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ABSTRACT

The task of modeling time series data that exhibit sudden regime shifts has been
an enduring focus of research due to its inherent complexity. Among the various
strategies to tackle this issue, the Hidden Markov Model (HMM) has been exten-
sively investigated, which captures the regime changes by modeling the transition
between latent states. Despite its popularity, the HMM-based methodology carries
certain limitations, including specific distribution assumptions and its computa-
tional intensity for inference and learning, particularly when the number of change
points is unidentified. In this work, we propose a novel approach that models the
location of change points and introduce the TV-HMM, a variant of the Hidden
Markov Model incorporating the time-varying location transition matrix. Based
on the novel modeling scheme, we propose an associated variational EM algo-
rithm that simultaneously detects the locations and the number of change points,
together with inferring the posterior distributions of regime parameters. In con-
trast to previous approaches, the proposed method exhibits robustness against the
misspecification of change point numbers and can be augmented with stochastic
approximation techniques to effectively mitigate the computational burden. Fur-
thermore, we establish the statistical consistency of the change point location es-
timation under the Gaussian likelihood assumption. We also generalize the para-
metric likelihood function using the Maximum Mean Discrepancy (MMD) and
propose the semi-parametric TV-HMM that is free of distribution assumptions.
A series of experiments validate the theoretical convergence rate and demonstrate
our estimation accuracy in terms of Rand index and MSE.

1 INTRODUCTION

One of the fundamental tasks in signal processing and time series analysis is identifying and ana-
lyzing a complex system with temporal evolution. The states of systems are measured over time
by a sequence of observations. Evaluating the locations of abrupt distributional changes within the
sequence is commonly known as the Change Point Detection (CPD) problem. Practically, many ap-
plications require solving the CPD problem, where the proposed methods are helpful for subsequent
analysis of the sequence characteristics, such as gait analysis (Lee & Grimson, 2002), anomaly de-
tection (Liu et al., 2018), biological diagnostics (Gardner et al., 2006), financial analysis (Andreou
& Ghysels, 2002), and more.

In this paper, we focus on offline change point detection methods (Truong et al., 2020), which
analyze and operate the complete dataset retrospectively. Compared to the online CPD methods
(Adams & MacKay, 2007; Chang et al., 2019), these methods are better suited for complex modeling
and they have access to the entire observations, which enables higher detection accuracy and a
more comprehensive understanding of the overall patterns, trends, and characteristics of the regimes
between the adjacent change points.

There is rich literature related to the offline change point detection problem. The early work can
be traced back to the 1950s, which focuses on detecting the mean value changes of independent
and identically distributed (i.i.d) Gaussian random variables (Page, 1955). From the methodology
perspective, Pein et al. (2017) detects change points based on ubiquitous maximum likelihood esti-
mation. With the piecewise linear model assumption, Bai & Perron (1998) minimizes the squared
and absolute cost function on the observed sequence and the parameters. Harchaoui & Cappé (2007)
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detect the change point by minimizing the kernel distance of observations in reproducing kernel
Hilbert space while Zou et al. (2014) uses the empirical distribution divergence measurement. When
it comes to the Bayesian approaches, Barry & Hartigan (1993); Park & Dunson (2010); Müller et al.
(2011) develop the product partition model(PPM) for offline CPD, and Chib (1998) introduces a
Hidden Markov Model (HMM) and determines the latent change point state by the Markov Chain
Monte Carlo (MCMC) algorithm. Pesaran et al. (2006) introduces a hierarchical structure on HMM
where parameters follow certain common meta-distributions. Assuming regime durations have a
Poisson distribution, Koop & Potter (2007) develops a time-varying parameter model with hier-
archical prior distributions to detect change points. Additionally, Ko et al. (2015) combines the
Dirichlet process with HMM to estimate the latent state without prior specification of the number of
states. The comprehensive review of offline change point methods can be found in (Truong et al.,
2020).

However, the effectiveness of these methods can be influenced by various hyper-parameters, e.g., the
number of change points, significance level, or penalty coefficients. Killick et al. (2012) adapts the
CPD algorithm with a linear penalty on the number of change points. Determining the optimal values
for these parameters may require specialized knowledge or additional evaluation criteria (Burnham
& Anderson, 2004). Although some non-parametric Bayesian models (Ko et al., 2015; Peluso et al.,
2019) do not require a predetermined number of change points, they often involve computationally
intensive processes, such as MCMC sampling, to obtain posterior distributions for the entire dataset.
Furthermore, previous studies on Bayesian CPD have mainly focused on algorithmic design and lack
strong theoretical guarantees. The convergence rate and performance of these methods may vary
depending on the specific problem and settings. Additionally, many CPD methods rely on parametric
distributions, often assuming each observation to be normally distributed in order to detect changes
in mean and variance. While these assumptions offer advantages in terms of interpretability and
inference efficiency, it is still preferable to have a CPD method that is not limited by the likelihood
assumption, as it would be more robust against model misspecification and outliers. Therefore, these
limitations make these methods less practical for real-world applications and datasets.

In order to overcome the challenges of hyperparameter selection and computational burden, we
propose the Time-Varying Hidden Markov Model (TV-HMM). Concisely, our contributions are as
follows:

1) TV-HMM models the locations of change points with the time-varying Markov chain. Its tran-
sition matrix takes into account the size of the sequence length, encompassing all possible locations.
The adaptive updating of the transition matrix for each change point allows for more efficient change
point detection without prior knowledge of the number of change points.

2) We develop a variational EM algorithm that can endogenously determine the necessary number
of change points from the observed data. The algorithm leverages stochastic approximation by
chronologically sampling an observation subset. This reduces the computational cost compared to
MCMC-based inference. Our theoretical analysis demonstrates the statistical consistency of our
method in detecting change point locations.

3) To validate our theoretical results, we conduct numerical experiments and evaluate the perfor-
mance of our proposed method on both simulated and real-world data. These experiments demon-
strate the effectiveness and robustness of our approach.

4) We extend the parametric method to the semi-parametric TV-HMM that alleviates the as-
sumption on parametric distribution by using Maximum Mean Discrepancy (MMD) for likelihood
measurement. We introduce a new learning objective, MMD-ELBO, and train the model through
re-parameterization trick (Kingma et al., 2015). Our experiments show promising performance on
non-Gaussian datasets without incorporating distributional knowledge.

2 TIME-VARYING HIDDEN MARKOV MODEL AND LOCATION TRANSITION

Given the observed D-dimensional sequence Y = {y1, . . . , yN} with yn ∈ RD, our goal is to
detect all K change point {τk}Kk=1, with each τk ∈ {1, ..., N} and estimate the distribution of
each regime. There are extensive works with different settings of CPD, such as piecewise i.i.d
assumption (Matteson & James, 2014; Li et al., 2015), autoregressive assumption (Yamanishi &
Takeuchi, 2002), and others (Kawahara et al., 2007). In this work, we illustrate our method using
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the common piecewise i.i.d setting, such that yn is independently sampled from a distribution Pk

for τk−1 ≤ n ≤ τk, with τ0 = 1 and τK+1 = N .

2.1 TIME-VARYING HIDDEN MARKOV MODEL: A PARAMETRIC CASE

We encode the change point location by a one-hot random variable tk ∈ RN . Since the k-th change
point should be always no earlier than the k − 1-th, the stochastic process {t1, ..., tK} is a left-to-
right Markov chain with a upper triangular transition matrix. Denoting tk(i) as the i-th element of
the vector, the joint distribution of {t1, . . . , tK} as well as the transition probability matrix between
tk−1 and tk are given by:

p(t1; Π1)p(t2|t1; Π2) . . . p(tK |tK−1; ΠK) =

N∏
n=1

π
t1(n)
1,n

K∏
k=2

[
N∏

n=1

N∏
m=1

π
tk(n)×tk−1(m)
k,n,m

]
,

with Πk :=


πk,1,1 πk,1,2 · · · πk,1,N−1 πk,1,N
0 πk,2,2 · · · πk,2,N−1 πk,2,N
...

...
. . .

...
...

