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Abstract

Extracting relational triples from unstructured
text is crucial for information extraction. Re-
cent methods achieve considerable perfor-
mance, but due to the insufficient considera-
tion of triple global information, there is an
obvious performance gap between triple (EI,
R, E2) and E1/R/E2, that is, some extracted
entities or relations fail to form a valid rela-
tional triple. To break this bottleneck, we pro-
pose a relation-attentive 3D matrix framework
(RA3D) composed of an encoder module, a
fusion module, and a 3D matrix module. In-
stead of using a 2D table to align the sub-
ject and object, we integrate clearly encoded
relation information to convert the 2D table
into a 3D matrix, so that the entries of the
3D matrix can capture the interaction in sub-
jects, objects, and relations completely. To ex-
tract relation and entity information required
for the 3D matrix reasonably, we design a
transformer-decoder-based fusion module that
updates the representation of relations and en-
tities iteratively. Our model achieves state-of-
the-art performance with F1 score up to 93.5%
and 94.3% on two public datasets and delivers
consistent performance gain on complex sce-
narios of overlapping triples.

1 Introduction

Extracting relational facts from natural language
text is a well-studied task in information extrac-
tion (IE) and a crucial step towards building large
structural knowledge bases (KB) (Auer et al., 2007;
Bollacker et al., 2008; Dong et al., 2014). A rela-
tional fact is represented as a triple that consists of
two entities (an entity pair) connected by a seman-
tic relation.

Traditional methods in relational triple extrac-
tion take in a pipeline manner (Zelenko et al., 2003;
Zhou et al., 2005; Chan and Roth, 2011). It first
recognizes all entities in a sentence using a named
entity recognizer and then performs relation classi-
fication for each entity pair. Such an approach eases
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Figure 1: Scenarios in which there is an obvious perfor-
mance gap between (E1, R, E2) and E1/R/E2.

the task and makes each component more flexible,
but it tends to suffer from the error propagation
problem, since the results of entity recognition can
affect the performance of relation classification. To
tackle this problem, many joint learning models
that extract entities and relations in a single model
have been proposed. Traditional joint methods (Yu
and Lam, 2010; Li and Ji, 2014; Miwa and Sasaki,
2014; Ren et al., 2017) are designed with a feature-
based structure that needs heavily feature engineer-
ing work. With the rapid development of deep
learning, many Neural Network-based (NN-based)
models (Gupta et al., 2016; Katiyar and Cardie,
2017) achieve state-of-the-art performance. How-
ever, extracting overlapping triples remains chal-
lenging. Most existing models that handle the over-
lapping triple problem are multi-stage-based (Zeng
et al., 2018; Wei et al., 2020; Zheng et al., 2021).
They involve sequential interrelated steps and suf-
fer from the problem of exposure bias. At training
time, they predict with the ground truth conditions
while at inference they have to make extraction
from scratch. This discrepancy leads to error ac-
cumulation. To mitigate the issue, single-stage



frameworks (Wang et al., 2020; Sui et al., 2021)
are proposed.

Despite their success, there is still an obvious
performance gap between triple (E1, R, E2) and
E1/R/E2 where E1 represents the subject entity, E2
represents the object entity and R represents the
relation between them as shown in Figure 1. E1 is
regarded as correct as long as the subject in the ex-
tracted triple is correct, so are E2 and R. To tackle
this problem, we design a 3D matrix that is evolved
from a 2D table. Casting Named Entity Recog-
nition (NER) and Relation Classification (RC) as
a table filling problem (Miwa and Sasaki, 2014;
Gupta et al., 2016; Zhang et al., 2017; Wang and
Lu, 2020) is a popular idea for a related but differ-
ent branch of the joint entity and relation extraction
that needs to extract entity types but does not focus
on the overlapping problem. Recently, many strong
baselines (Wang et al., 2020; Zheng et al., 2021) in
relational triple extraction borrow the 2D table ar-
chitecture of table filling and achieve considerable
performance. They treat relations as discrete labels,
give relation-specific 2D table representations, or
do not consider relation information in the 2D table.
Since none of them integrate well-encoded relation
information to make the best of triple global infor-
mation, the performance gap between (E1, R, E2)
and E1/R/E2 is still obvious.

