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Abstract

We propose a new framework for imitation learning—treating imitation as a two-1

player ranking-based game between a policy and a reward. In this game, the reward2

agent learns to satisfy pairwise performance rankings between behaviors, while the3

policy agent learns to maximize this reward. In imitation learning, near-optimal4

expert data can be difficult to obtain, and even in the limit of infinite data cannot5

imply a total ordering over trajectories as preferences can. On the other hand,6

learning from preferences alone is challenging as a large number of preferences7

are required to infer a high-dimensional reward function, though preference data is8

typically much easier to collect than expert demonstrations. The classical inverse9

reinforcement learning (IRL) formulation learns from expert demonstrations but10

provides no mechanism to incorporate learning from offline preferences and vice11

versa. We instantiate the proposed ranking-game framework with a novel ranking12

loss giving an algorithm that can simultaneously learn from expert demonstrations13

and preferences, gaining the advantages of both modalities. Our experiments show14

that the proposed method achieves state-of-the-art sample efficiency and can solve15

previously unsolvable tasks in the Learning from Observation (LfO) setting.16

1 Introduction17

Reinforcement learning relies on environmental reward feedback to learn meaningful behaviors.18

Reward specification is a hard problem [39], thus motivating imitation learning (IL) as a technique19

to bypass reward specification and learn from expert data, often via Inverse Reinforcement Learning20

(IRL) techniques. Learning from expert observations (imitation learning) alone can require efficient21

exploration when the expert actions are unavailable as in LfO [36]. Incorporating preferences over22

potentially suboptimal trajectories for reward learning can help reduce the exploration burden by23

regularizing the reward function and providing effective guidance for policy optimization. Previous24

literature in learning from preferences either assumes no environment interaction [10, 9] or assumes25

an active query framework with a restricted reward class [47]. The classical IRL formulation suffers26

from two issues: (1) Learning from expert demonstrations and learning from preferences/rankings27

provide complementary advantages for increasing learning efficiency [30, 47]; however, existing28

IRL methods that learn from expert demonstrations provide no mechanisms to incorporate offline29

preferences and vice versa. (2) Optimization is difficult, making learning sample inefficient [5, 28]30

due to the adversarial min-max game.31

Our primary contribution is an algorithmic framework casting imitation learning as a rank-32

ing game which addresses both of the above issues in IRL. This framework treats imi-33

tation as a ranking game between two agents: a reward agent and a policy agent—the34

reward agent learns to satisfy pairwise performance rankings between different behaviors35
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represented as state-action or state visitations, while the policy agent maximizes its per-36

formance under the learned reward function. The ranking game is detailed in Figure 137
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Figure 1: rank-game: The Policy agent maximizes
the reward function by interacting with the environment.
The Reward agent satisfies a set of behavior rankings
obtained from various sources: generated by the policy
agent (vanilla), automatically generated (auto), or offline
annotated rankings obtained from a human or offline
dataset (pref). Treating this game in the Stackelberg
framework leads to either Policy being a leader and
Reward being a follower, or vice-versa.

and is specified by three components: (1) The38

dataset of pairwise behavior rankings, (2) A39

ranking loss function, and (3) An optimization40

strategy. This game encompasses a large subset41

of both inverse reinforcement learning (IRL)42

methods and methods which learn from subop-43

timal offline preferences. Popular IRL methods44

such as GAIL, AIRL, f -MAX [28, 22, 34] are45

instantiations of this ranking game in which46

rankings are given only between the learning47

agent and the expert, and a gradient descent48

ascent (GDA) optimization strategy is used with49

a ranking loss that maximizes the performance50

gap between the behavior rankings.51

The ranking loss used by the prior IRL52

approaches is specific to the comparison of53

optimal (expert) vs. suboptimal (agent) data,54

and precludes incorporation of comparisons55

among suboptimal behaviors. In this work, we56

instantiate the ranking game by proposing a new57

ranking loss (Lk) that facilitates incorporation58

of rankings over suboptimal trajectories for59

reward learning. Our theoretical analysis reveals that the proposed ranking loss results in a bounded60

performance gap with the expert that depends on a controllable hyperparameter. Our ranking loss61

can also ease policy optimization by supporting data augmentation to make the reward landscape62

smooth and allowing control over the learned reward scale. Finally, viewing our ranking game in the63

