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ABSTRACT

Vision-language models (VLMs) have emerged as extremely strong zero-shot and
few-shot image classifiers, performing on par with task-specific models. How-
ever, they can be unnecessarily heavy-weight for task-specific downstream appli-
cations. While existing lines of work have successfully compressed VLMs and
other foundation models to varying degrees, most focus on preserving the gener-
ality of these models, rather than leveraging their power for a particular task. In
this work, we focus on the setting in which we have a limited amount of data on
a downstream image classification task and a limited inference budget. To satisfy
these constraints, we focus on distilling the strong few-shot performance of CLIP
on image classification tasks into a more efficient model. We introduce the SID-
CLIP (Synthesize-Initialize-Distill CLIP) method and highlight its three compo-
nents that are critical to obtaining strong performance: 1) augmenting the classifier
with synthetic data generated by leveraging CLIP itself; 2) initializing the model-
ing process using a smaller CLIP model pretrained on the target architecture; and
3) incorporating knowledge distillation to maximally mimic the performance of
the larger model. Our set of proposed strategies produces a compact model that
performs within 16% and 10% of CLIP’s linear probe performance on 1 and 8 shot
datasets respectively, while using a model with less than 2% of the parameters of
CLIP’s image encoder. We hope our work can be useful as a practical guide for
leveraging the power of foundation models in downstream data-scarce and budget
constrained settings.

1 INTRODUCTION

Foundation models such as CLIP-based models have been shown to perform extremely well on zero-
shot and few-shot image classification: via simple prompting and/or a few examples, these models
can achieve classification performance on-par with models trained with much more task-specific
data (Radford et al., 2021). However, this performance comes at a cost: the models are extremely
general and large-scale, and thus incur a high inference cost relative to smaller, more task-specific
models, making them unsuitable for many edge applications. This challenge has led to a number of
methods for compressing or distilling knowledge from large foundation models into smaller models.
Although these techniques can preserve strong performance relative to the large foundation model,
they are often not task-specific, and when they are, they often focus on preserving the model’s zero-
shot performance, rather than being able to take advantage of limited task-specific downstream data
(Popp et al., 2024; Li et al., 2023; Wu et al., 2023; Vasu et al., 2024; Sun et al., 2023).

In this work, our goal is to produce a small model that performs as close as possible to a powerful
large-scale vision-language model (VLM) on a particular downstream task. We address the specific
challenge of attempting to distill the strong performance of zero- and few-shot CLIP image classi-
fication models into vastly more efficient (but task-specific) architectures. In other words, given a
very limited amount of data on a desired downstream image classification task, and a very limited
inference-time compute budget, we obtain the best performance on a downstream compact model
by leveraging the capabilities of larger models. In practice, we find that three separate components
are central to obtaining strong performance:

1. We augment the classifier with synthetic data generated by leveraging CLIP itself. Specif-
ically, we use a text-to-image generative model seeded with embeddings produced from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 1 2 4 8
Shot

20

40

60

80
Te

st
 A

cc
ur

ac
y

Cars

CLIP + ViT-L/14
SIDCLIP (Ours)
ENB0 + I + D
ENB0 + D
ENB0

0 1 2 4 8
Shot

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

Flowers

CLIP + ViT-L/14
SIDCLIP (Ours)
ENB0 + I + D
ENB0 + D
ENB0

0 1 2 4 8
Shot

20

40

60

80

Te
st

 A
cc

ur
ac

y

Food

CLIP + ViT-L/14
SIDCLIP (Ours)
ENB0 + I + D
ENB0 + D
ENB0

Figure 1: The addition of each SIDCLIP component increases performance, bringing the perfor-
mance of the final model much closer to the performance of the teacher CLIP ViT-L/14 model,
across shots and datasets.

linear interpolations of the text of the class label and the CLIP embeddings of the few-shot
image examples.

2. We initialize our small models with a variant based upon a small CLIP model pretrained
on the target architecture.

3. We incorporate knowledge distillation to maximally mimic the performance of the larger
CLIP models.

We call our method, which incorporates the above three components, SIDCLIP (Synthesize-
Initialize-Distill CLIP). While each of these elements alone have been the subject of exploration
in the literature, we emphasize that the work here serves largely as a “practical guide” that demon-
strates the relative value of leveraging these three capabilities, as well as ablations demonstrating
the efficacy of subsets of these elements.

