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Abstract
Extracting relational triples from unstructured001
text is crucial for information extraction. Re-002
cent methods achieve considerable perfor-003
mance, but due to the insufficient considera-004
tion of triple global information, there is an005
obvious performance gap between triple (E1,006
R, E2) and E1/R/E2, that is, some extracted007
entities or relations fail to form a valid rela-008
tional triple. To break this bottleneck, we pro-009
pose a relation-attentive 3D matrix framework010
(RA3D) composed of an encoder module, a011
fusion module, and a 3D matrix module. In-012
stead of using a 2D table to align the sub-013
ject and object, we integrate clearly encoded014
relation information to convert the 2D table015
into a 3D matrix, so that the entries of the016
3D matrix can capture the interaction in sub-017
jects, objects, and relations completely. To ex-018
tract relation and entity information required019
for the 3D matrix reasonably, we design a020
transformer-decoder-based fusion module that021
updates the representation of relations and en-022
tities iteratively. Our model achieves state-of-023
the-art performance with F1 score up to 93.5%024
and 94.3% on two public datasets and delivers025
consistent performance gain on complex sce-026
narios of overlapping triples.027

1 Introduction028

Extracting relational facts from natural language029

text is a well-studied task in information extrac-030

tion (IE) and a crucial step towards building large031

structural knowledge bases (KB) (Auer et al., 2007;032

Bollacker et al., 2008; Dong et al., 2014). A rela-033

tional fact is represented as a triple that consists of034

two entities (an entity pair) connected by a seman-035

tic relation.036

Traditional methods in relational triple extrac-037

tion take in a pipeline manner (Zelenko et al., 2003;038

Zhou et al., 2005; Chan and Roth, 2011). It first039

recognizes all entities in a sentence using a named040

entity recognizer and then performs relation classi-041

fication for each entity pair. Such an approach eases042

sentence Alan Bean (of the United States) was a crew 
member of NASA 's Apollo 12 under the 
commander David Scott.

gold subject Bean, 12
gold object 12, States,  NASA, Scott
gold relation was a crew member, nationality,   operator, 

commander
gold triples (Bean, was a crew member of, 12 )

(Bean, nationality, States)
(12, operator, NASA )
(12, commander, Scott)

predict 
triples

(Bean, nationality, 12 )
(Bean, nationality, NASA )
(Bean, operator, Scott )
(12, commander, States)
(12, was a crew member, States)
 ...

Figure 1: Scenarios in which there is an obvious perfor-
mance gap between (E1, R, E2) and E1/R/E2.

the task and makes each component more flexible, 043

but it tends to suffer from the error propagation 044

problem, since the results of entity recognition can 045

affect the performance of relation classification. To 046

tackle this problem, many joint learning models 047

that extract entities and relations in a single model 048

have been proposed. Traditional joint methods (Yu 049

and Lam, 2010; Li and Ji, 2014; Miwa and Sasaki, 050

2014; Ren et al., 2017) are designed with a feature- 051

based structure that needs heavily feature engineer- 052

ing work. With the rapid development of deep 053

learning, many Neural Network-based (NN-based) 054

models (Gupta et al., 2016; Katiyar and Cardie, 055

2017) achieve state-of-the-art performance. How- 056

ever, extracting overlapping triples remains chal- 057

lenging. Most existing models that handle the over- 058

lapping triple problem are multi-stage-based (Zeng 059

et al., 2018; Wei et al., 2020; Zheng et al., 2021). 060

They involve sequential interrelated steps and suf- 061

fer from the problem of exposure bias. At training 062

time, they predict with the ground truth conditions 063

while at inference they have to make extraction 064

from scratch. This discrepancy leads to error ac- 065

cumulation. To mitigate the issue, single-stage 066
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frameworks (Wang et al., 2020; Sui et al., 2021)067

