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Abstract001

Arabic Named Entity Recognition (ANER)002
presents challenges due to its linguistic char-003
acteristics (Qu et al., 2023). We present De-004
formAR, a visual analytics framework for eval-005
uating and interpreting Arabic NER models006
via a structured, component-based approach.007
DeformAR combines quantitative metrics and008
qualitative visualisation across data and model009
subcomponents to identify performance weak-010
nesses and explain system behaviour. In a case011
study on ANERCorp, DeformAR identifies an-012
notation mistakes, explains calibration issues,013
and reveals interaction effects between subcom-014
ponents. To our knowledge, this is the first015
framework to support both evaluation and inter-016
pretability for Arabic NER.017

1 Introduction018

Arabic Named Entity Recognition (ANER)019

presents a unique challenge in the field of020

NLP (Darwish et al., 2021). Arabic is a mor-021

phologically rich language, lacks standardised to-022

kenisation, and has orthographic variations, all of023

which complicate NER (Shaalan, 2014). Despite024

recent improvements introduced by transformer-025

based models (Devlin et al., 2019; Antoun et al.,026

2020; Patwardhan et al., 2023), ANER remains027

under-explored, particularly in how we evaluate028

and understand model performance. Existing evalu-029

ation techniques in NER, particularly in Arabic (Fu030

et al., 2020; Obeid et al., 2020) focus on quanti-031

tative analysis and aggregate metrics such as F1032

scores, which offer limited insight into model be-033

haviour and performance understanding. While034

more detailed evaluation and interpretability tools035

have focused on English and text classification,036

NER, and especially ANER, has been underex-037

plored (Sun et al., 2021; Ruder et al., 2022).038

To address this gap, we present DeformAR, a039

visual analytics framework designed for evaluating040

and analysing Arabic NER systems. DeformAR041

adopts a structured, component-based framework 042

that integrates quantitative metrics and qualitative 043

visualisation, by dividing the task into two main 044

components: the model and the data. Each com- 045

ponent is further divided into subcomponents that 046

interact during fine-tuning. For example, the data 047

component includes subcomponents such as the 048

vocabulary and NER annotations, while the model 049

component includes the embedding representations 050

and output layer. Each subcomponent exhibits dis- 051

tinct behaviours and also interacts with others in 052

ways that affect overall performance. DeformAR 053

supports the analysis of these behaviours and inter- 054

actions using both quantitative metrics and qualita- 055

tive visualisations. 056

In the quantitative stage, DeformAR measures 057

the behaviour and properties of each subcomponent 058

in isolation, offering insight into where weaknesses 059

are located. These findings inform the qualitative 060

phase, which combines interactive visualisations 061

with interpretability techniques. By linking token- 062

level behavioural metrics to visual analytics, users 063

can identify patterns, explain them using quantifi- 064

able metrics, and explore specific examples for 065

supporting evidence. Together, these stages help 066

answer three key questions: what the weaknesses 067

are, how they occur, and why. 068

This work makes three main contributions. First, 069

we propose a component-based methodology for 070

evaluating both model and data subcomponents, as 071

well as their interactions. Second, we introduce an 072

interactive dashboard that integrates quantitative 073

and qualitative analysis. Third, we demonstrate 074

how DeformAR can identify and explain patterns, 075

supporting more detailed evaluation of Arabic NER 076

systems. To our knowledge, DeformAR is the first 077

framework to combine interpretability and evalua- 078

tion for Arabic NER, addressing a gap in both the 079

NER and Arabic NLP literature. 080

The rest of this paper is organised as follows. 081

Section 2 describes the architecture of DeformAR, 082
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including its extraction pipeline, subcomponent083