Stackelberg game framework (see Section 3)—an efficient setup for solving general-sum games—we64

obtain two algorithms with complementary benefits in non-stationary environments depending on65

which agent is set to be the leader.66

In summary, this paper formulates a new framework rank-game for imitation learning that allows67

us to view learning from preferences and demonstrations under a unified perspective. We instantiate68

the framework with a principled ranking loss that can naturally incorporate rankings provided by di-69

verse sources. Finally, by incorporating additional rankings—auto-generated or offline—our method:70

(a) outperforms state-of-the-art methods for imitation learning in several MuJoCo simulated domains71

by a significant margin and (b) solves complex tasks like imitating to reorient a pen with dextrous ma-72

nipulation using only a few observation trajectories that none of the previous LfO baselines can solve.73

2 Related Work74

Imitation learning methods are broadly divided into two categories: Behavioral cloning [48, 54] and75

Inverse Reinforcement Learning (IRL) [44, 1, 72, 18, 20, 28, 22]. Our work focuses on developing a76

new framework in the setting of IRL through the lens of ranking. Table 1 shows a comparison of the77

proposed rank-game method to prior works.78

Classical Imitation Game for IRL: The classical imitation game for IRL aims to solve the79

adversarial min-max problem of finding a policy that minimizes the worst-case performance gap80

between the agent and the expert. A number of previous works [22, 60, 34] have focused on81

analyzing the properties of this min-max game and its relation to divergence minimization. Under82

some additional regularization, this min-max objective can be understood as minimizing a certain83

f -divergence [28, 22, 34] between the agent and expert state-action visitation. More recently, [60]84

showed that all forms of imitation learning (BC and IRL) can be understood as performing moment85

matching under differing assumptions. In this work, we present a new perspective on imitation86
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IL Method Offline Expert Ranking Reward Active Human
Preferences Data Loss Function Query

MaxEntIRL, AdRIL,GAN-GCL,
✗ LfD supremum non-linear ✗GAIL,f -MAX, AIRL

BCO,GAIfO, DACfO,
✗ LfO supremum non-linear ✗OPOLO,f -IRL

TREX, DREX ✓ ✗ Bradley-Terry non-linear ✗
BREX ✓ ✗ Bradley-Terry linear ✗

DemPref ✓ LfO/LfD Bradley-Terry linear ✓
Ibarz et al[30] ✓ LfD Bradley-Terry non-linear ✓
rank-game ✓ LfO/LfD Lk non-linear ✗

Table 1: A summary of IL methods demonstrating the data modalities they can handle (expert data and/or
preferences), the ranking-loss functions they use, the assumptions they make on reward function, and whether
they require availability of an external agent to provide preferences during training. We highlight whether a
method enables LfD, LfO, or both when it is able to incorporate expert data.
in which the reward function is learned using a dataset of behavior comparisons, generalizing87

previous IRL methods that learn from expert demonstrations and additionally giving the flexibility88

to incorporate rankings over suboptimal behaviors.89

Learning from Preferences and Suboptimal Data: Learning from preferences and suboptimal data90

is important when expert data is limited or hard to obtain. Preferences [3, 65, 55, 14, 47] have the91

advantage of providing guidance in situations expert might not get into, and in the limit provides92

full ordering over trajectories which expert data cannot. A previous line of work [10, 11, 9, 13] has93

studied this setting and demonstrated that offline rankings over suboptimal behaviors can be effectively94

leveraged to learn a reward function. [14, 47, 30] studied the question of learning from preferences95

in the setting when a human is available to provide online preferences1 (active queries), while [47]96

additionally assumed the reward to be linear in known features. Our work makes no such assumptions97

and allows for integrating offline preferences and expert demonstrations under a common framework.98

Learning from Observation (LfO): LfO is the problem setting of learning from expert observations.99

