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Abstract

Arabic Named Entity Recognition (ANER)
presents challenges due to its linguistic char-
acteristics (Qu et al., 2023). We present De-
formAR, a visual analytics framework for eval-
uating and interpreting Arabic NER models
via a structured, component-based approach.
DeformAR combines quantitative metrics and
qualitative visualisation across data and model
subcomponents to identify performance weak-
nesses and explain system behaviour. In a case
study on ANERCorp, DeformAR identifies an-
notation mistakes, explains calibration issues,
and reveals interaction effects between subcom-
ponents. To our knowledge, this is the first
framework to support both evaluation and inter-
pretability for Arabic NER.

1 Introduction

Arabic Named Entity Recognition (ANER)
presents a unique challenge in the field of
NLP (Darwish et al., 2021). Arabic is a mor-
phologically rich language, lacks standardised to-
kenisation, and has orthographic variations, all of
which complicate NER (Shaalan, 2014). Despite
recent improvements introduced by transformer-
based models (Devlin et al., 2019; Antoun et al.,
2020; Patwardhan et al., 2023), ANER remains
under-explored, particularly in how we evaluate
and understand model performance. Existing evalu-
ation techniques in NER, particularly in Arabic (Fu
et al., 2020; Obeid et al., 2020) focus on quanti-
tative analysis and aggregate metrics such as F1
scores, which offer limited insight into model be-
haviour and performance understanding. While
more detailed evaluation and interpretability tools
have focused on English and text classification,
NER, and especially ANER, has been underex-
plored (Sun et al., 2021; Ruder et al., 2022).

To address this gap, we present DeformAR, a
visual analytics framework designed for evaluating
and analysing Arabic NER systems. DeformAR

adopts a structured, component-based framework
that integrates quantitative metrics and qualitative
visualisation, by dividing the task into two main
components: the model and the data. Each com-
ponent is further divided into subcomponents that
interact during fine-tuning. For example, the data
component includes subcomponents such as the
vocabulary and NER annotations, while the model
component includes the embedding representations
and output layer. Each subcomponent exhibits dis-
tinct behaviours and also interacts with others in
ways that affect overall performance. DeformAR
supports the analysis of these behaviours and inter-
actions using both quantitative metrics and qualita-
tive visualisations.

In the quantitative stage, DeformAR measures
the behaviour and properties of each subcomponent
in isolation, offering insight into where weaknesses
are located. These findings inform the qualitative
phase, which combines interactive visualisations
with interpretability techniques. By linking token-
level behavioural metrics to visual analytics, users
can identify patterns, explain them using quantifi-
able metrics, and explore specific examples for
supporting evidence. Together, these stages help
answer three key questions: what the weaknesses
are, how they occur, and why.

This work makes three main contributions. First,
we propose a component-based methodology for
evaluating both model and data subcomponents, as
well as their interactions. Second, we introduce an
interactive dashboard that integrates quantitative
and qualitative analysis. Third, we demonstrate
how DeformAR can identify and explain patterns,
supporting more detailed evaluation of Arabic NER
systems. To our knowledge, DeformAR is the first
framework to combine interpretability and evalua-
tion for Arabic NER, addressing a gap in both the
NER and Arabic NLP literature.

The rest of this paper is organised as follows.
Section 2 describes the architecture of DeformAR,



including its extraction pipeline, subcomponent
metrics, and dashboard design. Section 3 presents
a case study on ANERCorp, combining quantita-
tive and qualitative analysis. Section 4 situates our
work within the literature. Section 5 discusses key
findings and future directions, followed by conclu-
sions in Section 6.

2 Framework Architecture

DeformAR consists of two main phases: an extrac-
tion phase and a dashboard phase. In the extrac-
tion phase, we identify subcomponents within both
the model and the data, and capture their interac-
tions during fine-tuning. In this analysis, we de-
termine what can be extracted at inference time to
explain system weaknesses. The dashboard phase
then presents this information through quantitative
metrics and interactive visualisations. Below, we
describe each phase in detail.

2.1 Data Extraction Phase

The first step in the extraction phase is data prepara-
tion, which supports various types of NER datasets
and unifies them into a standard format for pre-
processing. The preprocessing involves aligning
words with their true labels, applying tokenisation
to words, and converting both tokens and labels
into numeric representations. Once processed, the
data is used for model fine-tuning.

During fine-tuning, the model and data subcom-
ponents begin to interact, as illustrated in Figure 1.
The raw data consists of word sequences annotated
with named entity tags, which serve as the true la-
bels. On the model side, the key subcomponents
include the representation module, output layer,
and loss function. Before fine-tuning, words are
tokenised using a WordPiece tokenizer. Following
standard NER practice, only the first subword of
each tokenised word is assigned the entity tag (An-
toun et al., 2020; Devlin et al., 2019), these are re-
ferred to as core tokens. As a result, the tokenised
vocabulary becomes a mix of original words and
the first subwords of the tokenised ones.