metrics, and dashboard design. Section 3 presents084

a case study on ANERCorp, combining quantita-085

tive and qualitative analysis. Section 4 situates our086

work within the literature. Section 5 discusses key087

findings and future directions, followed by conclu-088

sions in Section 6.089

2 Framework Architecture090

DeformAR consists of two main phases: an extrac-091

tion phase and a dashboard phase. In the extrac-092

tion phase, we identify subcomponents within both093

the model and the data, and capture their interac-094

tions during fine-tuning. In this analysis, we de-095

termine what can be extracted at inference time to096

explain system weaknesses. The dashboard phase097

then presents this information through quantitative098

metrics and interactive visualisations. Below, we099

describe each phase in detail.100

2.1 Data Extraction Phase101

The first step in the extraction phase is data prepara-102

tion, which supports various types of NER datasets103

and unifies them into a standard format for pre-104

processing. The preprocessing involves aligning105

words with their true labels, applying tokenisation106

to words, and converting both tokens and labels107

into numeric representations. Once processed, the108

data is used for model fine-tuning.109

During fine-tuning, the model and data subcom-110

ponents begin to interact, as illustrated in Figure 1.111

The raw data consists of word sequences annotated112

with named entity tags, which serve as the true la-113

bels. On the model side, the key subcomponents114

include the representation module, output layer,115

and loss function. Before fine-tuning, words are116

tokenised using a WordPiece tokenizer. Following117

standard NER practice, only the first subword of118

each tokenised word is assigned the entity tag (An-119

toun et al., 2020; Devlin et al., 2019), these are re-120

ferred to as core tokens. As a result, the tokenised121

vocabulary becomes a mix of original words and122

the first subwords of the tokenised ones.123

Although only the first subword of each to-124

kenised word (the core token) is aligned with the125

true label, the representation subcomponent pro-126

cesses the full subword sequence. The resulting127

embeddings are passed to a multi-layer perceptron128

(MLP), which generates logits for each token. A129

cross-entropy loss is then computed, but only for130

core tokens. As a result, while all tokens contribute131

Figure 1: Overview of the interaction between model
and data subcomponents during fine-tuning. Orange
arrows represent interactions within data subcompo-
nents, Green arrows represent interactions within
model subcomponents, and Blue arrows represent cross-
component interactions between model and data.

to contextualisation and logits, only the core tokens 132

influence parameter updates via backpropagation. 133

This highlights a key distinction: non-core tokens 134

are involved in forward computation but ignored 135

during loss computation and optimisation. 136

This process reveals several subcomponents 137

within both the model and the data, each has its 138

own characteristics and interaction patterns, either 139

within a component (e.g., core tokens and true la- 140

bels) or across components (e.g., words and the 141

tokenizer). In the next section, we describe the 142

extracted data and the metrics used to characterise 143

these subcomponents and their interactions. 144

2.2 Subcomponent Metrics 145

This section outlines the metrics used to charac- 146

terise system subcomponents, capturing both in- 147

dividual behaviour and interactions. For the data 148

component, we focus on two subcomponents: core 149

tokens and true labels. We compute several metrics 150

to describe each individually, as well as their inter- 151

action. Structural metrics include dataset size and 152

the distribution of tags, both at the entity tag level 153

(e.g., B-LOC, I-PER) and at the span level. 154

Lexical characteristics are captured using met- 155

rics such as lexical diversity, defined as the ratio 156

of unique token types to total tokens. “Tokens” 157

may refer to either original words or core tokens 158

(i.e., first subwords), allowing us to distinguish pre- 159
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and post-tokenisation vocabularies. Another key160

