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Abstract

In the online learning with experts problem, an algorithm makes predictions about
an outcome on each of T days, given a set of n experts who make predictions on
each day. The algorithm is given feedback on the outcomes of each day, including
the cost of its prediction and the cost of the expert predictions, and the goal is
to make a prediction with the minimum cost, compared to the best expert in
hindsight. However, often the predictions made by experts or algorithms at some
time influence future outcomes, so that the input is adaptively generated.
In this paper, we study robust algorithms for the experts problem under memory con-
straints. We first give a randomized algorithm that is robust to adaptive inputs that
uses Õ

(
n

R
√
T

)
space for regret R when the best expert makes M = O

(
R2T
log2 n

)
mistakes, thereby showing a smooth space-regret trade-off. We then show a space
lower bound of Ω̃

(
nM
RT

)
for any randomized algorithm that achieves regret R with

probability 1 − 2−Ω(T ). Such an algorithm is useful for adaptive inputs, as the
failure probability is low enough to union bound over all computation paths. Our
result implies that the natural deterministic algorithm, which iterates through pools
of experts until each expert in the pool has erred, is optimal up to polylogarithmic
factors. Finally, we empirically demonstrate the benefit of using robust procedures
against a white-box adversary that has access to the internal state of the algorithm.

1 Introduction

Online learning with experts is a fundamental problem in sequential prediction. On each of T days,
an algorithm must make a prediction about an outcome, given a set of n experts who make predictions
on the outcome. The algorithm is then given feedback on the cost of its prediction and on the expert
predictions for the current day. In the discrete prediction with experts problem, the set of possible
predictions is restricted to a finite set, and the cost is 0 if the prediction is correct, and 1 otherwise.
More generally, we assume the costs are restricted to be in a range [0, ρ] for some fixed parameter
ρ > 0, with lower costs indicating better performance. This process continues for the T days, after
which the performance (total cost) of the algorithm is compared to the performance (total cost) of
the best performing expert. In particular, the goal for the online learning with experts problem is to
minimize the regret, which is the amortized difference between the total cost of the algorithm and the
total cost of the best performing expert, i.e., the expert that incurs the least overall cost.

A well-known folklore algorithm for handling the discrete prediction with experts problem is the
weighted majority algorithm [42]. The deterministic variant of the weighted majority algorithm
simply initializes “weights” for all experts to 1, down-weights any incorrect expert on a given day, and
selects the prediction supported by the largest weight of experts. The algorithm solves the discrete
prediction with experts problem with O (M + log n) total mistakes, where M is the number of
mistakes made by the best expert, thus achieving total regret O (M + log n). More generally, a large
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body of literature has studied optimizations to the weighted majority algorithm, such as a randomized
variant where the probability of the algorithm selecting each prediction is proportional to the sum of
the weights of the experts supporting the prediction. The randomized weighted majority algorithm
achieves regret O

(√
log n/T

)
[42], which has been shown to be information-theoretically optimal,

up to a constant. There have subsequently been many follow-ups to the weighted and randomized
weighted majority algorithms that achieve similar regret bounds, but improve in other areas. For
example, on a variety of structured problems, such as online shortest paths, follow the perturbed
leader [38] achieves the same regret bound as randomized weighted majority but uses less runtime on
each day. In addition, the multiplicative weights algorithm achieves the optimal

√
lnn/(2T ) regret,

with a tight leading constant [33]. However, these classic algorithms use a framework that maintains
the cumulative cost of each expert, which requires the algorithm to store Ω(n) bits of information.

Memory bounds. Recently, [49] considered the online learning with experts problem when memory
is a premium for the algorithm. On the hardness side, they showed that any algorithm achieving
a target average regret R requires Ω

(
n

R2T

)
space, which implies that any algorithm achieving the

information-theoretic O
(√

log n/T
)

regret must use near-linear space. On the other hand, when the

number of mistakes M made by the best expert is small, i.e., M = O
(
R2T

)
, [49] gave a randomized

algorithm that uses Õ
(

n
RT

)
space for arbitrary-order streams, thus showing that the hardness of their

lower bound originates from a setting where the best expert makes a large number of mistakes.