0 0 · · · πk,N−1,N−1 πk,N−1,N
0 0 · · · 0 πk,N,N

 ,
where each element πk,i,j represents the prior probability coefficient that k-th regime starts at time
step i and ends at j. Note that the previous hidden Markov models(Chib, 1998; Ko et al., 2015)
consider a restricted transition matrix whose size is proportional to the state numberK. The Markov
chain in these methods experiences N -step transitions along the sequence. On the other hand, our
modeling scheme allows the transition probability matrix Πk to evolve over time and only computes
K-step transitions to improve the inference efficiency.

Under the parametric case, the distribution shift between the adjacent regimes is reduced to the
change of parameter values. We treat the regime parameters (θ1, . . . , θK+1) as random variables
and introduce K + 1 prior distributions {p(θk;αk)}K+1

k=1 , where αk denotes all hyperparameters for
k-th regime . For illustration purposes, we consider the Gaussian likelihood case with mean and
precision, where θk = {uk,Λk} and the conjugate normal-Wishart prior. Given the location indi-
cators (tk, tk−1), the random variable Yk represents the observations set within the corresponding
regime. Under the piecewise i.i.d assumption, the likelihood of the k-th regime and prior distribu-
tions is given by:

p(Yk|tk, tk−1, θk) =
N∏
i=1

N∏
j=i

 i∏
t=j

N (yt | uk,Λk)

tk−1(i)×tk(j)

,

uk ∼ N (0, β−1I), Λk ∼ W(v0, V0),

(1)

where W(·) denotes the Wishart distribution. In our model specification, πk,i,j can be learned
directly from data by optimizing with respect to marginal data likelihood. This probability reflects
the relevance of time interval [i, j] with the true regime [τk, τk−1]. A similar idea has been applied
in the hyperparameters learning of Gaussian process (Rasmussen et al., 2006). In our model, since
practically the value ofK is unknown, automatic model selection can be performed by learning these
probabilities for each tk. If the corresponding diagonal elements πk,i,i converge to 1, indicating
the time length of k-th regime is zero, then the unnecessary change points can be removed from
the model specification. In Section 3.1, we visualize the value of converged Πk from numerical
simulations and illustrate all significant spots concentrating on the true locations and the diagonal.

2.2 INFERENCE VIA VARIATIONAL EM ALGORITHM

Denoting the set of all latent variables as ξ = {{tk}Kk=1, {θk}
K+1
k=1 }, TV-HMM detects the locations

and number of change points by inferring the posterior distribution of ξ and learning the transition
probability Πk. In the Bayesian literature, Neal (2012) introduces the automatic relevance deter-
mination (ARD) procedure for neural network learning. The idea is that optimizing the continuous
hyperparameters with respect to marginal log-likelihood provably leads to consistent model selec-
tion and obeys Occam’s razor phenomenon (Ghosal et al., 2008; Yang & Pati, 2017). However,
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Algorithm 1 Variational EM algorithm for Time-Varying Hidden Markov Model

Input: The observed sequence: Y; The initial number of change points: K̃; Maximum iteration:
I; Size of sampling subset: S; Step size: η;

Output: Variational distributions {Q(θk)}K̃+1
k=1 ; Marginal probability of CP locations {Q (tk)}K̃k=1;

1: Initialization of variational expectation of {Q(θk)}K̃+1
k=1 ;

2: for 1 ≤ i1 ≤ I do
3: Random sampling S data point and collect the retrospective order set Ω ;
4: E-Step:
5: Update variational distributions {QS (tk)}K̃k=1,{QS (tk, tk−1)}K̃k=2 by Equation 3 based on

sampled S observations, with;

QS (tk(n) = 1 | tk−1(m) = 1) =

{
QS (tk(n) = 1 | tk−1(m) = 1) if m,n ∈ Ω,

0 otherwise

6: Re-estimate {Q(θk)}K̃+1
k=1 using Equation 2 based on sampled S observations;

7: M-Step:
8: Set new prior by πk,m,n ← πk,m,n + η ·QS (tk(n) = 1 | tk−1(m) = 1);
9: end for

direct marginal likelihood maximization is intractable since it involves the integral over all latent
variables. EM algorithm provides a solution where we relax the marginal likelihood function with
its lower bound. Denoting the hyperparameters set Π = {Πk}Kk=1 and α = {αk}K+1

k=1 , we have

E-Step. L
(
Π | Πold

)
= Eξ|Y;Πold,α[log p(Y, ξ;Π,α)],

M-Step. Π̂ = argmax
Π

L
(
Π | Πold

)
.

Although the EM algorithm seems feasible, the E-Step requires evaluating the true posterior
p(ξ | Y;Π,α), which has no analytical form. Here we further leverage variational approximation
and introduce a tractable variational distribution Q as an approximator of the true posterior under
KL divergence. By maximizing the evidence lower bound (ELBO), we minimize the KL divergence
betweenQ and the true posterior distribution (Blei et al., 2017). Under common mean-field assump-
tion where variational distributions can be independently factorized, we can obtain explicit solutions
of optimal approximator Q∗:

Q∗ (θk) ∝ exp
(
EQ(tk,tk−1) [log p(Yk, tk, θk | tk−1;αk,Πk)]

)
,

Q∗ (t1, ..., tK) ∝
K+1∏
k=1

exp
(
EQ(θk) ln p(Yk, tk, θk | tk−1; Πk, αk)

)
.

(2)

Noted that the solution in Equation 2 is a joint distribution of {t1, . . . , tK}. However, the primary
interest of location detection is marginal distributions Q(tk), and Q(tk, tk−1) for Q∗(θk) infer-
ence. To obtain these quantities, we propose a recursive message-passing procedure based on the
sum-product algorithm. The marginalization is achieved by passing real-valued message functions
between the latent variables tk, which are denoted by: µ→tk , µtk← ∈ RN . These two functions
represent the information flow that propagates front and back from subsequent variables:

Q (tk(n) = 1) ∝ µ→tk(n) · µtk←(n), Q(tk−1(m) = 1, tk(n) = 1) ∝
µ→tk−1

(m) · πi,m,n · exp
(
EQ(θk) ln p(Yk, tk, θk | tk−1; Πk, αk)

)
· µtk←(n),

where the recursive formula of message passing is given by:

µ→tk(n) =

n∑
m=1

{
µ→ti−1

(m) · πk,m,n · exp
[
EQ(θk) ln p(Yk | θk, tk(n) = 1, tk−1(m) = 1)

]}
,

µtk−1←(m) =

N∑
n=m

{
µtk←(n) · πk,m,n · exp

[
EQ(θk) ln p(Yk | θk, tk−1(m) = 1, tk(n) = 1)

]}
.

(3)
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Given the initial µ→t1 and µtK←, each message flow can be iteratively evaluated. For the Gaussian
example of Equation 1, the detailed expressions of Equation 2 and 3 are given in the Appendix
B. After updating all variational distributions by taking one-step coordinate gradient ascent, we
optimize hyperparameters Π in M-step. By alternating between E and M steps, we simultaneously
detect the change point locations and estimate the parameters of each regime using the maximum a
posteriori probability (MAP) of variational distributions:

τ̂k = argmax
τk

Q (tk(τk) = 1) , θ̂k = argmax
θk

Q (θk) .

The computation complexity of each iteration isO(KN2). When the length of the sequence grows,
the convergence speed and memory usage become inhibited. To relieve the computational burden,
we randomly sample a subset of observations chronologically in each iteration. The subset has a
fixed length S, which is much smaller than the number of observations S ≪ N . A local estima-
tor with this subset is established under stochastic approximation that enjoys less computational
complexity and guarantees convergence to global optimal (Robbins & Monro, 1951). In our sim-
ulations, the proposed procedure usually converges or reaches the predefined iteration limit within
30 iterations. Thus, we successfully reduce the computational cost of each EM step toO(KS2) and
improve the computational efficiency. The complete procedure is summarized in Algorithm 1.

Practically, the unknown prior knowledge of K could be learned from data using ’ARD’. If we ini-
tialize our method using a Markov chain [t1, ..., tK̃ ] with K̃ > K. As the algorithm progresses,
the learned transition matrix Π reveals the probability of each location transition, and the estimated
locations {τ̂k}K̃k=1 are clustered together. Some of the successive change points will gradually con-
verge to the same location, e.g. τ̂L1

= τ̂L1+1 = ... = τ̂L1+l for some integer l. Therefore, the
redundant regimes will vanish during the EM iteration and there are only K unique locations re-
maining after convergence.