are proposed.068

Despite their success, there is still an obvious069

performance gap between triple (E1, R, E2) and070

E1/R/E2 where E1 represents the subject entity, E2071

represents the object entity and R represents the072

relation between them as shown in Figure 1. E1 is073

regarded as correct as long as the subject in the ex-074

tracted triple is correct, so are E2 and R. To tackle075

this problem, we design a 3D matrix that is evolved076

from a 2D table. Casting Named Entity Recog-077

nition (NER) and Relation Classification (RC) as078

a table filling problem (Miwa and Sasaki, 2014;079

Gupta et al., 2016; Zhang et al., 2017; Wang and080

Lu, 2020) is a popular idea for a related but differ-081

ent branch of the joint entity and relation extraction082

that needs to extract entity types but does not focus083

on the overlapping problem. Recently, many strong084

baselines (Wang et al., 2020; Zheng et al., 2021) in085

relational triple extraction borrow the 2D table ar-086

chitecture of table filling and achieve considerable087

performance. They treat relations as discrete labels,088

give relation-specific 2D table representations, or089

do not consider relation information in the 2D table.090

Since none of them integrate well-encoded relation091

information to make the best of triple global infor-092

mation, the performance gap between (E1, R, E2)093

and E1/R/E2 is still obvious.094

In this paper, we propose a relation-attentive095

3D matrix framework (RA3D) to narrow the per-096

formance gap between (E1, R, E2) and E1/R/E2.097

Firstly, we design two different encoders – a sen-098

tence encoder and a relation encoder to capture the099

two different types of information. Then, we pro-100

pose a fusion module that enhances the sentence101

and relation representation capabilities to make the102

information conveyed into the 3D matrix more rea-103

sonable. In the fusion module, we leverage the104

transformer-decoder to query the related informa-105

tion between the sentences and relations and fur-106

ther design a similarity gate to update the repre-107

sentations accurately with the related information108

queried. Finally, a relational triple 3D matrix is109

formed where each entry captures the interaction110

among a subject, a relation, and an object. The111

representation of all possible subjects and objects112

is the sentence output of the fusion module, and113

the representation of relations is the relation output114

of the fusion module. This work has the following115

main contributions:116

1. We propose a relation-attentive 3D matrix117

framework. It interacts the well-encoded rela- 118

tion information with all possible subjects and 119

objects in a 3D matrix to narrow the perfor- 120

mance gap between (E1, R, E2) and E1/R/E2. 121

2. To make the representations more conducive 122

to the relational triple extraction task, we de- 123

sign a transformer-decoder-based fusion mod- 124

ule that updates the sentence and relation rep- 125

resentations iteratively. 126

3. Extensive experiments on two public datasets 127

show that the proposed framework outper- 128

forms state-of-the-art methods, achieving 1.4 129

and 1.5 absolute gain in F1-score on the two 130

datasets respectively. In addition, the gap be- 131

tween (E1, R, E2) and E1/R/E2 decreases by 132

1.5 and 0.8 on the two datasets. 133

2 Related Work 134

Early works (Mintz et al., 2009; Gormley et al., 135

2015) usually extract relational triples in two sep- 136

arate steps: NER and RC. By employing NER to 137

give sentences with annotated entities, RC can iden- 138

tify the relational facts between the annotated en- 139

tities. However, such a pipeline manner approach 140

suffers from error propagation problems and ne- 141

glects the relevance of entity extraction and relation 142

prediction. To tackle this problem, joint learning 143

frameworks which extract entities together with re- 144

lations have been built. Some of the frameworks 145

are feature-based models (Yu and Lam, 2010; Li 146

and Ji, 2014; Miwa and Sasaki, 2014; Ren et al., 147

2017), and, more recently, others are NN-based 148

models (Gupta et al., 2016; Katiyar and Cardie, 149

2017; Zheng et al., 2017; Zeng et al., 2018; Fu 150

et al., 2019) which achieve considerable success. 151

However, early NN-based methods (Miwa and 152

Bansal, 2016) achieve joint learning of entities and 153

relations only through parameter sharing but not 154

joint decoding. They still have separate compo- 155

nents for NER and RC subtasks. Different from 156

them, Zheng et al. (2017) introduce a novel tag- 157

ging scheme to extract entities and their relations 158

achieving joint decoding without identifying enti- 159

ties and relations separately. They show promising 160

results but completely give up overlapping triples. 161

Most existing models in handling overlapping 162

cases- EntityPairOverlap (EPO) and SingleEntiy- 163

Overlap (SEO) are multi-stage-based models that 164

can be categorized into two classes: decoder- 165

based and decomposition-based. Decoder-based 166
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. [SEP]
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[SEP]
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. [SEP]
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. [SEP]
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Figure 2: An overview of the proposed RA3D framework. BERT Encoder and Relation Encoder are used to
learn representations of the source sentence and relations. Then, a fusion module containing N fusion layers is
constructed for more reasonable relation representation Hrel and sentence representation Hsub and Hobj . Finally,
a 3D matrix is formed by integrating the Hobj into the 2D table contains the information of Hsub and Hrel. The
orange blocks tagged 1 reflect that the relational triple (Apollo 14, operator, NASA) is extracted.