Although only the first subword of each to-
kenised word (the core token) is aligned with the
true label, the representation subcomponent pro-
cesses the full subword sequence. The resulting
embeddings are passed to a multi-layer perceptron
(MLP), which generates logits for each token. A
cross-entropy loss is then computed, but only for
core tokens. As a result, while all tokens contribute
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Figure 1: Overview of the interaction between model
and data subcomponents during fine-tuning. Orange
arrows represent interactions within data subcompo-
nents, Green arrows represent interactions within
model subcomponents, and Blue arrows represent cross-
component interactions between model and data.

to contextualisation and logits, only the core tokens
influence parameter updates via backpropagation.
This highlights a key distinction: non-core tokens
are involved in forward computation but ignored
during loss computation and optimisation.

This process reveals several subcomponents
within both the model and the data, each has its
own characteristics and interaction patterns, either
within a component (e.g., core tokens and true la-
bels) or across components (e.g., words and the
tokenizer). In the next section, we describe the
extracted data and the metrics used to characterise
these subcomponents and their interactions.

2.2 Subcomponent Metrics

This section outlines the metrics used to charac-
terise system subcomponents, capturing both in-
dividual behaviour and interactions. For the data
component, we focus on two subcomponents: core
tokens and true labels. We compute several metrics
to describe each individually, as well as their inter-
action. Structural metrics include dataset size and
the distribution of tags, both at the entity tag level
(e.g., B-LOC, I-PER) and at the span level.
Lexical characteristics are captured using met-
rics such as lexical diversity, defined as the ratio
of unique token types to total tokens. “Tokens”
may refer to either original words or core tokens
(i.e., first subwords), allowing us to distinguish pre-



and post-tokenisation vocabularies. Another key
metric is entity tag overlap, which measures
the number of token types associated with multiple
entity tags. We also calculate a tag-specific out-of-
vocabulary (OOV) rate, defined as the number of
unique token types associated with a given entity
tag in the test set that do not appear with the same
tag in the training set, divided by the total number
of unique token types for that tag in the test set.

In addition to structural and lexical metrics, we
compute behavioural metrics that capture interac-
tions between subcomponents. The first is the to-
kenisation rate, which measures the average num-
ber of subwords generated per word. To charac-
terise the relationship between core tokens and true
labels, we use label inconsistency, which measures
how often a token appears with different entity tags
in the training data. For instance, if the token “uni-
versity” (labelled as B-LOC in the test set) appears
five times in the training data, three times as B-
LOC and twice as O, its inconsistency ratio is 2/5.
We also compute ambiguity using Shannon entropy,
which measures the uncertainty in a token’s label
distribution. For each test token, we calculate its
label distribution in the training data and calculate
entropy; higher scores indicate more annotation
ambiguity. Tokens not observed in training are
assigned a default value of —1.

For the model, we extract token-level loss val-
ues and output probabilities. From the probabili-
ties, we derive prediction confidence, the model’s
certainty in its top prediction (i.e., max probabil-
ity) and prediction uncertainty, which reflects how
evenly probabilities are spread across all labels
(entropy). To assess the representation layer, we
compute silhouette scores' to measure tag sepa-
ration in embedding space, and apply UMAP for
2D projection and K-means clustering to assess
alignment with gold labels.

These metrics vary in granularity: some (e.g.,
lexical diversity) are corpus-level, while others
(e.g., loss or confidence) are token-level. In the
quantitative phase, we examine them in isolation;
in the qualitative phase, we explore their relation-
ships through interactive visualisations. The next
section describes how these metrics are presented
in the dashboard.

'Using silhouette_samples from scikit-learn

2.3 Dashboard Phase

The dashboard presents the extracted outputs via
an interactive interface built with Plotly Dash, en-
abling both quantitative and qualitative analysis. It
consists of three main tabs: Quantitative Analy-
sis, Qualitative Analysis, and Instance-Level View.
Each tab provides different visualisations and sup-
ports user interaction through components such as
dropdowns, buttons and selection tools.

2.4 Quantitive Analysis Tab

The Quantitative Analysis Tab (Figure 2) provides
a high-level, metric-driven overview of the NER
system. It is divided into three sections: Eval-
uation Metrics, Data Component, and Model
Component. Each section focuses on analysing
metrics in isolation, without considering relation-
ships between them. This analysis helps quantify
the behaviour and performance of subcomponents,
providing insights into system strengths and weak-
nesses.

The Evaluation Metrics section (red squares)
examines the alignment between true and predicted
labels using standard metrics and confusion analy-
sis. The Data Component section (yellow squares)
presents structural, lexical, and behavioural metrics
that characterise the dataset. The Model Compo-
nent section (green squares) includes metrics that
describe prediction behaviour and representation
quality. The Tokenisation Rate (blue) is a cross-
component metric capturing interaction between
model and data. The tab supports user interac-
tion through dropdown menus and buttons, with
visualisations mainly consisting of bar charts and
heatmaps aggregated by entity tag.