2.3 THEORETICAL ANALYSIS

In this section, we provide a statistical analysis of how TV-HMM estimates the change point lo-
cations and numbers. We list the necessary notations and assumptions under which our theoretical
result is established:

A1: For fixed constants T,K,D, the underlying sequence on time interval [0, T ] consists of K
change points 0 < T1 < ... < TK < TK+1 = T and the random function y(t) : R → RD

represents the sample drawn from N (y | uk,Λk) if Tk−1 < t < Tk.

A2: For any time interval [m,n] ⊆ [0, T ], the number of observations within this interval equals
O(N n−m

T ).

A3: The algorithm initializes K̃ =MK+1−1 change points. Each corresponds to an equal-distance
segment [ti−1, ti], such that ti+1 − ti = T

MK+1
. We can further categorize {ti}MK+1−1

i=1 into two
subsets:

• Any ti with i ∈ {M1, ...,MK} denotes the junction points, e.g. there is a true change
point located within the interval [ti−1, ti] and y(t) within the interval does not identically
distributes.

• For k = 1, ...,K + 1, any ti with i ∈ {Mk−1 + 1, ...,Mk − 1} denotes the non-junction
index, such that every y(t) within the interval comes from the same distribution.

Then we can show our method leads to a provable selection consistency of change point locations:
Theorem 1 (Location Consistency). Assuming assumption A1-A3 hold, the marginal probability
Q (ti(n) = 1) consistently estimates the location of the change point with the maximum exponential
rate of N :

• For non-junction points ti with i ∈ {Mk−1 + 1, ...,Mk − 1}:

Q (ti(n) = 1) =


1 if n = Tk;

O(N−
n−Tk

T ) if n ∈ [Tk−1, Tk);

O(exp(−N
min

{
|n−Tk|,|n−Tk−1|

}
T )) if n /∈ [Tk−1, Tk].
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• For junction points ti with i ∈ {Mk}Kk=1:

Q (ti(n) = 1) =

{
1 if n = Tk;

O(exp(−N
|n−Tk|

T )) otherwise.

Figure 1: The schematic diagram of initialization
in Algorithm 1. The initialized change points can
be categorized into (non)-junction points based on
the true location Tk.

Remark. The assumption A3 guarantees that
each Q(θk) is initialized using the character-
istic (e.g. mean and variance for the Gaus-
sian case) of equal distance segments [tk−1, tk],
which is depicted with a box in Figure 1. Then
Theorem 1 indicates these segments determine
convergence rates of probabilities Q(tk), e.g.
if the segment contains a true change point
Tk, tk is a junction point and its Q(tk(n))
would converge to 1 for n = Tk at the ex-
ponential rate of N . On the other hand, non-
junction points whose initial segments are iden-
tically distributed with the true regime will also
converge at the rate up to the exponential of
N . Thus, as N → ∞, the MAP estimations
of {τ̂k}MK+1−1

k=1 become an unduplicated set
{Tk}Kk=1 and can drop those segments whose length are 0.

3 SYNTHESIS DATA ANALYSIS

In this section, we evaluate our method on various simulations and real data. We first conduct numer-
ical experiments to provide evidence for our theoretical result. Then we compare the performance
of TV-HMM with that of other offline CPD methods in both simulated data and the real-world ap-
plication. These results show the effectiveness and robustness of our method in terms of location
detection and parameter estimation. Throughout the experiments, we evenly divide the sequence
into K̃ segments to fulfill A3 in Section 2.3. The details about initialization and hyperparameters
setting are included in the Appendix D.1

3.1 IN-DEPTH ANALYSIS OF THEOREM 1

To analyze the theoretical results with controlled experiments, we consider a normal mean-variance
shift model, which is also studied in (Yamanishi & Takeuchi, 2002; Matteson & James, 2014). The
performance of CPD is measured by mean absolute error (MAE). For true change point location
{l1, l2, . . .} and estimated {l̂1, l̂2, . . .}, MAE = 1

N

∑
j mini |l̂j − li|, which measures the sum of

absolute distances of each estimated location with its closest true location.

We first investigate the change of convergence rate by varying the value of N and the results are
summarized in Figure 2. The top left plot (a) shows the small value of N results in fluctuations of
the estimated number of change points; as the size of observations increases, the estimated number
remains steady at the true value 4. Similarly, the performance of parameters estimation is in the
bottom left plot (b), indicating the estimation error rapidly decreases as the length of sequences
grows. All the results are repeated for 100 times with fixed initialization across all the cases and are
consistent with Theorem 1. Thus, the convergence rate of the TV-HMM increases with the size of
observations.

To illustrate the results of automatic relevance determination, we also visualize the πk,i,j before and
after convergence, by taking the summation of {Πk}K̃k=1. Results are shown on the right of Figure 2.
The top right plot (c) shows the initial upper triangular transition matrix and the bottom plot (d)
is the converged result from Algorithm 1. Note that the converged transition matrix is extremely
sparse. Those non-zero spots on the diagonal indicate the existence of unnecessary regimes with
size 0. Other significant spots are near true change point locations, indicating the high relevance of
these intervals with respect to the true regime. Then we infer the {Q(tk)}K̃k=1 for automatic model
selection by leveraging the converged {Πk}K̃k=1 as prior distributions.
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Figure 2: Left: The line plot (a) of the average estimated number of change points and the boxplot (b)
of MAE varying with sequence length; Right: The heatmap of the sum of initial (c) and converged
(d) K̃ transition matrices [Π1, ...,ΠK̃ ].

3.2 EVALUATION ON SIMULATED DATA

Model 1 Model 2 Model 3
WBSLSW 0.9068 0.3596 0.3849

ECP3O 0.9156 0.9580 0.9737
DPHMM 0.9637 0.8727 0.8869

KCP 0.9501 0.8436 0.8836
Dm-BOCD 0.8123 0.8411 0.8413

TV-HMM 0.9523 0.9756 0.9615

Table 1: The performance of different CPD meth-
ods measured by the Rand index.

Effectiveness of our method is demonstrated
by comparison with several well-developed
CPD methods, including WBSLSW (Korkas
& PryzlewiczV, 2017), ECP3O (Zhang et al.,
2017), KCP (Harchaoui & Cappé, 2007), Dm-
BOCD (Altamirano et al., 2023) and another
HMM-based method, DPHMM (Ko et al.,
2015). The performance of CPD is measured
by the Rand index, which is the similarity
between two different data partitions (Lajugie
et al., 2014; Fleming et al., 2023). It produces
a value between 0 and 1, where 1 indicates per-
fect agreement.

We consider three change-point models for the simulation, each with a significant characteris-
tic. (Matteson & James, 2014; Chang et al., 2019). For Model 1, each regime follows either a
binomial, Poisson, or normal distribution, with corresponding parameter variations. For Model 2,
sequences are generated from 5-dimensional normal distributions, with either mean or covariance
matrix shifts, and Model 3 increases the dimension to 10. Our simulations cover all common regime
shifts in the piecewise i.i.d setting. For more details about the simulation setups, please refer to
Appendix D.3.

D=1 D=5 D=10
MSE(û).Mean 0.1885 0.1286 0.1868
MSE(û).SD ± 0.1635 ± 0.0625 ± 0.0971

MSE(Λ̂).Mean 0.9593 1.3382 4.1460
MSE(Λ̂).SD ± 1.7317 ± 0.5381 ± 0.1345

Table 2: MSE of the estimated posterior parameters u
and Λ

Table 1 shows the performance of all
methods for all cases. For Model 1, the
accuracy of our methods is in line with
DPHMM and outperforms the other four
methods. Our method is the best among
all candidate methods in Model 2. For
Model 3, our method is also comparable
to the best method ECP3O. The results
indicate that our method performs consis-
tently across all three models while exist-
ing methods suffer from fluctuation in performance.
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The proposed TV-HMM is able to simultaneously estimate the characteristics of each estimated
regime, which is the mean and precision for Equation 1. We test the proposed method under
different data dimensions. The parameter estimation is measured by the Mean Squared Error(MSE).
We summarize the results in Table 2. Our method provides promising estimation results since the
MSE of the estimated posterior mean (û) and ground truth (u) falls within the range of 0.1 to 0.2

in all cases. For the posterior precision (Λ̂) estimation, MSE is relatively larger than the other
cases, which is reasonable since the number of parameters grows substantially with dimension D.
Furthermore, the small standard deviation (SD) of MSE indicates the stability of our estimation
across all setups.