models use encoder-decoder architecture where167

the decoder extracts one word or one tuple at a168

time (Zeng et al., 2018; Nayak and Ng, 2020).169

Decomposition-based models have an extraction170

order of triple elements (Wei et al., 2020; Zheng171

et al., 2021), for example, Wei et al. (2020) first172

distinguish all the candidate subject entities that173

may be involved with target triples, then label cor-174

responding object entities and relations for each ex-175

tracted subject. Although these multi-stage-based176

methods have achieved reasonable performance,177

they all suffer from exposure bias. Wang et al.178

(2020) employ a token pair linking scheme align-179

ing subjects with objects under each relation type180

in one stage to solve the problem.181

Miwa and Sasaki (2014) tackle joint NER and182

RE as from a table filling perspective, where the en-183

try at row i and column j of the table corresponds to184

the pair of i-th and j-th word of the input sentence.185

The diagonal of the table is filled with the entity186

tags and the rest with the relation tags indicating187

possible relations between word pairs. Many simi-188

lar methods (Gupta et al., 2016; Luan et al., 2019;189

Wang and Lu, 2020) are proposed to fill the table.190

Recent works (Wang et al., 2020; Zheng et al.,191

2021) in relational triple extraction borrow the 2D192

table architecture of table filling. The state-of-the-193

art method named PRGC (Zheng et al., 2021) de-194

signs a global correspondence component to align195

the subject and object into a triple which is a 2D 196

architecture. However, none of them fuse clearly 197

encoded relation information to the 2D table to 198

consider triple global information more compre- 199

hensively. 200

3 Method 201

In this section, we describe the detail of RA3D 202

framework. An overview illustration of RA3D is 203

shown in Figure 2. The model is composed of the 204

following three modules: an encoder module, a 205

fusion module, and a 3D matrix module. 206

3.1 Encoder Module 207

3.1.1 Sentence Encoder 208

BERT is a multi-layer bidirectional Transformer 209

structure model designed to learn deep represen- 210

tations, which has been proven to be effective on 211

several tasks. We employ a pre-trained BERT (De- 212

vlin et al., 2018) to encode the context information. 213

The output of sentence encoder is Hn ∈ Rn×h, 214

where n is the sentence length, and h is the size of 215

hidden state. 216

3.1.2 Relation Encoder 217

We design an independent relation encoder which 218

is defined as follows: 219

Hm = WrE([r1, r2, ..., rm]) + br (1) 220
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where ri is the one-hot vectors of relation indices221

in the predefined relations, and m is the number of222

predefined relations. E is the relation embedding223

matrix, and Wr and br are trainable parameters.224

Hm ∈ Rm×h is the output of relation encoder.225

3.2 Fusion Module226

The purpose of the fusion module is to further en-227

hance the expression ability by making the sentence228

representation and relation representation contain229

information related to each other reasonably. The230

fusion module is composed of multiple fusion lay-231

ers. Each fusion layer updates the relation rep-232

resentation first and the sentence representation233

second. When we update the relation representa-234

tion, we treat each relation as a query and generate235

its related semantic information from the sentence236

based on the transformer-decoder. We then design237

a similarity gate to fuse the relation-related infor-238

mation into relation representation. Similarly, we239

use transformer-decoder and similarity gate to up-240

date sentence representation by treating each word241

in the sentence as a query and relations as providers242

of key-value pairs.243

3.2.1 Transformer-decoder Based Related244

Information Representation245

We generate the related semantic representation246

between the sentence and relations based on247

transformer-decoder (Vaswani et al., 2017) which248

has three sub-layers. Take updating sentence repre-249

sentations as an example. The first is a multi-head250

self-attention mechanism to model the relationship251

between word queries, the second is a multi-head252

cross attention mechanism to map a word query253

and a set of key-value relation pairs to an output,254

and the third is a position-wise fully connected255

feed-forward network. We employ residual connec-256

tions around each of the sub-layers, followed by257

layer normalization.258

There are two points worth noting. Firstly, since259

the proposed transformer-decoder directly outputs260

the final relation representation or sentence repre-261

sentation in one shot instead of one by one, our262

decoder is non-autoregressive. The autoregressive263

decoder needs to use no casual mask to prevent264

positions from attending to subsequent positions.265

Without the constraint of an autoregressive factor-266

ization of the output distribution, we use the un-267

masked self-attention instead, which is the same268

as Gu et al. (2018). Secondly, the relations are269

independent of each other, so there is no need to270

model the relationship between relation queries. 271

We delete the first sub-layer of the transformer- 272

decoder when updating relation representations. 273

3.2.2 Similarity Gate Fusion Mechanism 274

To integrate the query-related information into the 275

query more accurately, we design a similarity gate 276

that can maintain the non-linear capability and pre- 277

vent attending to irrelevant information. We cal- 278

culate the semantic similarity simi between each 279

query hqi and its related information hq−relatedi 280

by the concatenation, linear, and Sigmoid normal- 281

ization operation where i ∈ [1, Q], and Q is the 282

number of queries. If simi is less than the set 283

threshold α, we assign 0 to the attention score of 284

the corresponding query-related information, and 285

then the query-related information will be excluded 286

in subsequent fusion. If simi is greater than the set 287

threshold α, we assign the query-related informa- 288

tion with the attention score of simi to maintain 289

the non-linear capability. We define the above sim- 290

ilarity gate fusion mechanism as follows: 291

simi = Sigmoid(Wsim[hqi ;hq−relatedi ] + bsim) 292

gi =

{
simi, simi > α
0, simi ≤ α

(2) 293

h
′
qi = gi · (Wghq−relatedi + bg) + (1− gi) · hqi 294

where Wsim, bsim, Wg, and bg are trainable 295

weights, g is the similarity gate, · is element-wise 296

production, and h
′
qi is the final output. 297

3.2.3 Relation-sentence Representation 298

Iterative Fusion 299

In this section, we introduce the overall architecture 300

of the proposed fusion module. To simplify, we 301

define the above transformer-decoder and similarity 302

gate formulas as follows: 303

h̃qi = TD − SG(hqi ,Hkv) (3) 304

where Hkv =
{
hkvj

}
j∈[1,K]