This is typically more challenging than the traditional learning from demonstration setting (LfD),100

because actions taken by the expert are unavailable. LfO is broadly formulated using two objectives:101

state-next state marginal matching [63, 71, 58] and direct state marginal matching [45, 43]. Some102

prior works [61, 67, 16] approach LfO by inferring expert actions through a learned inverse dynamics103

model. These methods assume injective dynamics and suffer from compounding errors when the104

policy is deployed. A recently proposed method OPOLO [71] derives an upper bound for the LfO105

objective which enables it to utilize off-policy data and increase sample efficiency. Our method106

outperforms baselines including OPOLO, by a significant margin.107

3 Background108

We consider a learning agent in a Markov Decision Process (MDP) [49, 59] which can be defined109

as a tuple: M = (S,A, P,R, γ, ρ0), where S and A are the state and action spaces; P is the state110

transition probability function, with P (s′|s, a) indicating the probability of transitioning from s to s′111

when taking action a; R : S × A → R is the reward function bounded in [0, Rmax]; We consider112

MDPs with infinite horizon, with the discount factor γ ∈ [0, 1], though our results extend to finite113

horizons as well; p0 is the initial state distribution. We use Π andR to denote the space of policies114

and reward functions respectively. A reinforcement learning agent aims to find a policy π : S → A115

that maximizes its expected return, J(R;π) = 1
1−γE(s,a)∼ρπ(s,a)[R(s, a)], where ρπ(s, a) is the116

stationary state-action distribution induced by π. In imitation learning, we are provided with samples117

from the state-action visitation of the expert ρπE (s, a) but the reward function of the expert is118

unknown. We will use ρE(s, a) as a shorthand for ρπE (s, a).119

Classical Imitation Learning: The goal of imitation learning is to close the imitation gap J(R;πE)−120

J(R;π) defined with respect to the unknown expert reward function R. Several prior works [28, 60,121

38, 45] tackle this problem by minimizing the imitation gap on all possible reward hypotheses. This122

1We will use preferences and ranking interchangebly
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leads to a zero-sum (min-max) game formulation of imitation learning in which a policy is optimized123

with respect to the reward function that induces the largest imitation gap:124

imit-game(π) = argmin
π∈Π

sup
f∈R

EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]. (1)

Here, the imitation gap is upper bounded as follows (∀π):125

J(R;πE)− J(R;π) ≤ sup
f∈R

EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]. (2)

Note that, when the performance gap is maximized between the expert πE and the agent π, we can126

observe that the worst-case reward function fπ induces a ranking between policy behaviors based127

on their performance: ρE ⪰ ρπ := EρE(s,a)[fπ(s, a)] ≥ Eρπ(s,a)[fπ(s, a)], ∀π. Therefore, we can128

regard the above loss function that maximizes the performance gap (Eq. 2) as an instantiation of the129

ranking-loss. We will refer to the implicit ranking between agent and the expert ρE ⪰ ρπ as vanilla130

rankings and this variant of the ranking-loss function as the supremum-loss.131

Stackelberg Games: A Stackelberg game is a general-sum game between two agents where one agent132

is set to be the leader and the other a follower. The leader in this game optimizes its objective under the133

assumption that the follower will choose the best response for its own optimization objective. More134

concretely, assume there are two players A and B with parameters θA, θB and corresponding losses135

LA(θA, θB) and LB(θA, θB). A Stackelberg game solves the following bi-level optimization when136

A is the leader and B is the follower: minθA LA(θA, θ
∗
B(θA)) s.t θ∗B(θA) = argminθ LB(θA, θ).137