3.3 EVALUATION ON REAL-WORLD DATASET

Robustness of our method is evaluated on the Well-log dataset from the real-world application. The
data contains 4050 nuclear magnetic resonance measurements during the drilling procedures (Rua-
naidh & Fitzgerald, 2012). Note that this sequence is corrupted by outliers, which have a significant
effect on change point detection. To tackle this problem, Altamirano et al. (2023) develop the
Dm−BOCD that is incorporated with diffusion score matching, to reduce the effect of outliers on
change point detection. This adaptation allows Dm-BOCD to work on the corrupted dataset. There-
fore, we compare the estimated locations of TV-HMM with their results, and the comparison is
shown in Figure 3. The detected regime is separately colored, indicating the existence of a distri-
butional shift. Most of the outliers are not identified as change points, and the results of TV-HMM
are essentially in line with that in (Altamirano et al., 2023), which are plotted in a color bar at the
bottom. The grey band indicates the mismatch of detected regimes. There is a clear change point
at the time stamp 1540 that is not identifiable using Dm−BOCD. Therefore, our method exhibits a
comparative advantage on the Well-log dataset and demonstrates robustness to outliers.

Figure 3: Estimated change point locations of Well-log data, color band (1) represents estimated
regimes from TV-HMM, (2) represents estimated regimes from Dm−BOCD. The grey bands rep-
resent the mismatches between the two methods.

4 EXTENSION OF TV-HMM WITH MAXIMUM MEAN DISCREPANCY

Previous results are developed based on the parametric likelihood function. Here, we alleviate the as-
sumption using the kernel approach and propose a semi-supervised TV-HMM that is robust against
outliers and model misspecification. Our motivation is that the expected log-likelihood term in the
message function can be regarded as a distance measure between the observations subset Yk and
the characteristics of k-th regime ζk. Thus, we can generalize the message functions of Equation 3
using Maximum mean discrepancy(MMD):

µ→tk(n) =

n∑
m=1

{
µ→ti−1(m) · πk,m,n · exp

[
−n−m+ 1

G

∥∥EP̂n
m
φ(y)− EQ(ζk)φ(ζk)

∥∥
H

]}
,

µtk−1←(m) =

N∑
n=m

{
µtk←(n) · πk,m,n · exp

[
−n−m+ 1

G

∥∥EP̂n
m
φ(y)− EQ(ζk)φ(ζk)

∥∥
H

]}
,

(4)
where P̂n

m denotes the empirical distribution consisting of n−m+1 successive observations starting
from time index m to n, and φ : RD → H represents the mapping to reproducing kernel Hilbert
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Algorithm 2 Training Procedure for Semi-Parametric Time-Varying Hidden Markov Model

Input: Observed sequence Y; Initial number change points K̃; Maximum Iteration I; Step size η; Number of
posterior samples S;

Output: Variational distributions {QΦ(ζk)}K̃+1
k=1 ; Marginal probability of change point locations

{Q (tk)}K̃k=1;
1: Initialization of {QΦ(ζk)}K+1

k=1 with the distributions of initial regimes;
2: for 1 ≤ i ≤ I do
3: for 1 ≤ k ≤ K + 1 do
4: Sample {ζsk}S ∼ QΦ(ζk) ; Compute ∥EP̂n

m
φ(y)− 1

S

∑S
s=1 φ(ζ

s
k)∥H for any 1 ≤ m ≤ n ≤ N ;

5: end for
6: Update {Qk

t (n,m)}Kk=2 using message functions of Equation 4; πk,m,n ← πk,m,n + η ·Qk
t (n,m)

7: Compute J ← MMD-ELBO using Equation 4; Update Φ← Φ+ η · ∂J
∂Φ

8: end for

space H, and G is a constant that adjusts the value of MMD. Unlike Equation 2 in the parametric
model, where Q(θ) must be derived using variational inference, Q(ζ) can be generally modeled
using non-parametric density estimation (Botev et al., 2010) and deep generative models (Kingma
& Welling, 2013; Rezende et al., 2014)]. Denoting the distribution of ζ as QΦ(ζ), where Φ is
the model parameters, e.g. the weight values of neural networks, we propose a new MMD-based
evidence lower bound (MMD-ELBO) as the objective function for Φ learning. The new loss function
improves the robustness by replacing the likelihood functions in the original ELBO with a kernel-
embedded distance. The formula of MMD-ELBO is given by:
K+1∑
k=1

N∑
m=1

N∑
n≥m

(m− n− 1) ·Qk
t (n,m)

G

∥∥EP̂n
m
[φ(y)]− EQΦ(ζk) [φ(ζk)]

∥∥
H +KL(QΦ(ζk)∥p(ζk)),

where Qk
t (n,m) denotes the joint variational probability that tk(n) = 1 and tk−1(m) = 1 obtained

from MMD-based message passing of Equation 4. For each iteration, we can evaluate the value of
MMD-ELBO by sampling from QΦ(ζk) and update Φ using the re-parameterization trick (Kingma
et al., 2015). The pseudo-code of semi-parametric change point detection is summarized in Algo-
rithm 2. We illustrate the performance of semi-parametric TV-HMM through three non-Gaussian
examples, where the underlying sequence is generated from Poisson, chi-squared, and exponential
distribution, respectively. The setup of the simulations can be found in Appendix D.4. Our perfor-
mance is promising for all cases in terms of the Rand index, which is 0.9447 for Poisson, 0.8686
for chi-squared, and 0.8911 for exponential distribution. Note that we do not incorporate any distri-
butional knowledge as prior, the results indicate our method has robust performance over a broader
class of data distributions.

Relation with Parametric TV-HMM: We illustrate its relation with the previously-discussed
parametric TV-HMM. Under the Gaussian assumption with fixed variance, the likelihood
EQ(θk) ln p(Yk | θk, tk−1 = m, tk = n) in previous messenger passing Equation 3 is propor-
tional to:

−
n∑

i=m

Euk
(yi − uk)TΛk(yi − uk) ∝ −(n−m+ 1) · ∥

√
ΛkEP̂n

m
[y]−

√
ΛkEQ(uk) [uk] ∥

2,

which is a special case of MMD with linear mapping φ(x) =
√
Λkx.

5 CONCLUSION

In this paper, we present TV-HMM, a time-varying Hidden Markov Model that enables simul-
taneous detection of change points and estimation of regime characteristics. Our method utilizes
a variational EM algorithm incorporating stochastic approximation, and we prove its convergence
rate for each change point location. Furthermore, we prove that our algorithm consistently selects
the true number and locations of change points. Extensive numerical experiments provide evidence
for our theoretical results and demonstrate the promising performance of our approach. In cases
where the data distributions are unknown, we generalize our method using MMD and propose semi-
parametric TV-HMM that does not rely on any distributional assumption. However, a limitation of
current research is that CPD methods are primarily established on the piecewise i.i.d setting. In the
future, we hope to extend our framework to a boarder class of CPD settings.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. arXiv preprint
arXiv:0710.3742, 2007.

Matias Altamirano, François-Xavier Briol, and Jeremias Knoblauch. Robust and scalable bayesian
online changepoint detection. arXiv preprint arXiv:2302.04759, 2023.

Elena Andreou and Eric Ghysels. Detecting multiple breaks in financial market volatility dynamics.
Journal of Applied Econometrics, 17(5):579–600, 2002.

Jushan Bai and Pierre Perron. Estimating and testing linear models with multiple structural changes.
Econometrica, pp. 47–78, 1998.

Daniel Barry and John A Hartigan. A bayesian analysis for change point problems. Journal of the
American Statistical Association, 88(421):309–319, 1993.

Yvonne M Bishop, Stephen E Fienberg, and Paul W Holland. Discrete multivariate analysis: Theory
and practice. Springer Science & Business Media, 2007.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

ZI Botev, JF Grotowski, and DP Kroese. Kernel density estimation via diffusion. Annals of Statistics,
38(5):2916–2957, 2010.