metric is entity tag overlap, which measures161

the number of token types associated with multiple162

entity tags. We also calculate a tag-specific out-of-163

vocabulary (OOV) rate, defined as the number of164

unique token types associated with a given entity165

tag in the test set that do not appear with the same166

tag in the training set, divided by the total number167

of unique token types for that tag in the test set.168

In addition to structural and lexical metrics, we169

compute behavioural metrics that capture interac-170

tions between subcomponents. The first is the to-171

kenisation rate, which measures the average num-172

ber of subwords generated per word. To charac-173

terise the relationship between core tokens and true174

labels, we use label inconsistency, which measures175

how often a token appears with different entity tags176

in the training data. For instance, if the token “uni-177

versity” (labelled as B-LOC in the test set) appears178

five times in the training data, three times as B-179

LOC and twice as O, its inconsistency ratio is 2/5.180

We also compute ambiguity using Shannon entropy,181

which measures the uncertainty in a token’s label182

distribution. For each test token, we calculate its183

label distribution in the training data and calculate184

entropy; higher scores indicate more annotation185

ambiguity. Tokens not observed in training are186

assigned a default value of –1.187

For the model, we extract token-level loss val-188

ues and output probabilities. From the probabili-189

ties, we derive prediction confidence, the model’s190

certainty in its top prediction (i.e., max probabil-191

ity) and prediction uncertainty, which reflects how192

evenly probabilities are spread across all labels193

(entropy). To assess the representation layer, we194

compute silhouette scores1 to measure tag sepa-195

ration in embedding space, and apply UMAP for196

2D projection and K-means clustering to assess197

alignment with gold labels.198

These metrics vary in granularity: some (e.g.,199

lexical diversity) are corpus-level, while others200

(e.g., loss or confidence) are token-level. In the201

quantitative phase, we examine them in isolation;202

in the qualitative phase, we explore their relation-203

ships through interactive visualisations. The next204

section describes how these metrics are presented205

in the dashboard.206

1Using silhouette_samples from scikit-learn

2.3 Dashboard Phase 207

The dashboard presents the extracted outputs via 208

an interactive interface built with Plotly Dash, en- 209

abling both quantitative and qualitative analysis. It 210

consists of three main tabs: Quantitative Analy- 211

sis, Qualitative Analysis, and Instance-Level View. 212

Each tab provides different visualisations and sup- 213

ports user interaction through components such as 214

dropdowns, buttons and selection tools. 215

2.4 Quantitive Analysis Tab 216

The Quantitative Analysis Tab (Figure 2) provides 217

a high-level, metric-driven overview of the NER 218

system. It is divided into three sections: Eval- 219

uation Metrics, Data Component, and Model 220

Component. Each section focuses on analysing 221

metrics in isolation, without considering relation- 222

ships between them. This analysis helps quantify 223

the behaviour and performance of subcomponents, 224

providing insights into system strengths and weak- 225

nesses. 226

The Evaluation Metrics section (red squares) 227

examines the alignment between true and predicted 228

labels using standard metrics and confusion analy- 229

sis. The Data Component section (yellow squares) 230

presents structural, lexical, and behavioural metrics 231

that characterise the dataset. The Model Compo- 232

nent section (green squares) includes metrics that 233

describe prediction behaviour and representation 234

quality. The Tokenisation Rate (blue) is a cross- 235

component metric capturing interaction between 236

model and data. The tab supports user interac- 237

tion through dropdown menus and buttons, with 238

visualisations mainly consisting of bar charts and 239

heatmaps aggregated by entity tag. 240

2.5 Qualitative Analysis Tab 241

The Qualitative Analysis Tab (Figure 3) focuses 242

on exploring relationships between subcomponents 243

through interactive visualisations and interpretabil- 244

ity techniques. Unlike the Quantitative Tab, it 245

allows users to investigate multiple variables si- 246

multaneously, identify patterns in the representa- 247

tion space, and interpret these patterns using be- 248

havioural metrics and categorical variables. 249

The tab supports two types of interaction: stan- 250

dard controls (e.g., dropdown menus) and cross- 251

linked interactivity, where actions in one view up- 252

date others (as shown by the dashed arrows in 253

Figure 3). The Filtering Section allows users to 254

filter tokens using two mechanisms: dropdowns 255
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Figure 2: Overview of the Quantitative Analysis Tab in
DeformAR.

based on categorical variables (e.g., true labels,256

error types), and a table-based filter driven by257

behavioural metrics. For more details, see Ap-258

pendix A.1.259

The Filtering Section affects the Behavioural260

Analysis Section, the core section of the tab. This261

section includes three linked views: a 2D UMAP262

projection of token embeddings, a Behavioural263

Metric Scatter Plot, and a Heatmap showing264

pairwise correlations between behavioural met-265

rics (Pearson or Spearman). Selecting a cell in266

the heatmap sets the x- and y-axes of the scatter267

plot (see Appendix A.2), while the scatter plot and268

UMAP are bidirectionally linked, selecting points269

in one highlights them in the other. To our knowl-270

edge, this level of interactivity is unique to Defor-271

mAR, allowing users to explore up to six variables272

simultaneously. For example, users can colour the273

UMAP by true labels and confusion matrix out-274

comes (e.g., FP or FN), and examine the same275

points in the metric scatter by loss and confidence276

grouped by error types. This enables detailed anal-277

ysis of whether spatial regions in the embedding278

space align with error patterns and how they are re-279

flected in model metrics. Another auxiliary section280

is the Selection Summary, which updates when-281

ever a selection is made in either the behavioural282

or UMAP scatter plot. It provides summary statis-283

tics for the selected tokens across all metrics. For284

further details, see Appendix A.3.285

Figure 3: Overview of the Qualitative Analysis Tab in
DeformAR.

2.6 Instance Level Tab 286

The Instance-Level Tab (Figure 4) supports fine- 287

grained analysis of specific tokens and their sur- 288

rounding context. It is divided into three sections: 289

Sentence Viewer, Token Analysis, and Attention 290

Analysis. This tab is linked to the Qualitative Anal- 291

ysis Tab: when users select tokens in the UMAP 292

or scatter plots, only sentences that include those 293

tokens can be viewed in the sentence viewer. 294

The Token Analysis section supports explo- 295

ration of individual tokens. Users can view the 296

distribution of entity tags assigned to a selected 297

token across training and test splits, and compute 298

cosine similarity to identify the most similar to- 299

kens in the dataset. This similarity-based approach 300

aligns with example-based interpretability meth- 301

ods, helping identify influential instances that may 302

have contributed to the model’s prediction. Users 303

can also examine these tokens within their original 304

sentence context using the Token Context View. 305

For more details on token similarity and filtering, 306

see Appendix A.4. 307

The Attention Analysis section allows users 308

to inspect the model’s attention behaviour for a 309

selected sentence. We integrate BertViz (Vig, 310

2019) to visualise token-level attention patterns. 311

We also compute attention similarity between the 312

pre-trained and fine-tuned models, presented as a 313

heatmap, to highlight changes introduced by fine- 314

tuning. This helps identify where and how attention 315

shifts occur across layers or heads. 316

3 Arabic NER Case Study 317

In this section, we demonstrate the capabilities of 318

DeformAR using the ANERcorp dataset, a stan- 319

dard Arabic NER corpus introduced by Benajiba 320

et al. (2007) and standardised by CAMeL Lab 321
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Figure 4: Overview of the Instance-Level Tab in Defor-
mAR.

