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Abstract

Circuits are supposed to accurately describe how
a neural network performs a specific task, but do
they really? We evaluate three circuits found in
the literature (IOI, greater-than, and docstring) in
an adversarial manner, considering inputs where
the circuit’s behavior maximally diverges from
the full model. Concretely, we measure the KL
divergence between the full model’s output and
the circuit’s output, calculated through resample
ablation, and we analyze the worst-performing
inputs. Our results show that the circuits for the
IOI and docstring tasks fail to behave similarly to
the full model even on completely benign inputs
from the original task, indicating that more robust
circuits are needed for safety-critical applications.

1. Introduction
Neural networks’ vast size and complexity make them dif-
ficult to reverse engineer. To address this issue, circuits
have been proposed (Olah et al., 2020) as one paradigm. By
isolating the subset of components of a neural network that
perform a chosen, narrow task, we hope to obtain a subnet-
work that is smaller and disentangled from all other tasks
the full network performs, making it easier to understand.
We call this subset of components the circuit.

For the circuit to be helpful in understanding the original,
full model, it is crucial that the circuit’s behavior coincides
with the full model’s behavior on the chosen task. In partic-
ular, on task-specific inputs, the circuit should produce the
same output distribution as the full model. Previous work
has mostly assessed a circuit’s performance by testing its
ability to output the same distribution as the full model on
average on the task-specific inputs.

In this paper, we argue that, besides looking at the average
performance, it is worthwhile to assess a circuit by analyzing
its worst-case performance: on which inputs and how large
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a proportion of inputs does the circuit fail to emulate the full
model’s behavior? We propose a method to evaluate circuits
from this adversarial perspective and apply it to several
circuits found in the literature: Indirect Object Identification
(IOI) (Wang et al., 2022), greater-than (Hanna et al., 2023),
and docstring (Heimersheim & Janiak, 2023).

Adversarial circuit evaluation is important for several rea-
sons. First, we cannot say we to truly understand the full
model if the circuit behaves differently on a certain frac-
tion of the inputs. For example, our analysis (Section 3)
showsthat the circuit for the IOI task fails to emulate the
full model’s behavior on a significant fraction of inputs. We
speculate that especially when romantic objects are involved,
components outside of the circuit play a crucial role. Since
romantic objects could be only a small fraction of the inputs
tested, the circuit’s average performance can be high, even
though we may be missing a crucial piece of the puzzle.

In particular, if we ever want to use circuits for guarantees
or in safety-critical applications, it is crucial to describe
the neural network’s behavior on all inputs. As a general
principle, evolutionary pressures and adversarial attacks
can successfully discover and exploit edge cases. For ex-
ample, if we edit a reward model to align more with hu-
man values, the policy optimizing for it may find a regime
where our edits fail. In the absence of specific circuit-based
safety interventions, this remains speculation. However, the
benign-seeming yet adversarial examples we find in this
paper might convince the reader that any safety measure
could only be built with more robust circuits.

Moreover, we argue that the adversarial metrics are not
only useful for evaluating circuits but also for improving
them. Our analysis of the worst-performing inputs for the
circuits (Tables 4 to 6) shows failure modes that a researcher
could try to inspect and address manually. Alternatively,
our adversarial evaluation metrics could be plugged in to
automatic circuit discovery techniques, likely leading to
more robust circuits.

Our main contributions are the following:

• We provide a method to calculate the proposed adver-
sarial metrics (Section 2). 1

1Our code is available on GitHub at https://github.
com/Nielius/AdversarialCircuitEvaluation.
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• We prove a formula to calculate how many task data
points are needed to bound the circuit’s worst-case per-
formance with high probability (Section 2.1); in more
technical terms, we calculate the sample size required
to find high-probability upper bounds for percentiles
(e.g., the 99th percentile) of the KL divergence be-
tween the circuit’s output and the full model’s output
on a distribution of task data points.

• We identify subtasks of IOI and Docstring where the
circuit especially fails to explain (Section 3; in particu-
lar, Table 4 and Table 5). For IOI, the circuit fails most
strongly on inputs featuring a romantic object (“kiss”
or “necklace”); for Docstring, patch inputs that have
file as one of their parameters disrupt the circuit’s
performance, causing it to predict file as the next
parameter, even though it does not appear in the clean
input.

• In contrast, we find the Greater-Than circuit is more
robust than the other two and does not have exhibit any
significant edge case failures (Section 3 and Table 6).

2. Methodology
The core component of our adversarial circuit evaluation
method is the calculation of the KL divergence between the
circuit’s output and the full model’s output for a large sample
of input points. The adversarial metrics we are interested
in extracting are the maximum KL divergence and several
high percentile values from the resulting distribution of KL
divergences. In this section, we describe the technical details
of this calculation.

Resample ablation Let D denote the set of inputs for the
task. To calculate the output for the circuit, we ablate all
components not in the circuit. While any kind of ablation
could be used, we use resample ablation in our experiments.
That means that in addition to the dataset D of inputs for the
task, we need a dataset D̃ of corrupted inputs (sometimes
called patch inputs). On a forward pass with ablations, we
replace the output of an ablated component with its output
from the (unablated) forward pass on a corrupted input. Re-
sample ablation, also sometimes known as patching with
different activations (e.g. (Conmy et al., 2023)), is a kind of
interchange intervention (Geiger et al., 2023); more back-
ground and justification can also be found in (Chan et al.,
2022) and (Zhang & Nanda, 2024). The circuits analyzed
in this paper were identified through resample ablation.

For the reader’s benefit, we explain in more detail how re-
sample ablation works in the context of the circuits analyzed
in this paper. The neural networks we are dealing with are
transformers, and the circuits are subsets of edges between
nodes that represent MLPs, transformer heads (each indi-

vidually), the embedded input, and the output before the
unembedding. The transformer heads have three different
inputs: the key, the query, and the value. Because of the
residual stream’s additivity, each node can causally impact
all downstream nodes, so there is an edge from each node to
all downstream nodes. If an edge from a node X to a node
Y is not part of the circuit C and we want to calculate the
output C(x, x̃) of the circuit C on a clean input x with a cor-
rupted input x̃, then X’s contribution X(x) to the input of
Y in a forward pass on x is replaced with X’s contribution
X(x̃) to the input of Y from a forward pass on x̃. In our
implementation, we achieve this by subtracting X(x) from
the input to Y , and adding X(x̃); this works because of the
residual stream’s additivity. In this way, intuitively speak-
ing, a component can output clean outputs to some of its
dependent downstream components, while simultaneously
outputting corrupted outputs to other components.