We evaluate our proposed approaches, along with ablations and other baselines, on three common
small-scale image classification benchmarks: the Stanford Cars (Krause et al., 2013), Oxford Flow-
ers (Nilsback & Zisserman, 2008), and Food 101 (Bossard et al., 2014) datasets. We show that in all
cases, our set of proposed strategies produces a compact model that performs within 16% and 10%
of CLIP’s linear probe performance on 1 and 8 shot datasets respectively, while having less than 2%
of the parameters. These results are highlighted in Figure 1.

2 RELATED WORKS

Synthetic data. There has been lots of evidence to indicate that synthetic data is helpful in general
when training models and particularly in distillation. Azizi et al. (2023) find that augmentation of
a dataset with synthetic data improves image classification performance on CNN and ViT architec-
tures. He et al. (2023) focuses on the zero- and few-shot domains and reaches a similar conclusion:
that synthetic data can be used in conjunction with real data to improve performance on image clas-
sification tasks. Similarly to our work, Popp et al. (2024) generate synthetic data in order to perform
distillation. This work differs from ours in two notable ways: they assume no access to the down-
stream data, rather than few samples; and the aim to transfer the general zero-shot capabilities of
CLIP rather than focusing on a particular downstream task. In general, the field of data-free distilla-
tion explores the usage of only synthetic data (no real data) during the distillation process (Chawla
et al., 2021; Fang et al., 2022).

While these directions all incorporate synthetic data, none utilize the particular image- and text-
conditioning generation method that we use in SIDCLIP. The image generation pipeline we use was
introduced in Razzhigaev et al. (2023) and achieved SOTA FID scores (a metric to assess the quality
of generated images) on generated images relative to other open source models.

Small CLIP models. Several previous works attempt to compress the information in CLIP by
reducing the size of the image encoder via distillation to a smaller CLIP model or to a novel CLIP-
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like architecture (Wu et al., 2023; Vasu et al., 2024; Popp et al., 2024). In our work, we replace
CLIP’s image encoder with a new vision model, namely an EfficientNet B0 (Tan & Le, 2020).

Compression. VLMs have remarkable few- and zero-shot performance on downstream tasks and
are strong image classifiers (Radford et al., 2021; Jia et al., 2021; Li et al., 2022; Yuan et al., 2021;
Zhai et al., 2023). It is a natural next step to attempt to compress these high powered models
into smaller versions that require less memory and have lower inference times. There has been a
range of work in compressing foundation models, some (pruning, quantization, distillation) mirrors
compression in non-foundation models, while others (parameter-efficient fine-tuning such as adapter
layers or prompt tuning) are unique to the VLM or LLM setting (Hinton et al., 2015; Dettmers et al.,
2022; Frantar & Alistarh, 2023; Sun et al., 2024; Houlsby et al., 2019; Liu et al., 2022; Lester et al.,
2021; Jia et al., 2022).

In many of the existing efforts to compress foundation models, the goal has been to preserve the
general capabilities of the models. Rather than honing in on a model’s performance on a particular
task, these methods aim to broadly preserve CLIP’s generalizaiton abilities for image classification
(Li et al., 2023; Wu et al., 2023; Vasu et al., 2024; Sun et al., 2023; Wu et al., 2022).

Li et al. (2023) distills from a CLIP ViT-L/14 teacher to a convolutional network student such as
ResNet18. They measure task-specific performance as out-of-distribution performance: they per-
form distillation without any of the task-specific samples and then evaluate the zero- or few-shot
performance of their model on downstream tasks. While similar to our setting, this setting does not
take advantage of task-specific data during distillation and thus yields lower performance than our
method. Although this allows for flexibility with downstream tasks, it is not the most advantageous
when the downstream task is known ahead of time.

TinyCLIP and MobileCLIP both preserve CLIP’s general purpose knowledge through distillation
(Wu et al., 2023; Vasu et al., 2024). TinyViT is another method which produces a small downstream
model via distillation (Wu et al., 2022). Task-specificity is not part of the distillation process for any
of these methods.