Kenneth P Burnham and David R Anderson. Multimodel inference: understanding aic and bic in
model selection. Sociological methods & research, 33(2):261–304, 2004.

Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos. Kernel change-point de-
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A PRELIMINARY

A.1 CHANGE POINT DETECTION METHODS

WBSLSW: The WBSLSW method (Korkas & PryzlewiczV, 2017) incorporates the non-parametric
locally stationary wavelet process with wild binary segmentation, and can detect the second-order
structure of the sequence with an unknown number of change points. We implement the WBSLSW
using the R package wbsts.

KCP: The KCP (Harchaoui & Cappé, 2007) method is a dynamic programming method with a
known number of change points. This algorithm detects the change points by minimizing the kernel
least-squares criterion. In our cases, we combine KCP with a linear penalty pruning the number of
change points. This is done by using the python package ruptures (Truong et al., 2020) with a
Gaussian kernel and default parameters.

DPHMM: The DPHMM method developed by Ko et al. (2015) is a combination of the Dirichlet
process and the Hidden Markov model to detect change points using MCMC. This method allows
the number of change points to be unknown. We implement this algorithm using the R package
dirichletprocess with default parameters and set K̃ = 10

ECP3O: Zhang et al. (2017) propose a new change point search framework called change point
procedure via pruned objectives. The ECP3O method uses the new search frame with the E-statistics
which measures the goodness-of-fit. This method is implemented using e.cp3o-delta function
with default parameters in R package ecp. (Nicholas A. James and Wenyu Zhang and David S.
Matteson, 2019). The maximum number of change points K̃ is 10.

Dm-BOCD:Dm-BOCD is an online method developed by Altamirano et al. (2023). This method is
generalized from BOCD (Adams & MacKay, 2007) with diffusion score matching, which is robust
to sequences with outliers. We implement this method using the code provided on the author’s
GitHub page.

A.2 VARIATIONAL INFERENCE

Variational inference (VI) Blei et al. (2017) works as a fast approximation method for Bayesian
inference. Given the observation x and latent variable z, VI uses a tractable variational distribution
q drawn from the function class F to approach the complicated posterior p(z | x) by minimizing
their KL divergence. However, the KL can not be computed analytically. Classical VI optimizes
an alternative objective called Evidence Lower Bound (ELBO) that is equivalent to log marginal
likelihood minus the KL:

ln p(x) = ELBO(q) + KL(q∥p(z | x))

=

∫
q(z) ln

{
p(x, z)

q(z)

}
dz−

∫
q(z) ln

{
p(z | x)
q(z)

}
dz.

Under the common mean-field assumption q(z) =
∏m

j=1 qj (zj), the maximizer of ELBO q∗j has
the analytical solution q∗j (zj) ∝ exp

{
Ez−j [log p (z,x)]

}
, where z−j denotes all variables zi other

than zj , that can be solved by the coordinate ascent algorithm.

Recently, VI has been commonly applied in training deep generative models, including
VAE (Kingma & Welling, 2013) and deep diffusion model (Ho et al., 2020) to approximate complex
posterior distributions. VI plays a crucial role in approximating the posterior distribution over the
latent variables, enabling efficient learning and generation of high-quality samples from complex
data distributions.

B NORMAL MEAN-VARIANCE SHIFT MODEL

In this section, we derive updating formulas for the Normal Mean-Variance Shift model. Denoting
the set of all latent variables as ξ = {{tk}Kk=1, {θK+1}K+1

k=1 } and the hyperparameters set αk =

13
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{β, ν0, V0}, we assume a constrained mean-field Q family in variational inference:

Q(ξ) = Q(t1)

K∏
k=2

Q (tk|tk−1)
K+1∏
k

Q (uk)Q(Λk).

Then the variational lower bound is given by

L(Q) =

K+1∑
k−1

 ∑
tk,tk−1

Q (tk, tk−1)

∫
Q (uk)Q(Λk) ln p (Yk | tk, tk−1, uk,Λk) dukdΛk


+

K+1∑
k=1

[∫
Q (uk)Q(Λk) ln

N
(
uk; 0, β

−1I
)
W
(
Λk; ν

0, V 0
)

Q (uk)QT (Λk)
dukdΛk

]

+

K∑
k=1

 ∑
tk,tk−1

Qt (tk, tk−1) ln
p (tk | tk−1)
Qt (tk | tk−1)

 .
Minimizing KL divergence leads to an analytical solution. We can directly apply it to give the
optimal solutions for the family of factors Q of variational posteriors

Q(t1) =

N∏
i=1

π̃
t1(i)
1,i , Q (tk|tk−1) =

N∏
i=1

N∏
j=1

π̂
tk(i)×tk−1(j)
k,i,j ,

Q(uk) = N
(
uk | mk, L

−1
k

)
, Q(Λk) =W (Λk | νk, Vk) .

Given prior distributions defined above, solutions for variational parameters are given by

mk =

⟨Λk⟩
N∑

n=1

N∑
m≥n

Q (tk(m), tk−1(n))

m∑
j=n

1+ I/β

−1

×

⟨Λk⟩
N∑

n=1

N∑
m≥n

Q (tk(m), tk−1(n))

m∑
j=n

yj

 ,
Lk = ⟨Λk⟩

N∑
n=1

N∑
m≥n

Q (ti(m), ti−1(n))

m∑
j=n

1+ α−1I,

νi = ν0 +

N∑
n=1

N∑
m≥n

Q (ti(m), ti−1(n))

m∑
j=n

1,

and

V −1k = V −10 +

N∑
n=1

N∑
m≥n

Q (tk(m), tk−1(n))

 m∑
j=n

yjy
⊤
j − 2

m∑
j=n

yj ⟨uk⟩⊤ +

m∑
j=n

⟨uku⊤k ⟩

 .
As we mentioned in Section 2.2, solutions for Qt (tk | tk−1) can be obtained through sum-product
algorithm. The updating formulas are given by

Q (tk(n) = 1) = µ→tk(n) · µtk←(n) = π̃k,n,

and
Q (tk−1(m) = 1, tk(n) = 1)

= µ→tk−1
(m) · πi,m,n · exp

(
EQ(uk)Q(Λk) ln p(Yk, tk, uk,Λk | tk−1)

)
· µtk←(n),

where messages are obtained recursively. For k = 1, . . . ,K,

µ→tk(n) =

n∑
m=1

{
µ→tk−1

(m) · πk,m,n · exp

{
n∑

j=m

1

2
⟨ln |Λk|⟩

−1

2

n∑
j=m

Tr
[(
yj · y⊤j − yj ·

〈
u⊤k
〉
− ⟨uk⟩ · y⊤j +

〈
uk, u

⊤
k

〉)
· ⟨Λk⟩

]}}
,
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and

µtk−1←(m) =

N∑
n=m

{
µtk−1←(n) · πk,m,n · exp

{
n∑

j=m

1

2
⟨ln |Λk|⟩

−1

2

n∑
j=m

Tr
[(
yj · y⊤j − yj ·

〈
u⊤k
〉
+
〈
uk, u

⊤
k

〉)
· ⟨Λk⟩

]}}
.

To start recursion, the initial message state µ→t1 and µtK← are given by

µ→t1(m) = π1,m exp

{
n∑

j=m

1

2
⟨ln |Λ1|⟩

−1

2

n∑
j=m

Tr
[(
yj · y⊤j − yj ·

〈
u⊤1
〉
− ⟨u1⟩ · y⊤j +

〈
u1, u

⊤
1

〉)
· ⟨Λ1⟩

]}
,

and

µtK←(m) = exp

{
n∑

j=m

1

2
⟨ln |ΛK+1|⟩

−1

2

n∑
j=m

Tr
[(
yj · y⊤j − yj ·

〈
u⊤K+1

〉
+
〈
uK+1, u

⊤
K+1

〉)
· ⟨ΛK+1⟩

]}
,

where we have assumed:
⟨uk⟩ = mk, ⟨uku⊤k ⟩ = mkm

⊤
k + L−1k , ⟨Λk⟩ = νkVk,

⟨ln |Λk|⟩ =
D∑

j=1

ψ

(
uk + 1− j

2

)
+D ln 2 + ln |Vk|,

and ψ(·) is the digamma function.