Evaluation metrics For x ∈ D, we denote by M(x) the
output of the full model M on x. For x ∈ D, x̃ ∈ D̃,
we denote by C(x, x̃) the output of a forward pass of M
where we have resample-ablated all components outside
of the circuit C using the corrupted input x̃. The outputs
C(x, x̃) and M(x) are categorical probability distributions
over the model vocabulary. We use the KL divergence
DKL (M(x) ∥ C(x, x̃)) to measure how close the circuit’s
output is to the model’s output. To obtain our adversarial
evaluation metrics, we sample a sufficiently large number
of points from the distribution

DKL (M(x) ∥ C(x, x̃)) for x ∼ Unif(D),

x̃ ∼ Unif(D̃).
(1)

We then take the maximum or high percentiles of this dis-
tribution of KL divergences as our adversarial evaluation
metric.

2.1. How many samples are needed?

The method described above samples from a distribution
and then takes a percentile from that sample. How close is
the sample percentile to the true percentile, and how many
points do you need to sample to get a good estimate?

The following result, which we prove in Appendix C, pro-
vides an answer. Let X be a real-valued probability distribu-
tion and let 0 < p < 1. Denote by xp the true p-th percentile
of X . Because we are looking at worst-case scenarios, we
would like a tight upper bound x̂p for xp. Take any ϵ > 0
with p + ϵ < 1 and write x̂p for the ⌈(p + ϵ) · n⌉-th order
statistic of n i.i.d samples from X , i.e., the ⌈(p+ ϵ) · n⌉-th
smallest value of the n i.i.d. samples. We then have the
following result.

Proposition 2.1. The probability Pr(x̂p ≥ xp) that x̂p is
an upper bound for the true p-th percentile xp of X can be
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calculated as

Pr (x̂p ≥ xp) = FBinom(⌈(p+ ϵ) · n⌉ − 1;n, p) (2)

where FBinom(x;n, p) is the cumulative distribution func-
tion of the binomial distribution with parameters n and
p.

Using this result in combination with either the Chernoff
bound or Hoeffding’s inequality, we can derive the following
two bounds that show the asymptotic behavior:

Corollary 2.2. We have

Pr (x̂p ≥ xp) ≥
1− exp (−nDKL (Bern(p+ ϵ) ∥ Bern(p))) (3)

where DKL (Bern(p+ ϵ) ∥ Bern(p)) is the KL divergence
between the Bernoulli distribution with parameter p+ ϵ and
the Bernoulli distribution with parameter p. A simpler, but
less tight lower bound is given by

Pr (x̂p ≥ xp) ≥ 1− exp
(
−2nϵ2

)
. (4)

We prove both results in Appendix C.

We want to apply these results in the following situation.
We fix 0 < p, δ < 1, ϵ > 0 with p + ϵ < 1 and want to
know how many points we need to sample such that we get

Pr(x̂p ≥ xp) ≥ δ. (5)

By setting the right hand sides of the equations above equal
to δ and solving for n, we obtain the values of n shown in
Table 1.

In the results in Appendix B, we sample a million pairs of
input and patch inputs independently. Applying the results
from this section, if we take ϵ = 5 × 10−4, then for the
95th-percentile, δ = 0.9891, whereas for the 99-th, 99.9-
th and 99.99-th percentile, δ is indistinguishably close to
1 in the stats.scipy package. For our main results
(described in Section 3), however, we independently sample
a thousand inputs and a thousand patch inputs, for a total
of a one million pairs. However, these million pairs are
not independent, so the results from this section do not
apply directly. We can instead consider them as 1000 i.i.d.
samples, even though that underestimates the true results,
and then some reasonable numbers to consider would be the
following: for ϵ = 0.01 and p = 0.95, we find δ = 0.9194;
for ϵ = 5× 10−3 and p = 0.99, we find δ = 0.9339.

3. Results
We applied the method described in Section 2 to three cir-
cuits found previously in the literature: the circuits for the

Table 1. A table showing how many samples are needed such
that x̂p is an upper bound of the p-th percentile of a real-valued
distribution with probability at least δ; i.e., such that we have
Pr(x̂p ≥ xp) ≥ δ (equation (5)). The column labeled “exact”
uses the exact calculation from equation (equation (2)); the col-
umn “Chernoff” uses the formula based on the Chernoff bound
(equation (3)); and the column “Hoeffding” uses the formula based
on Hoeffding’s inequality (equation (4)). The “exact” column
will always provide a more precise value; the other columns are
included to give the reader a sense of the approximation quality.

p δ ϵ exact Chernoff Hoeffding

0.95 0.95 0.01 1282 2659 14 979

0.95 0.99 0.01 2437 4088 23 026

0.95 0.95 0.04 59 122 937

0.99 0.95 0.005 1049 1937 59 915

0.99 0.99 0.005 1736 2978 92 104

0.999 0.999 0.0005 31 236 44 987 13 815 511

IOI task (Wang et al., 2022), for the docstring task (Heimer-
sheim & Janiak, 2023), and for the greater-than task (Hanna
et al., 2023). In each of these tasks, the model needs to
complete a sentence created from a task-specific template.
For example, in the IOI task, the template is of the form “Af-
terwards, [name1] and [name2] went to the [place].
[name2] gave a [object] to ....”, and the model’s task
is to complete the sentence with the token for [name1].
These task-specific templates are described in Table 2.

First, to determine the circuit’s explanatory power over a
range of inputs, we sampled 1000 clean inputs and 1000
corrupted inputs, for a total of 1 million pairs for each
task. We used the same data distributions as in (Conmy
et al., 2023); these distributions sample each template value
from a pre-determined list with equal probability. A crucial
difference, though, is that we mixed all clean inputs with all
corrupted inputs, whereas the original datasets paired them
up in more restrictive ways. For example, in IOI, we allowed
the corrupted input point to involve a different object and
place, whereas originally the clean and corrupted inputs
coincided on everything but the names. In Appendix B, we
argue for this approach over only using the corrupted inputs
that were used in the original dataset, but for completeness,
that section also contains our evaluation of the circuit using
only the corrupted inputs from the original dataset.

We then calculated the KL divergence between the model’s
output and the circuit’s output for all those pairs and plotted
the results as histograms in Figures 1 to 3. Summary statis-
tics for these distributions are displayed in Table 3. The
high percentiles and the max KL divergence shown in that
table can then be considered as the adversarial evaluation
metrics.
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Secondly, to get a better understanding of the worst-case be-
havior of these circuits, we took the top 10 worst-performing
(input, corrupted input) pairs for each circuit, and performed
a forward-pass on the circuit and the model to obtain the top
three most likely outputs for both the model and the circuit.
These results are displayed in Appendix A, Tables 4 to 6.
We discuss some of their implications below.
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Figure 1. A histogram of the KL divergence for the IOI task. The
x-axis shows the KL divergence between the model’s output and
the circuit’s output on an input-corrupted-input pair, and the y-axis
shows the number of input-corrupted-input pairs from our random
sample of 1 million points that fall into each bin. There are 100
bins of equal size between the values of 0 and the maximum KL
divergence achieved. Summary statistics of the plotted distribution
are displayed in Table 3.
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Figure 2. A histogram of the KL divergence for the greater-than
task.