[51] showed that casting model-based RL as an approximate Stackelberg game [6] leads to138

performance benefits and reduces training instability in comparison to the commonly used GDA [56]139

and Best Reponse (BR) [12] methods. [17, 69] prove convergence of Stackelberg games under140

smooth player cost functions and show that they reduce the cycling behavior to find an equilibrium141

and allow for better convergence.142

4 A Ranking Game for Imitation Learning143

In this section, we first formalize the notion of the proposed two-player general-sum ranking game144

for imitation learning. We then propose a practical instantiation of the ranking game through a145

novel ranking-loss (Lk). The proposed ranking game gives us the flexibility to incorporate additional146

rankings—both auto-generated (a form of data augmentation mentioned as ‘auto’ in Fig. 1) and147

offline (‘pref’ in Fig. 1)—which improves learning efficiency. Finally, we discuss the Stackelberg148

formulation for the two-player ranking game and discuss two algorithms that naturally arise depending149

on which player is designated as the leader.150

4.1 The Two-Player Ranking Game Formulation151

We present a new framework, rank-game, for imitation learning which casts it as a general-sum152

ranking game between two players — a reward and a policy.153

argmaxπ∈ΠJ(R;π)︸ ︷︷ ︸
Policy Agent

argminR∈RL(Dp;R)︸ ︷︷ ︸
Reward Agent

In this formulation, the policy agent maximizes the reward by interacting with the environment, and154

the reward agent attempts to find a reward function that satisfies a set of pairwise behavior rankings155

in the given dataset Dp; a reward function satisfies these rankings if Eρπi [R(s, a)] ≤ Eρπj [R(s, a)],156

∀ρπi ⪯ ρπ
j ∈ Dp, where ρπ

i

, ρπ
j

can be state-action or state vistitations.157

The dataset of pairwise behavior rankings Dp can be comprised of the implicit ‘vanilla’ rankings158

between the learning agent and the expert’s policy behaviors (ρπ ⪯ ρE), giving us the classical159

IRL methods when a specific ranking loss function – supremum-loss is used [28, 22, 34]. If160

rankings are provided between trajectories, they can be reduced to the equivalent ranking between the161

corresponding state-action/state visitations. In the case whenDp comprises purely of offline trajectory162

performance rankings then, under a specific ranking loss function (Luce-shepard), the ranking game163
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Algorithm 1 Meta algorithm: rank-game (vanilla) for imitation

1: Initialize policy π0
θ , reward funtion Rϕ, empty dataset Dπ . empirical expert data ρ̂E

2: for t = 1..T iterations do
3: Collect empirical visitation data ρ̂π

t
θ with πt

θ in the environment. Set Dπ = {(ρ̂π ⪯ ρ̂E)}
4: Train reward Rϕ to satisfy rankings in Dπ using ranking loss Lk in equation 3.
5: Optimize policy under the reward function: πt+1

θ ← argmaxπ′J(Rϕ;π
′)

6: end for

reduces to prior reward inference methods like T-REX [10, 11, 9, 13]. Thus, the ranking game affords164

us a broader perspective of imitation learning, going beyond only using expert demonstrations.165

4.2 Ranking Loss Lk for the Reward Agent166

We use a ranking-loss to train the reward function—an objective that minimizes the distortion [31]167

between the ground truth ranking for a pair of entities {x, y} and rankings induced by a parameterized168

function R : X → R for a pair of scalars {R(x), R(y)}. One type of such a ranking-loss is the169

supremum-loss in the classical imitation learning setup.170

We propose a class of ranking-loss functions Lk that attempt to induce a performance gap of k for all171

behavior preferences in the dataset. Formally, this can be implemented with the regression loss:172

Lk(Dp;R) = E(ρπi ,ρπj
)∼Dp

[
Es,a∼ρπi

[
(R(s, a)− 0)2

]
+ Es,a∼ρπj

[
(R(s, a)− k)2

]]
. (3)

where Dp contains behavior pairs (ρπ
i

, ρπ
j

) s.t ρπ
i ⪯ ρπ

j

.173

The proposed ranking loss allows for learning bounded rewards with user-defined scale k in the agent174

and the expert visitations as opposed to prior works in Adversarial Imitation Learning [28, 20, 22].175

Reward scaling has been known to improve learning efficiency in deep RL; a large reward scale can176

make the optimization landscape less smooth [27, 24] and a small scale might make the action-gap177

small and increase susceptibility to extrapolation errors [7]. In contrast to the supremum loss, Lk178

can also naturally incorporate rankings provided by additional sources by learning a reward function179

satisfying all specified pairwise preferences. The following theorem characterizes the equilibrium of180

the rank-game for imitation learning when Lk is used as the ranking-loss.181

Theorem 4.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of the182

imitation rank-game (π̂, R̂), such that the ranking loss Lk generalization error is bounded by183