Sun et al. (2023), like us, distill from CLIP ViT-L/14 to a smaller foundation model, and find that
this distilled model outperforms a similar model trained from scratch. However, their smallest model
(Swin-T) is over 5x larger than our model and they only report zero-shot numbers.

Few-shot learning. While preserving the entirety of CLIP’s performance is a worthwhile goal,
it is not the correct focus for all settings. The few-shot setting, when there is limited downstream
training data available, arises in situations where data collection is expensive or challenging (Wang
et al., 2020). Training large-scale models from scratch is an extremely data-intensive process, so
usage of few-shot data to finetune an existing model can increase accessibility and customization of
the power of models like VLMs. While there is some work that addresses a few-shot downstream
setting, it is often done independently of the goal of compression, thus making these approaches not
as feasible of solutions for resource-constrained users (Ma et al., 2024; Wortsman et al., 2022; Islam
et al., 2021). Some lines of work, such as Popp et al. (2024), focus on the zero-shot setting, but leave
out few-shot results. If some downstream task-specific training data is available, these methods are
not equipped to best utilize it.

3 THE SIDCLIP METHOD

To use CLIP as an image classifier, first an image is passed into the image encoder, and text of the
possible classnames is passed into the text encoder. Then, the embedding similarity between the
image and possible classnames is measured. Although this process yields high accuracy on a variety
of downstream tasks, the CLIP model is unnecessarily large and cumbersome for many downstream
applications, such as use on edge devices. The best-performing and largest CLIP model, CLIP ViT-
L/14, has 307M parameters in its image encoder Radford et al. (2021). But what if a user does not
need the full “general-purpose” processing power of CLIP? They may want to take advantage of the
off-the-shelf zero and few shot performance, but only need to classify images corresponding to a
specific task and cannot afford to run such a large model. In this case, it is desirable to transfer a
specific portion of CLIP’s image classification capabilities to a smaller model.
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Figure 2: The three components of SIDCLIP: synthesize data via a weighted combination of class
labels and real images; initialize the student as the image encoder of a small CLIP model; distill
from a powerful teacher model.

With existing methods, a user would be able to produce a general-purpose small model, and poten-
tially finetune it on the task of interest, but is left without being able to optimally take advantage of
the limited training data they have. They would end up with a smaller version of CLIP, not a model
tailored to their specific use case.

Problem setting. Suppose we are in the setting where we have access to a large-scale teacher
VLM T , such as CLIP. We have a small model architecture S that fits certain budget constraints.
Our goal is to maximize image classification performance using S on some downstream task T.
However, we only have k labeled samples per class c ∈ C, for n = |C| classes, on task T.

Our method, SIDCLIP, consists of three essential components for leveraging CLIP’s power in train-
ing a small model in a data-constrained setting. These three components are 1) synthetic data, 2)
initializing the model as a small CLIP variant, and 3) distilling from CLIP to the small model.

3.1 COMPONENT #1: SYNTHETIC DATA

We use synthetic data to augment the limited samples per class in a few shot setting. As described in
our problem setting, we have k labeled samples per class. We use these k × n samples Dr and their
classname labels L to generate additional synthetic samples that can be used for training the model.
When operating in the k-shot setting, we only use those k samples and their classnames as input to
generate additional synthetic data.

More formally, when we want to generate a synthetic sample from class c, we use the label lc ∈ L
and some set of images {xi}Ii=1 ∈ Dr,c, for I ≤ k. We obtain the CLIP image and text embeddings:
img enc(xi) and text enc(lc) and combine them via a weighted combination:

emb = w0 · text enc(lc) +
I∑

i=1

wi · img enc(xi)

such that
∑I

i=0 wi = 1. This combination is then passed into the generative model, which we
sample from to obtain synthetic samples {x′

j} ∼ G(emb), so that Ds(r) = {x′
j}j∈J .

In the majority of cases where synthetic data is used for training, images are generated based on
solely a text prompt or a text prompt and an existing image (see Section 2). In this work, we aim to
maximally leverage the existing data by utilizing a data generation pipeline which can take as input
linear combinations of embeddings of text and multiple images.
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Concretely, we use the Kandinsky framework, which takes as input real images and captions (Raz-
zhigaev et al., 2023). This pipeline obtains CLIP embeddings for each image and caption, combines
them according to specified weights, and passes the joint embedding into the diffusion model to
produce a synthetic sample. We utilize this pipeline due to its high performance and flexibility: it
achieved strong FID scores relative to competitors and was the first text-to-image generative model
that used both image priors and latent diffusion.