is the set of all vec- 305

tors that the query hqi needs to calculate similarity 306

with. h̃qi is the updated query hqi representation. 307

In each fusion layer, we obtain the new relation 308

representation first, and then we update the sen- 309

tence representation according to the new relation 310

representation. We add a residual connection to 311

avoid gradient vanishing during training after each 312

update process. The l-th fusion layer can be repre- 313
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sented as follows:314

h̃l+1
mi

= TD − SG(hlmi
,H l

n)

hl+1
mi

= h̃l+1
mi

+ hlmi

h̃l+1
nj

= TD − SG(hlnj
,H l+1

m )

hl+1
nj

= h̃l+1
nj

+ hlnj

(4)315

where H l
m=
{
hlmi

}
i∈[1,m]

and H l
n=
{
hlnj

}
j∈[1,n]

316

are the relations and sentence representation of l-th317

fusion layer. hl+1
mi

, and hl+1
nj

are the output relation318

and word representation of l-th fusion layer.319

3.3 3D Matrix Module320

A 3D matrix triple extraction module is developed321

to integrate relation information and sentence in-322

formation to a novel 3D matrix structure and then323

extract relational triples from the 3D matrix.324

In the first stage, a 2D table is formed where each325

entry captures the interaction between a subject326

and a relation. Next, a 3D matrix is identified327

by calculating the interaction between the subject-328

relation 2D table and each object. Finally, we adopt329

a binary classifier to detect the triples by assigning330

each entry a binary tag (0/1) that indicates whether331

the current entry containing the information of a332

subject, an object, and a relation corresponds to a333

triple in the sentence. We define the input vector:334

Hsub = Hobj = Hn

Hrel = Hm
(5)335

where Hsub and Hobj are set to the output sentence336

representation of the fusion module represented as337

Hn, and Hrel is set to the relation representation338

of the fusion module represented as Hm. Before339

integrating information to 3D matrix, Hsub, Hobj ,340

and Hrel are transformed into H
′
sub, H

′
obj , and341

H
′
rel which are prepared for the later interaction.342

The detailed operations are as follows:343

H
′
sub = SplitHead(WsubHsub + bsub)

H
′
obj = SplitHead(WobjHobj + bobj)

H
′
rel = Expand(Hrel)

(6)344

where Wsub ∈ Rh×(h×m), Wobj ∈ Rh×(h×m),345

bsub, and bobj are trainable parameters. m rep-346

resents the number of predefined relation types347

in the dataset. We denote a reshape operation as348

SplitHead(·) in which the embedding vectors of349

length h ×m are split into embeddings for each350

relation. Since the length n of each sentence is 351

different, we use Expand to expand Hrel n times 352

instead of operating it like Hsub and Hobj . H
′
sub, 353

H
′
obj , and H

′
rel ∈ R(n×m×h) are uesd to calculat- 354

ing the interaction as follows: 355

Hsubrel = Wsubrel[H
′
sub;H

′
rel] (7) 356

where Hsubrel ∈ R(n×m×h) is a 2D table cap- 357

turing the interaction between subjects and rela- 358

tions by the concatenation and linear operation. 359

Wsubrel ∈ R(2h×h) is learnable parameters. To 360

construct the 3D matrix, we compute the dot prod- 361

ucts between Hsubrel and all possible objects, and 362

apply a Sigmoid function to normalize probability 363

matrix to range (0, 1). We operate as follows: 364

Hsubrelobj = Sigmoid(Hsubrel ·H
′
obj) (8) 365

Hsubrelobj ∈ R(n×m×n) is an asymmetric 3D ma- 366

trix, because (e1, r, e2) and (e2, r, e1) are not the 367

same triple. Each entry of Hsubrelobj can be treated 368

as the probability score of the existence of a triple. 369

If the probability of a triple is bigger than the thresh- 370

old we set, the triple is extracted. 371

Notably, most previous works that just pay at- 372

tention to the start/end position of an entity lead to 373

poor generalization, and others that tag each token 374

with BIO (i.e., Begin, Inside, and Outside) lead to 375

more parameters. However, our approach identifies 376

the entities by collecting consecutive extracted to- 377

ken pairs to capture global representations of the 378

entities. At the same time, we use the Sigmoid 379

function as a binary tagger which does not increase 380

as many parameters as BIO. Further, compared 381

with previous works that need to answer which is 382

the relationship between the entity pairs, the binary 383

tagging scheme only needs to answer whether or 384

not the entity pairs have this relationship, which 385

overwhelmingly reduces the difficulty of the triple 386

extraction problem. 387

3.4 Bias Objective Function 388

The 3D matrix optimizes the following likelihood 389

function to identify the triple (s, r, o) given a sen- 390

tence representation x: 391

pθ((s, r, o)|x) (9) 392

=

n∏
s,o=1

m∏
r=1

(psro)
I{ysro=1}(1− psro)I{ysro=0} 393
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where n is the length of the sentence, and m is the394

