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Abstract. Lidar based 3D object detection has made great progress
in recent years and has become the mainstream configuration for au-
tonomous vehicles. However, Lidar can experience substantial perfor-
mance degradation in the case of adverse weather or long-distance object
detection, due to its short wavelength and the limitation of energy emis-
sion. 4D millimeter-wave radar is capable of providing 3D point clouds
similar to Lidar, with much more robustness against adverse weather
conditions. However, 3D object detection with only 4D radar is less sat-
isfactory due to the high sparsity and flickering nature of the measure-
ments. In this paper, we propose a novel 3D object detection method
termed RLNet, which effectively integrates 4D radar and Lidar through
adaptive feature fusion. An adaptive radar point speed compensation and
a modality dropout training strategy are further introduced to improve
the performance. RLNet achieves the state-of-the-art performance in the
experiments, outperforming baseline method by 7.35 and 2.76 percent
in mAP on the popular VoD and ZJUODset dataset, respectively. The
code will be available.
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1 Introduction

As a popular sensor for autonomous driving, Lidar is well-known for its capa-
bility of providing accurate 3D information of surrounding environments. As
a result, Many successful Lidar-based 3D object detection methods [1H5] have
been proposed and achieve state-of-the-art performance in a variety of public
datasets [6-8]. However, due to the short wavelength and energy emission lim-
itations, Lidar can experience substantial performance degradation in the case
of adverse weather [9] or long-distance object detection [10].

In recent years, 4D millimeter wave radar has received widespread attention.
Due to the penetrative nature of millimeter waves, radar can well handle adverse
weathers such as rain, snow, and fog, and achieve a longer detection distance [9].
Unlike the traditional 3D radar, 4D radar is capable of providing 3D point clouds
similar to Lidar, providing the possibility for accurate 3D object detection. Some
public datasets such as Astyx [11], VoD [12], Tj4dradset [13] and ZJUODset [10]
have been published to boost the research. However, the high sparsity and noisy
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Fig.1: A typical scenario on the ZJUODset . The orange and green points in the
left image denote the point clouds acquired by Lidar and 4D radar, respectively. The
three enlarged bounding boxes on the right show the exampling objects with only radar
points, only Lidar points and both of them, respectively.

nature of the acquired 4D radar point clouds pose a great challenge to the robust
detection.

As shown in Fig. [1} the information provided by Lidar and radar sensors can
be complementary for the object detection task. Radar can address the limi-
tations of Lidar in the case of part obstruction and objects in the distance, as
well as supplying valuable Doppler velocity to facilitate detection of dynamic
targets. Current Lidar and radar fusion methods do not well consider
the different characteristics of the two modalities during fusion, and they also
don’t take into account the extreme case of failure of one sensor. Therefore, it
is crucial to explore the differences in modalities and design appropriate fusion
approaches. To address these problems, we propose a novel 3D object detec-
tion method termed RLNet, which effectively fuses 4D radar and Lidar features
through adaptive weighting. A radar point speed compensation and a modality
dropout training policy are further introduced to improve the detection perfor-
mance. The experimental results on the VoD dataset and ZJUODset
demonstrate the effectiveness of our method.

In summary, our main contributions are as follows:

— We introduce a lightweight Lidar-radar fusion network, which fulfills the 3D
object detection task in complex environment by adaptively weighting the
importance of 4D radar and Lidar features.

— We propose an effective speed compensation method for radar point cloud
preprocessing. We estimate the ego-speed from the raw Doppler speed and
then obtain the compensated radial speed for each point.

— We propose a special training method with random modality dropout, which
enhances the feature of each single-modality and improves the robustness of
the network.
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Fig. 2: Framework of our RLNet.

— We conduct extensive experiments on the VoD [12] and ZJUODset |10,
datasets. Experimental results show that our method achieves state-of-the-
art performance.

2 Method

In this section, we introduce our RLNet network in detail, which fuses 4D radar
and Lidar point clouds for 3D object detection. The network framework is in-
troduced first, followed by description of each module.