(Obeid et al., 2020). We use the CAMeL Lab ver-322

sion, which includes minor corrections, and pro-323

vides a sequential train/test split (5/6 training, 1/6324

testing) based on word count, resulting in approx-325

imately 125K and 25K words respectively. The326

dataset consists of Modern Standard Arabic text327

annotated using the IOB2 scheme across four entity328

types: PER, ORG, LOC, and MISC.329

We fine-tune AraBERTv02-base, a 12-layer330

transformer with 768 hidden units and 12 atten-331

tion heads. A linear classification layer is added on332

top of the final hidden state to produce token-level333

logits. The model is trained with a cross-entropy334

loss function.335

Fine-tuning is performed using the AdamW op-336

timiser with a learning rate of 5e–5, a batch size337

of 16, and four training epochs. Evaluation is per-338

formed using the seqeval library (Nakayama, 2018)339

in strict mode under the IOB2 tagging scheme. Ad-340

ditional training and evaluation details are provided341

in Appendix A.5.342

3.1 Quantitative Analysis343

In this section, we present cross-component find-344

ings derived from both model and data subcompo-345

nents. We begin by examining overall performance346

trends across entity spans, followed by an analysis347

of data characteristics that may help explain these348

patterns.349

As shown in Table 1, precision exceeds recall350

across all entity spans except for LOC, where recall351

is slightly higher. The model demonstrates rela-352

tively high precision overall, indicating a tendency353

to minimise false positives. The most significant354

performance drop is seen in MISC, which has both355

the lowest precision (0.772) and recall (0.634), fol-356

Entity Type Precision Recall
LOC 0.893 0.934
MISC 0.772 0.634
ORG 0.784 0.751
PER 0.860 0.844

Table 1: Precision and recall by entity type under the
IOB2 tagging scheme.

Figure 5: Confusion heatmap showing predicted versus
true entity tags.

lowed by ORG. In contrast, lower recall indicates 357

that true spans are often missed. 358

To further understand the performance gap 359

across entity spans (e.g., LOC), we examine pre- 360

diction errors at the level of individual entity tags 361

(e.g., B-LOC, I-LOC). Figure 5 presents a confusion 362

heatmap showing the distribution of true versus 363

predicted entity tags. A dominant pattern is the 364

misclassification of entity tag tokens as O, particu- 365

larly for lower-performing spans such as MISC and 366

ORG. We refer to these misclassifications as exclu- 367

sion errors. In addition to exclusion errors, two 368

other patterns emerge: boundary errors, where the 369

model confuses B-PER and I-PER, and inclusion 370

errors, where O tokens are mistakenly predicted as 371

entities, particularly for B-ORG and B-PER. These 372

error patterns help explain the observed gap be- 373

tween precision and recall: MISC spans often suf- 374

fer from exclusion errors that reduce recall, while 375

LOC spans, which show fewer errors of that type, 376

achieve higher recall. 377

Several data characteristics can potentially ex- 378

plain the observed performance trends. One key 379

factor is tokenisation. As mentioned in Section 2, 380

after tokenisation the vocabulary becomes a mix of 381

words and first subwords. While this does not af- 382

fect the overall structure or number of core tokens, 383

it changes the lexical structure of the dataset. For 384

example, the number of unique named entity words 385

in the training split drops from 4,069 to 3,445 after 386
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tokenisation (15.34% reduction). This has implica-387