2R2
maxϵr and the policy is near-optimal with J(R̂; π̂) ≥ J(R̂;π)− ϵπ ∀π, then at this equilibrium184

pair under the expert’s unknown reward function Rgt bounded in [0, RE
max]:185

∣∣J(Rgt, π
E)− J(Rgt, π̂)| ≤

4RE
max

√
(1−γ)ϵπ+4Rmax

√
ϵr

k

1− γ
(4)

If reward is a state-only function and only expert observations are available, the same bound applies186

to the LfO setting.187

Proof. We defer the proof to Appendix A.188

Figure 2: Figure shows learned reward
function when agent and expert has a
visitation shown by pink and black markers
respectively. rank-game (auto) results in
smooth reward functions more amenable to
gradient-based policy optimization compared
to GAIL.

Theoretical properties: We now discuss some theoretical189

properties of Lk. Theorem 1 shows that rank-game has190

an equilibrium with bounded performance gap with the191

expert. An optimization step by the policy player, under a192

reward function optimized by the reward player, is equiva-193

lent to minimizing an f -divergence with the expert. Equiv-194

alently, at iteration t in Algorithm 1: maxπt Eρπt [R∗
t ]−195

EρπE [R∗
t ] = minπt Df (ρ

πt∥ρπE

). We elaborate on the196

regret of this idealized algorithm in Appendix A. Theorem197

1 suggests that large values of k can guarantee the agent’s198

performance is close to the expert. In practice, we observe199

intermediate values of k also preserve imitation equilib-200

rium optimality with a benefit of promoting sample efficient learning (as an effect of reward scaling201
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described earlier). We discuss this observation further in Appendix D.9. rank-game naturally ex-202

tends to the LfO regime under a state-only reward function where Theorem 4.1 results in a divergence203

bound between state-visitations of the expert and the agent. A state-only reward function is also a suf-204

ficient and necessary condition to ensure that we learn a dynamics-disentangled reward function [20].205

Lk can incorporate additional preferences that can help learn a regularized/shaped reward function206

that provides better guidance for policy optimization, reducing the exploration burden and increasing207

sample efficiency for IRL. A better-guided policy optimization is also expected to incur a lower208

ϵπ. However, augmenting the ranking dataset can lead to decrease in the intended performance gap209

(keff < k) between the agent and the expert (Appendix A). This can loosen the bound in Eq 4 and lead210

to non-optimal imitation learning. We hypothesize that given informative preferences, decreased ϵπ211

can compensate potentially decreased intended performance gap keff to ensure near optimal imitation.212

In our experiments, we observe this hypothesis holds true; we enjoy sample efficiency benefits213

without losing any asymptotic performance. To leverage these benefits, we present two methods for214

augmenting the ranking dataset below and defer the implementation details to Appendix B.215

4.2.1 Generating the Ranking Dataset216

Reward loss w/ automatically generated rankings (auto): In this method, we assume access to the217

behavior generating trajectories in the ranking dataset. For each pairwise comparison ρi ⪯ ρj present218

in the dataset, Lk sets the regression targets for states in ρi to be 0 and for states visited by ρj to be219

k. Equivalently, we can rewrite minimizing Lk as regressing an input of trajectory τi to vector 0, and220

τj to vector k1 where τi, τj are trajectories that generate the behavior ρi, ρj respectively. We use the221

comparison ρi ⪯ ρj to generate additional behavior rankings ρi ⪯ ρλ1,ij ⪯ ρλ2,ij .. ⪯ ρλP ,ij ⪯ ρj222

where 0 < λ1 < λ2 < ... < λP < 1. The behavior ρλp,ij is obtained by independently sampling223

the trajectories that generate the behaviors ρi, ρj and taking convex combinations i.e τλp,ij =224