2.1 Network Framework

We implement our RLNet based on SECOND |2], as shown in Fig. [2| Besides the
backbone, the framework consists of a speed compensation module, an adaptive
feature fusion module, and a random modality dropout strategy. Before inputting
to the network, the 4D radar point clouds are preprocessed by the speed com-
pensation module to obtain the absolute radial velocity for each point. After
feature extraction by the sparse encoders, the features from both the radar and
Lidar branches are fed into the adaptive feature fusion module, which gener-
ates suitable weights to each modal feature before concatenation. We design a
random modality dropout strategy during training, thereby enhancing the ro-
bustness of the network when the failure of one modality happens. The input
for each Lidar point is a 4D-vector with [x,y,z,r], where the first 3 components
are the 3D coordinates and the last one is the reflection magnitude. For the 4D
radar point, the input is regarded as a 6D-vector, with additional speed and
timestamp components over the Lidar point.

2.2 Speed compensation

The extra Doppler speed provided by the radar can be valuable for the network to
detect and classify the moving objects. However, the raw Doppler speed obtained
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Fig. 3: Illustration of speed compensation.

from 4D radar is the relative radial speed to the ego-vehicle. The unknown
motion of the ego-vehicle can greatly influence the measured Doppler speed,
causing difficulty to the network when utilizing the speed information. To address
this issue, we propose a speed compensation module for the radar points based
on the assumption that most of the radar points are static in the environment.
The process is illustrated in Fig. [3| and described as follows.

1. Assuming that the ego-vehicle moves only on x-y plane and heads along the
x direction, we project the raw Doppler speed of the points onto the x-y
plane, then project the resulting V,. to x-axis to obtain the relative speed V,
along the vehicle’s motion direction with V,, = V. /cos#;

2. Assuming the majority of points in the scene are from the background, which
is static relative to the world coordinate system, we divide the speed space
of V,, into several bins and count the votes in each bin, and the speed value
with the highest count is regarded as the estimated ego-vehicle velocity V,;

3. Compensate the radial velocity of each point based on the estimated ego-
vehicle velocity, with Veomp = Vi — V¢ * cosf. The resulting V.o, can better
model the speed field of the scene in that most of the static background
objects’ speeds are zero.

2.3 Adaptive Fusion Module

Following the sparse convolution layer on the backbone, the network obtains the
Lidar and radar features with each of them having dimensions of BxCxHxW,
where B, C, H and W are the batch size, the channel number, the height and
width of the feature map, respectively. The simplest way to fuse these two fea-
tures is concatenation, which combines features along the channel dimension to
form a feature of size Bx2CxHxW. However, this simple way does not consider
the large difference of the sensor characteristics, such as the multi-path noise of
the radar data and occlusion sensitiveness of the Lidar data. Simple concatena-
tion of their features can confuse the learning of the network and degrade the
performance.

To tackle this problem, we propose an Adaptive Fusion module to combine
the Lidar and radar features by adaptive weights. Specifically, Lidar feature
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map Fy, and radar feature map Fg are first processed through a channel average
pooling layer, yielding two channel feature maps Fr 4 and Fra4 as follows:

Fr4 = AvgPool(Fr) (1)

FRA = A’UgPOOl(FR) (2)

Then these two feature maps are concatenated along the channel dimension and
fed into a 3x3 convolution layer, followed by batch normalization and softmax.
The result is the weight map of Wy and Wg, with each having the size of
BxHxW:

Friz = Concat[Fpa, Fral (3)

(WL, Wg] = Softmax(BN(Conv(Finiz)) (4)

The weight maps represent the importance of each spatial location of the feature
maps. The modality features are then weighted and concatenated by Eq.(5),
yielding the fused feature map F'fygion With size Bx2CxHxW:

Frusion = Concat[Wy, * Fr,, Wg * Fg| (5)

This fused feature map is then fed into the subsequent backbone to perform 3D
object detection.