tions for the dataset’s lexical characteristics, includ-388

ing increased overlap across entity tags. Further389

details are provided in Appendix A.6.390

To better understand how data and model sub-391

components contribute to performance variation,392

we analysed the metrics discussed in Section 2.2.393

Although our analysis is conducted per entity tags394

(e.g., B-LOC, I-LOC), for simplicity we refer to395

these collectively by their span type (e.g., LOC, PER)396

for the rest of this section. On the data side, we397

analysed the relationship between core tokens and398

true labels and identified three contributing factors:399

structural and lexical differences, span complexity,400

and annotation inconsistency. Tokens associated401

with low-performing spans such as MISC and ORG402

have fewer instances, higher lexical diversity, more403

OOV tokens, and higher tag overlap with O. In con-404

trast, LOC tags appear more frequently, show lower405

diversity and OOV, and have minimal overlap with406

O. PER spans fall in between, with moderate OOV407

and diversity, and high overlap with O. In terms of408

span complexity, we found that the length of LOC409

spans is much smaller than others, especially PER410

and ORG, which are much longer. In all cases, train411

spans are longer than test spans, except for MISC,412

where the opposite is true. This means the model413

is exposed to shorter spans during training but is414

asked to predict longer spans at test time, which415

may contribute to poor generalisation. In terms of416

inconsistency, we found that ORG and MISC have417

much higher inconsistency compared to other en-418

tity tags. Further details and supporting evidence419

are provided in Appendix A.7.420

On the model side, we observed several trends421

that align with the difficulties in data character-422

istics. First, lower-performing tags such as MISC423

and ORG show the highest token-level loss values,424

with I-MISC being the most prominent. When ex-425

amining prediction confidence, we found that the426

model tends to assign high confidence regardless of427

whether the prediction is correct or incorrect. This428

pattern is especially notable in exclusion errors,429

where entity tokens are misclassified as O; in these430

cases, confidence remains high despite the error.431

This behaviour suggests calibration issues — the432

model’s predicted probabilities do not align with433

actual correctness. To confirm this, we examined434

prediction uncertainty across the probability distri-435

bution. We found that the model tends to be less436

uncertain (i.e., more confident) when predicting437

correctly for tags like LOC and PER, but more uncer-438

Figure 6: Top: UMAP projection of the final hidden
states, coloured by true labels and prediction correctness.
Bottom: Scatter plot of true vs. predicted silhouette
scores, coloured by confusion matrix outcomes labels.

tain when predicting MISC and ORG. This suggests 439

that the model is often unsure whether its predic- 440

tions are correct in the more challenging spans. 441

3.2 Qualitative Analysis 442

We begin the qualitative analysis by examining 443

the representation space using a UMAP projection, 444

shown in Figure 6. We observe three main pat- 445

terns: well-separated regions, error patterns, and 446

anomalies. Well-separated regions include dis- 447

tinct clusters for high-performing spans such as 448

PER and LOC, where B and I tags form compact and 449

clearly defined areas. In contrast, spans like ORG 450

and MISC are more scattered and tend to overlap 451

with the dominant O region. Finally, a large, dense 452

region of O tokens dominates the space. Error pat- 453

terns often appear within these dense regions. For 454

instance, the O region includes tokens from other 455

classes, such as LOC, indicating exclusion errors 456

where entity tokens are misclassified as O. Anoma- 457

lies are more subtle and involve correctly predicted 458

tokens that appear far from their expected class 459

region. For example, in the LOC region, there are 460

O tokens that are correctly predicted despite being 461

located in an unexpected area. 462

The behavioural scatter plot (bottom) shows how 463

these patterns are reflected in silhouette-based met- 464

rics. Tokens with high agreement between true 465

and predicted silhouette scores (top right) are typi- 466

cally true positives and true negatives (i.e., O tokens 467

correctly predicted), while low-separation tokens 468

(bottom right) are often false positives or false nega- 469

tives. These metrics are not only useful for interpre- 470

tation, but also for detecting anomalies. For exam- 471

ple, the anomaly observed in the LOC region, where 472
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O tokens are correctly predicted but located far from473

their expected region, is highlighted by the point C474

of the behavioural scatter plot. These tokens show475

low silhouette scores for both true and predicted476

labels. When inspecting them in the instance-level477

view, we found they often correspond to annotation478

mistakes, inconsistent labelling, or contextually479

ambiguous cases. The model predicts them as O480

because they are wrongly labelled that way in the481

training data, even though the surrounding context482

may suggest a different semantic meaning, hence483

placed in another region.484

We also investigated another interesting pattern485

highlighted by Region A in the UMAP projection,486

marked with a selection box. This selection is re-487

flected in the behavioural metric scatter plot, where488

the region contains a mix of true negatives and mis-489

classified tokens. Examining the errors in Region490

B, we found they correspond to systematic issues491

where certain tokens appear abruptly at the start of492

a sentence without clear semantic relevance, similar493

to the errors found by AlDuwais et al. (2024). How-494

ever, we provide further clarification by compar-495

ing the Benajiba and CAMeL Lab versions of the496

dataset using the token context view. This compari-497

son revealed that some tokens originally belonged498

to different sentences (in Benajiba) but were placed499

at the beginning of unrelated ones in the test set500

(in CAMeL Lab). These errors likely results from501

preprocessing or sentence segmentation errors in-502

troduced during dataset standardisation, rather than503

annotation inconsistencies.504

Unlike annotation mistakes, which often result505

from unclear guidelines, these systematic errors506

arise from consistent issues in dataset preparation.507

Interestingly, tokens affected by this issue exhibit508

different behaviour from other types of errors: they509

show high confidence, high loss, and very low510

(often negative) silhouette scores. As shown in511

Figure 7, the highlighted tokens demonstrate very512

low uncertainty despite poor representation separa-513

bility, reflecting a mismatch between the model’s514

output and its internal representation. In contrast,515

tokens associated with annotation mistakes tend to516

show higher uncertainty, indicating that the model517

is less confident. These patterns are visualised in518

the highlighted tokens with large diamond markers.519

We also identified other error patterns during the520

instance-level analysis that result from tokenisation-521

related issues, such as the removal of diacritics,522

which introduces ambiguity, and malformed sub-523

words that further confuse the model. For further524

Figure 7: Behavioural Scatter Plot showing prediction
uncertainty versus true silhouette score.