C PROOF OF THEOREM 1

To start up, it’s worth mentioning that practically for a sequence of time T , we observe finite data
points {y1, ..., yT } at each time stamp t = 1, ..., T , which is the input for the proposed algorithm.
However, in theory, we consider a continuous timeline and there are infinitely many data points
between any time intervals [m,n] ⊆ [0, T ]. Thus before discussing our theoretical results, we first
list our setup and assumptions:

A1: The underlying sequence on time interval [0, T ] consists of K change points 0 < T1 < ... <
TK < T with T0 = 0 and TK+1 = T . For any time stamp Tk−1 < t < Tk, the random function
y(t) : R→ RD represents the sample drawn from N (y | uk,Λk) at time t.

A2: The total number of collected observations is N . For any time interval [m,n] ⊆ [0, T ], the
number of observations within this interval equals O(N

n−m
T ).

A3: The algorithm initializes MK+1 > K + 1 regimes corresponding to {ti}MK+1−1
i=1 change

points. The regimes are segmented by a time subset {t1, ..., tMK+1−1} with equidistance, such that
ti+1 − ti = T

MK+1
. Based on the characteristic of the regime between [ti, ti+1], we can further

categorize {ti}MK+1−1
i=1 into two subsets:

• Any ti ∈ {tMk
}Kk=1 denotes the junction points, e.g In initialization, there is a true change

point Tk located within the interval [ti−1, ti] and y(t) for t ∈ [ti−1, ti] does not identically
distributes.

• For k = 1, ...,K +1, any i ∈ {Mk−1 +1, ...,Mk − 1} denotes the non-junction index and
we have Tk−1 < ti < Tk, where we let M0 = 0. Every y(t) for t ∈ [ti−1, ti] distributes
equivalently with those in [Tk, Tk+1].
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A4: The row of transition matrix Πk is a uniform distribution, such that πk,i,j = N
iT
T . The obser-

vation dimension D, the number of change point K and initialized change point number MK+1− 1
is fixed.

We further define the random functions of a(t), b(t) and c(t) for time interval [m,n] as following:

∫ n

m

a(t)dt =


∫m−n
0

−b(t)dt if n ≤ m,

∫ n−m
0

c(t)dt if n > m.

with
b(t) = max

k

[
ln |Λk| /2− (y(t)− uk)⊤ Λk (y(t)− uk) /2 | t ∈ [Tk−1, Tk]

]
,

c(t) = max
k

[
ln |Λk| /2− (y(t)− uk)⊤ Λk (y(t)− uk) /2 | t /∈ [Tk−1, Tk]

]
.

Intuitively, the defined b(t) is the maximum likelihood value at time t, where the likelihood function
is parameterized with true u and S, while c(t) is the maximum likelihood value associated with false
parameters u and S. Thus, the integral range [m,n] of b(t) and c(t) indicates the sequence length
that is correctly aligned or not, respectively.
Corollary 1. As N approaches infinity, for any time interval [m,n],the random variables, we have:∫ n

m

(c(t)− b(t)) dt = Op(N
n−m

T ) < 0.

Proof: First using the Lemma from (Bishop et al., 2007):
Lemma 1. Let {Xn} be a stochastic sequence with µn = E (Xn) and σ2

n = Var (Xn) < ∞, then
Xn = µn +Op (σn).

Thus, based on the Lemma 1 and our assumptions, it’s easy to see the following results hold:

1): The value of
∫ n

m
b(t)dt equals to:

N
n−m

T max
k

(
1

2
ln |Λk| −

1

2
Tr
([
E
[
y(t)y(t)⊤

]
− E[y(t)]u⊤k − ukE[y(t)T ] + uku

T
k

]
· Λk

))
= N

n−m
T max

k

(
1

2
ln |Λk|

)
+Op(N

n−m
2T ).

2): The value of
∫ n

m
c(t)dt eqauls to:

N
n−m

T max
k

max

k
′
̸=k

(
1

2
ln |Λk| −

1

2

[
(µk − µk′ )

⊤
Λk (µk − µk′ ) + Tr(Λ−1

k′ · Λk)
])

+Op(N
n−m
2T ).

Then the value of
∫ n

m
(c(t)− b(t)) dt is given by:∫ n

m

(c(t)− b(t)) dt

= N
n−m

T max
k

max

k
′
̸=k −

1

2

[
(µk − µk′ )

⊤
Λk (µk − µk′ ) + Tr(Λ−1

k′ · Λk)
]
+Op(N

n−m
2T ) < 0.

□

Based on the above assumptions, we can present our results in the following:
Theorem 2. For ti ∈ {tMk−1+1, ..., tMk

}, the value of each forward message is given by:

µ→ti(n) =
N

(i−1)n
T

N i(lnN)i−1
exp

(∫ Tk

0

b(t)dt

)
exp

(∫ n−Tk

0

α(t)dt

)
.

Proof: We will use the method of induction to drive the general formula of the forward message.
By considering each data y(t) as the continuous function of time t, the initial message is given by:
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µ→t1(m) = π1,m · exp

{∫ m

0

{
1

2

〈
ln
∣∣Λ0

1

∣∣〉
−1

2
Tr
[(
y(t) · y(t)⊤ − y(t) ·

〈
u01
〉⊤ − 〈u01〉 · y(t)⊤ +

〈
u01, u

0⊤
1

〉)
·
〈
Λ0
1

〉]}}

=


Op(π1,m · exp

{∫m

0
b(t)dt

}
) if m ≤ T1,

Op(π1,m · exp
{∫ T1

0
b(t)dt+

∫m

T1
c(t)dt)

}
if m ≥ T1.

= Op

(
1

N
exp

(∫ T1

0

b(t)dt

)
· exp

(∫ m

T1

α(t)dt

))
,

where we use the fact that πi,m = 1/N and the initial segment is a subset of the first regime
[0, t1] ⊂ [0, T1] and the initialized parameters are consistent with the true value S1 and u1, such
that:〈
u01
〉
= û1

p→ u1,
〈
u01, u

0⊤
1

〉
= û1 · û⊤1 ,

〈
Λ0
1

〉
= Ŝ1

p→ S1,
〈
ln
∣∣Λ0

1

∣∣〉 = ln
∣∣∣Ŝ1

∣∣∣ p→ ln |S1| .

Now consider the next message using the updated formula:

µ→t2(n) =

∫ n

0

{
µf0→t1(m) · π2,m,n · exp

{∫ n

m

1

2

〈
ln
∣∣Λ0

2

∣∣〉
− 1

2
Tr
[(
y(t) · y(t)⊤ − y(t) ·

〈
u02
〉⊤ − 〈u02〉 y(t)⊤ +

〈
u02, u

0⊤
2

〉)
·
〈
Λ0
2

〉]
dt

}}
dm

=


Op

(
1
N (
∫ n

0
N

m−T
T dm) · exp

{∫ n

0
b(t)dt

})
if n ≤ T1,

Op

(
1
N (
∫ n

0
N

m−T
T dm) · exp

{∫ T1

0
b(t)dt+

∫ n

T1
c(t)dt)

})
if n ≥ T1.

= Op

(
N

n
T

N2 · lnN
exp

(∫ T1

0

b(t)dt

)
· exp

(∫ n

T1

α(t)dt

))
.

Therefore, the exponential term is exactly the same as the initial message. It’s easy to see as long as
i ∈ {1, ...,M1 − 1}, the message is given by:

µ→ti(n) =
N

(i−1)n
T

N i(lnN)i−1
exp

(∫ Tk

0

b(t)dt

)
exp

(∫ n−Tk

0

α(t)dt

)
.

Now consider the first junction point i =M1, the message is given by:

µ→tM1
(n) = Op

(∫ n

0

{
N

(M1−1)m
T

NM1 · (lnN)(M1−2)
exp

(∫ T1

0

b(t)dt
)

× exp
(∫ m

T1

α(t)dt
)
· exp

(∫ n−m

0

c(t)dt
)}

dm

)
.

We can discuss in part:

1. for n ≥ m ≥ T1:

µ→tM1
(n) = Op

(
N

(M1−1)n
T

NM1(lnN)(M1−1)
exp

(∫ T1

0

b(t)dt
)
exp

(∫ n−T1

0

c(t)dt
))

.