2.5 Qualitative Analysis Tab

The Qualitative Analysis Tab (Figure 3) focuses
on exploring relationships between subcomponents
through interactive visualisations and interpretabil-
ity techniques. Unlike the Quantitative Tab, it
allows users to investigate multiple variables si-
multaneously, identify patterns in the representa-
tion space, and interpret these patterns using be-
havioural metrics and categorical variables.

The tab supports two types of interaction: stan-
dard controls (e.g., dropdown menus) and cross-
linked interactivity, where actions in one view up-
date others (as shown by the dashed arrows in
Figure 3). The Filtering Section allows users to
filter tokens using two mechanisms: dropdowns
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Figure 2: Overview of the Quantitative Analysis Tab in
DeformAR.

based on categorical variables (e.g., true labels,
error types), and a table-based filter driven by
behavioural metrics. For more details, see Ap-
pendix A.1.

The Filtering Section affects the Behavioural
Analysis Section, the core section of the tab. This
section includes three linked views: a 2D UMAP
projection of token embeddings, a Behavioural
Metric Scatter Plot, and a Heatmap showing
pairwise correlations between behavioural met-
rics (Pearson or Spearman). Selecting a cell in
the heatmap sets the x- and y-axes of the scatter
plot (see Appendix A.2), while the scatter plot and
UMAP are bidirectionally linked, selecting points
in one highlights them in the other. To our knowl-
edge, this level of interactivity is unique to Defor-
mAR, allowing users to explore up to six variables
simultaneously. For example, users can colour the
UMAP by true labels and confusion matrix out-
comes (e.g., FP or FN), and examine the same
points in the metric scatter by loss and confidence
grouped by error types. This enables detailed anal-
ysis of whether spatial regions in the embedding
space align with error patterns and how they are re-
flected in model metrics. Another auxiliary section
is the Selection Summary, which updates when-
ever a selection is made in either the behavioural
or UMAP scatter plot. It provides summary statis-
tics for the selected tokens across all metrics. For
further details, see Appendix A.3.
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Figure 3: Overview of the Qualitative Analysis Tab in
DeformAR.

2.6 Instance Level Tab

The Instance-Level Tab (Figure 4) supports fine-
grained analysis of specific tokens and their sur-
rounding context. It is divided into three sections:
Sentence Viewer, Token Analysis, and Attention
Analysis. This tab is linked to the Qualitative Anal-
ysis Tab: when users select tokens in the UMAP
or scatter plots, only sentences that include those
tokens can be viewed in the sentence viewer.

The Token Analysis section supports explo-
ration of individual tokens. Users can view the
distribution of entity tags assigned to a selected
token across training and test splits, and compute
cosine similarity to identify the most similar to-
kens in the dataset. This similarity-based approach
aligns with example-based interpretability meth-
ods, helping identify influential instances that may
have contributed to the model’s prediction. Users
can also examine these tokens within their original
sentence context using the Token Context View.
For more details on token similarity and filtering,
see Appendix A.4.

The Attention Analysis section allows users
to inspect the model’s attention behaviour for a
selected sentence. We integrate BertViz (Vig,
2019) to visualise token-level attention patterns.
We also compute attention similarity between the
pre-trained and fine-tuned models, presented as a
heatmap, to highlight changes introduced by fine-
tuning. This helps identify where and how attention
shifts occur across layers or heads.

3 Arabic NER Case Study

In this section, we demonstrate the capabilities of
DeformAR using the ANERcorp dataset, a stan-
dard Arabic NER corpus introduced by Benajiba
et al. (2007) and standardised by CAMeL Lab
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Figure 4: Overview of the Instance-Level Tab in Defor-
mAR.

(Obeid et al., 2020). We use the CAMeL Lab ver-
sion, which includes minor corrections, and pro-
vides a sequential train/test split (5/6 training, 1/6
testing) based on word count, resulting in approx-
imately 125K and 25K words respectively. The
dataset consists of Modern Standard Arabic text
annotated using the IOB2 scheme across four entity
types: PER, ORG, LOC, and MISC.

We fine-tune AraBERTv@2-base, a 12-layer
transformer with 768 hidden units and 12 atten-
tion heads. A linear classification layer is added on
top of the final hidden state to produce token-level
logits. The model is trained with a cross-entropy
loss function.

Fine-tuning is performed using the AdamW op-
timiser with a learning rate of 5e-5, a batch size
of 16, and four training epochs. Evaluation is per-
formed using the seqeval library (Nakayama, 2018)
in strict mode under the IOB2 tagging scheme. Ad-
ditional training and evaluation details are provided
in Appendix A.5.

3.1 Quantitative Analysis

In this section, we present cross-component find-
ings derived from both model and data subcompo-
nents. We begin by examining overall performance
trends across entity spans, followed by an analysis
of data characteristics that may help explain these
patterns.