Comparing the KL divergence distributions The table
of summary statistics (Table 3) for the distribution of KL
divergences for the three tasks, computed on our random
sample of 1 million input-corrupted-input pairs, shows that
each circuit’s worst-case performance is quite far from its
mean performance. For the IOI and docstring tasks, the
standard deviation is quite large, the worst points we found
are more than 5 standard deviations away from the mean,
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Figure 3. A histogram of the KL divergence for the docstring task.

and the z-scores indicate that the distributions have slightly
thicker tails than the normal distribution. All of this indi-
cates that it is worthwhile to pay attention to the tails of the
distribution when evaluating the circuit’s performance.

Docstring A notable feature of the 10 worst-performing
input pairs for the docstring task is that 7 out of the
10 have the same corrupted input (def image(self,
key, file, ...)), which heavily skews the output log-
its towards the parameters from that corrupted input (notably
the file parameter). This indicates that there are some
components outside of the circuit that play a strong role in
this task and perhaps only activate on certain inputs.

Greater-than The greater-than circuit is the best-
performing circuit of the three: the worst-performing input
pairs have a much lower KL divergence, and their KL di-
vergence does not deviate as much from the mean as the
other two tasks (see Table 3). The output analysis in Table 6
shows that even in the 10 worst cases, the circuit’s most
likely output always coincides with the model’s most likely
output, and the top three most likely outputs are almost
always admissible.

Moreover, unlike in the other two tasks, there is a straightfor-
ward explanation that could have been predicted in advance:
the worst-performing points are those where the clean input
has a very high two-digit number (e.g., 94), so that there are
very few allowed completions (only the two-digit numbers
> 94), whereas the corrupted input has a very low two-digit
number (e.g. 01), allowing almost all two-digit numbers
as completion. If we assume that the full model’s output
distributions are approximately uniform over all allowable
two-digits completions, for example, then the KL diver-
gence between the clean input’s output and the corrupted
input’s output is maximal, which plausibly explains why
these inputs are the worst-performing inputs. We provide
more evidence for this claim in D.

4



Adversarial Circuit Evaluation

Table 2. A table summarizing the tasks for the circuits we analyze. Note that in each case, the template values in the corrupted input are
completely independent from the template values in the clean input.

Task Input template Expected output LLM Notes

Docstring

clean: Python function
definitions with a
docstring that starts
describing the function’s
parameters, but crucially
does not list all
parameters.

The name of the next
undescribed parameter
in the docstring.

attn-only-4l7

corrupted: Similar to clean, but the
parameters in the
docstring are not
necessarily the same as
in the function
definition.

Greater-than

clean: “The [noun] lasted
from the year [year
d1d2d3d4] to [d1d2]”

any 2-digit number
higher than d3d4

gpt2-small
corrupted: Similar to clean, but the

last two digits of the
year are always 01.

IOI

clean: “Afterwards, [name1]
and [name2] went to
the [place].
[name2] gave a
[object] to ”

[name1]

gpt2-small

This template can easily
be varied, e.g. by
switching the order of
the names or changing
some of the
non-templated words,
such as replacing “went
to” with “decided to go
to”.

corrupted: “Afterwards, [name1’]
and [name2’] went to
the [place’].
[name3’] gave a
[object’] to ”

Table 3. Summary statistics from the KL divergence distributions plotted in Figures 1 to 3. The columns labelled “abs” show the absolute
values of the KL divergence, whereas the columns labelled “z-score” show the difference between the percentile and the mean expressed
as a multiple of the standard deviation.

docstring greaterthan ioi

abs z-score abs z-score abs z-score

count 1000000.00 1000000.00 1000000.00

mean 3.91 2.09 5.15

std 1.45 1.04 1.70

min 0.10 -2.63 0.08 -1.92 0.03 -3.01

25% 2.85 -0.73 1.23 -0.82 4.01 -0.67

50% 3.66 -0.17 2.07 -0.01 5.12 -0.02

75% 4.75 0.58 2.91 0.79 6.27 0.66

95% 6.66 1.90 3.77 1.61 7.99 1.67

99% 8.03 2.85 4.23 2.05 9.25 2.41

99.9% 9.46 3.84 4.63 2.44 10.81 3.33

99.99% 10.58 4.61 4.91 2.71 12.25 4.17

max 12.07 5.64 5.31 3.09 14.64 5.57
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IOI One striking feature of the worst-performing input
pairs for the IOI task is that they often seem to involve
romantic items. We provide more evidence for this observa-
tion in D. This behavior was even more apparent in earlier
iterations of our experiment where we fixed the corrupted
input. A plausible hypothesis is that parts of the model
outside of the circuit are dormant in normal contexts but
activate when romantic items are involved.

It is also worth noting that the IOI dataset from (Conmy
et al., 2023) that we used only has eight possible values 8

for the object being given. It seems plausible that the circuit
could behave very poorly on other objects as well.

4. Discussion
We have found that the IOI and Docstring circuits can pro-
duce very different outputs than the full model, even on
inputs from the original task. In both cases, the worst-case
performance is quite far from the mean performance. This
casts doubt on the possibility of using these circuits to under-
stand the full model’s behavior. We expect this discrepancy
to be even worse on untested input data or under minor dis-
tributional shifts: what happens when Mary has secret plans
to give an atomic bomb?

Some of the badly performing inputs seem to follow a pat-
tern, e.g., IOI’s failure in romantic contexts and Docstring’s
tendency to pick up on the file parameter in the corrupted
input. It seems likely that we could improve the circuits by
addressing these specific issues. However, there are also
aspects of the circuits’ failure that seem more random and
inscrutable, and it is unclear if these issues can be fixed,
or if there is some fundamental, inherent limitation to the
circuits’ explanatory power.

We conclude that it is important to find circuits that are
more robust, and speculate that we might achieve this by
using adversarial evaluation metrics in circuit discovery
techniques.

5. Future Work
This paper proposes a method for evaluating circuits adver-
sarially. As we have already alluded to, these evaluation
criteria could be integrated into circuit discovery algorithms.
In future work, we aim to do this and test its effectiveness.
It might improve both the average and worst-case perfor-
mance.

Additionally, the hope is that this will lead to circuits that
are more robust under distributional shifts. The results of
this paper show that even under small changes in the input,

8The objects are: ring, kiss, bone, basketball, computer, neck-
lace, drink, and snack.

the circuit can lose its explanatory power. If we want to
use circuits in safety-critical applications, they need to be
more robust. It would be worthwhile to measure how robust
current circuits are to distributional and to try to improve
this robustness.
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A. Tables of worst-performing input points
See Tables 4 to 6 for the tables of (input, corrupted input) pairs on which the circuits perform the worst, together with the
most likely outputs for those inputs. See Section 3 for more details.