17
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2. for n ≥ T1 ≥ m:

µ→tM1
(n) = Op

(
N

(M1−1)n
T

NM1(lnN)(M1−1)

∫ n

0

exp
(∫ T1

0

b(t)dt
)

× exp
(∫ T1−m

0

(c(t)− b(t))dt
)
exp

(∫ n−T1

0

c(t)dt
)
dm

)
.

3. for T1 ≥ n ≥ m:

µ→tM1
(n) = Op

(
N

(M1−1)n
T

NM1(lnN)(M1−1)

∫ n

0

exp
(∫ T1

0

b(t)dt
)

× exp
(∫ n−m

0

(c(t)− b(t))dt
)
exp

(∫ T1−n

0

−b(t)dt
)
dm

)
.

Thus,

µ→tM1
(n) = Op

(
N

(M1−1)n
T

NM1(lnN)(M1−1)
exp

(∫ T1

0

b(t)dt
)
exp

(∫ n

T1

α(t)dt
))

.

Then we evaluate the first non-junction point i =M1 + 1. By discussing it by part, we show that:

1. if n ≥ T1:

µ→tM1+1
(n) = Op

(
exp

(∫ T2

0

b(t)dt
)
exp

(∫ n

T2

α(t)dt
)

×
∫ n

0

{
N

M1m
T

NM1+1(lnN)(M1−1)
exp

(∫ T1−m
(c(t)− b(t))dt

)}
dm

)
.

2. if n ≤ T1:

µ→tM1+1
(n) = Op

(
exp

(∫ T2

0

b(t)dt
)
exp

(∫ n

T2

α(t)dt
)

×
∫ n

0

{
N

M1m
T

NM1+1(lnN)(M1−1)
exp

(∫ n−m
(c(t)− b(t))dt

)}
dm

)
.

In both cases, we can rewrite the message as:

µ→tM1+1
(n) = Op

(
N

M1m
T

NM1+1 · (lnN)M1
exp

(∫ T2

0

b(t)dt
)
exp

(∫ n

T2

α(t)dt
))

,

which returns to the initial message µ→t1(n) with the same exponential terms. □

By the same induction procedure, it’s easy to see Theorem 2 holds for all i ∈ {tMk−1+1, ..., tMk
}.

Theorem 3. For ti ∈ {tMk−1
, ..., tMk−1}, the value of each backward message is given by:

µti←(m) = exp

(∫ T−Tk−1

0

b(t)dt

)
exp

(∫ Tk−1−m

0

α(t)dt

)
.
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Proof: The proof of Theorem 3 is similar to that of Theorem 2. The initial backward message is
given by:

µtMK+1−1←(m) = exp

{∫ T

m

{
1

2

〈
ln
∣∣Λ0

K+1

∣∣〉− 1

2
Tr
[(
y(t)y(t)⊤ − y(t) ·

〈
u0K+1

〉⊤
−
〈
u0K+1

〉⊤ · y(t) + 〈u0K+1, u
0⊤
K+1

〉 )
·
〈
Λ0
K+1

〉 ]
dt

}}

=


Op(exp

{∫ T

m
b(t)dt

}
) if m ≥ TK ,

Op(exp
{∫ T

TK
b(t)dt+

∫ TK

m
c(t)dt)

}
if m ≤ TK .

= Op

(
exp

(∫ T−TK

0

b(t)dt
)
exp

(∫ TK−m

0

α(t)dt
))

,

where the initialized parameters are consistent estimators of true uK+1 and SK+1.Now consider the
next backward message using the updated formula:

µ→tMK+1−2
(m) =

∫ T

m

{
µ→tMK+1−1

(n) · πMK+1−1,m,n

× exp

{∫ n

m

{1
2

〈
ln
∣∣Λ0

K+1

∣∣〉− 1

2
Tr
[(
y(t) · y(t)⊤ − 2y(t) ·

〈
u0K+1

〉
+
〈
u0K+1, u

0⊤
K+1

〉 )
·
〈
Λ0
K+1

〉 ]
dt
}}}

dn

=


Op

(
N

m−T
T · exp

{∫ T−m
0

b(t)dt
})

if m ≥ TK ,

Op

(
N

m−T
T · exp

{∫ T−TK

0
b(t)dt+

∫ TK−m
0

c(t)dt)
})

if m ≤ TK .

= Op

(
exp

(∫ T−TK

0

b(t)dt
)
exp

(∫ TK−m

0

α(t)dt
))

.

Thus, it’s easy to show for all i ∈ {MK + 1, ...,MK+1 − 2},

µti←(m) = Op

(
exp

(∫ T−TK

0

b(t)dt
)
exp

(∫ TK−m

0

α(t)dt
))

.

Then we consider the first junction point i =MK :

µtMK
←(m) = N

m−T
T

∫ T

m

{
exp

(∫ T−TK

0

b(t)dt
)

× exp
(∫ TK−n

0

α(t)dt
)
exp

(∫ n−m

0

c(t)dt
)}

dn.

Consider three cases:

1. If n ≥ m ≥ Tk:

µtMK
←(m) = N

m−T
T

∫ T

m

{
exp

(∫ T−TK

0

b(t)dt
)

× exp
(∫ m−TK

0

−b(t)dt
)
exp

(∫ n−m

0

(
c(t)− b(t)

)
dt
)}

dn.
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2. If n ≥ TK ≥ m:

µtMK
←(m) = N

m−T
T

∫ T

m

{
exp

(∫ T−TK

0

b(t)dt

)

× exp

(∫ TK−m

0

c(t)dt

)
exp

(∫ n−TK

0

(
c(t)− b(t)

)
dt
)}

dn.

3. If TK ≥ n ≥ m:

µtMK
←(m) = N

m−T
T

∫ T

m

{
exp

(∫ T−TK

0

b(t)dt

)
· exp

(∫ TK−m

0

c(t)dt

)}
dn.

Thus we can sum it up as:

µti←(m) = Op

(
exp

(∫ T−TK

0

b(t)dt
)
exp

(∫ TK−m

0

α(t)dt
))

.

When it comes to the new point in the previous segment i =MK − 1:

1. If n ≤ TK :

µtMK−1←(m) = N
m−T

T

∫ T

m

{
exp

(∫ T−TK−1

0

b(t)dt
)

× exp
(∫ TK−n

0

c(t)− b(t)dt
)
exp

(∫ TK−1−m

0

α(t)dt
)}

dn.

2. If n ≥ TK :

µtMK−1←(m) = N
m−T

T exp
(∫ T−TK−1

0

b(t)dt
)

×
∫ T

m

{
exp

(∫ min{n−TK ,n−m}

0

(
c(t)− b(t)

)
dt
)

× exp
(∫ TK−1−m

0

α(t)dt
)}

dn.

Thus, following the same procedure in the proof of Theorem 2, we can derive that for all i, the
recursive formula holds.

We are now ready to prove the location consistency. First consider the change point ti ∈
{tMk−1+1, ..., tMk−1}. The unnormalized marginal probability Q̃(ti = m) is given by:

N
in
T

N i(lnN)i−1
exp

(∫ T+Tk−Tk−1

0

b(t)dt

)
exp

(∫ m−Tk

0

α(t)dt

)
exp

(∫ Tk−1−m

0

α(t)dt

)
.

Thus we can discuss all possible values of location m:

1. When Tk−1 ≤ m ≤ Tk: It’s easy to show∫ m−Tk

0

α(t)dt+

∫ Tk−1−m

0

α(t)dt = −
∫ Tk−m

0

b(t)dt−
∫ m−Tk−1

0

b(t)dt.

Thus,

Q̃(ti = m) =
N

im
T

N i(lnN)i−1
exp

(∫ T+Tk−Tk−1

0

b(t)dt

)
exp

(
−
∫ Tk−Tk−1

0

b(t)dt

)

=
N

in
T

N i(lnN)i−1
exp

(∫ T

0

b(t)dt

)
.
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2. When m ≥ Tk: It’s easy to show∫ m−Tk

0

α(t)dt+

∫ Tk−1−m

0

α(t)dt =

∫ m−Tk

0

(c(t)− b(t)) dt−
∫ Tk−Tk−1

0

b(t)dt.

Thus

Q̃(ti = m) =
N

im
T

N i(lnN)i−1
exp

(∫ T

0

b(t)dt

)
exp

(∫ m−Tk

0

(
c(t)− b(t)

)
dt

)
.