λpτi + (1− λp)τj and their corresponding reward regressions targets are given by λp0+ (1− λp)k1.225

This form of data augmentation can be interpreted as mixup [68] regularization in the trajectory226

space. Mixup has been shown to improve generalization and adversarial robustness [25, 68] by227

regularizing the first and second order gradients of the parameterized function. Following the general228

principle of using a smoothed objective with respect to inputs to obtain effective gradient signals,229

explicit smoothing in the trajectory-space can also help reduce the policy optimization error ϵπ. A230

didactic example showing rewards learned using this method is shown in Figure 2. In a special case231

when the expert’s unknown reward function is linear in observations, these rankings reflect the true232

underlying rankings of behaviors.233

Reward loss w/ offline annotated rankings (pref): Another way of increasing learning efficiency234

is augmenting the ranking dataset containing the vanilla ranking (ρπ ⪯ ρE) with offline annotated235

rankings. These rankings may be provided by a human observer or obtained using an offline dataset236

of behaviors with annotated reward information, similar to the datasets used in offline RL [19, 41].237

We combine offline rankings by using a weighted loss between Lk for satisfying vanilla rankings238

(ρπ ⪯ ρE) and offline rankings, grounded by an expert. Providing offline rankings alone that239

are sufficient to explain the reward function of the expert [10] is often a difficult task and the240

number of offline preferences required depends on the complexity of the environment. In the LfO241

setting, learning from an expert’s state visitation alone can be a hard problem due to exploration242

requirements [36]. This ranking-loss combines the benefits of using preferences to shape the reward243

function and guide policy improvement while using the expert to guarantee near-optimal performance.244

4.3 Optimizing the Two-Player General-Sum Ranking Game as a Stackelberg Game245

Solving the ranking-game in the Stackelberg setup allows us to propose two different algorithms246

depending on which agent is set to be the leader and utilize the learning stability and efficiency247

afforded by the formulation as studied in [51, 69, 17].248

Policy as leader (PAL): Choosing policy as the leader implies the following optimization:249

max
π

{
J(R̂;π) s.t. R̂ = argmin

R
L(Dπ;R)

}
(5)
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Reward as leader (RAL): Choosing reward as the leader implies the following optimization:250

min
R̂

{
L(Dπ; R̂) s.t π = argmax

π
J(R̂;π)

}
(6)

We follow the first order gradient approximation for leader’s update from previous work [51] to de-251

velop practical algorithms. This strategy has been proven to be effective and avoids the computational252

complexity of calculating the implicit Jacobian term (dθ∗B/dθA). PAL updates the reward to near con-253

vergence on datasetDπ (Dπ contains rankings generated using the current policy agent only π ⪯ πE)254

and takes a few policy steps. Note that even after the first-order approximation, this optimization255

strategy differs from GDA as often only a few iterations are used for training the reward even in hyper-256

parameter studies like [46]. RAL updates the reward conservatively. This is achieved through aggregat-257

ing the dataset of implicit rankings from all previous policies obtained during training. PAL’s strategy258

of using on-policy data Dπ for reward training resembles that of methods including GAIL [28, 62],259

f -MAX [22], and f -IRL [45]. RAL uses the entire history of agent visitation to update the reward260

function and resembles methods such as apprenticeship learning and DAC [1, 37]. PAL and RAL261

bring together two seemingly different algorithm classes under a unified Stackelberg game viewpoint.262

5 Experimental Results263

We compare rank-game against state-of-the-art LfO and LfD approaches on MuJoCo benchmarks264

having continuous state and action spaces. The LfO setting is more challenging since no actions are265

available, and is a crucial imitation learning problem that can be used in cases where action modalities266

differ between the expert and the agent, such as in robot learning. We focus on the LfO setting in this267

section and defer the LfD experiments to Appendix D.2. We denote the imitation learning algorithms268

that use the proposed ranking-loss Lk from Section 4.2 as RANK-{PAL, RAL}. We refer to the269

rank-game variants which use automatically generated rankings and offline preferences as (auto)270

and (pref) respectively following Section 4.2. In all our methods, we rely on an off-policy model-free271

algorithm, Soft Actor-Critic (SAC) [26], for updating the policy agent.272

We design experiments to answer the following questions:273

1. Asymptotic Performance and Sample Efficiency: Is our method able to achieve near-expert274

performance given a limited number (1) of expert observations? Can our method learn using fewer275

environment interactions than prior state-of-the-art imitation learning (LfO) methods?276