Table 4. Top 10 worst-performing input pairs and corresponding 3 most likely outputs for the IOI task. The first two columns show the top
10 worst-performing input pairs, with the worst on top. The third column displays the KL divergence between the full model’s output, and
the circuit’s output when run with resample ablation using the patch input, as explained in detail in Section 2. The last 6 columns show the
three most likely output tokens for the model and the circuit, with that output’s unnormalized logit score shown in parentheses beneath it.

model circuit

input patch input loss 1st 2nd 3rd 1st 2nd 3rd

Then, Tiffany and Sean
went to the house. Sean
gave a basketball to

Then, Samuel and
Adam went to the
garden. Daniel gave a
drink to

14.64
’ Tiffany’

(19.60)

’ the’

(14.24)

’ Sean’

(13.91)

’ them’

(17.16)

’ the’

(16.74)

’ Daniel’

(15.45)

Then, Crystal and Tyler
went to the restaurant.
Tyler gave a necklace
to

Then, Samuel and
Adam went to the
garden. Daniel gave a
drink to

14.30
’ Crystal’

(18.17)

’ the’

(14.59)

’ a’

(13.30)

’ them’

(16.80)

’ the’

(16.56)

’ Samuel’

(15.68)

Then, Tiffany and Sean
went to the house. Sean
gave a basketball to

Then, Samuel and
Gregory went to the
house. William gave a
snack to

14.03
’ Tiffany’

(19.60)

’ the’

(14.24)

’ Sean’

(13.91)

’ them’

(16.64)

’ the’

(16.31)

’ Tiffany’

(14.82)

Then, Erica and Justin
went to the house.
Justin gave a kiss to

Then, Mark and David
went to the garden.
Paul gave a drink to

14.01
’ Erica’

(19.99)

’ her’

(15.19)

’ the’

(15.07)

’ them’

(17.55)

’ the’

(16.41)

’ David’

(14.69)

Then, Brittany and
Brian went to the
garden. Brian gave a
basketball to

Then, Samuel and
Adam went to the
garden. Daniel gave a
drink to

13.54
’ Brittany’

(18.97)

’ Brian’

(15.04)

’ the’

(14.80)

’ them’

(17.16)

’ the’

(16.63)

’ Samuel’

(14.91)

Then, Tiffany and
Jason went to the
school. Jason gave a
basketball to

Then, Samuel and
Adam went to the
garden. Daniel gave a
drink to

13.53
’ Tiffany’

(18.30)

’ the’

(14.47)

’ her’

(13.88)

’ them’

(17.29)

’ the’

(16.75)

’ his’

(14.82)

Then, Allison and
Kevin went to the
school. Kevin gave a
necklace to

Then, Joseph and
Joseph went to the
garden. Thomas gave a
basketball to

13.50
’ Allison’

(19.08)

’ the’

(14.58)

’ her’

(14.08)

’ Allison’

(17.10)

’ them’

(15.63)

’ the’

(15.48)

Then, Erica and Justin
went to the house.
Justin gave a kiss to

Then, Timothy and
Samuel went to the
house. Jesse gave a
drink to

13.47
’ Erica’

(19.99)

’ her’

(15.19)

’ the’

(15.07)

’ them’

(17.35)

’ the’

(16.56)

’ Timothy’

(15.14)

Then, Erica and Justin
went to the house.
Justin gave a kiss to

Then, Samuel and
Adam went to the
garden. Daniel gave a
drink to

13.40
’ Erica’

(19.99)

’ her’

(15.19)

’ the’

(15.07)

’ them’

(17.01)

’ the’

(16.60)

’ his’

(14.97)

Then, Erica and Justin
went to the house.
Justin gave a kiss to

Then, Benjamin and
John went to the house.
Charles gave a snack to

13.35
’ Erica’

(19.99)

’ her’

(15.19)

’ the’

(15.07)

’ Erica’

(17.19)

’ the’

(15.93)

’ them’

(15.88)
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Table 5. Top 10 worst-performing input pairs and corresponding 3 most likely outputs for the docstring task.
model circuit

input patch input loss 1st 2nd 3rd 1st 2nd 3rd

\ndef port(self, order, match,
fields, model, old, parent):
\n"""agent rule manager
\n\n:param fields: set song
\n:param model: plane action
\n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

12.07
’ old’

(19.66)

’ new’

(17.75)

’ fields’

(16.64)

’ file’

(18.87)

’ filename’

(17.41)

’ line’

(16.74)

\ndef default(self, node, user,
current, text, port, item):
\n"""export manager mission
\n\n:param current: song spot
\n:param text: delay draft
\n:param

\ndef model(self, shape,
message, group, file, result,
fields): \n"""content host bed
\n\n:param new: share stage
\n:param page: lift range
\n:param

12.07
’ port’

(20.52)

’ current’

(15.69)

’ str’

(15.31)

’ port’

(17.82)

’ filename’

(17.39)

’ message’

(17.22)

\ndef default(self, node, user,
current, text, port, item):
\n"""export manager mission
\n\n:param current: song spot
\n:param text: delay draft
\n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

12.06
’ port’

(20.52)

’ current’

(15.69)

’ str’

(15.31)

’ file’

(19.44)

’ filename’

(17.97)

’ line’

(17.93)

\ndef create(self, token, field,
request, content, order, new):
\n"""tree cut hell \n\n:param
request: king bar \n:param
content: income creation
\n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

11.95
’ order’

(20.48)

’ request’

(18.78)

’ field’

(16.64)

’ file’

(20.19)

’ filename’

(17.68)

’ line’

(17.47)

\ndef values(self, json, module,
count, end, model, index):
\n"""lead respect dust
\n\n:param count: hell step
\n:param end: volume pair
\n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

11.90
’ model’

(21.46)

’ models’

(16.23)

’ id’

(15.41)

’ file’

(20.41)

’ filename’

(18.51)

’ line’

(17.95)

\ndef match(self, results,
default, order, check, row,
field): \n"""activity path
strength \n\n:param order:
product plane \n:param check:
fan bell \n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

11.88
’ row’

(20.65)

’ check’

(16.86)

’ bool’

(16.57)

’ file’

(19.56)

’ check’

(19.51)

’ line’

(18.09)

\ndef command(self, code,
instance, create, size, sub,
run): \n"""border horse trip
\n\n:param create: bishop
attack \n:param size: duty
horse \n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

11.80
’ sub’

(20.32)

’ run’

(15.97)

’ name’

(15.80)

’ file’

(20.00)

’ bool’

(17.52)

’ filename’

(17.31)

\ndef default(self, node, user,
current, text, port, item):
\n"""export manager mission
\n\n:param current: song spot
\n:param text: delay draft
\n:param

\ndef error(self, order, shape,
match, filename, message,
results): \n"""star opening
risk \n\n:param file: cycle
second \n:param content: race
staff \n:param

11.53
’ port’

(20.52)

’ current’

(15.69)

’ str’

(15.31)

’ item’

(18.44)

’ text’

(18.06)

’ int’

(17.22)

\ndef item(self, old, code,
header, response, node, sub):
\n"""game phase birth
\n\n:param header: cap session
\n:param response: break player
\n:param

\ndef image(self, key, file,
filename, files, line,
expected): \n"""package crime
framework \n\n:param host:
dollar author \n:param command:
cup spring \n:param