details, see Appendix A.8. 525

These observations point to a broader conclu- 526

sion: there appears to be a misalignment between 527

the learned representation space and the output 528

layer, which in some cases results in conflicting 529

decisions. This misalignment manifests differently 530

depending on the error type, annotation-related er- 531

rors tend to exhibit lower confidence and higher 532

uncertainty, while systematic errors often produce 533

high-confidence misclassifications despite weak 534

representation separability. This helps explain the 535

calibration issues noted in the quantitative analysis. 536

In terms of clustering alignment, we found that 537

K-Means identified clusters that correspond to cer- 538

tain annotation patterns. For example, B-PER and 539

I-PER were captured by separate, distinct clusters, 540

while B-LOC and I-LOC were grouped into a single 541

cluster. In contrast, spans such as MISC and ORG 542

were distributed across multiple clusters, confirm- 543

ing their weak representation structure. Further 544

details are provided in Appendix A.9. 545

4 Related Work 546

We situate DeformAR within three areas of related 547

work: interpretability techniques, visual analyt- 548

ics tools, and NER-specific evaluation methods. 549

Interpretability methods are often categorised as 550

global or local (Zini and Awad, 2023; Ferrando 551

et al., 2024). Global approaches, such as Aken et al. 552

(2019), use dimensionality reduction to visualise 553

hidden state structure, while local methods include 554

attention visualisation and attribution techniques. 555

However, the explainability of attention remains 556

debated (Sun et al., 2021; Zhao et al., 2024), and 557

attribution methods (e.g., LIME, SHAP) are harder 558

to adapt to sequence labelling tasks (Ruder et al., 559

2022). Example-based techniques such as influ- 560

ence functions (Sun et al., 2021; Jain et al., 2022) 561

are rarely explored outside English. Dataset Car- 562

tography (Swayamdipta et al., 2020) is conceptu- 563
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ally similar to our behavioural metrics, but focuses564