Subsequently, [47] considered the online learning with experts problem when the algorithm is limited
to memory sublinear in n. They introduced a general framework that achieves o(T ) regret using o(n)
memory, with a trade-off parameter between space and regret that obtains On

(
T 4/5

)
regret with

O (
√
n) space and On

(
T 0.67

)
regret with O

(
n0.99

)
space.

Adaptive inputs. Up to now, the discussion has focused on an oblivious setting, where the input to
the algorithm may be worst-case, but is chosen independently of the algorithm and its outputs. The
online learning with experts problem is often considered in the adaptive setting, where the input to
the algorithm is allowed to depend on previous outputs by the algorithm, e.g., in financial markets,
future stock quotes can depend on previous investment choices. Formally, we define the adaptive
setting as a two-player game between an algorithm D and an adversary A that adaptively creates the
input stream to D. The game then proceeds in days and on the t-th day:

(1) The adversary A chooses the outputs of all experts on day t as well as the outcome of day t,
depending on all previous stream updates and all previous outputs from the algorithm D.

(2) The outputs (i.e., predictions) of all experts are simultaneously given to the algorithm D,
which updates its data structures, acquires a fresh batch Rt of random bits, and outputs a
predicted outcome for day t.

(3) The outcome of day t is revealed to D, while the predicted outcome for day t by D is
revealed to the adversary A.

The goal ofA is to induce D to make as many incorrect predictions as possible throughout the stream.
It is clear that any deterministic algorithm for the online learning with experts problem will maintain
the same guarantees in the adaptive model. Unfortunately, both the algorithms of [49] and [47] are
randomized procedures that rely on iteratively sampling “pools” of experts, which can potentially be
exploited by an adaptive adversary who learns the experts sampled in each pool. Interestingly, both
the randomized weighted majority algorithm [42] and the multiplicative weights algorithm [33] are
known to be robust to adaptive inputs.

1.1 Our Contributions

In this paper, we study the capabilities and limits of sublinear space algorithms for the online learning
with experts problem on adaptive inputs.

Robust algorithms. Towards adaptive robustness, it is natural to study deterministic algorithms,
since they retain the same guarantee under adaptive adversaries. As a warm-up, we first provide
a simple deterministic algorithm that uses space Õ

(
nM
RT

)
. Consider an algorithm that iteratively
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selects the next pool of k = Õ
(
nM
RT

)
experts and running the deterministic majority algorithm on the

experts in the pool, while removing any incorrect experts from the pool until the pool is completely
depleted, at which point the next pool of Õ

(
nM
RT

)
experts is selected. The main intuition is that each

pool can incur at most O (log n) mistakes before it is depleted and the best expert can only make
M mistakes. By the time the pool has cycled through nM experts, i.e., M times for each of the n
experts, then the best expert no longer makes any mistakes and will be retained by the pool. Thus, the
total number of mistakes made by the algorithm is nM

k ·O (log n). On the other hand, for a target
average regret R, the mistake bound of the algorithm is required to be at most M +RT , so it suffices
to set k = Õ

(
nM
RT

)
to achieve regret R. Since the algorithm runs deterministic majority on a pool of

k = Õ
(
nM
RT

)
experts, then this algorithm uses Õ

(
nM
RT

)
space. Formally, we show:

Theorem 1.1 (Simple deterministic algorithm; see Section 3.1). Suppose the best expert makes M
mistakes and let R ≥ 4M logn

T . There exists a deterministic algorithm (Algorithm 2) that uses space
Õ
(
nM
RT

)
and achieves an average regret of R.

The algorithm is simple, computationally efficient, and easy to implement. However, the drawback is
that for M = Ω(RT ), the algorithm requires space near-linear in the number of experts n, which is
undesirable when n is large. To address this issue, we complement our deterministic algorithm with
a randomized algorithm that is robust to adaptive inputs and allows for a different memory-regret
trade-off:
Theorem 1.2 (Robust randomized algorithm). Let R > 64 log2 n

T , and suppose the best expert makes
at most M ≤ R2T

128 log2 n
mistakes. Then there exists an algorithm for the discrete prediction with

experts problem that uses Õ
(

n
R
√
T

)
space and achieves regret at most R, with high probability.