In this paper, we propose a relation-attentive
3D matrix framework (RA3D) to narrow the per-
formance gap between (E1, R, E2) and E1/R/E2.
Firstly, we design two different encoders — a sen-
tence encoder and a relation encoder to capture the
two different types of information. Then, we pro-
pose a fusion module that enhances the sentence
and relation representation capabilities to make the
information conveyed into the 3D matrix more rea-
sonable. In the fusion module, we leverage the
transformer-decoder to query the related informa-
tion between the sentences and relations and fur-
ther design a similarity gate to update the repre-
sentations accurately with the related information
queried. Finally, a relational triple 3D matrix is
formed where each entry captures the interaction
among a subject, a relation, and an object. The
representation of all possible subjects and objects
is the sentence output of the fusion module, and
the representation of relations is the relation output
of the fusion module. This work has the following
main contributions:

1. We propose a relation-attentive 3D matrix

framework. It interacts the well-encoded rela-
tion information with all possible subjects and
objects in a 3D matrix to narrow the perfor-
mance gap between (E1, R, E2) and E1/R/E2.

2. To make the representations more conducive
to the relational triple extraction task, we de-
sign a transformer-decoder-based fusion mod-
ule that updates the sentence and relation rep-
resentations iteratively.

3. Extensive experiments on two public datasets
show that the proposed framework outper-
forms state-of-the-art methods, achieving 1.4
and 1.5 absolute gain in F1-score on the two
datasets respectively. In addition, the gap be-
tween (E1, R, E2) and E1/R/E2 decreases by
1.5 and 0.8 on the two datasets.

2 Related Work

Early works (Mintz et al., 2009; Gormley et al.,
2015) usually extract relational triples in two sep-
arate steps: NER and RC. By employing NER to
give sentences with annotated entities, RC can iden-
tify the relational facts between the annotated en-
tities. However, such a pipeline manner approach
suffers from error propagation problems and ne-
glects the relevance of entity extraction and relation
prediction. To tackle this problem, joint learning
frameworks which extract entities together with re-
lations have been built. Some of the frameworks
are feature-based models (Yu and Lam, 2010; Li
and Ji, 2014; Miwa and Sasaki, 2014; Ren et al.,
2017), and, more recently, others are NN-based
models (Gupta et al., 2016; Katiyar and Cardie,
2017; Zheng et al., 2017; Zeng et al., 2018; Fu
et al., 2019) which achieve considerable success.
However, early NN-based methods (Miwa and
Bansal, 2016) achieve joint learning of entities and
relations only through parameter sharing but not
joint decoding. They still have separate compo-
nents for NER and RC subtasks. Different from
them, Zheng et al. (2017) introduce a novel tag-
ging scheme to extract entities and their relations
achieving joint decoding without identifying enti-
ties and relations separately. They show promising
results but completely give up overlapping triples.
Most existing models in handling overlapping
cases- EntityPairOverlap (EPO) and SingleEntiy-
Overlap (SEO) are multi-stage-based models that
can be categorized into two classes: decoder-
based and decomposition-based. Decoder-based
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Figure 2: An overview of the proposed RA3D framework. BERT Encoder and Relation Encoder are used to
learn representations of the source sentence and relations. Then, a fusion module containing /N fusion layers is
constructed for more reasonable relation representation H,.; and sentence representation H 5, and H ;. Finally,
a 3D matrix is formed by integrating the H;; into the 2D table contains the information of H,; and H,..;. The
orange blocks tagged 1 reflect that the relational triple (Apollo 14, operator, NASA) is extracted.

models use encoder-decoder architecture where
the decoder extracts one word or one tuple at a
time (Zeng et al., 2018; Nayak and Ng, 2020).
Decomposition-based models have an extraction
order of triple elements (Wei et al., 2020; Zheng
et al., 2021), for example, Wei et al. (2020) first
distinguish all the candidate subject entities that
may be involved with target triples, then label cor-
responding object entities and relations for each ex-
tracted subject. Although these multi-stage-based
methods have achieved reasonable performance,
they all suffer from exposure bias. Wang et al.
(2020) employ a token pair linking scheme align-
ing subjects with objects under each relation type
in one stage to solve the problem.