number of predefined relation types. I {z} =β if z395

is true and 0 otherwise. ysro is the true binary tag of396

triple (s, r, o). psro is the normalized probabilities397

of tags defined in Formula 8. β is the bias weight.398

The larger the β is, the greater the influence of399

gold labels has. If β is big, the model tends to400

extract more triples, which leads to a decrease in401

precision value and an increase in recall value. To402

ease this issue, a suitable threshold λ that aims to403

balance the precision and recall is important. β404

and threshold λ are two hyperparameters that are405

better to tune together. Formally, given annotated406

sentence xj from the training set D and a set of407

potentially overlapping triples Tj = {(s, r, o)} in408

xj , we aim to maximize the data likelihood:409

L = max

|D|∑
j=1

∑
(s,r,o)∈Tj

logpθ((s, r, o)|xj) (10)410

4 Experiments411

4.1 Datasets and Evaluation Metrics412

To evaluate the performance of our methods, we413

use the public dataset NYT (Riedel et al., 2010)414

and WebNLG (Gardent et al., 2017), both of415

which have two versions, respectively. We de-416

note the different versions as NYT*, NYT and417

WebNLG*, WebNLG. NYT* and WebNLG* anno-418

tate the last word of the entities, while NYT and419

WebNLG annotate the whole entity span. NYT*420

and NYT datasets are produced by a distant su-421

pervision method. They contain 1.18M sentences422

sampled from 294k 1987-2007 New York Times423

news articles and have 24 predefined relation types.424

WebNLG* and WebNLG datasets are adopted from425

Natural Language Generation (NLG) task for re-426

lational triple extraction. WebNLG* dataset con-427

tains 171 predefined relation types, while WebNLG428

contains 216. All datasets contain sentences with429

multiple relational triples, so they are suitable to430

be the testbed for evaluating models on extracting431

overlapping relational triples.432

Following previous work (Fu et al., 2019; Wang433

et al., 2020; Zheng et al., 2021), we adopt the stan-434

dard Precision (Prec.), Recall (Rec.), and F1-score435

to evaluate the results. In our experiments, to keep436

in line with previous works, we use Partial Match437

for NYT* and WebNLG*, which means the pre-438

dicted triplets are seen as correct if and only if the439

relation and the heads of the two corresponding440

entities are all correct. For NYT and WebNLG, we441

use Exact Match, which means that the whole spans 442

of subject and object are needed to be matched. The 443

implementation details are shown in Appendix A. 444

4.2 Experimental Result 445

We compare our RA3D model with several strong 446

baseline models, including NovelTagging (Zheng 447

et al., 2017), CopyR (Zeng et al., 2018), GraphRel 448

(Fu et al., 2019), WDec (Nayak and Ng, 2020), 449

RSAN (Yuan et al., 2020), CasRel (Wei et al., 450

2020), TPLinker (Wang et al., 2020), SPN (Sui 451

et al., 2021), and PRGC (Zheng et al., 2021). The 452

reported results for the above baselines are directly 453

copied from the original published literature. Our 454

re-implementation results are obtained by the of- 455

ficial implementation with default configuration. 456

457

4.2.1 Main Results 458

Table 1 shows the results of our model against 459

other baseline methods on all datasets. Our model 460

overwhelmingly outperforms all the baselines in 461

terms of almost all three evaluation metrics and 462

achieves the state-of-the-art performance in the 463

public datasets. There is a performance gap be- 464

tween the dataset only annotating the last word 465

and the one that annotates the whole span, because 466

identifying the last word of an entity is easier than 467

identifying the whole span. 468

It is important to note that we design a discard 469

mechanism that discards the triples with incom- 470

plete subjects or objects to increase the precision 471

of our model. Before inputting the sentence into 472

BERT, we tokenize the words in the sentence with 473

a designed tokenizer which adds an ’Unused’ token 474

after the word tokens. When extracting the subject 475

or object by collecting consecutive extracted token 476