As shown in Table 1, precision exceeds recall
across all entity spans except for LOC, where recall
is slightly higher. The model demonstrates rela-
tively high precision overall, indicating a tendency
to minimise false positives. The most significant
performance drop is seen in MISC, which has both
the lowest precision (0.772) and recall (0.634), fol-

Entity Type Precision Recall
LOC 0.893 0.934
MISC 0.772 0.634
ORG 0.784 0.751
PER 0.860 0.844

Table 1: Precision and recall by entity type under the
IOB2 tagging scheme.

Error Heatmap Across Entity Tags for AraBERTv02

AraBERTV02
39 Counts

True Labels

I-PER  B-ORG I-ORG B-MISC I-MISC
Predicted Labels

Figure 5: Confusion heatmap showing predicted versus
true entity tags.

lowed by ORG. In contrast, lower recall indicates
that true spans are often missed.

To further understand the performance gap
across entity spans (e.g., LOC), we examine pre-
diction errors at the level of individual entity tags
(e.g., B-LOC, I-LOC). Figure 5 presents a confusion
heatmap showing the distribution of true versus
predicted entity tags. A dominant pattern is the
misclassification of entity tag tokens as O, particu-
larly for lower-performing spans such as MISC and
ORG. We refer to these misclassifications as exclu-
sion errors. In addition to exclusion errors, two
other patterns emerge: boundary errors, where the
model confuses B-PER and I-PER, and inclusion
errors, where O tokens are mistakenly predicted as
entities, particularly for B-ORG and B-PER. These
error patterns help explain the observed gap be-
tween precision and recall: MISC spans often suf-
fer from exclusion errors that reduce recall, while
LOC spans, which show fewer errors of that type,
achieve higher recall.

Several data characteristics can potentially ex-
plain the observed performance trends. One key
factor is tokenisation. As mentioned in Section 2,
after tokenisation the vocabulary becomes a mix of
words and first subwords. While this does not af-
fect the overall structure or number of core tokens,
it changes the lexical structure of the dataset. For
example, the number of unique named entity words
in the training split drops from 4,069 to 3,445 after



tokenisation (15.34% reduction). This has implica-
tions for the dataset’s lexical characteristics, includ-
ing increased overlap across entity tags. Further
details are provided in Appendix A.6.

To better understand how data and model sub-
components contribute to performance variation,
we analysed the metrics discussed in Section 2.2.
Although our analysis is conducted per entity tags
(e.g., B-LOC, I-LOC), for simplicity we refer to
these collectively by their span type (e.g., LOC, PER)
for the rest of this section. On the data side, we
analysed the relationship between core tokens and
true labels and identified three contributing factors:
structural and lexical differences, span complexity,
and annotation inconsistency. Tokens associated
with low-performing spans such as MISC and ORG
have fewer instances, higher lexical diversity, more
OOV tokens, and higher tag overlap with O. In con-
trast, LOC tags appear more frequently, show lower
diversity and OOV, and have minimal overlap with
0. PER spans fall in between, with moderate OOV
and diversity, and high overlap with 0. In terms of
span complexity, we found that the length of LOC
spans is much smaller than others, especially PER
and ORG, which are much longer. In all cases, train
spans are longer than test spans, except for MISC,
where the opposite is true. This means the model
is exposed to shorter spans during training but is
asked to predict longer spans at test time, which
may contribute to poor generalisation. In terms of
inconsistency, we found that ORG and MISC have
much higher inconsistency compared to other en-
tity tags. Further details and supporting evidence
are provided in Appendix A.7.

On the model side, we observed several trends
that align with the difficulties in data character-
istics. First, lower-performing tags such as MISC
and ORG show the highest token-level loss values,
with I-MISC being the most prominent. When ex-
amining prediction confidence, we found that the
model tends to assign high confidence regardless of
whether the prediction is correct or incorrect. This
pattern is especially notable in exclusion errors,
where entity tokens are misclassified as O; in these
cases, confidence remains high despite the error.
This behaviour suggests calibration issues — the
model’s predicted probabilities do not align with
actual correctness. To confirm this, we examined
prediction uncertainty across the probability distri-
bution. We found that the model tends to be less
uncertain (i.e., more confident) when predicting
correctly for tags like LOC and PER, but more uncer-
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Figure 6: Top: UMAP projection of the final hidden
states, coloured by true labels and prediction correctness.
Bottom: Scatter plot of true vs. predicted silhouette
scores, coloured by confusion matrix outcomes labels.

tain when predicting MISC and ORG. This suggests
that the model is often unsure whether its predic-
tions are correct in the more challenging spans.

3.2 Qualitative Analysis

We begin the qualitative analysis by examining
the representation space using a UMAP projection,
shown in Figure 6. We observe three main pat-
terns: well-separated regions, error patterns, and
anomalies. Well-separated regions include dis-
tinct clusters for high-performing spans such as
PER and LOC, where B and I tags form compact and
clearly defined areas. In contrast, spans like ORG
and MISC are more scattered and tend to overlap
with the dominant O region. Finally, a large, dense
region of O tokens dominates the space. Error pat-
terns often appear within these dense regions. For
instance, the O region includes tokens from other
classes, such as LOC, indicating exclusion errors
where entity tokens are misclassified as 0. Anoma-
lies are more subtle and involve correctly predicted
tokens that appear far from their expected class
region. For example, in the LOC region, there are
0 tokens that are correctly predicted despite being
located in an unexpected area.