2.4 Random Modality Dropout

The data from multimodal sensors can effectively improve the performance of
3D object detection. However, in some adverse scenarios when a certain sensor
is constrained or degraded, the network may receive input from only one sensor.
In such case, the full multimodal trained network can experience significant
degradation in performance. Inspired by CramNet |16], we introduce random
modality dropout strategy during training. The process is described with Eq.(6)
and (7), where F} and F'j, represent the modal features after dropout gate, 1(-)
is the indicator function with outputting values 0 or 1, other parameters are
explained in the following.

F = 1(p1 > Parop || p2 > PL)FL (6)
F}/%:]l(pl>Pdrop H p2§PL)FR (7)

First a random keeping probability p; is generated. If p; is greater than the
dropping probability threshold Pg.p, both features of the two modalities are
retained and regular training process proceeds. Otherwise, one of the modality
feature should be dropped. In this paper, Pgyp is set to 0.2.

When deciding which modality feature to drop, another random keeping
probability po is generated. If py is greater than the Lidar’s keeping probability
threshold Py, the Lidar features are kept and the 4D radar features are dropped;
otherwise the Lidar features are dropped in this training epoch. Unlike CramNet
[16] which does not consider the difference of the modalities and uses the same
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dropout probability for the camera and radar features, we set P; to 0.2 in
this work considering that Lidar features play a dominant role in the fusion. In
addition, the experimental results in Section IV suggest that modality dropout
strategy can not only mitigate degradation caused by the sensor failure, but
also enhance the feature of each modality, thereby promoting the performance
of multimodal 3D object detection.

3 Experiments

3.1 Dataset and Evaluation Metrics

We conduct experiments on the popular VoD dataset and ZJUODset.

VoD Dataset [12]. The VoD dataset is collected in Delft, which includes
a substantial number of car, pedestrian, and cyclist objects to detect. Most of
the cars are aligned on the roadside with different extent of occlusions, which
pose challenges to the Lidar. We follow the official partition and divide the
dataset into training and validation set with 5139 and 1296 frames respectively.
Based on the target’s distance to the ego-vehicle, VoD separately evaluates the
performance on the entire annotated area and the driving corridor. The latter
refers to the narrow area within the range of [-4m, 4m]| on the x-axis and [0,
25m| on the z-axis (front) in the camera coordinate.

ZJUODset [10]. ZJUODset collects data on the real traffic scenes of Hangzhou
city, aiming at addressing complex and long distance detection requirements for
autonomous driving. It collects point clouds acquired from a solid state Livox
Lidar and an Oculii Eagle 4D radar, and evaluates the detection performance up
to 150 meters. We define the evaluation area as extreme level. ‘Easy’, ‘Moder-
ate’ and ‘Hard’ levels represent objects within 30, 50 and 80 meters, respectively.
Within the 3800 annotated frames, we split the first 2660 frames as the training
set and the last 1140 frames as the validation set.

AP40 metric is employed for the evaluation. On the VoD Dataset, we use IOU
thresholds of 0.5/0.25/0.25 for car, cyclist and pedestrian, respectively, in order
to be in line with the previous works. On the ZJUODset, we instead use 10U
thresholds of 0.7/0.5/0.5 for car, cyclist and pedestrian respectively, to evaluate
the performance with a higher standard than VoD.

3.2 Implementation Details

On the VoD Dataset, the entire detection range is set as (0, 51.2m) on the x-
axis, (-25.6m, 25.6m) on the y-axis, and (-3m, 2m) on the z-axis in the Lidar
coordinate. We set the voxel size to (0.05m, 0.05m, 0.1m) and the maximum
number of points in each voxel to 5. On the ZJUODset, we define the detection
range as (0, 158.4m) on the x-axis, (-39.6m, 39.6m) on the y-axis, and (-5m, 3m)
on the z-axis. The space is partitioned into voxels of (0.075m, 0.075m, 0.2m)
for encoding. We use the random flipping along the x-axis and random global
scaling with the scaling factor in [0.95,1.05] for data augmentation.
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Table 1: 3D Detection Results on the VoD dataset. fmeans we change it to multi-
modal method by feature cascade.