11.44
’ node’

(21.31)

’ code’

(17.17)

’ child’

(15.85)

’ file’

(20.06)

’ line’

(18.03)

’ node’

(17.91)

\ndef expected(self, root,
results, host, module, names,
files): \n"""horse boot sector
\n\n:param host: thinking rock
\n:param module: rent tie
\n:param

\ndef error(self, action, image,
source, old, text, content):
\n"""charge conduct wife
\n\n:param task: meaning
shadow \n:param field: warning
self \n:param

11.41
’ names’

(21.83)

’ name’

(19.86)

’ files’

(17.22)

’ image’

(17.93)

’ file’

(17.43)

’ name’

(17.00)
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Table 6. Top 10 worst-performing input pairs and corresponding 3 most likely outputs for the greater-than task.
model circuit

input patch input loss 1st 2nd 3rd 1st 2nd 3rd

The dispute lasted from the
year 1694 to 16

The voyage lasted from the
year 1601 to 16

5.31
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(27.09)

’99’

(25.66)

’97’

(25.32)

The dispute lasted from the
year 1694 to 16

The expedition lasted from
the year 1701 to 17

5.22
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(27.07)

’99’

(25.37)

’97’

(24.50)

The dispute lasted from the
year 1694 to 16

The pilgrimage lasted from
the year 1601 to 16

5.18
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(27.45)

’99’

(26.14)

’97’

(25.98)

The dispute lasted from the
year 1694 to 16

The pilgrimage lasted from
the year 1601 to 16

5.18
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(27.45)

’99’

(26.14)

’97’

(25.98)

The dispute lasted from the
year 1694 to 16

The voyage lasted from the
year 1101 to 11

5.17
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(24.12)

’99’

(23.75)

’50’

(23.06)

The dispute lasted from the
year 1694 to 16

The voyage lasted from the
year 1101 to 11

5.17
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(24.12)

’99’

(23.75)

’50’

(23.06)

The dispute lasted from the
year 1694 to 16

The voyage lasted from the
year 1101 to 11

5.17
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(24.12)

’99’

(23.75)

’50’

(23.06)

The dispute lasted from the
year 1694 to 16

The pilgrimage lasted from
the year 1201 to 12

5.15
’95’

(27.43)

’97’

(26.22)

’96’

(26.19)

’95’

(25.83)

’99’

(25.40)

’97’

(25.16)

The raids lasted from the
year 1788 to 17

The expedition lasted from
the year 1701 to 17

5.13
’89’

(28.32)

’90’

(27.60)

’99’

(27.38)

’89’

(28.30)

’90’

(27.61)

’93’

(27.17)

The raids lasted from the
year 1788 to 17

The voyage lasted from the
year 1601 to 16

5.12
’89’

(28.32)

’90’

(27.60)

’99’

(27.38)

’89’

(27.21)

’90’

(27.16)

’99’

(26.71)

B. Results with less adversarial patch inputs
For our main results in Section 3, we took a very adversarial approach towards the patch inputs: any clean input could be
paired with any patch input for resample ablation. However, the circuits were originally found and tested with resample
ablations that were more restrictive:

• In the IOI task, the location and object in the corrupted input were the same as in the clean input.

• In the docstring task, the only difference between the corrupted input and the clean input was the parameter names in
the docstring.

• In the greater-than task, the event and the first two digits of the years in the corrupted input were the same as in the
clean input.

(We recall that a short description of these tasks is shown in Table 2.)

We believe the our more adversarial approach that allows any corrupted input to be matched with any clean input, is justified
for the following reasons:

• The high-level explanation in (Wang et al., 2022) suggests that the model identifies the indirect object through a
mechanism that does not depend in any way on the location or object. Some attention heads are name identifiers, others
duplicate detectors, others name inhibitors – none of these depend on the location or object.
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• The additional information that is ablated is not necessary to complete the task.

• The tasks inputs still follow the same restrictive template.

For completeness, this section presents the adversarial evaluation metrics on random samples of 1 million input-corrupted-
input pairs where the patch inputs are matched in the same way as in the original dataset.

Table 7 shows the standard deviations and the means are lower than if we allow any corrupt input, indicating that the circuits
indeed perform better on these matched input-corrupted-input pairs. However, the worst points are many standard deviations
(9.97 and 15.47 for docstring and IOI, respectively) removed from the mean, so there are still inputs on which the circuits
perform very poorly.

The table with the top 10 worst inputs for IOI (Table 8) shows that many of our conclusions still hold: the worst inputs look
very benign, but the model correctly predicts the next token, whereas the circuit either takes a name from the patched input
or repeats the subject rather than identifying the indirect object, with very high confidence.

The greater-than circuit performs very well, and on the top 10 worst inputs, all the most likely tokens are permissible. Most
of the 10 worst inputs for the docstring task usually predict a token that is indeed one of the parameters, but it has already
occurred before in the clean input.
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Figure 4. A histogram of the KL divergence for the IOI task, where all input-corruputed-input pairs are matched in the same way as
in the original dataset, i.e., with the same location and object in the corrupted input as in the clean input. The x-axis shows the KL
divergence between the model’s output and the circuit’s output on an input-corrupted-input pair, and the y-axis shows the number of
input-corrupted-input pairs from our random sample of 1 million points that fall into each bin. There are 100 bins of equal size between
the values of 0 and the maximum KL divergence achieved. Summary statistics of the plotted distribution are displayed in Table 3.
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Figure 5. A histogram of the KL divergence for the greater-than task where all input-corruputed-input pairs are matched in the same way
as in the original dataset, i.e., with the same event and first two digits in the corrupted input as in the clean input.
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Figure 6. A histogram of the KL divergence for the docstring task where all input-corruputed-input pairs are matched in the same way as
in the original dataset, i.e., the only difference between the corrupted input and the clean input is the parameter names in the docstring (but
the parameters in the function signature are the same).