Miwa and Sasaki (2014) tackle joint NER and
RE as from a table filling perspective, where the en-
try at row i and column j of the table corresponds to
the pair of i-th and j-th word of the input sentence.
The diagonal of the table is filled with the entity
tags and the rest with the relation tags indicating
possible relations between word pairs. Many simi-
lar methods (Gupta et al., 2016; Luan et al., 2019;
Wang and Lu, 2020) are proposed to fill the table.
Recent works (Wang et al., 2020; Zheng et al.,
2021) in relational triple extraction borrow the 2D
table architecture of table filling. The state-of-the-
art method named PRGC (Zheng et al., 2021) de-
signs a global correspondence component to align

the subject and object into a triple which is a 2D
architecture. However, none of them fuse clearly
encoded relation information to the 2D table to
consider triple global information more compre-
hensively.

3 Method

In this section, we describe the detail of RA3D
framework. An overview illustration of RA3D is
shown in Figure 2. The model is composed of the
following three modules: an encoder module, a
fusion module, and a 3D matrix module.

3.1 Encoder Module

3.1.1 Sentence Encoder

BERT is a multi-layer bidirectional Transformer
structure model designed to learn deep represen-
tations, which has been proven to be effective on
several tasks. We employ a pre-trained BERT (De-
vlin et al., 2018) to encode the context information.
The output of sentence encoder is H,, € R™*",
where n is the sentence length, and h is the size of
hidden state.

3.1.2 Relation Encoder

We design an independent relation encoder which
is defined as follows:

Hm:WTE([Tl,T‘Q,...,Tm])—i-bT (1)



where 7; is the one-hot vectors of relation indices
in the predefined relations, and m is the number of
predefined relations. E is the relation embedding
matrix, and W, and b, are trainable parameters.
H,,, ¢ R™*" is the output of relation encoder.

3.2 Fusion Module

The purpose of the fusion module is to further en-
hance the expression ability by making the sentence
representation and relation representation contain
information related to each other reasonably. The
fusion module is composed of multiple fusion lay-
ers. Each fusion layer updates the relation rep-
resentation first and the sentence representation
second. When we update the relation representa-
tion, we treat each relation as a query and generate
its related semantic information from the sentence
based on the transformer-decoder. We then design
a similarity gate to fuse the relation-related infor-
mation into relation representation. Similarly, we
use transformer-decoder and similarity gate to up-
date sentence representation by treating each word
in the sentence as a query and relations as providers
of key-value pairs.

3.2.1 Transformer-decoder Based Related
Information Representation

We generate the related semantic representation
between the sentence and relations based on
transformer-decoder (Vaswani et al., 2017) which
has three sub-layers. Take updating sentence repre-
sentations as an example. The first is a multi-head
self-attention mechanism to model the relationship
between word queries, the second is a multi-head
cross attention mechanism to map a word query
and a set of key-value relation pairs to an output,
and the third is a position-wise fully connected
feed-forward network. We employ residual connec-
tions around each of the sub-layers, followed by
layer normalization.

There are two points worth noting. Firstly, since
the proposed transformer-decoder directly outputs
the final relation representation or sentence repre-
sentation in one shot instead of one by one, our
decoder is non-autoregressive. The autoregressive
decoder needs to use no casual mask to prevent
positions from attending to subsequent positions.
Without the constraint of an autoregressive factor-
ization of the output distribution, we use the un-
masked self-attention instead, which is the same
as Gu et al. (2018). Secondly, the relations are
independent of each other, so there is no need to

model the relationship between relation queries.
We delete the first sub-layer of the transformer-
decoder when updating relation representations.

3.2.2 Similarity Gate Fusion Mechanism

To integrate the query-related information into the
query more accurately, we design a similarity gate
that can maintain the non-linear capability and pre-
vent attending to irrelevant information. We cal-
culate the semantic similarity sim; between each
query hyg, and its related information hy_,cqated;
by the concatenation, linear, and Sigmoid normal-
ization operation where i € [1,Q)], and Q is the
number of queries. If sim; is less than the set
threshold «, we assign O to the attention score of
the corresponding query-related information, and
then the query-related information will be excluded
in subsequent fusion. If sim; is greater than the set
threshold «, we assign the query-related informa-
tion with the attention score of sim; to maintain
the non-linear capability. We define the above sim-
ilarity gate fusion mechanism as follows:

stm; = Singid(Wsim[hqi; hq—relatedi} + bszm)

o simy,
gi = 0,

!

h’Qi =Gi- (Wghq—relatedi + bg) =+ (1 - g’i) ’ h’Qz‘

stm; > «
stm; < o

2

where Wi, bsim, Wy, and b, are trainable
weights, g is the similarity gate, - is element-wise
production, and h;i is the final output.