3.2 COMPONENT #2: INITIALIZE AS SMALL CLIP

We find that initializing a student model in a CLIP-style architecture allows for performance gains
relative to a standalone student vision model. In this paper, we distill to the EfficientNet B0 model,
a small convolutional network with around 5.3M parameters (Tan & Le, 2020). For our primary
set of experiments, we initialize this model as a small CLIP variant, that is preserving the CLIP
text encoder and replacing the CLIP image encoder with an EfficientNet B0 model. This setup is
pretrained on a subset of DataComp corresponding to 896M samples (Gadre et al., 2023).

3.3 COMPONENT #3: KNOWLEDGE DISTILLATION

Knowledge distillation is a common model compression technique that uses a large, powerful
teacher model to train a smaller student model by aligning the student’s output probabilities to those
of the teacher. There are many variants of loss functions used to align these sets of probabilities, but
the most common is based on the KL divergence as proposed in Hinton et al. (2015):

LKL = α · T 2 ·DKL(SM(ỹ), SM(ŷ)) + (1− α) · CE(ŷ, y)

where DKL refers to KL divergence, CE refers to cross entropy, SM refers to softmax, ỹ is the
teacher output probabilities, ŷ is the student output probabilities, y is the true labels, α is a hyperpa-
rameter that trades off influence from teacher labels vs true labels, and T is a temperature parameter.

We use this standard KL setting in our experiments. We have a teacher image encoder which outputs
image embeddings of size dTimg and a student image encoder which outputs image embeddings of
size dSimg . We also have a common text encoder which produces text embeddings of size dtext.

For each task, we append a linear layer of shape dTimg × c to the teacher image encoder and a similar
layer of shape dSimg × c to the student model. Before distillation, we finetune the teacher linear layer
on the task of interest. We initialize the student layer with the text embeddings of each class: we
obtain the embeddings for each caption "A photo of {classname}." or "A photo of
{classname}, a photo of {category}." and concatenate them into a tensor of shape
dtext × c where dSimg = dtext. Then, during distillation, the teacher and its appended layer are
frozen, and both the student and its appended layer are updated.

When performing distillation, we use a distillation set consisting of the real samples Dr and the
synthetic samples Ds(r) generated using only those corresponding real images: D = Dr ∪ Ds(r).

4 RESULTS

We demonstrate that SIDCLIP allows us to approach the performance of CLIP ViT-L/14 while using
an image encoder with less than 2% of the parameters. Each of the three components (synthesize,
initialize, distill) is critical in achieving this strong performance. Through a series of ablations and
comparisons to SOTA distillation methods, we show that SIDCLIP is the dominant method when
operating in a low inference budget, low data regime.

4.1 EXPERIMENTAL DETAILS

Datasets. We report results on three task-specific image classification datasets: StanfordCars, Ox-
fordFlowers, and Food101 (Krause et al., 2013; Nilsback & Zisserman, 2008; Bossard et al., 2014).
StanfordCars has 196 classes, OxfordFlowers has 102, and Food101 has 101. All numbers reported
in the paper are top1 accuracy on the test sets.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: SIDCLIP outperforms competing methods and variants without all three components.
Shot

Method Params (M) 0 1 2 4 8 Full

Cars
CLIP ViT-L/14 307 76.1 78.17 79.04 81.46 83.32 91.1

ENB0 5.3 − 4.34 7.0 15.92 37.74 87.79
ENB0 + D 5.3 − 11.5 19.64 39.45 59.22 85.03
ENB0 + I + D 5.3 − 42.06 51.22 64.0 75.43 86.58
ENB0 + I + D + S (SIDCLIP) 5.3 55.55 69.83 73.01 78.1 80.9 86.27

TinyCLIP 8 7.8 11.18 13.51 17.11 22.15 31.09
TinyViT-5M 5.4 − 3.05 5.83 13.9 29.2 87.65