This gives a trade-off between the space and regret, almost all the way to the information-theoretic
limit of R = On

(√
1/T

)
for general worst-case input. However, it incurs a multiplicative space

overhead of Õ(
√
T ) compared to the optimal algorithms for oblivious input. Thus we believe the

complete characterization of the space complexity of the discrete prediction with experts problem
with adaptive input is a natural open question resulting from our work.

Tight memory bounds for robust algorithms. It is natural to ask whether there exist robust
algorithms that are more space-efficient than the straightforward deterministic approach. For example,
[12] showed that any oblivious randomized algorithm with failure probability 2−Ω(nT ) will be
robust against adaptive outputs in the discrete prediction with experts problem, so a reasonable
approach would be to boost the success probability of existing oblivious algorithms to 1− 2−Ω(nT ).
Unfortunately, we show this cannot work:
Theorem 1.3 (Memory lower bound for high-probability algorithms). For n = o(2T ), any random-
ized algorithm algorithm that achieves R regret with probability at least 1− 2−Ω(T ) for the discrete
prediction with experts problem must use Ω

(
nM
RT

)
space when the best expert makes M mistakes.

In particular, Theorem 1.3 shows that any deterministic algorithm must use Ω
(
nM
RT

)
space, which

taken together with the deterministic procedure above, resolves the deterministic streaming complexity
of online learning with experts. We emphasize that Theorem 1.3 also shows that using the strategy of
high-probability randomized algorithms to guarantee robustness against adaptive input does not work
any better than a deterministic algorithm.

At a conceptual level, our lower bound in Theorem 1.3 shows that surprisingly, the number M of the
mistakes made by the best expert is an intrinsic parameter that governs the abilities and limitations
of robust algorithms in this model. Thus, even though M is not a parameter that may naturally be
ascertained in practice, it nevertheless completely characterizes the complexity of the problem. On
the other hand, for algorithmic purposes, it suffices to acquire a constant-factor approximation to M
as an input to the algorithm.

Another reason Theorem 1.3 is somewhat surprising is because as the number of mistakes M made
by the best expert increases, then the algorithm is also permitted to make more mistakes and in some
sense, the problem seems “easier”. However, Theorem 1.3 shows this intuition is not true—the
problem actually becomes more difficult as M increases.
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Moreover, we give an alternative proof in the regime when M = Ω(T ). The proof differs from the
proof of Theorem 1.3. Instead, it leverages the communication complexity of a new set disjointness
problem, recently proposed by [39]. The statement is technically weaker Theorem 1.3 and appears in
the appendix; see Appendix E.

Empirical evaluations. Finally, we conduct experimental evaluations in Section 5 by comparing
the natural deterministic algorithm to the randomized algorithm of [49] against a white-box adversary
who has access to the internal state of the algorithm, including any experts sampled and maintained
by the algorithm. The deterministic algorithm iteratively selects pools of k = Õ

(
nM
RT

)
experts,

discarding any expert that has erred, and refreshing the pool with the next batch of k experts once the
pool is emptied. The randomized algorithm similarly discards erroneous experts from a pool of k
experts, but it repeatedly samples pools of k experts rather than selecting the next pool of k experts.
On average across the multiple trials for each setting, the randomized algorithm made several times
more mistakes than the deterministic algorithm, ranging from 1.98x times more mistakes to 3.29x
times more mistakes than the deterministic algorithm, thus demonstrating the importance of robust
algorithms against adversarial inputs.

1.2 Related Work

The experts problem and memory bounds. The experts problem has been extensively studied [17],
both in the discrete decision setting [42] and in the setting where costs are determined by various
loss functions [35, 52–55]. Hence, the experts problem can be applied to many different applications,
such as portfolio optimization [24, 23], ensemble boosting [32], and forecasting [37]. Given certain
assumptions on the expert, such as assuming the experts are decisions trees [36, 50], threshold
functions [43], or have nice linear structures [38], additional optimizations have been made to
improve the algorithmic runtimes for the experts problem and more generally, existing work has
largely ignored optimizing for memory constraints in favor of focusing on time complexity or regret
guarantees, thus frequently using Ω(n) memory to track the performance of each expert.