3.2.3 Relation-sentence Representation
Iterative Fusion

In this section, we introduce the overall architecture
of the proposed fusion module. To simplify, we
define the above transformer-decoder and similarity
gate formulas as follows:

h,, =TD — SG(h,,, Hy,) 3)
where Hy,, = {h;w]. }je[l,K] is the set of all vec-
tors that the query h,, needs to calculate similarity
with. ﬁqi is the updated query h,, representation.

In each fusion layer, we obtain the new relation
representation first, and then we update the sen-
tence representation according to the new relation
representation. We add a residual connection to
avoid gradient vanishing during training after each
update process. The [-th fusion layer can be repre-



sented as follows:

hi*l=TD — SG(h., ,H!)

I+1 _ 714+1 l
hmi - hmi +h'm¢

" 4
R =TD — SG(h, ,HY) “
I+1 _ 71+1 l
hnj — h'nj + hnj
I _Spl Hl={h!
where Hm—{h’mi}ie[l,m] and "_{h"j }je[l,n]

are the relations and sentence representation of [-th
fusion layer. h4!, and hﬁl are the output relation
and word representation of [-th fusion layer.

3.3 3D Matrix Module

A 3D matrix triple extraction module is developed
to integrate relation information and sentence in-
formation to a novel 3D matrix structure and then
extract relational triples from the 3D matrix.

In the first stage, a 2D table is formed where each
entry captures the interaction between a subject
and a relation. Next, a 3D matrix is identified
by calculating the interaction between the subject-
relation 2D table and each object. Finally, we adopt
a binary classifier to detect the triples by assigning
each entry a binary tag (0/1) that indicates whether
the current entry containing the information of a
subject, an object, and a relation corresponds to a
triple in the sentence. We define the input vector:

Hgy, = Hobj = H,

(%)
H’r’el = Hm

where H g, and H y; are set to the output sentence
representation of the fusion module represented as
H,,, and H,; is set to the relation representation
of the fusion module represented as H,,,. Before
integrating information to 3D matrix, H gy, Hpj,

. ! ’
and H,; are transformed into H_,,, obj* and
!

H, , which are prepared for the later interaction.

The detailed operations are as follows:

’

Hsub = SplitHead(WsubHsub + bsub)

H,,; = SplitHead(Wop; Hop; + bo;)  (6)

H;“el = Expand(Hrel)
where W, € Rx(m) w7, c Rhx(hxm),
bsuy, and by,; are trainable parameters. m rep-
resents the number of predefined relation types
in the dataset. We denote a reshape operation as
Split Head(-) in which the embedding vectors of
length i x m are split into embeddings for each

relation. Since the length n of each sentence is
different, we use Expand to expand H,.; n times
instead of operating it like H,;, and H,;. H ;ub,
H,, . and H, € R("™™<M are uesd to calculat-

ing the interaction as follows:

!

sub? T’el] (7)

where Hyyprer € RVMXR) s a 2D table cap-
turing the interaction between subjects and rela-
tions by the concatenation and linear operation.
Wsubrel € R(2nxh) ig learnable parameters. To
construct the 3D matrix, we compute the dot prod-
ucts between H,;-.; and all possible objects, and
apply a Sigmoid function to normalize probability
matrix to range (0, 1). We operate as follows:

Hsubrel = Wsubrel[

’

Hsubrelobj = Singid(Hsubrel : Hobj) (8)

Hypreion € R(>mxn) jg an asymmetric 3D ma-
trix, because (el,r, e2) and (e2,r, el) are not the
same triple. Each entry of H g,py¢10bj can be treated
as the probability score of the existence of a triple.
If the probability of a triple is bigger than the thresh-
old we set, the triple is extracted.

Notably, most previous works that just pay at-
tention to the start/end position of an entity lead to
poor generalization, and others that tag each token
with BIO (i.e., Begin, Inside, and Outside) lead to
more parameters. However, our approach identifies
the entities by collecting consecutive extracted to-
ken pairs to capture global representations of the
entities. At the same time, we use the Sigmoid
function as a binary tagger which does not increase
as many parameters as BIO. Further, compared
with previous works that need to answer which is
the relationship between the entity pairs, the binary
tagging scheme only needs to answer whether or
not the entity pairs have this relationship, which
overwhelmingly reduces the difficulty of the triple
extraction problem.