The behavioural scatter plot (bottom) shows how
these patterns are reflected in silhouette-based met-
rics. Tokens with high agreement between true
and predicted silhouette scores (top right) are typi-
cally true positives and true negatives (i.e., O tokens
correctly predicted), while low-separation tokens
(bottom right) are often false positives or false nega-
tives. These metrics are not only useful for interpre-
tation, but also for detecting anomalies. For exam-
ple, the anomaly observed in the LOC region, where



0 tokens are correctly predicted but located far from
their expected region, is highlighted by the point C
of the behavioural scatter plot. These tokens show
low silhouette scores for both true and predicted
labels. When inspecting them in the instance-level
view, we found they often correspond to annotation
mistakes, inconsistent labelling, or contextually
ambiguous cases. The model predicts them as O
because they are wrongly labelled that way in the
training data, even though the surrounding context
may suggest a different semantic meaning, hence
placed in another region.

We also investigated another interesting pattern
highlighted by Region A in the UMAP projection,
marked with a selection box. This selection is re-
flected in the behavioural metric scatter plot, where
the region contains a mix of true negatives and mis-
classified tokens. Examining the errors in Region
B, we found they correspond to systematic issues
where certain tokens appear abruptly at the start of
a sentence without clear semantic relevance, similar
to the errors found by AlDuwais et al. (2024). How-
ever, we provide further clarification by compar-
ing the Benajiba and CAMeL Lab versions of the
dataset using the token context view. This compari-
son revealed that some tokens originally belonged
to different sentences (in Benajiba) but were placed
at the beginning of unrelated ones in the test set
(in CAMeL Lab). These errors likely results from
preprocessing or sentence segmentation errors in-
troduced during dataset standardisation, rather than
annotation inconsistencies.

Unlike annotation mistakes, which often result
from unclear guidelines, these systematic errors
arise from consistent issues in dataset preparation.
Interestingly, tokens affected by this issue exhibit
different behaviour from other types of errors: they
show high confidence, high loss, and very low
(often negative) silhouette scores. As shown in
Figure 7, the highlighted tokens demonstrate very
low uncertainty despite poor representation separa-
bility, reflecting a mismatch between the model’s
output and its internal representation. In contrast,
tokens associated with annotation mistakes tend to
show higher uncertainty, indicating that the model
is less confident. These patterns are visualised in
the highlighted tokens with large diamond markers.
We also identified other error patterns during the
instance-level analysis that result from tokenisation-
related issues, such as the removal of diacritics,
which introduces ambiguity, and malformed sub-
words that further confuse the model. For further
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Figure 7: Behavioural Scatter Plot showing prediction
uncertainty versus true silhouette score.

details, see Appendix A.8.

These observations point to a broader conclu-
sion: there appears to be a misalignment between
the learned representation space and the output
layer, which in some cases results in conflicting
decisions. This misalignment manifests differently
depending on the error type, annotation-related er-
rors tend to exhibit lower confidence and higher
uncertainty, while systematic errors often produce
high-confidence misclassifications despite weak
representation separability. This helps explain the
calibration issues noted in the quantitative analysis.

In terms of clustering alignment, we found that
K-Means identified clusters that correspond to cer-
tain annotation patterns. For example, B-PER and
I-PER were captured by separate, distinct clusters,
while B-LOC and I-LOC were grouped into a single
cluster. In contrast, spans such as MISC and ORG
were distributed across multiple clusters, confirm-
ing their weak representation structure. Further
details are provided in Appendix A.9.

4 Related Work

We situate DeformAR within three areas of related
work: interpretability techniques, visual analyt-
ics tools, and NER-specific evaluation methods.
Interpretability methods are often categorised as
global or local (Zini and Awad, 2023; Ferrando
et al., 2024). Global approaches, such as Aken et al.
(2019), use dimensionality reduction to visualise
hidden state structure, while local methods include
attention visualisation and attribution techniques.
However, the explainability of attention remains
debated (Sun et al., 2021; Zhao et al., 2024), and
attribution methods (e.g., LIME, SHAP) are harder
to adapt to sequence labelling tasks (Ruder et al.,
2022). Example-based techniques such as influ-
ence functions (Sun et al., 2021; Jain et al., 2022)
are rarely explored outside English. Dataset Car-
tography (Swayamdipta et al., 2020) is conceptu-



ally similar to our behavioural metrics, but focuses
on training dynamics, whereas DeformAR targets
inference-time analysis and integrates interpretabil-
ity directly into evaluation.