pairs, if the start token is not the next token of the 477

’Unused’ token or the end token is not the previous 478

token of the ’Unused’ token, the subject or object 479

will be regarded as incomplete. In this way, our 480

model significantly outperforms the strongest base- 481

line by 1.9 and 1.6 absolute gain in precision on 482

public datasets NYT*, WebNLG* respectively. 483

4.2.2 Detailed Results on Sentences with 484

Different Overlapping Pattern 485

To verify the capability of our models in handling 486

the overlapping problem, we conduct further ex- 487

periments on NYT* dataset and WebNLG* dataset. 488

The detailed results on three different overlapping 489

patterns are presented in Table 2. 490
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Method
NYT* WebNLG* NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
NovelTagging - - - - - - 32.8 30.6 31.7 52.5 19.3 28.3
CopyRE 61.0 56.6 58.7 37.7 36.4 37.1 - - - - - -
GraphRel 63.9 60.0 61.9 44.7 41.1 42.9 - – - - - -
WDec 94.5 76.2 84.4
RSAN - - - - - - 85.7 83.6 84.6 80.5 83.8 82.1
CASREL 89.7 89.5 89.6 93.4 90.1 91.8 - - - - - -
TPLinker 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7
SPN 93.3 91.7 92.5 93.1 93.6 93.4 92.5 92.2 92.3 - - -
PRGC 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5
SPN* 92.6 91.6 92.1 92.4 93.2 92.8 92.9 91.7 92.3 84.5 82.3 83.4
PRGC* 92.0 89.7 90.8 92.8 92.4 92.6 92.5 89.6 91.0 90.4 87.2 88.8
Ours 94.5 92.5 93.5 95.0 93.6 94.3 93.9 91.9 92.9 90.6 89.2 89.9

Table 1: Comparison of the proposed RA3D method with the prior works. Bold marks the highest score. Our
re-implementation is marked by *.

Method
NYT* WebNLG*

Normal SEO EPO Normal SEO EPO
CopyR 66 48.6 55 59.2 33 36.6
GraphRel 69.6 51.2 58.2 65.8 38.3 40.6
CASREL 87.3 91.4 92.0 89.4 92.2 94.7
TPLinker 90.1 93.4 94.0 90.1 93.4 94.0
SPN* 89.8 93.9 94.5 89.1 93.5 94.9
PRGC* 88.4 92.7 93.4 88.4 93.4 95.4
Ours 92.4 94.7 94.7 92.4 94.6 95.3

Table 2: F1-score of extracting relational triples from
sentences with different overlapping pattern.

4.2.3 Detailed Results on Sentences with491

Different Number of Triples492

We compare our model’s capability in extracting493

relations from sentences that contain a different494

number of triplets. We split the sentences into five495

classes and the detailed results are presented in496

Table 3. Our model attains consistently strong497

performance over almost all five classes again.498

Our model suffers the least from the increasing499

complexity of the input sentence. Especially for500

the most difficult class (N≥5), our model outper-501

forms the strongest baseline by 3.9% and 1.8%502

improvements on NYT* and WebNLG* datasets.503

RA3D also presents a significant improvement on504

the easiest sentences, ones with only one triple, out-505

performing the strongest baseline by 2.3 and 2.5506

absolute gain in F1-score on two public datasets.507

Experimental results demonstrate the powerful abil-508

ity of our model in extracting multiple relational509

triples from both complicated sentences and simple510

sentences.511

Method N=1 N=2 N=3 N=4 N >5

N
Y

T
*

CopyR 67.1 58.6 52.0 53.6 30.0
GraphRel 71.0 61.5 57.4 55.1 41.1
CASREL 88.2 90.3 91.9 94.2 83.7
TPLinker 90.0 92.8 93.1 96.1 90.0
SPN* 89.8 93.5 94.3 95.6 90.2
PRGC* 89.0 91.9 92.5 95.6 86.2
RA3D 92.3 93.8 93.5 96.0 94.1

W
eb

N
L

G
* CopyR 59.2 42.5 31.7 24.2 30.0

GraphRel 66.0 48.3 37.0 32.1 32.1
CASREL 89.3 90.8 94.2 92.4 90.9
TPLinker 88.0 90.1 94.6 93.3 91.6
SPN* 88.6 90.6 96.3 94.2 93.3
PRGC* 88.4 91.9 94.0 94.8 92.9
RA3D 91.8 93.2 95.6 95.1 95.1

Table 3: F1-score of extracting relational triples from
sentences with different number of triples.

5 Analysis and Discussion 512

5.1 Ablation Study 513

Model Prec. Rec. F1

W
eb

N
L

G
* - sentence update 93.8 93.2 93.5

- relation update 94.4 92.9 93.6
-similarity gate mechanism 94.6 93.4 94.0
-bias objective function 94.2 93.4 93.8

N
Y

T
* - sentence update 93.9 92.1 93.0

- relation update 94.1 92.5 93.3
-similarity gate mechanism 94.3 92.6 93.4
-bias objective function 93.9 92.8 93.3

Table 4: Ablation study of RA3D (%). ’-’ means we
remove or change the module from the original RA3D.