3.4 Bias Objective Function

The 3D matrix optimizes the following likelihood
function to identify the triple (s, r, 0) given a sen-
tence representation Xx:

p9(<37 r, 0)’(13) (9)
T T 01— gyt
s,o=1r=1



where n is the length of the sentence, and m is the
number of predefined relation types. I {z} =g if z
is true and 0 otherwise. sy, is the true binary tag of
triple (s, 1, 0). Psro is the normalized probabilities
of tags defined in Formula 8. 3 is the bias weight.
The larger the [ is, the greater the influence of
gold labels has. If 3 is big, the model tends to
extract more triples, which leads to a decrease in
precision value and an increase in recall value. To
ease this issue, a suitable threshold A that aims to
balance the precision and recall is important.
and threshold A are two hyperparameters that are
better to tune together. Formally, given annotated
sentence x; from the training set D and a set of
potentially overlapping triples T; = {(s,r,0)} in
x;, we aim to maximize the data likelihood:

|D|

L=mazy Y logpy((s,r,0)|z;) (10)

J=1 (s,r,0)€T}
4 Experiments

4.1 Datasets and Evaluation Metrics

To evaluate the performance of our methods, we
use the public dataset NYT (Riedel et al., 2010)
and WebNLG (Gardent et al., 2017), both of
which have two versions, respectively. We de-
note the different versions as NYT*, NYT and
WebNLG*, WebNLG. NYT* and WebNLG* anno-
tate the last word of the entities, while NYT and
WebNLG annotate the whole entity span. NYT*
and NYT datasets are produced by a distant su-
pervision method. They contain 1.18M sentences
sampled from 294k 1987-2007 New York Times
news articles and have 24 predefined relation types.
WebNLG* and WebNLG datasets are adopted from
Natural Language Generation (NLG) task for re-
lational triple extraction. WebNLG* dataset con-
tains 171 predefined relation types, while WebNLG
contains 216. All datasets contain sentences with
multiple relational triples, so they are suitable to
be the testbed for evaluating models on extracting
overlapping relational triples.

Following previous work (Fu et al., 2019; Wang
et al., 2020; Zheng et al., 2021), we adopt the stan-
dard Precision (Prec.), Recall (Rec.), and F1-score
to evaluate the results. In our experiments, to keep
in line with previous works, we use Partial Match
for NYT* and WebNLG*, which means the pre-
dicted triplets are seen as correct if and only if the
relation and the heads of the two corresponding
entities are all correct. For NYT and WebNLG, we

use Exact Match, which means that the whole spans
of subject and object are needed to be matched. The
implementation details are shown in Appendix A.

4.2 Experimental Result

We compare our RA3D model with several strong
baseline models, including NovelTagging (Zheng
et al., 2017), CopyR (Zeng et al., 2018), GraphRel
(Fu et al., 2019), WDec (Nayak and Ng, 2020),
RSAN (Yuan et al., 2020), CasRel (Wei et al.,
2020), TPLinker (Wang et al., 2020), SPN (Sui
et al., 2021), and PRGC (Zheng et al., 2021). The
reported results for the above baselines are directly
copied from the original published literature. Our
re-implementation results are obtained by the of-
ficial implementation with default configuration.

4.2.1 Main Results

Table 1 shows the results of our model against
other baseline methods on all datasets. Our model
overwhelmingly outperforms all the baselines in
terms of almost all three evaluation metrics and
achieves the state-of-the-art performance in the
public datasets. There is a performance gap be-
tween the dataset only annotating the last word
and the one that annotates the whole span, because
identifying the last word of an entity is easier than
identifying the whole span.

It is important to note that we design a discard
mechanism that discards the triples with incom-
plete subjects or objects to increase the precision
of our model. Before inputting the sentence into
BERT, we tokenize the words in the sentence with
a designed tokenizer which adds an "Unused’ token
after the word tokens. When extracting the subject
or object by collecting consecutive extracted token
pairs, if the start token is not the next token of the
"Unused’ token or the end token is not the previous
token of the *Unused’ token, the subject or object
will be regarded as incomplete. In this way, our
model significantly outperforms the strongest base-
line by 1.9 and 1.6 absolute gain in precision on
public datasets NYT*, WebNLG* respectively.