3. When m ≤ Tk−1: It’s easy to show∫ m−Tk

0

α(t)dt+

∫ Tk−1−m

0

α(t)dt =

∫ Tk−1−m

0

(
c(t)− b(t)

)
dt−

∫ Tk−Tk−1

0

b(t)dt,

Thus

Q̃(ti = m) =
N

im
T

N i(lnN)i−1
exp

(∫ T

0

b(t)dt

)
exp

(∫ Tk−1−m

0

(
c(t)− b(t)

)
dt

)
.

The value of Q(ti = m) requires normalization. The normalization constant is given by:

C =

∫ N

0

Q̃(ti = m)dm

= Op

(
N

iTk
T

N i(lnN)i−1
exp

(∫ T

0

b(t)dt
))

.

Thus, the value of Q(ti = m) = Q̃(ti = m)/C is given by:

Q(ti = m) =


N

im−iTk
T if m ∈ [Tk−1, Tk),

N
im−iTk

T exp
(∫m−Tk

0
(c(t)− b(t)) dt

)
if m ≥ Tk,

N
im−iTk

T exp
(∫ Tk−1−m

0
(c(t)− b(t)) dt

)
if m ≤ Tk−1.

=


1 if m = Tk,

Op(N
m−Tk

T ) if m ∈ [Tk−1, Tk),

Op(exp(N
min{|m−Tk|,|m−Tk−1|}

T )) if m /∈ [Tk−1, Tk].

For junction points Ti with i ∈ {Mk}Kk=1, the unormalized probability is given by:

Q̃(ti = m) =
N

in
T

N i(lnN)i−1
exp

(∫ T

0

b(t)dt

)
exp

(∫ |Tk−1−m|

0

(
c(t)− b(t)

)
dt

)
.

Then, the normalization constant is

C =

∫ N

0

Q̃(ti = m)dm

= Op

(
N

iTk
T

N i(lnN)i−1
exp

(∫ T

0

b(t)dt
))

.

Since Q(ti = m) = Q̃(ti = m)/C, we have

Q(ti = m) = N im−iTk exp

(∫ |m−Tk|

0

(
c(t)− b(t)

)
dt

)

= Op

(
exp

(
−N

|m−Tk|
T

))
.

Hence the proof is finished.

□
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D SIMULATION SETTINGS

D.1 INITIALIZATION AND HYPERPARAMETERS SETTING

The hierarchical model given in Equation 1 has hyperparameters α = {β, ν0, V 0}. To implement
Algorithm 1, the hyperparameters in the conjugate prior defined in Equation 1 set as follows:
the parameter β in all Gaussian prior distributions N

(
0, β−1I

)
are set to the data dimension D.

Similarly the prior Wishart distributionW(ν0, V 0) is assigned with ν0 = D,V 0 = D · I where I is
identity matrix of dimension D. The Gaussian-Wishart prior has been studied for low-rank matrix
completion, which imposes an appropriate penalty, and encourages sparse solutions with promising
convergence.

Throughout all the experiments, the initialization of Algorithm 1 follows the description of A3
in Section 2.3 where we evenly divide the entire sequence into K̃ segments. Then {Q(θ)}K̃k=1 are
initialized using the statistical moments (mean and variance for the Gaussian distribution) from these
segments.

D.2 NUMERICAL DEMONSTRATION

In this section, We evaluate the performance by varying values of sequence length N . In
particular, we consider sampling the 1-dimensional mean-variance shift sequence with five
equally spaced segments. The length of each segment is N/5 and N varies in the set
{50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600}. In each segment, samples are drawn from
a normal distribution with the following parameters.

u = [0, 3, 2, 4, 4] Λ = [1, 0.25, 1, 1, 4]

Elements in u and Λ represent the mean and precision of a particular segment. For example, samples
in the first segment follow a N (0, 1) distribution. We initialize our algorithm with K̃ = 10 and set
the iteration number to 30. The simulations are repeated 100 times and the average number of
change points and average mean absolute error are reported in Figure 2.

D.3 LOCATION AND PARAMETER ESTIMATION

In this subsection, we consider one mixed distribution sequence and two normal sequences. Model 1
is a variance shift sequence model. The five ordered segments are sample from Binomial(10, 0.3),
N (3, 4), Poisson(3), and Binomial(15, 0.2), each with 100 samples. For Model 2 and Model 3,
the multivariate normal sequences, parameters are specified in the following Table 3. Let

u
(2)
1 = [0, 0, 0, 0, 0], u

(2)
2 = u

(2)
3 = [0, 2, 0, 1, 2], u

(2)
4 = u

(2)
5 = [4, 0, 2, 0, 4],

u
(3)
1 = [010], u

(3)
2 = u

(3)
3 = [0, 2, 0, 1, 0, 1, 0, 0, 0, 1], u

(3)
4 = u

(3)
5 = [1, 0, 2, 0, 4, 0, 0, 4, 0, 1].

I is the identity matrix of size D and I0.8 is an identity matrix with the non-diagonal elements equal
to 0.8. 010 is a zero vector in 10-d. Specifically, all three Models are subject to four change points
occurring at τ = {100, 200, 300, 400}, each representing a change in distribution. Clearly, Model 2
and 3 incorporate the mean shift or correlation shift around change points. For all three models, N ,
the length of the sequence is 500, and the upper bound of the number of change points K̃ is 10. The
iteration number is set to 30. For each model, the repetition of simulation is 100 and the average
Rand index of each model is reported in Table 1.
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Table 3: Normal Mean correlation-Shift of Model 2 and 3

u Λ τ D N

Model 2 [u
(2)
1 ,u

(2)
2 ,u

(2)
3 ,u

(2)
4 ,u

(2)
5 ] I−10.8, I

−1
0.8, I, I, I

−1
0.8 100, 200, 300, 400 5 500

Model 3 [u
(3)
1 ,u

(3)
2 ,u

(3)
3 ,u

(3)
4 ,u

(3)
5 ] I−10.8, I

−1
0.8, I, I, I

−1
0.8 100, 200, 300, 400 10 500

In this part, we evaluate the accuracy of the posterior parameter estimation. Here we only consider
normal sequence cases for estimation. The parameters are summarized in Table 4

Table 4: Normal Mean correlation-Shift in Case 1, 2 and 3

u Λ τ D N

Case 1 [0, 3, 2, 4, 4] 1, 0.25, 1, 1, 4 100, 200, 300, 400 1 500

Case 2 [u
(2)
1 ,u

(2)
2 ,u

(2)
3 ,u

(2)
4 ,u

(2)
5 ] I−10.8, I

−1
0.8, I, I, I

−1
0.8 100, 200, 300, 400 5 500

Case 3 [u
(3)
1 ,u

(3)
2 ,u

(3)
3 ,u

(3)
4 ,u

(3)
5 ] I−10.8, I

−1
0.8, I, I, I

−1
0.8 100, 200, 300, 400 10 500

The included symbols are the same as above. The estimation error (Mean square error) is measured
by taking l2 norm of the difference between the estimated mean and ground truth, while the MSE.SD
is the ordinary standard deviation of estimation. Notice that in the estimation of the covariance ma-
trix, the estimation error is further divided by data dimension D to maintain numerical consistency.
These simulations are also repeated 100 times and the average MSE is shown in Table 2:

Mean square error =
1

N

N∑
i=1

∥∥∥θ̂i − θ0

∥∥∥2
2
, (5)

and

MSE.SD =

√√√√√ 1

N − 1

N∑
i=1

∥∥∥θ̂i − θ0

∥∥∥2
2
− 1

N

N∑
j=1

∥∥∥θ̂j − θ0

∥∥∥2
2

2

. (6)

D.4 NON-GAUSSIAN EXAMPLES SETTINGS

In these non-Gaussian examples, we consider testing the performance on Poisson, chi-squared, or the
exponential random sequences. For the Poisson sequence, the rate parameters λ of five segments
are λ = [1, 5, 2, 10, 3]. df = [1, 5, 2, 4, 1] are set to be the parameters of chi-squared sequence.
The scale parameters of the exponential distribution are β = [1, 5, 0.5, 4, 1]. N , the length of the
sequence is 500 and each segment contains 100 samples. K̃, the upper bound of the number of
change points is 8.
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