Recently, [49] introduced the study of memory-regret trade-offs for the experts problem. For n≫ T ,
[49] showed that the space complexity of the problem is Θ̃

(
n

R2T

)
in the random-order streams,

but also gave a randomized algorithm that uses Õ
(

n
RT

)
space for arbitrary-order streams when the

number of mistakes M made by the best expert is “small”. Subsequently, [47] considered the online
learning with experts problem for T ≫ n, introducing a general space-regret trade-off framework
that achieves o(T ) regret using o(n) memory, including On(T

4/5) regret with O (
√
n) space and

On(T
0.67) regret with O

(
n0.99

)
space.

Concurrent and independent work. Concurrent to our work, [46] considered a variant of the
problem where at each time, the algorithm selects an expert instead of a prediction. They then
introduce an algorithm robust against an adaptive adversary who observes the specific expert chosen
by the algorithm at each time, as well as lower bounds for any algorithm robust to such an adversary.

One way to ensure adversarial robustness is through deterministic algorithms. On that end, we
achieve stronger lower bounds for deterministic algorithms, showing that there must be a dependency
on the number M of mistakes made by the best expert, i.e., any deterministic algorithm achieving
amortized regret R must use Ω̃

(
nM
RT

)
space. In fact, when the number of mistakes M made by the

best expert is sufficiently small, i.e., M = O
(

R2T
log2 n

)
for amortized regret R, we give a randomized

upper bound that uses less space than this lower bound. By comparison, the lower bound of [46]
shows that any algorithm achieving R amortized regret must use Ω̃

(√
n
R

)
space, though their lower

bound also applies to randomized algorithms.

Due to the difference in setting, our algorithmic techniques are quite different from those of [46]. We
use a recent idea of [34, 4, 10] to hide the internal randomness of our algorithm from the adversary
whereas [46] rotates between groups of experts to prevent an adversary from inducing high regret by
making a specific expert bad immediately after it is selected.
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2 Preliminaries

For any t ≤ n and vector (X1, X2, · · · , Xn), we let X<t denote (X1, · · · , Xt−1), X≤t =
(X1, · · · , Xt), and X−t = (X1, · · · , Xt−1, Xt+1, · · · , Xn). Also, X>t and X≥t are defined simi-
larly. Let ei denote the ith standard basis vector, and for any S, eS the vector that has a 1 at index
i ∈ S and 0 everywhere else. For a random variable X , let H(X) denote its entropy.

We write [n] for an integer n > 0 to denote the set {1, . . . , n}. We write poly(n) to denote a fixed
polynomial in n. If an event occurs with probability at least 1− 1

poly(n,T ) , we say the event occurs
with high probability. We give additional technical preliminaries in Appendix B.

Formal problem statement. In the online learning with experts problem, there are n experts that
each make predictions on each of T days. The prediction are in {0, 1}. An algorithm uses the experts
to output a prediction for each day t ∈ [T ]. The actual outcome of the day t is then revealed, at which
point the algorithm is penalized with a cost that is 0 if the prediction is correct, and 1 otherwise.

This process continues for the T days. At the end, suppose that the best expert has incurred cost
M , while the algorithm has incurred C. Then the performance of the algorithm is measured by the
(average) regret R = max

(
C−M

T , 0
)
.

Differential privacy. We use tools from differential privacy.

Definition 2.1 (Differential privacy, [30]). Given a privacy parameter ε > 0 and a failure parameter
δ ∈ (0, 1), a randomized algorithm A : X ∗ → Y is (ε, δ)-differentially private if, for every pair of
neighboring streams S and S′ and for all E ⊆ Y ,

Pr [A(S) ∈ E] ≤ eε ·Pr [A(S′) ∈ E] + δ.