4.2.2 Detailed Results on Sentences with
Different Overlapping Pattern

To verify the capability of our models in handling
the overlapping problem, we conduct further ex-
periments on NYT* dataset and WebNLG* dataset.
The detailed results on three different overlapping
patterns are presented in Table 2.



Method NYT* WebNLG* NYT WebNLG
Prec.  Rec. FI  Prec. Rec. Fl  Prec. Rec. Fl Prec.  Rec. Fl
NovelTagging - - - - - - 328 306 317 525 193 283
CopyRE 61.0 566 587 377 364 371 - - - - - -
GraphRel 63.9 600 619 447 41.1 429 - - - - - -
WDec 945 762 844
RSAN - - - - - - 857 836 84.6 805 83.8 82.1
CASREL 89.7 895 89.6 934 90.1 91.8 - - - - - -
TPLinker 913 925 919 918 920 919 914 926 920 889 845 86.7
SPN 933  91.7 925 93.1 93.6 934 925 922 923 - - -
PRGC 933 919 926 940 92.1 93.0 935 919 927 899 872 885
SPN* 926 916 921 924 932 928 929 91.7 923 845 82.3 834
PRGC* 92.0 89.7 90.8 928 924 92,6 925 89.6 910 904 872 88.8
Ours 945 925 935 950 936 943 939 919 929 90.6 89.2 899

Table 1: Comparison of the proposed RA3D method with the prior works.

re-implementation is marked by *.

NYT* WebNLG*

Method

Normal SEO EPO Normal SEO EPO
CopyR 66 486 55 59.2 33 36.6
GraphRel 69.6 51.2 582 65.8 38.3 40.6
CASREL 87.3 91.4 92.0 894 92.2 94.7
TPLinker 90.1 93.4 94.0 90.1 93.4 94.0
SPN* 89.8 93.9 945 89.1 93.5 949
PRGC* 884 927 934 88.4 93.4 954
Ours 92.4 94.7 94.7 924 94.6 95.3

Table 2: Fl-score of extracting relational triples from
sentences with different overlapping pattern.

4.2.3 Detailed Results on Sentences with
Different Number of Triples

We compare our model’s capability in extracting
relations from sentences that contain a different
number of triplets. We split the sentences into five
classes and the detailed results are presented in
Table 3. Our model attains consistently strong
performance over almost all five classes again.

Our model suffers the least from the increasing
complexity of the input sentence. Especially for
the most difficult class (N>5), our model outper-
forms the strongest baseline by 3.9% and 1.8%
improvements on NYT* and WebNLG* datasets.
RA3D also presents a significant improvement on
the easiest sentences, ones with only one triple, out-
performing the strongest baseline by 2.3 and 2.5
absolute gain in F1-score on two public datasets.
Experimental results demonstrate the powerful abil-
ity of our model in extracting multiple relational
triples from both complicated sentences and simple
sentences.

Bold marks the highest score. Our

Method N=1 N=2 N=3 N=4 N>5
CopyR 67.1 58.6 52.0 53.6 300
£ GraphRel 71.0 615 574 551 41.1
> CasReL 882 903 919 942 837
Z  TPLinker 90.0 928 93.1 96.1 90.0
SPN* 89.8 935 943 956 90.2
PRGC* 89.0 919 925 95.6 86.2
RA3D 92.3 938 935 96.0 941
. CopyR 59.2 425 31.7 242 300
S GraphRel 66.0 483 37.0 321 321
% CASREL 893 90.8 942 924 909
é’ TPLinker 88.0 90.1 946 933 091.6
SPN* 88.6 90.6 963 942 933
PRGC* 884 919 940 948 929
RA3D 91.8 932 956 951 951

Table 3: Fl-score of extracting relational triples from
sentences with different number of triples.

5 Analysis and Discussion

5.1 Ablation Study

Model Prec. Rec. Fl
5 - sentence update 93.8 932 935
- relation update 944 929 936
S -similarity gate mechanism 94.6  93.4 94.0
2 _bias objective function 942 934 938
EoC sentence update 939 921 93.0
> -relation update 941 925 933
7 _similarity gate mechanism 943 92.6 93.4
-bias objective function 939 928 933
Table 4: Ablation study of RA3D (%). ’-> means we

remove or change the module from the original RA3D.