on training dynamics, whereas DeformAR targets565

inference-time analysis and integrates interpretabil-566

ity directly into evaluation.567

Several visual analytics tools support the inspec-568

tion of Transformer models, including LIT (Tenney569

et al., 2020), InterpreT (Lal et al., 2021), and T3-570

Vis (Li et al., 2021). Among these, T3-Vis is the571

most closely related: it offers cartographic visu-572

alisations of training dynamics across epochs and573

integrates attention analysis, with support for fil-574

tering based on confidence and prediction consis-575

tency. However, DeformAR extends this design by576

covering a broader set of subcomponents through577

various metrics and by linking behavioural quan-578

titative metrics to qualitative analysis through in-579

teractive visualisations. While T3-Vis is guided by580

user-centric design goals, DeformAR is structured581

around the task itself: it decomposes NER into582

model and data components and examines their583

interactions. Unlike previous tools, DeformAR is584

specifically designed for NER and supports Arabic,585

both of which remain under-represented in inter-586

pretability research.587

Other work in NER-specific evaluation focuses588

on annotation errors. For example, CLEANANER-589

Corp (AlDuwais et al., 2024) used semi-automated590

methods to revise ANERCorp and similar correc-591

tions applied to CoNLL-2003 (Liu and Ritter, 2023;592

Rücker and Akbik, 2023). While DeformAR is not593

designed for correction, it uncovered similar issues594

(e.g., sentence-start anomalies) with minimal man-595

ual effort, while offering more explainability of596

their causes and impact.597

Finally, bucket-based evaluation has been used to598

analyse performance variation by partitioning data599

into interpretable slices, such as entity length or600

frequency (Fu et al., 2020; Liu et al., 2021). While601

useful, these methods focus primarily on dataset-602

side properties. In contrast, DeformAR links data,603

model, and prediction behaviours, enabling deeper604

cross-component evaluation.605

5 Discussion and Future Work606

This section summarises the main contributions and607

outlines directions for future work. In the quanti-608

tative analysis, we presented a cross-component609

evaluation that showed how data characteristics610

can help explain performance differences and er-611

ror patterns, and how these are reflected in model612

behaviour. We introduced behavioural metrics for613

both data and model subcomponents, emphasising 614

their interactions. Although each metric was ex- 615

amined in isolation, their combined interpretation 616

helped uncover broader trends such as annotation 617

ambiguity and exclusion errors. 618

The qualitative analysis expanded on these find- 619

ings by explaining how specific error types and 620

calibration issues relate to representational struc- 621

ture and confidence behaviour. Through interactive 622

visualisations, we were able to isolate annotation 623

issues, systematic errors, and tokenisation artifacts 624

with minimal manual effort. The integration of be- 625

havioural metrics with interpretability techniques, 626

through the dashboard’s interactive design, offers a 627

step forward in bridging quantitative and qualitative 628

evaluation. This strengthens the explainability of 629

system outputs by revealing not only where models 630

fail, but also how and why. 631

As next steps, one direction is to compare De- 632

formAR’s findings with re-annotated corpora such 633

as CLEANANERCorp, to assess whether revisions 634

resolve earlier issues or introduce new ones. An- 635

other is to expand the behavioural metric to include 636

attention mechanisms or training dynamics. Fi- 637

nally, we plan to apply DeformAR to additional 638

languages and tasks, and to study how architectural 639

factors such as tokenizer design, model scale, or 640

pretraining data influence NER performance. 641

6 Conclusion 642

We introduced DeformAR, a novel framework for 643

interpreting and evaluating Arabic NER systems 644

through structured, cross-component analysis. By 645

combining token-level behavioural metrics with in- 646

teractive visual analytics, DeformAR enables users 647

to discover errors, understand representation struc- 648

ture, and interpret model behaviour. Our case study 649

on ANERCorp demonstrates its ability to uncover 650

both annotation and performance issues with min- 651

imal manual effort. DeformAR bridges the gap 652

between interpretability and evaluation tools for 653

Arabic NER, offering a foundation for future eval- 654

uation across tasks and languages. 655

Limitations 656

While DeformAR provides a structured and flexi- 657

ble framework for evaluating Arabic NER, several 658

limitations remain. First, although many of the met- 659

rics and components are language-agnostic, some 660

aspects — particularly instance-level analysis — re- 661

quire language-specific understanding, which may 662

8



limit generalisability to low-resource languages663

without further adaptation. Second, the current664

implementation focuses mostly on inference-time665

behaviour and does not incorporate training dy-666

namics, which could offer additional diagnostic667

insight. Third, DeformAR currently supports up to668

two languages in the quantitative analysis and a sin-669

gle language in the qualitative analysis; extending670

support to multi-model comparison would enhance671

scalability for benchmarking. Finally, while the672

framework can identify potential annotation errors,673

it does not include automated correction mecha-674

nisms or integration with annotation workflows.675
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Appendix 850

A.1 Filtering Section 851

The Filtering Section enables users to explore be- 852

havioural patterns by filtering tokens based on se- 853

lected categorical variables and behavioural met- 854

rics. Each row in the table corresponds to a token 855

and includes values for multiple metrics such as 856

ambiguity, loss, confidence, and silhouette scores. 857

Users can apply filters through dropdown menus or 858

manually interact with each column, as shown in 859

Figure 8 860

Figure 8: Screenshot of the Filtering Section used to
inspect token-level metrics and apply dynamic filters.

A.2 Metric Interactivity 861

The behavioural metric interactivity links the 862

heatmap and scatter plot in the Qualitative Analysis 863

Tab. Clicking a cell in the heatmap selects a pair 864

of metrics to plot against each other in the scatter 865

view. The selected tokens can be coloured by two 866

categorical variables one change the colour and the 867
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other change the marker shape, and the plot is dy-868

namically updated to support comparison across869

metrics.870

Figure 9: Interactive metric correlation and scatter plot.
The selected cell controls the plotted axes.

A.3 Selection Summary871

The Selection Summary view is triggered when872

tokens are selected in either the UMAP or be-873

havioural metric scatter plots. On the left, users can874

choose a categorical variable (e.g., error type) for875

the x-axis, while the y-axis always represents the876

true label. On the right, two tables are provided: the877

categorical summary shows the distribution of the878

selected categorical variable, and the metric sum-879

mary gives descriptive statistics for all behavioural880

metrics in the selected token group.881

Figure 10: Selection Summary showing categorical and
metric summaries for selected tokens.

A.4 Token Context and Origin Viewers882

These views support sentence-level analysis by883

showing where a selected token appears in its con-884

text.885

Figure 11 shows the Token Context View, which886

displays the sentence containing the selected token887

within either the training or test split of the CAMeL888

Lab version of ANERCorp.889

Figure 11: Token Context Viewer showing the selected
token within a sentence from the CAMeL Lab version.

Figure 12 shows the Token Origin View, which 890

displays the sentence where the same token origi- 891

nally appeared in the Benajiba version of ANER- 892

Corp. 893

Figure 12: Token Origin Viewer displaying the sentence
where the same token originally appeared in the Bena-
jiba dataset.

A.5 Fine-tuning Hyperparameters 894

In addition to the optimiser and batch configuration 895

described in Section 3, we apply the following 896

hyperparameter settings during fine-tuning: 897

• Learning rate scheduler: linear decay with a 898

warm-up ratio of 0.1 899

• Dropout: 0.1 (applied before the classification 900

layer) 901

• Gradient clipping: maximum norm of 1.0 902

• Parameter freezing: all parameters are train- 903

able except for LayerNorm and bias terms, 904

which are frozen to improve training stability 905

Evaluation is conducted using the seqeval li- 906

brary (Nakayama, 2018), in strict (no-repair) mode 907

under the IOB2 tagging scheme. 908

A.6 Tokenisation Impact 909

To illustrate the impact of tokenisation on lexi- 910

cal structure, we compare word-level and token- 911

level type overlaps across entity tags in both train 912

and test splits. As shown in Figure 13 and Fig- 913

ure 14, tokenisation increases the overlap across 914

tags—particularly between entity tags and the O tag. 915
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This increase in overlap may contribute to exclu-916

sion errors during inference, where entity tokens917

are misclassified as non-entities.918

Figure 13: Word type overlap across entity tags (Train
and Test splits).