Several visual analytics tools support the inspec-
tion of Transformer models, including LIT (Tenney
et al., 2020), InterpreT (Lal et al., 2021), and T3-
Vis (Li et al., 2021). Among these, T3-Vis is the
most closely related: it offers cartographic visu-
alisations of training dynamics across epochs and
integrates attention analysis, with support for fil-
tering based on confidence and prediction consis-
tency. However, DeformAR extends this design by
covering a broader set of subcomponents through
various metrics and by linking behavioural quan-
titative metrics to qualitative analysis through in-
teractive visualisations. While T3-Vis is guided by
user-centric design goals, DeformAR is structured
around the task itself: it decomposes NER into
model and data components and examines their
interactions. Unlike previous tools, DeformAR is
specifically designed for NER and supports Arabic,
both of which remain under-represented in inter-
pretability research.

Other work in NER-specific evaluation focuses
on annotation errors. For example, CLEANANER-
Corp (AlDuwais et al., 2024) used semi-automated
methods to revise ANERCorp and similar correc-
tions applied to CoNLL-2003 (Liu and Ritter, 2023;
Riicker and Akbik, 2023). While DeformAR is not
designed for correction, it uncovered similar issues
(e.g., sentence-start anomalies) with minimal man-
ual effort, while offering more explainability of
their causes and impact.

Finally, bucket-based evaluation has been used to
analyse performance variation by partitioning data
into interpretable slices, such as entity length or
frequency (Fu et al., 2020; Liu et al., 2021). While
useful, these methods focus primarily on dataset-
side properties. In contrast, DeformAR links data,
model, and prediction behaviours, enabling deeper
cross-component evaluation.

5 Discussion and Future Work

This section summarises the main contributions and
outlines directions for future work. In the quanti-
tative analysis, we presented a cross-component
evaluation that showed how data characteristics
can help explain performance differences and er-
ror patterns, and how these are reflected in model
behaviour. We introduced behavioural metrics for

both data and model subcomponents, emphasising
their interactions. Although each metric was ex-
amined in isolation, their combined interpretation
helped uncover broader trends such as annotation
ambiguity and exclusion errors.

The qualitative analysis expanded on these find-
ings by explaining how specific error types and
calibration issues relate to representational struc-
ture and confidence behaviour. Through interactive
visualisations, we were able to isolate annotation
issues, systematic errors, and tokenisation artifacts
with minimal manual effort. The integration of be-
havioural metrics with interpretability techniques,
through the dashboard’s interactive design, offers a
step forward in bridging quantitative and qualitative
evaluation. This strengthens the explainability of
system outputs by revealing not only where models
fail, but also how and why.

As next steps, one direction is to compare De-
formAR’s findings with re-annotated corpora such
as CLEANANERCorp, to assess whether revisions
resolve earlier issues or introduce new ones. An-
other is to expand the behavioural metric to include
attention mechanisms or training dynamics. Fi-
nally, we plan to apply DeformAR to additional
languages and tasks, and to study how architectural
factors such as tokenizer design, model scale, or
pretraining data influence NER performance.

6 Conclusion

We introduced DeformAR, a novel framework for
interpreting and evaluating Arabic NER systems
through structured, cross-component analysis. By
combining token-level behavioural metrics with in-
teractive visual analytics, DeformAR enables users
to discover errors, understand representation struc-
ture, and interpret model behaviour. Our case study
on ANERCorp demonstrates its ability to uncover
both annotation and performance issues with min-
imal manual effort. DeformAR bridges the gap
between interpretability and evaluation tools for
Arabic NER, offering a foundation for future eval-
uation across tasks and languages.

Limitations

While DeformAR provides a structured and flexi-
ble framework for evaluating Arabic NER, several
limitations remain. First, although many of the met-
rics and components are language-agnostic, some
aspects — particularly instance-level analysis — re-
quire language-specific understanding, which may



limit generalisability to low-resource languages
without further adaptation. Second, the current
implementation focuses mostly on inference-time
behaviour and does not incorporate training dy-
namics, which could offer additional diagnostic
insight. Third, DeformAR currently supports up to
two languages in the quantitative analysis and a sin-
gle language in the qualitative analysis; extending
support to multi-model comparison would enhance
scalability for benchmarking. Finally, while the
framework can identify potential annotation errors,
it does not include automated correction mecha-
nisms or integration with annotation workflows.
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Appendix
A.1 Filtering Section

The Filtering Section enables users to explore be-
havioural patterns by filtering tokens based on se-
lected categorical variables and behavioural met-
rics. Each row in the table corresponds to a token
and includes values for multiple metrics such as
ambiguity, loss, confidence, and silhouette scores.
Users can apply filters through dropdown menus or
manually interact with each column, as shown in
Figure 8

Filtering Section

Figure 8: Screenshot of the Filtering Section used to
inspect token-level metrics and apply dynamic filters.

A.2 Metric Interactivity

The behavioural metric interactivity links the
heatmap and scatter plot in the Qualitative Analysis
Tab. Clicking a cell in the heatmap selects a pair
of metrics to plot against each other in the scatter
view. The selected tokens can be coloured by two
categorical variables one change the colour and the
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other change the marker shape, and the plot is dy-
namically updated to support comparison across
metrics.