In this section, we conduct ablation experiments
to demonstrate the effectiveness of each module
component in RA3D with results reported in Table
4. We study the impact of sentence representation
update and relation representation update. We also



replace the similarity gate with the gate used in
Zhao et al. (2021). Ours without bias objective
function is the special case where parameter [ is
set to 1 and threshold A is set to 0.5.

5.2 The Number of Fusion Layers

To confirm the number of the fusion module layers,
we study the results of using different numbers of
fusion layers on NYT* and WebNLG*. Table 5
presents the results. We can observe that RA3D
has the best result for I = 2.

Number NYT* WebNLG*
Prec. Rec. FI Prec. Rec. FI
941 922 931 949 932 940
943 927 93.5 946 93.6 94.1
945 925 935 950 936 943
939 926 932 947 9277 937

— e
oo

W = o

Table 5: Fl-score of different number of fusion layers.

5.3 Error Analysis

NYT* WebNLG*
Element
CasRel PRGC* RA3D CasRel PRGC* RA3D
El 935 940 954 957 973 975
E2 935 942 954 953 96.1 97.0
R 949 951 96.0 940 948 959

(ELLR) 922 929 946 925 935 950
(R,E2) 922 927 945 932 938 95.1
(E1,E2) 897 912 937 935 947 958
(E1,E2,R)89.6 90.8 935 91.8 926 943
gap 44 36 21 32 35 25

efficiency 95.3% 96.2% 97.8%96.6% 96.4% 97.4%

Table 6: F1-score of different relational triple elements.

In order to verify whether our model has the abil-
ity to narrow the performance gap between (EI,
R, E2) and E1/R/E2, we analyze the performance
on predicting different elements of the triple (E1,
R, E2) where E1 represents the subject entity, E2
represents the object entity and R represents the
relation between them. An element like (E1, R)
is regarded as correct only if the subject and the
relation in the predicted triple (E1, R, E2) are both
correct, regardless of the correctness of the pre-
dicted object. Similarly, we say an instance of E1
is correct as long as the subject in the extracted
triple is correct, so sre E2 and R. The gap in table
6 is the difference between (E1, R, E2) and the
average of E1, E2, and R. The efficiency is the per-
centage value of (E1, R, E2) divided by the average
of E1, E2, and R.

Table 6 shows the results on different relational
triple elements. For both datasets, the performance
gap between RA3D and other models on E1, E2,
and R shows our advantages in entity recognition
and relation prediction. Compared with CasRel
and PRGC*, our model narrows the gap between
(E1, R, E2) and E1/R/E2 and achieves encouraging
1.5% and 0.8% declines on NYT* and WebNLG*.
As for conversion efficiency. we gain considerable
1.6% and 0.8% improvements on the two datasets
respectively. The results indicate that our model
has more advantages in identifying the relationship
between triple elements than other works.

5.4 Model Efficiency

Epoch CasRel TPLinker PRGC RA3D
12 0.0 77.1 86.9 92.7
24 - - 91.3 94.4

Table 7: Fl-score at epoch 12 and 24 on the WebNLG*
validation set of different methods.

As shown in Table 7, we have a convergence
rate superiority. For WebNLG* dataset, we achieve
a 92.7% performance at epoch 12 and 94.4% at
epoch 24. The result outperforms the PRGC which
advantages in convergence rate by 5.8% and 3.1%
absolute gain in F1-score at epoch 12 and epoch
24. Results of CasRel, TPLinker, and PRGC are
directly taken from Zheng et al. (2021) unless spec-
ified. The computation complexity of our model
is O(kn?) for NYT* and O(n?®) for WebNLG*
which is similar to TPlinker (Wang et al., 2020).
Our method can not only achieve good results but
also has obvious advantages in convergence rate,
which makes the high complexity acceptable.