Entire annotated area AP40@0.5/0.25 In driving corridor AP40@0.5/0.25

Modality Method Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
Radar PointPillars |3] 34.88 31.62 63.23 43.24 72.04 41.38 88.64 67.35
Second |2] 35.05 29.19 55.24 39.83 73.57 43.08 83.47 66.71

Lidar PointPillars [3] 59.11 37.71 64.49 53.77 92.35 48.02 89.08 76.48
Second |2] 66.95 59.90 76.88 67.91 94.69 71.15 95.63 87.16

Radar-+ Image RCFusion [19] 41.70 38.95 68.31 49.65 71.87 47.50 88.33 69.23
LXL |20 42.33 49.48 77.12 56.31 72.18 58.30 88.31 72.93

PointPillarst 3| 60.65 48.89 73.07 60.87 91.96 51.84 91.37 78.39

Lidar+ Radar Secondft (2]  68.70 63.56 81.20 71.35 94.94 72.37 94.04 87.12
’ Interfusion |14] 55.86 49.42 70.39 58.56 84.32 55.08 91.58 76.99

Ours 74.26  68.98 82.57 75.26 97.35  78.10 95.82 90.42

Table 2: Experimental Results on the ZJUODset. tmeans we change it to multi-modal
method by feature cascade.

3D Extreme AP40@0.7/0.5 BEV Extreme AP40@0.7/0.5
Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
PointPillars 3] 42.61 10.25 29.68 27.51 62.06 12.78 35.91 36.92

Modality Method

Lidar Second [2] ~ 4262  13.76 39.77 32.05 62.94  21.35 48.64 44.31

PointPillarst [3] 44.42  15.31 10.08 3357 62.99  20.69 50.25 44.64

) Secondf {2]  43.14  15.36 39.64 32.71 63.10  21.67 50.93 45.24
Lidar+Radar

Interfusion [14| 45.16 13.05 41.39 33.20 65.11 18.17 51.22 44.83
Ours 44.81 17.51 42.11 34.81 64.93 22.49 52.79 46.74

We implement our RLNet based on mmdetection3d |17] and OpenPCDet [18]
framework. We employ the Adam optimizer for parameter updates with an initial
learning rate 0.001 and a weight decay factor 0.01. The learning rate is updated
using a cyclical decay method, with the maximum learning rate being 0.01 and
the minimum being 10~7. Just as SECOND |2], the loss for the model comprises
three components: classification loss, detection regression loss, and angular loss.
Specifically, we adopt Focal Loss for classification, Smooth L1 Loss for location
regression and Cross-Entropy loss for angular regression.

3.3 Experimental Results

The experimental results on the VoD dataset are shown in TABLE [l Besides
comparing to other Lidar4radar methods, we also list methods using other
modalities, such as pure radar, pure Lidar and radar+image for reference. As
shown in the TABLE [I our method achieves the best performance among all
of the methods, with 3.91% and 3.30% improvements on mAP over the second
place method (the feature cascade version of SECOND |2]| with Lidar+radar),
for the entire annotated area and driving corridor, respectively. Comparing to
the pure radar version of SECOND [2], our method has about 35% improvement
on mAP in the entire area, showing the importance of the Lidar in the task.
Our RLNet also performs much better than the pure Lidar method, showing
the critical role of the 4D radar in detecting some hard occluded objects. The
qualitative results shown in Fig. [4] also validate this statement. Meanwhile, our
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Table 3: Ablation Studies(SC refers to Speed Compensation, AF refers to Adaptive
Fusion, FC refers to Feature Cascade, and RD refers to Feature Random Dropout).

Method BEV mAP40@0.7/0.5 3D mAP40@0.7/0.5
SC AF FC RD Easy Moderate Hard Extreme FEasy Moderate Hard Extreme
(a) 4 68.17  56.45 47.31 45.04  62.55 45.92  35.32 33.02
(b) v v 70.07  56.74  47.47 4540 63.66 46.32  35.76  33.48
(c) v 69.81  56.31  46.68 44.63  63.82 46.33  35.42 33.17
d) v v 70.42 57.21 48.53  45.99 64.09 47.10 35.80 33.77
(e) vV ¥ v 70.67 57.38 48.89 46.74 65.03 47.34 37.15 34.81

method shows superior performance over the radar+image method like RCFu-
sion [19] and LXL |20], which should thank to the accurate geometric information
provided by the Lidar over the image.