Figure 9: Interactive metric correlation and scatter plot.
The selected cell controls the plotted axes.

A.3 Selection Summary

The Selection Summary view is triggered when
tokens are selected in either the UMAP or be-
havioural metric scatter plots. On the left, users can
choose a categorical variable (e.g., error type) for
the x-axis, while the y-axis always represents the
true label. On the right, two tables are provided: the
categorical summary shows the distribution of the
selected categorical variable, and the metric sum-
mary gives descriptive statistics for all behavioural
metrics in the selected token group.

Figure 10: Selection Summary showing categorical and
metric summaries for selected tokens.

A.4 Token Context and Origin Viewers

These views support sentence-level analysis by
showing where a selected token appears in its con-
text.

Figure 11 shows the Token Context View, which
displays the sentence containing the selected token
within either the training or test split of the CAMeL.
Lab version of ANERCorp.
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Token Context Viewer
Test

Sentence 0
 Sentence:
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Figure 11: Token Context Viewer showing the selected
token within a sentence from the CAMeL Lab version.

Figure 12 shows the Token Origin View, which
displays the sentence where the same token origi-
nally appeared in the Benajiba version of ANER-
Corp.

Token Origin Viewer

Benajeba Sentence 1

 Benajeba Sentence:

O Gl die o WD g i A Pl s dpie dy W owy JE

o o o o o o o o o O IPER B-PER O o o

Ldaald Lakal )

o o o o o

Figure 12: Token Origin Viewer displaying the sentence
where the same token originally appeared in the Bena-
jiba dataset.

A.5 Fine-tuning Hyperparameters

In addition to the optimiser and batch configuration
described in Section 3, we apply the following
hyperparameter settings during fine-tuning:

* Learning rate scheduler: linear decay with a
warm-up ratio of 0.1

* Dropout: 0.1 (applied before the classification
layer)

 Gradient clipping: maximum norm of 1.0

* Parameter freezing: all parameters are train-
able except for LayerNorm and bias terms,
which are frozen to improve training stability

Evaluation is conducted using the seqeval li-
brary (Nakayama, 2018), in strict (no-repair) mode
under the IOB2 tagging scheme.

A.6 Tokenisation Impact

To illustrate the impact of tokenisation on lexi-
cal structure, we compare word-level and token-
level type overlaps across entity tags in both train
and test splits. As shown in Figure 13 and Fig-
ure 14, tokenisation increases the overlap across
tags—particularly between entity tags and the O tag.



This increase in overlap may contribute to exclu-
sion errors during inference, where entity tokens
are misclassified as non-entities.

Word Type Overlap Across Entity Tags (Each Dataset Split)

Train

w84 9 1w

BLOC LLOC BPER LPER B-ORG L-ORG B-MISC LMISC O B10C 1LOC BPER LPER BORG LORG BMISC LMISC O

Figure 13: Word type overlap across entity tags (Train
and Test splits).

Token Type Overlap Across Entity Tags ~ ANERCorp

Train

BLOC 1L0C BPER LPER B-ORG IORG B-MISCIMISC O B10C ILOC BPER IPER BORG LORG BMISC IMISC O

Figure 14: Token type overlap across entity tags (Train
and Test splits).

Despite increased tag overlap, the effect of to-
kenisation on lexical diversity was minimal overall.
As shown in Figures 15 and 16, most entity tags re-
main unaffected. The most notable change is seen
in PER spans, where tokenisation reduced diversity
more than for other spans.

Type-to-Word Ratio (TWR) Act fags in ANERCorp (Train and Test Splits)

Entity Tag
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Figure 15: Type-to-word ratio (TWR) across entity tags
in ANERcorp. Higher values indicate greater lexical
diversity.

Type-to-Token Ratio (TTR) Across Entity Tags in ANERCorp
Dataset=ANERCorp
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Figure 16: Type-to-token ratio (TTR) after tokenisation.
The impact of tokenisation on diversity is limited.

A.7 Data Subcomponents

This section provides supporting evidence for the
data-side analysis presented in Section 3, offering
visual summaries for the metrics used to assess
core token and label interactions, lexical diversity,
annotation consistency, and span structure.

Entity Tag Words Distribution Across Training and Testing Splits
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Figure 17: Distribution of entity tag across training and
test splits.

Comparison of OOV Rates Across Entity Tags in ANERCorp and CoNLL-2003
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Figure 18: OOV rates by entity tag, showing the propor-
tion of token types in the test set not seen with the same
tag in training.



Token Type Overlap Across Entity Tags -~ ANERCorp

Train

28 16 s
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Figure 19: Entity tag overlap matrix showing the num-
ber of token types associated with multiple tags in train-
ing and test sets.

Standard Deviation of Token Type Frequencies Across Entity Tags

l ma

B i‘
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Figure 20: Standard deviation of token type frequencies
across entity tags in training and test splits. For each
entity tag, we compute how often each token type ap-
pears and calculate the standard deviation across those
frequency counts. Higher values indicate skewed distri-
butions with a few highly frequent types, while lower
values suggest more uniform distributions.