6 Conclusion

In this paper, we introduce a novel relation-
attentive 3D matrix framework (RA3D) for rela-
tional triple extraction. It learns an independent
relation encoder in addition to the sentence encoder
and integrates the clearly encoded relation infor-
mation to the 3D matrix. We also introduce a new
transformer-decoder and similarity gate-based fu-
sion module where explicit interactions exist be-
tween the two encoders to enhance their represen-
tation abilities. Experimental results show that our
model overwhelmingly outperforms state-of-the-
art baselines over different scenarios, especially
on narrowing the gap between (El, R, E2) and
E1/R/E2.
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A Implementation Details

In our experiments, for all datasets, the batch size
is 4 and the learning rate is set to le-5. The size
of hidden state h is 768. The max epoch is set
to 150. The pre-trained model we used is [BERT-
Base-Cased]. Following previous works (Fu et al.,
2019; Wei et al., 2020; Zheng et al., 2021), the max
length of input sentences to our model is set to 100
words. For our bias objective function, parameter
[ and threshold A are two hyperparameters that are
tuned together. For the NYT#*, the threshold A is
set to 0.8, and S is set to 2. For WebNLG#*, the
threshold A is set to 0.92, and S is set to 5. For
our similarity gate, the threshold o we set is 0.5
for NYT* and 0.7 for WebNLG*. The number of
layers of the fusion module is 2.

B Analysis of Hyperparameter Setting

For bias objective function, we suggest parameter
B and threshold A together without any argument or
evaluation supporting before, so an ablation study
is done on WebNLG* with results reported in Table
8. It’s not surprising to find that the performance of
our model increases first and then decreases with
the increasing value of 5. F1 will peak when
is between 2 and 6 on WebNLG* dataset. Note
that the best result we get at 5=5 on WebNLG* is
heuristic, and a better F1 value might be obtained
from another 3 value between 2 and 6. Threshold A
changes with 3. Train with a fixed /3, and test with
different thresholds. The threshold A with the best
results is almost the threshold A that best matches
the 5. The determination process of parameters
parameter 5 and threshold A\ of other datasets is
similar to the above process on WebNLG*.

8 A Prec. Rec. Fl

1 05 942 934 938
2 074 945 934 940
5 092 950 93.6 943
6 093 948 937 942
10 098 945 939 942

Table 8: Some combinations of 3 and A on WebNLG*.

C Supplemental Experiments

We conduct a set of supplemental experiments to
show the generalization capability in more general
cases on two widely used datasets, namely, NYT10-

HRL and NYT11-HRL. The results are reported in
Table 9.

NYT corpus has two versions: (1) the original
version of which both the training set and test set
are produced via distant supervision by Riedel et al.
(2010) and (2) a smaller version with fewer relation
types, where the training set is produced by distant
supervision while the test set is manually annotated
by Hoffmann et al. (2011). We denote the original
one and the smaller one as NYT10 and NYT11.
These two versions have been selectively adopted
and preprocessed in many different ways among
various previous works, which may be confusing
sometimes and lead to incomparable results if not
specifying the version. To fairly compare these
models, HRL (Takanobu et al., 2019) adopted a
unified preprocessing for both NYT10 and NYT11,
and provided a comprehensive comparison with
previous works using the same datasets. Here we
denote the preprocessed two versions as NYT10-
HRL and NYT11-HRL.

Model Prec. Rec. Fl
~ NovelTagging(PM) 593 38.1 46.4
T CopyR (PM) 56.9 452 504
E CasReL(PM) 777 68.8 73.0
>~ Ours(PM) 81.1 721 763
2 Ours(EM) 804 71.6 757
~ NovelTagging(PM) 969 48.9 479
T CopyR(PM) 347 534 42.1
E CasReL(PM) 50.1 584 539
> Ours(PM) 555 614 583
2 Ours(EM) 550 608 57.8

Table 9: Relational triple extraction results on NYT10-
HRL and NYT11-HRL.

For a fair comparison, we use the preprocessed
datasets released by (Takanobu et al., 2019), where
NYT10-HRL contains 70,339 sentences for train-
ing and 4,006 sentences for test and NYT11-HRL
contains 62,648 sentences for training and 369 sen-
tences for test. We also create a validation set by
randomly sampling 0.5% data from the training set
for each dataset as in (Takanobu et al., 2019; Wei
et al., 2020). All the experimental results of the
baseline models which use Partial Match (PM) are
directly taken from Wei et al. (2020) unless speci-
fied. To keep in line with previous works, we use
Partial Match for NYT10-HRL and NYT11-HRL.
Since multiword entities are common in real-world
scenarios, we also use Exact Match (EM) for the



datasets.

When using Partial Match, there is a significant
gap (from 73.0 to 76.3 in terms of Fl-score on
NYT10-HRL and from 53.9 to 58.0 in terms of F1-
score on NYT11-HRL) between the performance
of ours and CasRel. There is even a significant gap
between ours using Exact Match and others using
Partial Match.
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