Flowers
CLIP ViT-L/14 307 76.5 90.34 94.91 97.46 98.49 98.57

ENB0 5.3 − 31.73 48.77 67 81.54 87.38
ENB0 + D 5.3 − 46.71 64.73 81.85 89.27 92.28
ENB0 + I + D 5.3 − 53.26 68.24 81.49 91.15 92.19
ENB0 + I + D + S (SIDCLIP) 5.3 11.53 84.04 86.73 88.89 92.65 93.35

TinyCLIP 8 56.46 69.25 78.19 86.75 90.21 82.44
TinyViT-5M 5.4 − 37.88 59.03 74.89 88.03 92.29

Food
CLIP ViT-L/14 307 92.2 92.78 92.8 93.11 93.39 95.15

ENB0 5.3 − 7.73 11.37 16.08 29.47 83.5
ENB0 + D 5.3 − 13.5 23.54 32.31 47.94 80.13
ENB0 + I + D 5.3 − 40.19 46.9 53.58 61.7 87.25
ENB0 + I + D + S (SIDCLIP) 5.3 51.07 61.05 65.49 70.06 72.7 87.47

TinyCLIP 8 55.09 55.71 56.27 58.38 59.17 72.68
TinyViT-5M 5.4 − 9.38 16.67 21.0 33.58 84.65

Data-scarce setting. We are generally interested in any limited data setting. For experimental
purposes, we simulate a data-scarce setting by creating few shot datasets from existing task-specific
datasets. We randomly sample 1, 2, 4, or 8 images from each of the three datasets.

Synthetic data. We generate at least 300 synthetic images per class, per shot, and then sample
from that pool to create our sets of 100, 200, and 300 shot synthetic samples. In all of the few-shot
settings, our distillation dataset includes the few real samples per class and the synthetic samples
generated from only those real samples. See Section A.1 for more details.

Models. We fix CLIP-ViT-L/14 as the teacher model (Radford et al., 2021). The student model
is an EfficientNetB0 model initialized in a CLIP-style model (Tan & Le, 2020; ano, 2024). When
performing distillation, the teacher model is frozen and we update the parameters of both the student
model’s image encoder and its appended linear layer. When performing finetuning of a CLIP-style
model (CLIP ViT-L/14, TinyCLIP) we freeze the parameters of the student model and only update
the parameters in the appended linear layer. When finetuning or distilling to a non-CLIP-style model
(ENB0, ENB0 + D, TinyViT), there is no appended linear layer and we update all model parameters.

Data augmentation. We use RandAugment data augmentation (Cubuk et al., 2019). This is a
strategy that applies random data augmentations to each image and is a top performing augmentation
strategy. We apply six augmentations per image. See Section A.2 for additional discussion.

Zero-shot results. The zero-shot column always indicates that no real data was used. For our
method (the SIDCLIP row), zero-shot distillation is performed by using 300 synthetic samples gen-
erated from only caption information. For the other rows (CLIP ViT-L/14, TinyCLIP), these num-
bers are text-conditioned evaluation on the test set. A dash indicates that zero-shot results were not
obtained, either due to the model not being a CLIP-style model (ENB0, TinyViT-5M), or due to the
inability to perform zero-shot distillation without synthetic data (ENB0 + D, ENB0 + I + D).
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4.2 MAIN RESULTS

Table 1 shows a comparison of SIDCLIP to several relevant baselines. For each dataset, we include
an “upper-bound” result: CLIP ViT-L/14, which is the teacher used in all experiments. We then
include the baseline of a standalone EfficientNetB0 (ENB0) finetuned on the k-shot dataset. Each
subsequent row adds one of the SIDCLIP elements: “+D” adds distillation, “+ I” adds initialization,
and “+S” adds 300 synthetic samples in addition to the real samples.

We additionally include comparisons to two baseline methods: TinyCLIP and TinyViT (Wu et al.,
2022; 2023). These methods use distillation to train a downstream image classification model. Un-
like our method, which allows for specialization on a specific task, these methods focus on maintain-
ing CLIP’s overall performance. Additionally, few-shot results are not reported in these papers. For
TinyCLIP, we ran few-shot linear probe experiments on the smallest available model (8M parame-
ter image encoder). For TinyViT, we ran few-shot finetuning experiments on the smallest available
model (5.4M parameters). Additional comparisons are included in section 4.3.