Table 7. Summary statistics from the KL divergence distributions plotted in Figures 4 to 6. The columns labelled “abs” show the absolute
values of the KL divergence, whereas the columns labelled “z-score” show the difference between the percentile and the mean expressed
as a multiple of the standard deviation.

docstring greaterthan ioi

abs z-score abs z-score abs z-score

count 1000000.00 1000000.00 1000000.00

mean 1.38 0.08 0.59

std 0.93 0.06 0.53

min 0.01 -1.46 0.01 -1.29 0.00 -1.10

25% 0.71 -0.72 0.04 -0.66 0.21 -0.71

50% 1.11 -0.28 0.07 -0.25 0.42 -0.32

75% 1.78 0.43 0.10 0.32 0.80 0.39

95% 3.29 2.04 0.20 1.94 1.65 1.98

99% 4.57 3.41 0.33 3.99 2.49 3.57

99.9% 6.06 5.01 0.46 6.14 3.85 6.12

99.99% 7.33 6.37 0.54 7.45 5.34 8.92

max 9.97 9.19 0.60 8.47 8.83 15.47
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Table 8. Top 10 worst-performing input pairs and corresponding 3 most likely outputs for the IOI task where all input-corrupted-input
pairs are matched in the same way as in the original dataset. The first two columns show the top 10 worst-performing input pairs, with
the worst on top. The third column displays the KL divergence between the full model’s output, and the circuit’s output when run with
resample ablation using the patch input, as explained in detail in Section 2. The last 6 columns show the three most likely output tokens
for the model and the circuit, with that output’s unnormalized logit score shown in parentheses beneath it.

input patch input loss model 0 model 1 model 2 circuit 0 circuit 1 circuit 2

Then, Stephen and
Jacob had a lot of fun
at the house. Jacob
gave a necklace to

Then, Jacob and Kelly
had a lot of fun at the
house. Adam gave a
necklace to

7.07
’ Stephen’

(17.77)

’ the’

(14.43)

’ his’

(14.32)

’ Jacob’

(20.96)

’ the’

(14.43)

’ his’

(14.27)

Then, Alicia and
Steven had a lot of fun
at the hospital. Steven
gave a kiss to

Then, Jacob and Jose
had a lot of fun at the
hospital. Amber gave
a kiss to

6.62
’ Alicia’

(18.22)

’ her’

(15.33)

’ the’

(15.10)

’ Steven’

(20.09)

’ her’

(14.66)

’ the’

(14.60)

Then, Brandon and
Rachel had a lot of fun
at the store. Rachel
gave a basketball to

Then, Rachel and
Jesse had a lot of fun
at the store. Paul gave
a basketball to

6.37
’ Brandon’

(18.98)

’ Rachel’

(15.06)

’ the’

(14.11)

’ Rachel’

(20.26)

’ the’

(14.15)

’ her’

(13.58)

Then, Brandon and
Rachel had a lot of
fun at the garden.
Rachel gave a kiss to

Then, Rebecca and
Gregory had a lot of
fun at the garden.
Aaron gave a kiss to

6.25
’ Brandon’

(18.37)

’ Rachel’

(16.05)

’ the’

(14.73)

’ Rachel’

(21.39)

’ the’

(15.49)

’ her’

(15.17)

Then, Stephanie and
Joseph had a lot of fun
at the restaurant.
Joseph gave a
necklace to

Then, Joseph and
Nathan had a lot of
fun at the restaurant.
Jennifer gave a
necklace to

6.19
’ Stephanie’

(19.24)

’ the’

(14.61)

’ her’

(13.82)

’ Joseph’

(19.28)

’ the’

(15.24)

’ them’

(14.32)

Then, Patrick and
Rachel had a lot of
fun at the restaurant.
Rachel gave a
basketball to

Then, Samuel and
Lauren had a lot of
fun at the restaurant.
Patrick gave a
basketball to

5.86
’ Patrick’

(18.38)

’ Rachel’

(14.38)

’ the’

(14.34)

’ Rachel’

(19.87)

’ the’

(14.48)

’ a’

(13.68)

Then, Joshua and
Rachel had a lot of
fun at the garden.
Rachel gave a kiss to

Then, Christina and
Jonathan had a lot of
fun at the garden.
Melissa gave a kiss to

5.75
’ Joshua’

(18.42)

’ Rachel’

(15.34)

’ the’

(15.12)

’ Rachel’

(20.42)

’ the’

(15.26)

’ her’

(14.71)

Then, Vanessa and
Stephen had a lot of
fun at the garden.
Stephen gave a kiss to

Then, Sara and Travis
had a lot of fun at the
garden. Rebecca gave
a kiss to

5.68
’ Vanessa’

(18.52)

’ the’

(15.26)

’ her’

(14.95)

’ Stephen’

(17.42)

’ the’

(15.46)

’ her’

(14.78)

Then, Richard and
Erin had a lot of fun at
the store. Erin gave a
ring to

Then, Allison and
Jose had a lot of fun at
the store. Nicholas
gave a ring to

5.63
’ Richard’

(17.33)

’ the’

(14.18)

’ Erin’

(13.54)

’ Erin’

(20.11)

’ the’

(14.36)

’ a’

(13.34)

Then, Thomas and
Dustin had a lot of fun
at the store. Dustin
gave a necklace to

Then, Allison and
Jose had a lot of fun at
the store. Amy gave a
necklace to

5.60
’ Thomas’

(16.60)

’ the’

(14.34)

’ his’

(13.40)

’ Dustin’

(19.55)

’ the’

(14.61)

’ Dust’

(13.71)
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Table 9. Top 10 worst-performing input pairs and corresponding 3 most likely outputs for the docstring task where all input-corrupted-input
pairs are matched in the same way as in the original dataset.

input patch input loss model 0 model 1 model 2 circuit 0 circuit 1 circuit 2

\ndef date(self, options,
result, context, user, tag,
error): \n"""bench round
model \n\n:param context:
input sense \n:param user:
album second \n:param

\ndef date(self, options,
result, port, shape, new,
error): \n"""bench round
model \n\n:param parent:
input sense \n:param order:
album second \n:param

8.73
’ tag’

(22.25)

’ tags’

(16.94)

’ context’

(16.52)

’ result’

(18.15)

’ error’

(16.81)

’:’

(16.53)

\ndef client(self, url,
image, file, server, values,
request): \n"""fuel scale
acid \n\n:param file: pub
resident \n:param server:
cell disk \n:param

\ndef client(self, url,
image, token, code, state,
request): \n"""fuel scale
acid \n\n:param content:
pub resident \n:param msg:
cell disk \n:param

7.64
’ values’

(23.30)

’ value’

(19.80)

’ data’

(17.54)

’ server’

(19.55)

’ file’

(18.60)

’ request’

(17.34)

\ndef source(self, content,
group, project, tag, run,
test): \n"""seed post
sample \n\n:param project:
command distance \n:param
tag: bank delay \n:param

\ndef source(self, content,
group, results, options,
name, test): \n"""seed post
sample \n\n:param default:
command distance \n:param
current: bank delay
\n:param

7.54
’ run’

(21.77)

’ test’

(16.69)

’ project’

(16.68)

’ project’

(16.79)

’ target’

(16.23)

’ group’

(16.22)

\ndef check(self, action,
last, text, base, run,
table): \n"""message duty
scope \n\n:param text: bank
height \n:param base: post
sum \n:param

\ndef check(self, action,
last, title, path, url,
table): \n"""message duty
scope \n\n:param current:
bank height \n:param call:
post sum \n:param

7.43
’ run’

(20.48)

’ base’

(16.45)

’ line’

(16.41)

’ table’

(17.80)

’ str’

(17.56)

’ base’

(17.25)

\ndef call(self, path, end,
option, log, instance, msg):
\n"""style drop demand
\n\n:param option: colour
entry \n:param log: impact
cancer \n:param

\ndef call(self, path, end,
task, update, new, msg):
\n"""style drop demand
\n\n:param node: colour
entry \n:param header:
impact cancer \n:param