In this section, we conduct ablation experiments 514

to demonstrate the effectiveness of each module 515

component in RA3D with results reported in Table 516

4. We study the impact of sentence representation 517

update and relation representation update. We also 518

7



replace the similarity gate with the gate used in519

Zhao et al. (2021). Ours without bias objective520

function is the special case where parameter β is521

set to 1 and threshold λ is set to 0.5.522

5.2 The Number of Fusion Layers523

To confirm the number of the fusion module layers,524

we study the results of using different numbers of525

fusion layers on NYT* and WebNLG*. Table 5526

presents the results. We can observe that RA3D527

has the best result for l = 2.

Number NYT* WebNLG*
Prec. Rec. F1 Prec. Rec. F1

l=0 94.1 92.2 93.1 94.9 93.2 94.0
l=1 94.3 92.7 93.5 94.6 93.6 94.1
l=2 94.5 92.5 93.5 95.0 93.6 94.3
l=3 93.9 92.6 93.2 94.7 92.7 93.7

Table 5: F1-score of different number of fusion layers.

528

5.3 Error Analysis529

Element
NYT* WebNLG*

CasRel PRGC* RA3D CasRel PRGC* RA3D
E1 93.5 94.0 95.4 95.7 97.3 97.5
E2 93.5 94.2 95.4 95.3 96.1 97.0
R 94.9 95.1 96.0 94.0 94.8 95.9
(E1, R) 92.2 92.9 94.6 92.5 93.5 95.0
(R, E2) 92.2 92.7 94.5 93.2 93.8 95.1
(E1, E2) 89.7 91.2 93.7 93.5 94.7 95.8
(E1, E2, R) 89.6 90.8 93.5 91.8 92.6 94.3
gap 4.4 3.6 2.1 3.2 3.5 2.5
efficiency 95.3% 96.2% 97.8% 96.6% 96.4% 97.4%

Table 6: F1-score of different relational triple elements.

In order to verify whether our model has the abil-530

ity to narrow the performance gap between (E1,531

R, E2) and E1/R/E2, we analyze the performance532

on predicting different elements of the triple (E1,533

R, E2) where E1 represents the subject entity, E2534

represents the object entity and R represents the535

relation between them. An element like (E1, R)536

is regarded as correct only if the subject and the537

relation in the predicted triple (E1, R, E2) are both538

correct, regardless of the correctness of the pre-539

dicted object. Similarly, we say an instance of E1540

is correct as long as the subject in the extracted541

triple is correct, so sre E2 and R. The gap in table542

6 is the difference between (E1, R, E2) and the543

average of E1, E2, and R. The efficiency is the per-544

centage value of (E1, R, E2) divided by the average545

of E1, E2, and R.546

Table 6 shows the results on different relational 547

triple elements. For both datasets, the performance 548

gap between RA3D and other models on E1, E2, 549

and R shows our advantages in entity recognition 550

and relation prediction. Compared with CasRel 551

and PRGC*, our model narrows the gap between 552

(E1, R, E2) and E1/R/E2 and achieves encouraging 553

1.5% and 0.8% declines on NYT* and WebNLG*. 554

As for conversion efficiency. we gain considerable 555

1.6% and 0.8% improvements on the two datasets 556

respectively. The results indicate that our model 557

has more advantages in identifying the relationship 558

between triple elements than other works. 559

5.4 Model Efficiency 560

Epoch CasRel TPLinker PRGC RA3D
12 0.0 77.1 86.9 92.7
24 - - 91.3 94.4

Table 7: F1-score at epoch 12 and 24 on the WebNLG*
validation set of different methods.

As shown in Table 7, we have a convergence 561

rate superiority. For WebNLG* dataset, we achieve 562

a 92.7% performance at epoch 12 and 94.4% at 563

epoch 24. The result outperforms the PRGC which 564

advantages in convergence rate by 5.8% and 3.1% 565

absolute gain in F1-score at epoch 12 and epoch 566

24. Results of CasRel, TPLinker, and PRGC are 567

directly taken from Zheng et al. (2021) unless spec- 568

ified. The computation complexity of our model 569

is O(kn2) for NYT* and O(n3) for WebNLG* 570

which is similar to TPlinker (Wang et al., 2020). 571

Our method can not only achieve good results but 572

also has obvious advantages in convergence rate, 573

which makes the high complexity acceptable. 574

6 Conclusion 575

In this paper, we introduce a novel relation- 576

attentive 3D matrix framework (RA3D) for rela- 577

tional triple extraction. It learns an independent 578

relation encoder in addition to the sentence encoder 579

and integrates the clearly encoded relation infor- 580

mation to the 3D matrix. We also introduce a new 581

transformer-decoder and similarity gate-based fu- 582

sion module where explicit interactions exist be- 583

tween the two encoders to enhance their represen- 584

tation abilities. Experimental results show that our 585

model overwhelmingly outperforms state-of-the- 586

art baselines over different scenarios, especially 587

on narrowing the gap between (E1, R, E2) and 588

E1/R/E2. 589
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A Implementation Details775