Figure 14: Token type overlap across entity tags (Train
and Test splits).

Despite increased tag overlap, the effect of to-919

kenisation on lexical diversity was minimal overall.920

As shown in Figures 15 and 16, most entity tags re-921

main unaffected. The most notable change is seen922

in PER spans, where tokenisation reduced diversity923

more than for other spans.924

Figure 15: Type-to-word ratio (TWR) across entity tags
in ANERcorp. Higher values indicate greater lexical
diversity.

Figure 16: Type-to-token ratio (TTR) after tokenisation.
The impact of tokenisation on diversity is limited.

A.7 Data Subcomponents 925

This section provides supporting evidence for the 926

data-side analysis presented in Section 3, offering 927

visual summaries for the metrics used to assess 928

core token and label interactions, lexical diversity, 929

annotation consistency, and span structure. 930

Figure 17: Distribution of entity tag across training and
test splits.

Figure 18: OOV rates by entity tag, showing the propor-
tion of token types in the test set not seen with the same
tag in training.
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Figure 19: Entity tag overlap matrix showing the num-
ber of token types associated with multiple tags in train-
ing and test sets.

Figure 20: Standard deviation of token type frequencies
across entity tags in training and test splits. For each
entity tag, we compute how often each token type ap-
pears and calculate the standard deviation across those
frequency counts. Higher values indicate skewed distri-
butions with a few highly frequent types, while lower
values suggest more uniform distributions.

Figure 21: Lexical diversity (type-to-word ratio) across
entity tags before tokenisation.

Figure 22: Lexical diversity (type-to-token ratio) across
entity tags after tokenisation. The change due to tokeni-
sation is minimal for most tags, with PER being the
most affected.

Figure 23: Mean span length by entity type in training
and test sets.

Figure 24: Token-level inconsistency ratio across entity
tags. High values indicate that tokens are associated
with multiple labels in the training data.

A.8 Examples from Various Error 931

Patterns 932

This section presents examples from different error 933

types observed during qualitative analysis. Each ex- 934

ample highlights a specific source of error, sentence 935

start, annotation inconsistency, or tokenisation am- 936

biguity. 937

Sentence-Start Misalignment The top sentence 938

shows a malformed example from the CAMeL ver- 939
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sion where a proper name is placed abruptly at940

the start of the sentence, resulting in meaningless941

context. The bottom sentence shows the original942

Benajiba version, where the same token appeared943

mid-sentence in a more semantically meaningful944

context. This misalignment likely resulted from945

sentence segmentation errors during dataset stan-946

dardisation and led to high-confidence misclassifi-947

cation.948

Figure 25: Example of sentence-start misalignment be-
tween the CAMeL Lab version (top) and the original
Benajiba sentence (bottom).

Diacritic Ambiguity This figure shows two949

words both spelled the same, however the first is950

Spanish and the second is Spain. The first word951

was mistakenly labelled as B-LOC potentially due952

to the absence of diacritics, while the second word953

is correctly labelled as B-LOC. When the model954

is exposed to this type of issue, the output layer955

predict the word as B-LOC due to the annotation956

patterns while the representation place the word957

according to its semantic meaning. Exposing the958

misalignments between the output layer and repre-959

sentation layer.960

Figure 26: Inconsistent labelling due to diacritic ambi-
guity.

A.8.1 Tokenisation Ambiguity961

Here, the token “Kat” was mispredicted as B-LOC962

despite it was referring to the word Catalonia. This963

is because the same first subword in Arabic is sim-964

ilar a country name called "Katanga". The model 965

predicted it as B-LOC, likely due to similarity with 966

training example where the token Kat was labelled 967

as B-LOC. However, in the Catalonia sentence, the 968

context does not support that label, so the model 969

place it in the O region while predict it as B-LOC. 970

Figure 27: Ambiguity introduced by subword tokenisa-
tion. The token “Kat” was extracted from a longer place
name.

A.9 Clustering Alignment 971

The O tag is split into three distinct clusters two 972

dense regions corresponding to typical O contexts, 973

and one smaller cluster associated with systematic 974

errors such as sentence segmentation issues. This 975

structure highlights the internal variability within 976

the O class and supports the hypothesis that the 977

model may overfit to this majority class. 978

Figure 28: K-Means clustering of token representations
in the fine-tuned embedding space (k = 9).

The other two clusters below cluster 3. 979

Figure 29: The two clusters assigned to the O tokens
below cluster 3.
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