Our goal was to leverage the power of CLIP to produce a strong small-scale model, using only lim-
ited training data. These results indicate that, using each of our 3 components (synthesize, intialize,
distill), we are able to obtain a notable performance increase of around +50% higher than the starting
model, with performance that approaches that of the teacher CLIP model. Our method consistently
outperforms variations which do not include all three components as well as few-shot finetuning of
existing SOTA distillation methods.

On the Cars and Flowers datasets, SIDCLIP consistently achieves within 10% of CLIP’s perfor-
mance in the few shot setting. On Food, SIDCLIP remains 20-30% below the teacher model. We
hypothesize that this may be due to more instances of food in the pretraining datasets for both teacher
and student. In this case, additional food examples do not add much information to the model.

4.3 ADDITIONAL COMPARISONS

As previously discussed, many VLM compression methods focus only on the zero-shot or full-
shot case. We include some additional results reported in the literature in Table 2. Our method
compares favorably to the only other paper that reported few-shot results, with our 4-shot results
outperforming their 5-shot results (Li et al., 2023). Although our method tends to perform worse
than competitors on zero-shot, we note that the other models here are 2x larger, and our strong few-
shot performance highlights the value of our data synthesis pipeline, which interpolates between real
images and captions.

Table 2: Comparison to additional methods.
Model Params (M) Zero shot Few shot (k) Full shot

Cars
TinyViT Popp et al. (2024) 11 81.9 − 90.7
ResNet18 Li et al. (2023) 11 20.4 39.7 (5) −
EfficientNet B0 (Ours) 5.3 55.55 78.1 (4) 86.27

Flowers
TinyViT Popp et al. (2024) 11 68.3 − 90.6
ResNet18 Li et al. (2023) 11 18.2 54.3 (5) −
EfficientNet B0 (Ours) 5.3 11.53 88.89 (4) 92.29

Food
TinyViT Popp et al. (2024) 11 71.9 − 83.0
ResNet18 Li et al. (2023) 11 35.7 44.0 (5) −
EfficientNet B0 (Ours) 5.3 51.07 70.06 (4) 87.47

4.4 ABLATIONS

Synthetic data ablation Our method uses 300 synthetic samples per class. In Figure 3 we include
results with no added synthetic data or only 100 or 200 samples per class. There is a general trend
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Figure 3: Ablation on amount of synthetic data.

of more synthetic data improving the performance, most notably in the smaller shot settings. How-
ever, the addition of the first 100 synthetic samples causes the largest increase in performance, with
accuracy beginning to plateau with further addition of synthetic samples.

Small CLIP ablation Distilling to a vision model initialized in a small CLIP model results in
higher performance than distilling to a standalone EfficientNet B0 model. This comparison is shown
in Table 3. While our instantiation of the SIDCLIP method includes starting with a model that was
pretrained on DataComp, our EfficientNet B0 model was pretrained on ImageNet. This discrepancy
in pretraining dataset scale may also contribute to the difference in performance.

Table 3: Ablation of small CLIP initialization.
Shot

Dataset Method 0 1 2 4 8

Cars ENB0 30.88 50.29 54.6 67.08 74.21
SIDCLIP (Ours) 55.55 69.83 73.01 78.1 80.9

Flowers ENB0 3.59 83.02 85.25 89.74 91.77
SIDCLIP (Ours) 11.53 84.04 86.73 88.89 92.65

Food ENB0 27.56 51.81 57.25 63.98 67.48
SIDCLIP (Ours) 51.07 61.05 65.49 70.06 72.7

Knowledge distillation ablation In order to leverage the power of a large-scale VLM, we use
knowledge distillation. Although knowledge distillation has long been established as a powerful
compression technique (Hinton et al., 2015; Romero et al., 2014; Wu et al., 2023; 2022), here we
include a simple ablation to demonstrate its value in our setting. We compare an EfficientNet B0
model (standalone; not initialized in a CLIP model) that is finetuned on a few shot dataset to one that
is trained via distillation from a CLIP ViT-L/14 model. Table 4 shows that in all few-shot settings,
distillation outperforms finetuning.

