j

)
x
(i)
j +

L−1∑
i=1

∑
j∈I−(i)

(
ν
(i)
j + c

(i)
j

)
x
(i)
j

+

L−1∑
i=1

∑
j∈I±(i)

[(
ν
(i)
j + τ

(i)
j − λ

(i)
j u

(i)
j + c

(i)
j

)
x
(i)
j

+
(
−ν(i+1)⊤W

(i+1)
:,j − µ

(i)
j − τ

(i)
j + (u

(i)
j − l

(i)
j )λ

(i)
j

)
x̂
(i)
j

]
−

L∑
i=1

ν(i)⊤b(i) +

L−1∑
i=1

∑
j∈I±(i)

λ
(i)
j u

(i)
j l

(i)
j

s.t. µ ≥ 0; τ ≥ 0; γ ≥ 0; λ ≥ 0

From here, we note that the variables x or x̂ are unconstrained variables. Therefore, if any of their
coefficients are nonzero, the inner minimization can immediately drive its value to −∞. As such, the
outer maximization must set all of these coefficients to zero. Therefore, we can derive constraints
from this restructured optimization and remove the free variables x, x̂.
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max
ν,µ,τ ,γ,λ

[
c(0)⊤ − ν(1)⊤W(1)

]
+
l(0) −

[
c(0)⊤ − ν(1)⊤W(1)

]
−
u(0) −

L∑
i=1

ν(i)⊤b(i)

+

L−1∑
i=1

∑
j∈I±(i)

λ
(i)
j u

(i)
j l

(i)
j

s.t. ν(L) = −γ

ν
(i)
j = ν(i+1)⊤W

(i+1)
:,j − c

(i)
j , j ∈ I+(i)

ν
(i)
j = −c

(i)
j , j ∈ I−(i)

ν
(i)
j = λ

(i)
j u

(i)
j − τ

(i)
j − c

(i)
j , j ∈ I±(i)

ν(i+1)⊤W
(i+1)
:,j = (u

(i)
j − l

(i)
j )λ

(i)
j −

(
µ
(i)
j + τ

(i)
j

)
, j ∈ I±(i)

µ ≥ 0; τ ≥ 0; γ ≥ 0; λ ≥ 0

For the following, we define ν̂
(i)
j = ν(i+1)⊤W

(i+1)
:,j . We note that since the upper and lower

bounds of the neuron relaxation can not be tight simulataneously, at least one of (u(i)
j − l

(i)
j )λ

(i)
j

and µ
(i)
j + τ

(i)
j must be non-zero. Therefore, we can write them as (u(i)

j − l
(i)
j )λ

(i)
j = [ν̂

(i)
j ]+ and

µ
(i)
j + τ

(i)
j = [ν̂

(i)
j ]−. We can then use the fact that τ (i)j lies in the interval 0 and ν̂

(i)
j to get the

following bound propagation procedure.

max
ν,α,γ

[
c(0)⊤ − ν(1)⊤W(1)

]
+
l(0) −

[
c(0)⊤ − ν(1)⊤W(1)

]
−
u(0) −

L∑
i=1

ν(i)⊤b(i)

+

L−1∑
i=1

∑
j∈I±(i)

[
u
(i)
j l

(i)
j [ν̂

(i)
j ]+

u
(j)
i − l

(j)
i

]
s.t. ν(L) = −γ

ν
(i)
j = ν(i+1)⊤W

(i+1)
:,j − c

(i)
j , j ∈ I+(i)

ν
(i)
j = −c

(i)
j , j ∈ I−(i)

ν̂
(i)
j = ν(i+1)⊤W

(i+1)
:,j

ν
(i)
j =

u
(i)
j

u
(j)
i − l

(j)
i

[ν̂
(i)
j ]+ − α

(i)
j [ν̂

(i)
j ]− − c

(i)
j , j ∈ I±(i)

α
(i)
j ∈ [0, 1]; γ ≥ 0

In this program, α(i)
j are optimizable parameters controlling the relaxation of neuron j in layer i,

similar to the ones appearing in Xu et al. 2021. γ, as discussed in the body of the paper, is the
parameter which enforces the output constraint throughout this entire bound propagation procedure.