2. Utility of preferences for imitation learning: Current LfO methods struggle to solve a number277

of complex manipulation tasks with sparse success signals. Can we leverage offline annotated278

preferences through rank-game in such environments to achieve near-expert performance?279

3. Choosing between PAL and RAL methods: Can we characterize the benefits and pitfalls of each280

method, and determine when one method is preferable over the other?281

4. Ablations for the method components: Can we establish the importance of hyperparameters and282

design decisions in our experiments?283

Baselines: We compare RANK-PAL and RANK-RAL against 6 representative LfO approaches that284

covers a spectrum of on-policy and off-policy model-free methods from prior work: GAIfO [62, 28],285

DACfO [37], BCO [61], f -IRL [45] and recently proposed OPOLO [71] and IQLearn [21]. We do286

not assume access to expert actions in this setting. Our LfD experiments compare to the IQLearn [21],287

DAC [37] and BC baselines. Detailed description for baselines can be found in Appendix D.2.288

5.1 Asymptotic Performance and Sample Efficiency289

In this section, we compare RANK-PAL(auto) and RANK-RAL(auto) to baselines on a set of MuJoCo290

locomotion tasks of varying complexities: Swimmer-v2, Hopper-v2, HalfCheetah-v2,291

Walker2d-v2, Ant-v2 and Humanoid-v2. In this experiment, we provide one expert trajec-292

tory for all methods and do not assume access to any offline annotated rankings.293

Asymptotic Performance: Table 2 shows that both rank-game methods are able to reach near-294

expert asymptotic performance with a single expert trajectory. BCO shows poor performance which295
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Env Hopper HalfCheetah Walker Ant Humanoid
BCO 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaIFO 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
RANK-PAL(ours) 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28
RANK-RAL(ours) 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13
Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 2: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion
tasks. The standard deviation is calculated with 5 different runs each averaging over 10 trajectory returns. For
unnormalized score and more details, check Appendix D. We omit IQlearn due to poor performance.

can be attributed to the compounding error problem arising from its behavior cloning strategy. GAIfO296

and DACfO use GDA for optimization with a supremum loss and show high variance in their297

asymptotic performance whereas rank-game methods are more stable and low-variance.298
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Figure 3: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents standard
deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample
efficiency. Complete set of results can be found in Appendix D.1
Sample Efficiency: Figure 3 shows that RANK-RAL and RANK-PAL are among the most sample299

efficient methods for the LfO setting, outperforming the recent state-of-the-art method OPOLO [71]300

by a significant margin. We notice that IQLearn fails to learn in the LfO setting. This experiment301

demonstrates the benefit of the combined improvements of the proposed ranking-loss with automat-302

ically generated rankings. Our method is also simpler to implement than OPOLO, as we require303

fewer lines of code changes on top of SAC and need to maintain fewer parameterized networks304

compared to OPOLO which requires an additional inverse action model to regularize learning.305
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Figure 4: Offline annotated preferences can help solve
LfO tasks in the complex manipulation environments
Pen-v0 and Door, whereas prior LfO methods fail. Black
dotted line shows asymptotic performance of RANK-
PAL (auto) method.