Theorem 2.2 (Private median, e.g., [34]). Given a databaseD ∈ X∗, a privacy parameter ε > 0 and
a failure parameter δ ∈ (0, 1), there exists an (ε, 0)-differentially private algorithm PRIVMED that
outputs an element x ∈ X such that with probability at least 1−δ, there are at least |S|2 −m elements

in S that are at least x, and at least |S|2 −m elements in S that are at most x, for m = O
(

1
ε log

|X|
δ

)
.

Theorem 2.3 (Advanced composition, e.g., [31]). Let ε, δ′ ∈ (0, 1] and let δ ∈ [0, 1]. Any mecha-
nism that permits k adaptive interactions with mechanisms that preserve (ε, δ)-differential privacy

guarantees (ε′, kδ + δ′)-differential privacy, where ε′ =
√
2k ln 1

δ′ · ε+ 2kε2.

Theorem 2.4 (Generalization of DP, e.g., [29, 9]). Let ε ∈ (0, 1/3), δ ∈ (0, ε/4), and n ≥ 1
ε2 log

2ε
δ .

Suppose A : Xn → 2X is an (ε, δ)-differentially private algorithm that curates a database of size
n and produces a function h : X → {0, 1}. Suppose D is a distribution over X and S is a set of n
elements drawn independently and identically distributed from D. Then

Pr
S∼D,h←A(S)

[∣∣∣∣∣ 1

|S|
∑
x∈S

h(x)− E
x∼D

[h(x)]

∣∣∣∣∣ ≥ 10ε

]
<

δ

ε
.

3 Algorithms Against Adaptive Adversaries

In this section, we show that there exists algorithms for the discrete prediction with experts problem
that is robust to adaptive outputs.

3.1 A Near-Optimal Deterministic Algorithm

We first present a simple deterministic algorithm for arbitrary-order streams. The algorithm repeatedly
selects pools of the next k = Õ

(
nM
RT

)
experts. While the pool is non-empty, the algorithm runs the

deterministic majority algorithm on the algorithm and removes any incorrect experts from the pool.
Once the pool is empty, the next Õ

(
nM
RT

)
experts are added to the pool, possibly cycling through all

n experts multiple times if necessary, where an expert can be added to the pool again even if it has
been previously deleted from the pool. We give the formal algorithm and analysis in Appendix C.
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Theorem 3.1 (Determistic algorithm). Among n experts in a stream of length T , suppose the best
expert makes M mistakes and let R ≥ 4M logn

T . There exists a deterministic algorithm (Algorithm 2)
that uses space Õ

(
nM
RT

)
and achieves an average regret of R.

In light of lower bound Theorem 1.3, it is evident that Theorem 3.1 is nearly optimal, up to polyloga-
rithmic factors, for deterministic algorithms, which are automatically adversarially robust. On the
other hand, it does not seem necessary that any adversarially robust algorithm must be deterministic.
Indeed, we now give a randomized adversarially robust algorithm with better space guarantees.

3.2 A Randomized Robust Streaming Algorithm

We first recall the following randomized algorithm for arbitrary-order streams with oblivious input,
i.e., non-adaptive input:

Lemma 3.2 (Algorithm for oblivious inputs; [49]). Let R >
√

128 log2 n
T , and suppose the best expert

makes at most M ≤ R2T
1280 log2 n

mistakes. Then there exists an algorithm DISCPRED for the discrete

prediction with experts problem that uses Õ
(

n
RT

)
space and achieves regret at most R, with high

probability, i.e., probability at least 1− 1
poly(n,T ) .

The algorithm of Lemma 3.2 for constant probability proceeds by sampling pools of k = Õ
(

n
RT

)
experts and running majority vote on the pool, while iteratively deleting poorly performing experts
until no experts remain in the pool, at which a new pool of k experts is randomly sampled. The
main intuition is that either the pool of experts will perform well and achieve low regret, or the pool
will be continuously re-sampled until the best expert is sampled multiple times, after which point
it will not be deleted from the pool. Unfortunately, it is not evident that this algorithm is robust to
adaptive inputs because an adversary can potentially learn the experts in each sampled pool and force
the experts to make mistakes only on days in which they are sampled by the algorithm. To boost
the algorithm to high probability of success, we take the deterministic majority vote of O (log n)
independent instances of the algorithm with constant success probability.