Similar phenomenon can be observed on the ZJUODset, as shown in TA-
BLE [2| The difference is that the improvements are much harder to achieve
than on the VoD dataset, due to more complex environment, much longer de-
tecting distance requirements (3 times longer than VoD) and higher standard
of evaluation metrics of the task. Our RLNet still stands 1.61% higher on mAP
over the second best method Interfusion [14], validating the effectiveness of our
method. The qualitative results shown in Fig. [| also reveal less false positive and
false negative detections of our method over its counterparts.

3.4 Ablation Study

We conduct ablation study on the ZJUODset and the results are in TABLE

Effects of speed compensation. We employ a speed compensation strat-
egy to rectify the relative speed caused by the ego-motion of the vehicle. Com-
paring (a) with (b), or (¢) with (d) in TABLE [3] we see that introducing speed
compensation can add 0.6~0.7 percent on 3D mAP, which suggests that remov-
ing the influence of ego-motion on the Doppler speed is beneficial for 3D object
detection.

Effects of adaptive fusion module. The simple feature cascade (FC)
cannot fully explore the complementary nature of the Lidar and radar data,
resulting in inferior performance. Comparison of (a) with (c) or (b) with (d) in
TABLE [3| shows that adaptive feature fusion module (AF) can better fuse the
features of the two modalities, with 0.4~0.7 percent improvements on mAP.

Effects of random modality dropout. Comparing (d) with (e) in TA-
BLE 3] we see that introducing random modality dropout (RD) effectively im-
proves the performance, with an increase of 3D and BEV mAP by 1.04% and
0.75%, respectively. Finally, the complete configuration of our method (e) ob-
tains 2.1% higher than the baseline (a) on 3D mAP, revealing the effectiveness
of our model design.
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CONCLUSIONS

In this paper we introduce an effective method for 3D object detection by fusing
4D radar point clouds to the popular Lidar. Although both sensors have the
similar form of 3D point, the high sparsity and range noise contained in the
4D radar has to be well treated. Based on the popular SECOND |2] backbone,
we design speed compensation module for radar points to provide the rectified
speed to the network, and propose adaptive fusion module to well balance and
enhance the multi-modal features. A special random modality dropout training
strategy is further employed to strengthen the robustness of the feature. The
experimental results on VoD and ZJUODset datasets demonstrate our success.
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A Related work

A.1 Lidar-based 3D object detection

The development of 3D object detection based on Lidar has become quite ma-
ture to date. VoxelNet [1] divides 3D space into regular voxels for encoding and
utilizes 3D convolution to accomplish 3D object detection. However, the employ-
ment of 3D convolution introduces substantial computational overhead, making
it hard to meet real-time requirements. SECOND [2| proposes sparse 3D convolu-
tion, which significantly improves the network’s inference speed. PointPillars [3]
introduces the concept of pillars and utilizes 2D sparse convolution to further
accelerate the network. CVFNet [21] projects point clouds onto the cylindrical
view and fuses the original 3D point-level features to accomplish multi-view 3D
object detection.

A.2 Lidar-Camera Fusion for 3D object detection

Introducing image information to Lidar can effectively improve the object de-
tection performance. MV3D [22] uses different views from Lidar point clouds
and RGB images as inputs. Candidate boxes are generated from various views,
and object detection results are produced by integrated features across the two
sensors. PointPainting [23| projects image semantic segmentation results onto
3D point clouds and achieves data fusion at the point level. Very recently,
LogoNet [24] fuses features from point clouds and images globally and locally
through the attention mechanism.