In our experiments, for all datasets, the batch size776

is 4 and the learning rate is set to 1e-5. The size777

of hidden state h is 768. The max epoch is set778

to 150. The pre-trained model we used is [BERT-779

Base-Cased]. Following previous works (Fu et al.,780

2019; Wei et al., 2020; Zheng et al., 2021), the max781

length of input sentences to our model is set to 100782

words. For our bias objective function, parameter783

β and threshold λ are two hyperparameters that are784

tuned together. For the NYT*, the threshold λ is785

set to 0.8, and β is set to 2. For WebNLG*, the786

threshold λ is set to 0.92, and β is set to 5. For787

our similarity gate, the threshold α we set is 0.5788

for NYT* and 0.7 for WebNLG*. The number of789

layers of the fusion module is 2.790

B Analysis of Hyperparameter Setting791

For bias objective function, we suggest parameter792

β and threshold λ together without any argument or793

evaluation supporting before, so an ablation study794

is done on WebNLG* with results reported in Table795

8. It’s not surprising to find that the performance of796

our model increases first and then decreases with797

the increasing value of β. F1 will peak when β798

is between 2 and 6 on WebNLG* dataset. Note799

that the best result we get at β=5 on WebNLG* is800

heuristic, and a better F1 value might be obtained801

from another β value between 2 and 6. Threshold λ802

changes with β. Train with a fixed β, and test with803

different thresholds. The threshold λ with the best804

results is almost the threshold λ that best matches805

the β. The determination process of parameters806

parameter β and threshold λ of other datasets is807

similar to the above process on WebNLG*.

β λ Prec. Rec. F1
1 0.5 94.2 93.4 93.8
2 0.74 94.5 93.4 94.0
5 0.92 95.0 93.6 94.3
6 0.93 94.8 93.7 94.2
10 0.98 94.5 93.9 94.2

Table 8: Some combinations of β and λ on WebNLG*.

808

C Supplemental Experiments809

We conduct a set of supplemental experiments to810

show the generalization capability in more general811

cases on two widely used datasets, namely, NYT10-812

HRL and NYT11-HRL. The results are reported in 813

Table 9. 814

NYT corpus has two versions: (1) the original 815

version of which both the training set and test set 816

are produced via distant supervision by Riedel et al. 817

(2010) and (2) a smaller version with fewer relation 818

types, where the training set is produced by distant 819

supervision while the test set is manually annotated 820

by Hoffmann et al. (2011). We denote the original 821

one and the smaller one as NYT10 and NYT11. 822

These two versions have been selectively adopted 823

and preprocessed in many different ways among 824

various previous works, which may be confusing 825

sometimes and lead to incomparable results if not 826

specifying the version. To fairly compare these 827

models, HRL (Takanobu et al., 2019) adopted a 828

unified preprocessing for both NYT10 and NYT11, 829

and provided a comprehensive comparison with 830

previous works using the same datasets. Here we 831

denote the preprocessed two versions as NYT10- 832

HRL and NYT11-HRL. 833

Model Prec. Rec. F1

N
Y

T
10

-H
R

L NovelTagging(PM) 59.3 38.1 46.4
CopyR (PM) 56.9 45.2 50.4
CASREL(PM) 77.7 68.8 73.0
Ours(PM) 81.1 72.1 76.3
Ours(EM) 80.4 71.6 75.7

N
Y

T
11

-H
R

L NovelTagging(PM) 96.9 48.9 47.9
CopyR(PM) 34.7 53.4 42.1
CASREL(PM) 50.1 58.4 53.9
Ours(PM) 55.5 61.4 58.3
Ours(EM) 55.0 60.8 57.8

Table 9: Relational triple extraction results on NYT10-
HRL and NYT11-HRL.

For a fair comparison, we use the preprocessed 834

datasets released by (Takanobu et al., 2019), where 835

NYT10-HRL contains 70,339 sentences for train- 836

ing and 4,006 sentences for test and NYT11-HRL 837

contains 62,648 sentences for training and 369 sen- 838

tences for test. We also create a validation set by 839

randomly sampling 0.5% data from the training set 840

for each dataset as in (Takanobu et al., 2019; Wei 841

et al., 2020). All the experimental results of the 842

baseline models which use Partial Match (PM) are 843

directly taken from Wei et al. (2020) unless speci- 844

fied. To keep in line with previous works, we use 845

Partial Match for NYT10-HRL and NYT11-HRL. 846

Since multiword entities are common in real-world 847

scenarios, we also use Exact Match (EM) for the 848

11



datasets.849

When using Partial Match, there is a significant850

gap (from 73.0 to 76.3 in terms of F1-score on851

NYT10-HRL and from 53.9 to 58.0 in terms of F1-852

score on NYT11-HRL) between the performance853

of ours and CasRel. There is even a significant gap854

between ours using Exact Match and others using855

Partial Match.856
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