7.42
’ instance’

(20.95)

’ str’

(15.92)

’ bool’

(15.80)

’ log’

(17.91)

’ path’

(17.09)

’ str’

(16.92)

\ndef date(self, options,
num, page, table, files,
default): \n"""root fund
boy \n\n:param page: bar
finger \n:param table: lane
storm \n:param

\ndef date(self, options,
num, value, config, order,
default): \n"""root fund
boy \n\n:param valid: bar
finger \n:param group: lane
storm \n:param

7.29
’ files’

(23.10)

’ file’

(21.28)

’ filename’

(17.47)

’ table’

(17.95)

’ num’

(16.62)

’ str’

(16.54)

\ndef tag(self, content,
port, test, end, model,
count): \n"""top release
drop \n\n:param test:
collection reading \n:param
end: protein dream \n:param

\ndef tag(self, content,
port, date, target, text,
count): \n"""top release
drop \n\n:param string:
collection reading \n:param
index: protein dream
\n:param

7.26
’ model’

(19.99)

’ test’

(16.13)

’ models’

(15.54)

’ string’

(16.73)

’ int’

(16.02)

’ bool’

(15.57)

\ndef instance(self, state,
size, project, image, fields,
run): \n"""father sort
horse \n\n:param project:
dollar protein \n:param
image: duty net \n:param

\ndef instance(self, state,
size, server, end, target,
run): \n"""father sort
horse \n\n:param config:
dollar protein \n:param
description: duty net
\n:param

7.12
’ fields’

(21.71)

’ field’

(18.85)

’ name’

(16.97)

’ value’

(14.27)

’ str’

(14.22)

’ int’

(14.15)

\ndef data(self, parent, new,
url, model, found, count):
\n"""bone trip user
\n\n:param url: user
location \n:param model:
device object \n:param

\ndef data(self, parent, new,
date, order, message, count):
\n"""bone trip user
\n\n:param field: user
location \n:param command:
device object \n:param

7.12
’ found’

(19.72)

’ discovered’

(15.77)

’ data’

(15.38)

’ url’

(16.38)

’ description’

(15.97)

’ model’

(15.96)

\ndef user(self, current,
server, table, tag, result,
group): \n"""cake saving
pub \n\n:param table:
fashion user \n:param tag:
committee tree \n:param

\ndef user(self, current,
server, fields, base, match,
group): \n"""cake saving
pub \n\n:param order:
fashion user \n:param old:
committee tree \n:param

7.07
’ result’

(22.19)

’ user’

(16.85)

’ current’

(16.37)

’ table’

(16.64)

’ user’

(16.43)

’ server’

(16.14)
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Table 10. Top 10 worst-performing input pairs and corresponding 3 most likely outputs for the greater-than task where all input-corrupted-
input pairs are matched in the same way as in the original dataset.

input patch input loss model 0 model 1 model 2 circuit 0 circuit 1 circuit 2

The sanctions lasted from
the year 1520 to 15

The sanctions lasted from
the year 1501 to 15

0.60
’30’

(25.73)

’25’

(25.17)

’40’

(24.95)

’21’

(25.54)

’23’

(25.27)

’22’

(25.15)

The sanctions lasted from
the year 1520 to 15

The sanctions lasted from
the year 1501 to 15

0.60
’30’

(25.73)

’25’

(25.17)

’40’

(24.95)

’21’

(25.54)

’23’

(25.27)

’22’

(25.15)

The reforms lasted from
the year 1520 to 15

The reforms lasted from
the year 1501 to 15

0.59
’30’

(25.91)

’25’

(25.26)

’40’

(25.14)

’21’

(25.38)

’23’

(25.07)

’22’

(24.98)

The accord lasted from
the year 1520 to 15

The accord lasted from
the year 1501 to 15

0.58
’30’

(25.75)

’25’

(25.24)

’40’

(24.78)

’21’

(25.85)

’22’

(25.39)

’23’

(25.30)

The accord lasted from
the year 1520 to 15

The accord lasted from
the year 1501 to 15

0.58
’30’

(25.75)

’25’

(25.24)

’40’

(24.78)

’21’

(25.85)

’22’

(25.39)

’23’

(25.30)

The accord lasted from
the year 1520 to 15

The accord lasted from
the year 1501 to 15

0.58
’30’

(25.75)

’25’

(25.24)

’40’

(24.78)

’21’

(25.85)

’22’

(25.39)

’23’

(25.30)

The flights lasted from the
year 1580 to 15

The flights lasted from the
year 1501 to 15

0.56
’90’

(27.01)

’85’

(24.96)

’80’

(24.83)

’90’

(26.09)

’83’

(25.51)

’85’

(25.41)

The flights lasted from the
year 1580 to 15

The flights lasted from the
year 1501 to 15

0.56
’90’

(27.01)

’85’

(24.96)

’80’

(24.83)

’90’

(26.09)

’83’

(25.51)

’85’

(25.41)

The flights lasted from the
year 1680 to 16

The flights lasted from the
year 1601 to 16

0.54
’90’

(28.71)

’80’

(26.84)

’85’

(26.71)

’90’

(27.09)

’83’

(26.79)

’82’

(26.49)

The flights lasted from the
year 1680 to 16

The flights lasted from the
year 1601 to 16

0.54
’90’

(28.71)

’80’

(26.84)

’85’

(26.71)

’90’

(27.09)

’83’

(26.79)

’82’

(26.49)

C. Proof of Percentile Bounds
In this appendix, we prove Proposition 2.1 and Corollary 2.2.

We remind the reader of the setup. Let X be some randomly distributed variable, let 0 < p < 1, and let ϵ > 0 with p+ ϵ < 1.
Suppose we have a sample of n i.i.d. draws from X and we want to use that sample to find an upper bound of the real (but
unknown) p-th percentile of X . We denote the real p-th percentile by xp and we take as our estimate for the upper bound

x̂p := the ⌈n(p+ ϵ)⌉-th element in the sample ordered by value from low to high. (6)

Note that ϵ can be considered a kind of safety margin: by making it bigger, we get a less tight estimate of the upper bound,
but we increase the probability that it is actually an upper bound.

Proof of Proposition 2.1. The probability P(x̂p ≥ xp) is the same as the probability that fewer than ⌈n(p+ ϵ)⌉ elements
from our sample come from the lower p percentiles of the distribution — indeed, this is equivalent to saying that the
⌈n(p+ ϵ)⌉-th element comes from the upper 1− p percentiles, and is hence at at least as large as xp.

We can calculate this probability with the binomial distribution Binom(n, p), because the probability of drawing a sample
from the lower p percentiles is precisely p.