A.3 3D Object detection by fusion of traditional 3D Radar

Due to the lack of height information, 3D radar is seldom used alone in the
task of 3D object detection. Most of the works focus on the fusion of camera
or Lidar to achieve better performance. CenterFusion [25] fuses the features of
3D radar and camera through the Pillar Expansion and Frustum Association.
CRAFT |26] designs a soft association method to match the radar points and the
image features and proposes a Spatio-Contextual Fusion Transformer to further
interact the information between the two sensors. CRN [27] introduces depth
estimation and radar occupancy to facilitate view transformation and employs
an attention mechanism to conduct feature fusion in BEV. By fusing Lidar,
RadarNet [28] employs a voxel-based network to extract features from Lidar
and radar point clouds, improving the detection of dynamic objects.

A.4 3D object detection by fusion of 4D Radar

With similar 3D point clouds to the Lidar, Lidar-based networks can be di-
rectly applied to 4D radar without much modification. However, due to the high
sparsity and noises with the 4D radar data, work with other modalities is more
preferable. RCFusion [19] fuses features of 4D radar and images in the BEV
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perspective via attention mechanism. LXL [20] estimates the depth of image
through a depth estimation network and then incorporates radar grid occupancy
to fuse radar and image features in the BEV perspective. Due to the similarity
in the form of point clouds, there has been relatively less prior work focusing
on the fusion of 4D radar and Lidar. Interfusion [14] employs an inter-attention
mechanism to facilitate information exchange between 4D radar and Lidar at
the pillar level, addressing the issue of information loss caused by single sensor.
Building on Interfusion, M2-Fusion [29] predicts potential target key points on
the feature map, and further refines the pillars around these key points, thereby
enhancing the accuracy of 3D object detection. Unlike [14] and [29], we employ
voxel level fusion for the two modalities, with an adaptive weighting to balance
the fusion. Moreover, we introduce speed compensation for Doppler speed and
random modality dropout strategy to enhance the robustness of the network.
With minimal additional overhead, our method achieves much higher perfor-
mance than the baseline method.

B More experiments

The model trained by random modality dropout can also better tackle the fail-
ure of one modality. To verify this, we test our model by giving only Lidar or
radar input, and compare with the model trained by regular process without ran-
dom dropout. TABLE [4] exhibits the performance gap when only Lidar data is
available. As expected, feeding only Lidar modality to the regularly trained RL-
Net experiences drastic performance drop, while the model trained with random
dropout could almost maintain the performance close to the pure Lidar-trained
SECOND 2| model. TABLE [5| shows the effect of random modality dropout
with radar input only. Considering the long range and the high sparsity of the
4D radar point clouds, only the result of the car category at IOU=0.5 is reported
in TABLE [f] Similar phenomenon to TABLE [4] can be observed. However, due
to the much lower possibility of feeding radar data only in the RLNet’s train-
ing process, the gap between RLNet and SECOND becomes larger than that in
TABLE 4

Table 4: Effect of Random Modality Dropout with Lidar input only. A represents the
performance gap.

Extreme mAP40@0.7/0.5

Input Training Method

3D BEV

Lidar SECOND [2]  32.05 44.31

Lidar RLNET(w/o RD) 22.55 34.44
Lidar+Radar RLNET(w/ RD) 32.25 44.15

A +9.70 +9.71
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Table 5: Effect of Random Modality Dropout with Radar input only. A represents
the performance gap.

Extreme mAP40@0.5/0.25

Input  Training Method 3D BEV
Radar SECOND [2] 27.34 37.66

Radar RLNET(w/o RD) 2.91 5.88
Lidar+Radar RLNET(w/ RD) 6.82 11.48
A +3.91 +5.60

C Visualization of RLNet

Fig. 4: Qualitative results on the VoD dataset. (a) shows the scene images, while (b),
(c) and (d) show the corresponding detecting results by the SECOND with only Lidar
input, direct cascade of Lidar and radar features, and by our RLNet, respectively. Lidar
and radar points are marked orange and green, while the predicted and ground truth
bounding boxes are in red and blue, respectively.
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Fig. 5: Qualitative results on the ZJUODset dataset. (a) shows the scene images, while
(b), (c) and (d) show the corresponding detecting results by the SECOND with only
Lidar input, direct cascade of Lidar and radar features, and by our RLNet, respectively.
Lidar and radar points are marked orange and green, while the predicted and ground
truth bounding boxes are in red and blue, respectively.
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