Towards adaptive robustness, we use differential privacy to hide the internal randomness of the
algorithm, and in particular, the identity of the experts that are sampled by each pool. We first
run Õ(

√
T ) copies of the algorithm and then output the private median of the Õ(

√
T ) copies,

guaranteeing roughly
(

1

Õ(
√
T )

, 0
)

-differential privacy because we use Õ(
√
T ) copies of the algorithm.

Advanced composition, i.e., Theorem 2.3, then ensures (O(1), 1/poly(n))-differential privacy, so
that correctness then follows from the generalization properties of DP, i.e., Theorem 2.4.

We give our algorithm in full in Algorithm 1.

Algorithm 1 Randomized, robust streaming algorithm for the experts problem
Input: A stream of length T with n experts and a target regret R
Output: A sequence of predictions with regret R

1: Run m = O
(√

T log(nT )
)

independent instances of DISCPRED with regret R
4

2: Run PRIVMED on the m instances with privacy parameter ε = O
(

1√
T log(nT )

)
and failure

probability δ = 1
poly(n,T )

3: At each time t ∈ [T ], select the output of PRIVMED

Next, we show the correctness of our algorithm on adaptive inputs.

Theorem 3.3 (Algorithm for adaptive inputs). Let R >
√

2048 log2 n
T , and suppose the best expert

makes at most M ≤ R2T
1280 log2 n

mistakes. Then there exists an algorithm for the discrete prediction

with experts problem that uses Õ
(

n
R
√
T

)
space and achieves regret at most R, with probability at

least 1− 1
poly(n,T ) .
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Proof. Suppose we run m = O
(√

T log(nT )
)

independent instances of DISCPRED with regret R
4 .

Note that for R >
√

2048 log2 n
T , we have R

4 >
√

128 log2 n
T , which is a valid input to DISCPRED

in Lemma 3.2. By Lemma 3.2, each instance succeeds on an arbitrary-order stream with probability at
least 1−1/poly(n, T ). By a union bound over the m instances, all instances succeed with probability
at least 1−1/poly(n, T ). In particular, each instance has regret at most R/4, so that the total number
of mistakes by each instance is at most M + RT/4. Thus, the total number of mistakes by all
instances is at most m (M +RT/4).

To consider an adaptive stream, observe that PRIVMED is called with privacy parameter
O
(
1/
√
T log(nT )

)
and failure probability 1/poly(n, T ). By Theorem 2.3, the mechanism permits

T adaptive interactions and guarantees privacy O (1) with failure probability 1/poly(n, T ). By The-
orem 2.4, we have that with high probability, if the output of the algorithm is incorrect, then at
least m/3 of the instances DISCPRED are also incorrect. Since the total number of mistakes by all
instances is at most m (M +RT/4), then the total number of mistakes by the algorithm is at most
3 (M +RT/4) ≤ M + RT , since M ≤ R2T

1280 log2 n
. Hence, the algorithm achieves R regret with

high probability.

By Lemma 3.2, each instance of DISCPRED uses Õ
(

n
RT

)
space. Since we use m =

O
(√

T log(nT )
)

independent instances of DISCPRED, then the total space is Õ
(

n
R
√
T

)
.

4 Lower Bound for Arbitrary-Order Streams

In this section, we provide a space lower bound for randomized algorithms with a high probability of
success. Together with Theorem 1.1, the lower bound completely characterizes the complexity of
deterministic algorithms for the online learning with experts problem. We restate Theorem 1.3, give a
proof sketch and defer the full analysis to Appendix D.
Theorem 4.1 (Memory lower bound for high-probability algorithms). For n = o(2T ), any random-
ized algorithm algorithm that achieves R regret with probability at least 1− 2−Ω(T ) for the discrete
prediction with experts problem must use Ω

(
nM
RT

)
space when the best expert makes M mistakes.