E Connection to Forward Verification for Intermediate Bounds

We consider the general objective presented in C and aim to minimize c(0)⊤x̂(0) +
∑L−1

i=1 c(i)⊤x(i)

min
x

c(0)⊤x̂(0) +

L−1∑
i=1

c(i)⊤x(i)

s.t. x ∈ X ; Hf(x) + d ≤ 0

If we take the dual of the constraint, then we get the program
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min
x

c(0)⊤x̂(0) +

L−1∑
i=1

c(i)⊤x(i) + γ (Hf(x) + d)

s.t. x ∈ X ; γ ≥ 0

We note that the objective here can be expressed as a neural network with residual stream f(x) and a
skip connection with linear weight c(i) from the pre-activations of layer i to the final output for every
layer. In theory, we could construct this neural network and directly pass it to a forward verification
tool which could iteratively tighten all bounds for a solution.

F Implementation

As stated in Algorithm 1, INVPROP first initializes bounds for all layers using some computationally
cheap technique. Based on the input bounds given by X , we first compute intermediate bounds using
interval propagation and then tighten them based on the reverse symbolic interval propagation (RSIP)
technique Singh et al. [2019]. While INVPROP will iteratively tighten those bounds over time, we
found RSIP to reduce the total necessary runtime significantly compared to an initialization based
solely on interval propagation. We initialize all α with 0.5 and all γ with 0.025.
The optimization is performed for all lower and upper bounds of all neurons in each layer in parallel,
starting with the last layer and moving forward to the input layer. The bounds of the cutting
hyperplanes are optimized last, together with the bounds on the input neurons. The improvements on
c⊤x are measured every 10th iteration. Before doing so, the bounds of the hyperplanes are tightened
for 10 extra steps to improve their precision. We detect convergence by monitoring c⊤x. If successive
iterations see minimal improvement, we stop or branch on the input space. All cutting hyperplanes
are evenly distributed to maximize their information gain. For 40 hyperplanes in a 2D input space,
we rotate each plane by 9°. All reported runtimes under 10 minutes are computed as the average of
five runs.

F.1 Encoding Non-Linear Constraints

To support non-linear output sets, such as the maximum operation used in the OOD example in
Section 4.3, the non-linearity needs to be encoded, such that it can be expressed as linear constraints
over the modified network. We rewrite max(y1, y2) = max(y1 − y2, 0) + y2 and add an additional
ReLU layer for this operation. Note that to pass y2 through this layer without modifying it, one can
either write y2 = max(y2, 0)−max(−y2, 0), or y2 = max(y2 −M, 0) +M where M is the lower
bound of all possible y2. We find that avoiding the additional ReLU relaxations that would occur for
the first approach is beneficial for the optimization and compute a lower bound of M using interval
propagation. As y3 (for the OOD class) should not be changed by this operation either, we apply the
same trick of subtracting and adding its lower bound.

F.2 Control Benchmark Encoding

We encode the entire control formula x = Ax + Bu as one feedforward network by encoding
the residual connection as regular fully connected layers. To this end, we use the same technique
described in Section F.1 to shift the bounds into the positive regime, feed them forward and then shift
them back.
To compute Sover for a timestep t > 1, we first stack the network t times, then simplify it by merging
consecutive linear layers. All bounds of layers not affected by this merging that also appear in the
network for t− 1 timesteps are reused. Their bounds are already tight enough and are not optimized
further. Note that this is different than using the previous Sover as the new target region and using
an unstacked network: All bounds of the new layers are still optimized w.r.t. the precise target Sout.
Therefore, we do not suffer from accumulating inaccuracies.

G Hardware

For the control benchmark, all experiments were performed on a Dual Xeon Gold 6138.
For the OOD benchmark, all experiments were performed on an Intel Xeon Platinum 8160 processor
using 8 cores and 40GB RAM, as well as a V100-SXM2 GPU.
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Figure 9: Detailed runtime comparison of α,β-CROWN and α,β-CROWN + INVPROP. Except for a
few instances, α,β-CROWN extended with INVPROP can verify the properties faster, and can prove
robustness for some instances that cause a timeout for pure α,β-CROWN. The timeout per instance
is 5 minutes.

For the MNIST and YOLO robostness verification benchmarks, an AWS instance of type g5.2xlarge
was used, with is equipped with a AMD EPYC 7R32 processor with 8 cores, 32GB RAM, as well as
an A10G GPU.

H Robustness Verification

For the comparison in Section 4.2, we have implemented the concept of INVPROP in α,β-CROWN.
Figure 9 compares the performance of α,β-CROWN and α,β-CROWN + INVPROP on the MNIST
benchmark defined by Yang et al. [2021b].
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