Let Y ∼ Binom(n, p) be a binomially distributed random variable, and let p < a < 1. Then the Chernoff bound (Arratia &
Gordon, 1989, Theorem 1) says

Pr(Y ≥ an) ≤ exp(−nDKL (Bern(a) ∥ Bern(p))). (7)

15



Adversarial Circuit Evaluation

Alternatively, Hoeffding’s inequality (Hoeffding, 1963, Theorem 1) says

Pr

(
1

n
Y − p ≥ a− p

)
≤ exp(−n(a− p)2) (8)

which we can rewrite to

Pr(Y ≥ an) ≤ exp(−n(a− p)2). (9)

Proof of Corollary 2.2. Proposition 2.1 tells us

Pr (x̂p ≥ xp) = FBinom(⌈(p+ ϵ) · n⌉ − 1;n, p) (10)

We can rewrite the right hand side:

FBinom(⌈(p+ ϵ) · n⌉ − 1;n, p) = Pr (Y ≤ ⌈(p+ ϵ) · n⌉ − 1)

= 1− Pr (Y ≥ ⌈(p+ ϵ) · n⌉)
(11)

where Y ∼ Binom(n, p). Applying the Chernoff bound (7), or alternatively applying the Hoeffding inequality (9), gives us
the inequalities we’re looking for.

D. Analysis of circuit performance grouped by prompt fields
In 3, we remarked on some patterns in the top 10 worst-performing inputs listed in Appendix A. In this appendix, we provide
additional support for those claims, by not just looking at the top 10 worst-performing inputs, but by grouping all inputs
based on a template value in their prompt (e.g. in the IOI task, the place, or the object that is being given). The data shows
that certain template values lead to higher losses more often.

For IOI, Figures 7 to 9 show that the performance of the IOI circuit in the higher percentiles varies considerably with the
object and the location that appear in the clean input prompt. The more romantic objects, such as “kiss” and “necklace”,
perform especially poorly, but there are also other objects and object-location combinations that perform poorly. In future
work we hope to find a mechanistic explanation for the circuit’s failure in these cases.
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Figure 7. IOI: Three heatmaps, showing different percentiles (the max, the 99.9th percentile, and the 99.99th percentile) of the distribution
of KL divergences between the circuit’s output and the model’s output on a sample of 1 million input-corrupted-input pairs, as in Section 3,
plotted against the location and the object in the clean input prompt.
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Figure 8. IOI: Three heatmaps, showing different percentiles (the max, the 99.9th percentile, and the 99.99th percentile) of the distribution
of KL divergences between the circuit’s output and the model’s output on a sample of 1 million input-corrupted-input pairs, as in Section 3,
plotted against the object in the clean input and the object in the patch input.

 g
ar

de
n

 h
os

pi
ta

l

 h
ou

se

 o
ffi

ce

 re
st

au
ra

nt

 sc
ho

ol

 st
at

io
n

 st
or

e

location

 g
ar

de
n

 h
os

pi
ta

l
 h

ou
se

 o
ffi

ce
 re

st
au

ra
nt

 sc
ho

ol
 st

at
io

n
 st

or
e

pa
tc

h_
lo

ca
tio

n

13.54 12.62 14.64 13.31 14.30 13.53 12.67 13.34

11.11 10.48 12.09 11.24 11.51 11.94 11.19 10.91

12.76 12.42 14.03 12.80 13.01 12.94 12.10 12.74

12.57 11.55 12.90 12.22 12.25 12.77 11.95 12.93

11.69 11.24 12.11 11.33 11.99 11.83 10.83 11.50

12.53 10.87 13.24 12.55 12.52 12.03 11.60 12.52

11.76 11.00 13.31 11.18 12.25 12.25 11.81 12.06

12.01 11.22 12.14 11.79 12.23 12.52 11.74 11.21

Heatmap of ('loss', 'max') by patch_location and location

 g
ar

de
n

 h
os

pi
ta

l

 h
ou

se

 o
ffi

ce

 re
st

au
ra

nt

 sc
ho

ol

 st
at

io
n

 st
or

e

location

 g
ar

de
n

 h
os

pi
ta

l
 h

ou
se

 o
ffi

ce
 re

st
au

ra
nt

 sc
ho

ol
 st

at
io

n
 st

or
e

pa
tc

h_
lo

ca
tio

n

11.60 11.27 11.96 11.55 11.44 11.31 10.66 11.42

10.06 9.80 10.67 10.12 9.91 10.35 9.69 10.20

11.36 10.65 11.70 11.11 11.37 11.13 10.48 11.30

10.75 10.15 11.20 10.90 10.92 10.76 10.14 10.83

10.52 10.07 11.05 10.64 10.71 10.54 9.80 10.75

10.78 10.17 10.88 10.56 10.36 10.36 10.03 10.73

10.56 10.01 10.92 10.48 10.62 10.68 9.82 10.52

10.75 10.29 10.90 10.79 10.49 10.78 10.07 10.69

Heatmap of ('loss', '99.9%') by patch_location and location
 g

ar
de

n

 h
os

pi
ta

l

 h
ou

se

 o
ffi

ce

 re
st

au
ra

nt

 sc
ho

ol

 st
at

io
n

 st
or

e

location

 g
ar

de
n

 h
os

pi
ta

l
 h

ou
se

 o
ffi

ce
 re

st
au

ra
nt

 sc
ho

ol
 st

at
io

n
 st

or
e

pa
tc

h_
lo

ca
tio

n

12.87 12.32 13.53 12.79 13.21 12.89 12.09 12.92

10.92 10.41 11.67 10.95 10.61 11.38 10.52 10.58

12.35 11.31 13.40 12.62 12.77 12.15 11.93 12.67

12.03 11.44 12.53 12.03 12.04 12.23 11.36 12.49

11.30 10.93 11.88 11.14 11.90 11.48 10.77 11.40

11.60 10.79 12.14 11.77 12.20 11.53 11.02 11.94

11.29 10.81 12.31 11.07 11.77 11.89 10.68 11.69

11.69 11.10 11.67 11.59 11.10 12.02 11.19 11.14

Heatmap of ('loss', '99.99%') by patch_location and location

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

10.0

10.5

11.0

11.5

10.5

11.0

11.5

12.0

12.5

13.0

13.5

Figure 9. IOI: Three heatmaps, showing different percentiles (the max, the 99.9th percentile, and the 99.99th percentile) of the distribution
of KL divergences between the circuit’s output and the model’s output on a sample of 1 million input-corrupted-input pairs, as in Section 3,
plotted against the location in the clean input and the location in the patch input.

For the docstring task, we could not identify and then statistically confirm a clear hypothesis for why some inputs fared
much worse than others.

For the greater-than task, Figure 10 confirms that the circuit performs especially well when the last two digits of the year
in the clean input are very low (e.g. 1705), and especially poorly when the last two digits are very high (e.g. 1789), as
remarked towards the end of Section 3.
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Figure 10. Greater-Than: Three heatmaps, showing different percentiles (the max, the 99.9th percentile, and the 99.99th percentile) of the
distribution of KL divergences between the circuit’s output and the model’s output on a sample of 1 million input-corrupted-input pairs, as
in Section 3, plotted against the event and the year in the clean input prompt.
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