Proof sketch of Theorem 4.1. We consider the communication problem of ε-DIFFDIST. It combines
n instances of the distributed detection problem given by [14]. This was also used by the prior work
of [49] to prove space lower bounds for expert learning in random-order stream.

Specifically, for fixed T , the ε-DIFFDIST problem with ε = M
T consists of T players, who each hold

n bits, indexed from 1 to n. The players must distinguish between:

(1) the NO case D(n)
NO , in which every bit for every player is drawn i.i.d. from a fair coin and

(2) the YES case D(n)
YES, in which an index L ∈ [n] is selected arbitrarily and the L-th bit of

each player is chosen i.i.d. from a Bernoulli distribution with parameter
(
1− M

T

)
, while all

other bits for every player are chosen i.i.d. from a fair coin.

At a high level, the proof proceeds in two steps:

(1) First, we show that the ε-DIFFDIST problem can be reduced to the expert prediction problem
in the streaming setting.

(2) Second, we prove a communication complexity lower bound for ε-DIFFDIST against any
protocol that succeeds with probability 1− 2−Θ(T ), which includes deterministic protocols.

The first step is straightforward. In the reduction, each player in an instance of ε-DIFFDIST corre-
sponds to a day of the expert problem. The n bit input held by each player correspond to the n expert
predictions of each day. Therefore, in the NO case, each expert is correct on roughly half of the days.
In the YES case, there is a single expert L ∈ [n] that is correct on roughly 1/2 + δ of the days (for
δ = 1/2−M/T ), while all other experts randomly guess each day. Suppose that there is a streaming
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algorithm for the expert prediction problem with average regret δ/2. Then roughly speaking, in the
YES case, the algorithm is correct approximately on 1/2 + δ/2 of the days, while in the NO case
where every expert is randomly guessing, the algorithm is correct on less than 1/2 + δ/2 of the days.
This distinguishes the YES and NO case and thus solves ε-DIFFDIST.

For the second step, we show that solving the ε-DIFFDIST problem with probability at least 1−2−Θ(T )

requires Ω(nM) total communication. We give a sketch of the argument below.

Observe that if the input is viewed as a T × n matrix, then D(n)
NO is a product distribution across

columns that can be written as ζn, where ζ is the distribution over a single column such that all
entries of the column are i.i.d. Bernoulli with parameter 1

2 . We view D(n)
NO as a hard distribution and

applies an information complexity analysis. By a direct sum argument, it suffices to show that the
single column problem, i.e., distinguishing between D(1)

NO and D(1)
YES (i.e., for n = 1), requires Ω(M)

total communication.

Let (C1, C2, . . . , CT ) be a single column drawn from the hard distribution—namely, the NO case
where each player holds one i.i.d. Bernoulli with parameter 1/2. Let A be a fixed protocol with
success probability at least 1− exp(−Θ(T )). For all i < T , let Mi denote the message sent from
player Pi to player Pi+1 and M<i = {Mj : j < i}. Let Π = Π(C1, · · · , CT ) be the communication
transcript of A given the input (Ci)

T
i=1. A standard information complexity argument [8] implies that

the total communication is at least the information cost, defined as I(C1, . . . , CT ; Π(C1, . . . , CT )),
where I(X,Y ) denotes the mutual information between random variables X and Y .

The key step now is to lower bound the information cost by Ω(M). The main ideas are the following.
For any i ∈ [T ], we say that (Mi,M<i) is informative for i with respect to the input C and the
transcript Π = (M1,M2, . . . ,MT ) if

|Pr (Ci = 0 |Mi,M<i)− Pr (Ci = 1 |Mi,M<i)| ≥ c (4.1)

for some constant c > 0. Otherwise, we say that Mi is uninformative. Informally, an informative
message Mi reveals sufficiently large information about Ci so that the mutual information I(Mi, Ci |
M<i) would be large. Let pi be the probability that (Mi,M<i) is informative. Intuitively, we need
that

∑
i pi is large, because then there would be sufficiently many informative messages, and so the

information cost is high. To formalize this approach, we claim two key lemmas. First, by Lemma D.9

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;Cj |M<j) ≥ Ω

 T∑
j=1

pj

 .