4.5 QUALITATIVE ANALYSIS OF SYNTHETIC IMAGES

Figure 4 shows examples of synthetic data used in the SIDCLIP pipeline. When conditioned on one
or two real images as shown in the last two columns, we can see that the synthetic images directly
mirror features in the real images more than when generation is only conditioned on the caption. For
instance, note the colors of the Volkswagen Beetle and the butter on the waffles.

We also note in particular that the Flowers dataset tends to yield relatively poor zero-shot perfor-
mance. We can observe how much the caption-only “red ginger” image differs from both the real
images and the real-image-conditioned synthetic images. Additionally, the caption-only “yellow
iris” includes less background foliage. This dataset-specific discrepancy may be a contributor to the
impacted zero-shot performance.
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Table 4: Ablation of distillation.
Shot

Dataset Method 1 2 4 8

Cars Finetune 4.34 7.0 15.92 37.74
Distill 11.5 19.64 39.45 59.22

Flowers Finetune 31.73 48.77 67 81.54
Distill 46.71 64.73 81.85 89.27

Food Finetune 7.73 11.37 16.08 29.47
Distill 13.5 23.54 32.31 47.94

Figure 4: Synthetic images mirror the real images more closely when conditioned on real images
and captions, rather than captions only.

5 CONCLUSION

We present the SIDCLIP (Synthesize-Initialize-Distill CLIP) method, which achieves SOTA per-
formance in a budget-constrained, data-scarce, task-specific setting. Our method achieves the best
few-shot performance on StanfordCars, OxfordFlowers, and Food101 by leveraging the power of a
large-scale VLM, in this instance, CLIP. The three components of the SIDCLIP method are 1) aug-
menting the limited training data with task-specific synthetic data generated by using linear combi-
nations of the CLIP image and text embeddings of existing real data; 2) initializing the small model
as a CLIP-style model; and 3) using knowledge distillation to transfer more fine-grained classifica-
tion information from a powerful teacher. In settings with limited data and inference-time compute,
SIDCLIP outperforms baselines such as TinyCLIP and TinyViT.
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A APPENDIX

A.1 DETAILS OF SYNTHETIC IMAGE GENERATION

The caption we used to produce the text embedding is always the classname. For zero shot, we use
only the caption to prompt the diffusion model and provide no real image samples. For 1 shot, we
use the single image in each class as the only real image sample. For 2, 4, and 8 shot, we sample
two images from each class of our few shot dataset. In the 1 shot case, we use weights of 0.4 for text
and 0.6 for image, and for larger shots, we use weights of 0.2 for the text and 0.4 for each image.

A.2 RANDAUGMENT DATA AUGMENTATION

We used RandAugment as the data augmentation method in our experiments. Here we ablate the
usage of RandAugment, and show the results with only random flip and crop as data augmentations.
Usage of RandAugment offers a performance increase, most notably in the smaller shot cases.

Table 5: Ablation of RandAugment
Shot

Dataset Method 0 1 2 4 8

Cars No randaug 50.37 61.82 63.9 71.56 77.32
SIDCLIP (Ours) 55.55 69.83 73.01 78.1 80.9

Flowers No randaug 8.46 79.04 81.31 86.42 90.88
SIDCLIP (Ours) 11.53 84.04 86.73 88.89 92.65

Food No randaug 41.1 52.4 56.83 64.24 67.54
SIDCLIP (Ours) 51.07 61.05 65.49 70.06 72.7

A.3 ABLATION ON AMOUNT OF SYNTHETIC DATA

Table 6: Ablation on amount of synthetic data.
Shot

Dataset Method 0 1 2 4 8

Cars

No syn data − 42.06 51.22 64 75.43
+100 syn 49.65 70.35 68.14 75.54 80.05
+200 syn 52.54 68.16 69.36 75.07 79.49
+300 syn (Ours) 55.55 69.83 73.01 78.1 80.9

Flowers

No syn data − 53.26 68.24 81.49 91.15
+100 syn 9.66 79.36 84.26 88.45 92.05
+200 syn 9.24 83.92 85.75 89.74 93.10
+300 syn (Ours) 11.53 84.04 86.73 88.89 92.65

Food

No syn data − 40.19 46.9 53.58 61.7
+100 syn 44.95 53.93 58.49 64.14 67.31
+200 syn 47.56 56.56 60.5 66.64 69.32
+300 syn (Ours) 51.07 61.05 65.49 70.06 72.7
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