Type-to-Word Ratio (TWR) Across Entity Tags in ANERCorp (Train and Test Splits)
Dataset-ANERCorp
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Figure 21: Lexical diversity (type-to-word ratio) across
entity tags before tokenisation.
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Type-to-Token Ratio (TTR) Across Entity Tags in ANERCorp
Dataset=ANERCorp
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Figure 22: Lexical diversity (type-to-token ratio) across
entity tags after tokenisation. The change due to tokeni-
sation is minimal for most tags, with PER being the
most affected.

Mean Length by Entity Type, Scheme, and Split

Mean Length

Entity Type

Figure 23: Mean span length by entity type in training
and test sets.

Entity-Level Token Inconsistency (ANERCorp)

Inconsistency Ratio

0023
0.103
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Figure 24: Token-level inconsistency ratio across entity
tags. High values indicate that tokens are associated
with multiple labels in the training data.

A.8 Examples from Various Error
Patterns

This section presents examples from different error
types observed during qualitative analysis. Each ex-
ample highlights a specific source of error, sentence
start, annotation inconsistency, or tokenisation am-
biguity.

Sentence-Start Misalignment The top sentence
shows a malformed example from the CAMeL ver-



sion where a proper name is placed abruptly at
the start of the sentence, resulting in meaningless
context. The bottom sentence shows the original
Benajiba version, where the same token appeared
mid-sentence in a more semantically meaningful
context. This misalignment likely resulted from
sentence segmentation errors during dataset stan-
dardisation and led to high-confidence misclassifi-
cation.

4 el lbe oyt G Al Apedl Al cliely 4 gl GG DA bl dy
o o o o o o o o o 6 o o o o B
Sl K G L lasad Al Gkl o Lealy O chadly Gkl b

o o o o o B-LOC B-LOC o o o o} o o
BN

o o

_ Benajeba Sentence:

D Gpd dita o DU g A odel de Al My W ouy J5
o o 6 o o o o o o o R BPMR O O O
PSSR R N R

o o o o o

Figure 25: Example of sentence-start misalignment be-
tween the CAMeL Lab version (top) and the original
Benajiba sentence (bottom).

Diacritic Ambiguity This figure shows two
words both spelled the same, however the first is
Spanish and the second is Spain. The first word
was mistakenly labelled as B-LOC potentially due
to the absence of diacritics, while the second word
is correctly labelled as B-LOC. When the model
is exposed to this type of issue, the output layer
predict the word as B-LOC due to the annotation
patterns while the representation place the word
according to its semantic meaning. Exposing the
misalignments between the output layer and repre-
sentation layer.

Sl e bl LA cidl ) Al g gee oe db B G Gl daldl sy o

0o o Blc O BlC O O O O O 0 O 0o o o o o
Bl SIS e e O ol i LS gl el pe OB gl e

o o o o o o o o0 o0 o o o o o o o
B> B T T ey B T T e

o o o I-PER I-PER  B-PER o o o o o o Q 0 B-lOC o o
Wy dejd Bk B el e 4l b ol G 2004 dod B Ay LeSal L

o o o o o 0O o BlOC O O o o o o o o

Figure 26: Inconsistent labelling due to diacritic ambi-
guity.

A.8.1 Tokenisation Ambiguity

Here, the token “Kat” was mispredicted as B-LOC
despite it was referring to the word Catalonia. This
is because the same first subword in Arabic is sim-
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ilar a country name called "Katanga". The model
predicted it as B-LOC, likely due to similarity with
training example where the token Kat was labelled
as B-LOC. However, in the Catalonia sentence, the
context does not support that label, so the model
place it in the O region while predict it as B-LOC.

W A 000 ¢ BB M S dh oyl ge cpmt a5l cPh e J G AW cm
600 o 0o o o o o o o o o o o o o o o

Ol e e ol W maly BBl G 0 e G AR VL e cia oSdl on dew

G S [BRS WML (e 62 dwd oad ) S Gud dad WDl M s Wk gslly el
0 o Blc O O BlOC O O O O BO O O O O O O O o o

(omd S ) Bod B (G wr e o R ) g

Figure 27: Ambiguity introduced by subword tokenisa-
tion. The token “Kat” was extracted from a longer place
name.

A.9 Clustering Alignment

The 0 tag is split into three distinct clusters two
dense regions corresponding to typical O contexts,
and one smaller cluster associated with systematic
errors such as sentence segmentation issues. This
structure highlights the internal variability within
the O class and supports the hypothesis that the
model may overfit to this majority class.

Representation Space Scatter Plot (Fine-tuned Model)

Figure 28: K-Means clustering of token representations
in the fine-tuned embedding space (k = 9).

The other two clusters below cluster 3.

cluster-0
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Figure 29: The two clusters assigned to the O tokens
below cluster 3.
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