306

5.2 Utility of Preferences in Imitation307

Our experiments on complex manipulation308

environments—door opening with a parallel-309

jaw gripper [70] and pen manipulation with a310

dexterous adroit hand [50] – reveal that none311

of the prior LfO methods are able to imitate312

the expert even under increasing amounts of313

expert data. This failure of LfO methods can314

be potentially attributed to the exploration315

requirements of LfO compared to LfD [36],316

coupled with the sparse successes encountered317

in these tasks, leading to poorly guided policy gradients. In these experiments, we show that318

rank-game can incorporate additional information in the form of offline annotated rankings to319

guide the agent in solving such tasks. These offline rankings are obtained by uniformly sampling320

a small set of trajectories (10) from the replay buffer of SAC [26] labeled with a ground truth reward321

function. We use a weighted ranking loss (pref) from Section 4.2.322

Figure 4 shows that RANK-PAL/RAL(pref) method leveraging offline ranking is the only method that323

can solve these tasks, whereas prior LfO methods and RANK-PAL/RAL(auto) with automatically324
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generated rankings struggle even after a large amount of training. We also point out that T-REX, a325

method that learns using the preferences alone is unable to achieve near-expert performance, thereby326

highlighting the benefits of learning from expert demonstrations alongside a set of offline preferences.327

5.3 Comparing PAL and RAL328
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Figure 5: We compare the relative strengths of PAL
and RAL. Left plot shows a comparison when the goal
is changed, and right plot shows a comparison when
dynamics of the environment is changed. These changes
occur at 1e5 timesteps into training. PAL adapts faster
to changing intent and RAL adapts faster to changing
dynamics.

PAL uses the agent’s current visitation for re-329

ward learning, whereas RAL learns a reward330

consistent with all rankings arising from the his-331

tory of the agent’s visitation. These properties332

can present certain benefits depending on the333

task setting. To test the potential benefits of PAL334

and RAL, we consider two non-stationary imita-335

tion learning problems, similar to [50] – one in336

which the expert changes it’s intent and the other337

where dynamics of the environment change dur-338

ing training in the Hopper-v2 locomotion task.339

For changing intent, we present a new set of340

demonstrations where the hopper agent hops341

backwards rather than forward. For changing342

environment dynamics, we increase the mass of343

the hopper agent by a factor of 1.2. Changes are344

introduced at 1e5 time steps during training at which point we notice a sudden performance drop.345

In Figure 5 (left), we notice that PAL adapts faster to intent changes, whereas RAL needs to unlearn346

the rankings obtained from the agent’s history and takes longer to adapt. Figure 5 (right) shows that347

RAL adapts faster to the changing dynamics of the system, as it has already learned a good global348

notion of the dynamics-disentangled reward function in the LfO setting, whereas PAL only has a local349

understanding of reward as a result of using ranking obtained only from the agent’s current visitation.350

Ablation of Method Components: Appendix D contains eight additional experiments to study the351

importance of hyperparameters and design decisions. Our ablations validate the importance of using352

automatically generated rankings, the benefit of ranking loss over supremum loss, and sensitivity to353

hyperparameters like the intended performance gap k, policy iterations, and the reward regularizer.354

6 Conclusion355

In this work, we present a new framework for imitation learning that treats imitation as a two-player356

ranking-game between a policy and a reward function. Unlike prior works in imitation learning, the357

ranking game allows incorporation of rankings over suboptimal behaviors to aid policy learning. We358

instantiate the ranking game by proposing a novel ranking loss which guarantees agent’s performance359

to be close to expert for imitation learning. Our experiments on simulated MuJoCo tasks reveal that360

utilizing additional ranking through our proposed ranking loss leads to improved sample efficiency361

for imitation learning, outperforming prior methods by a significant margin and solving some tasks362

which were unsolvable by previous LfO methods.363

Limitations and Negative Societal Impacts: Preferences obtained in real world are usually364

noisy [40, 32, 8] and one limitation of rank-game is that it does not suggest a way to handle noisy365

preferences. Second, rank-game proposes modifications to learn a reward function amenable to366

policy optimization but these hyperparameters are set manually. Future work can explore methods to367

automate learning such reward functions. Third, despite learning effective policies we observed that368

we do not learn reusable robust reward functions [45]. Negative Societal Impact: Imitation learning369

can cause harm if given demonstrations of harmful behaviors, either accidentally or purposefully.370

Furthermore, even when given high-quality demonstrations of desirable behaviors, our algorithm does371

not provide guarantees of performance, and thus could cause harm if used in high-stakes domains372

without sufficient safety checks on learned behaviors.373
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