Conceptually, this shows that the information cost is at least the expected number of informative
messages. Furthermore, by Lemma D.10, the latter is indeed high, and in particular,

∑
j pj ≥ Ω(M).

Much of the technical work is dedicated to prove these lemmas. This finishes the proof since the
communication complexity is lower bounded by the information cost.

5 Experimental Evaluations

In this section, we perform experimental evaluations as a simple proof-of-concept demonstrating the
importance of deterministic algorithms against adversarial input.

Experimental setup. We assume a white-box adversary with access to the internal state of the
algorithm. We evaluate the natural deterministic algorithm that iteratively selects pools of k =

Õ
(
nM
RT

)
experts, discarding any expert that has erred, and refreshing the pool with the next batch

of k experts once the pool is emptied. As a baseline, we compare to a randomized algorithm that
repeatedly samples pools of k = Õ

(
nM
RT

)
experts, discarding any expert that has erred, and refreshing

the pool with the next batch of k sampled experts once the pool is emptied.

Provided that the best expert has not yet made M mistakes, the adversary simply compels the experts
in each pool to err. Once all experts have made at least M mistakes, the adversary gives up and
permits all subsequent predictions to be correct. It can be theoretically verified that against such
an adversary, the deterministic algorithm is the optimal algorithm, in the sense that it achieves the
smallest number of errors.
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Experimental details. We first evaluate our experiments on the setting n = 10000, M = 20, and
T = 1000 across various values of R ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. For each setting of
R, we ran the experiment 20 times, recording the runtime and number of errors by the algorithms
in each repetition. We then computed the minimum, mean, and maximum number of errors by the
randomized algorithm across all 20 repetitions. We then repeated the experimental setup for a 10x
larger setting of T , i.e., n = 10000, M = 20, and T = 1000. Our experiments were performed on a
64-bit operating system using an AMD Ryzen 7 5700U CPU with 8.00 GB RAM and 8 cores with
base clock 1.80 GHz.

Results. Our experiments show that the deterministic algorithm performs significantly better than
the randomized algorithm. On average across the 20 trials for each setting, the randomized algorithm
made several times more mistakes than the deterministic algorithm, ranging from 1.98x times more
mistakes for the setting n = 100000,M = 20, T = 1000, R = 0.05 to 3.06x times more mistakes for
the setting n = 100000,M = 10, T = 10000, R = 0.3. Even the best performance by a randomized
algorithm over all trials, which occurred at the setting n = 100000,M = 20, T = 1000, R =
0.05, the randomized algorithm made 1.9x times more mistakes than the deterministic algorithm.
Meanwhile, the worst performance by a randomized algorithm over all trials, which occurred at
the setting n = 100000,M = 10, T = 10000, R = 0.25, the randomized algorithm made 3.29x
times more mistakes than the deterministic algorithm. The average runtime was 98 seconds for
each batch of 20 experiments for the setting of n = 100000,M = 20, T = 1000, R = 0.05
while the average runtime was 98 seconds for each batch of 20 experiments for the setting of
n = 100000,M = 10, T = 10000, R = 0.3 was roughly 350 seconds. See Figure 1 for a summary.

(a) n = 100000,M = 20, T = 1000 (b) n = 100000,M = 10, T = 10000

Figure 1: Comparison of errors made by deterministic algorithm and average number of errors made
by randomized algorithm across 20 repetitions for each trial, across various values of input target
regret R. Minimum and maximum numbers of errors by randomized algorithm across each trial are
also reported.

6 Conclusion

In this work, we provide robust streaming algorithms for learning with experts. We provide a
deterministic algorithm parametrized by the number of mistakes made by the best expert. We also
give a randomized algorithm with a different space-regret trade-off, based on differential privacy.
We complement our algorithms with a lower bound for high-probability success algorithms. This
gives tight memory lower bound for deterministic algorithms. We then show the importance of robust
algorithmic design by empirically comparing the performance of the natural deterministic algorithm
and the state-of-the-art randomized algorithm when the inputs are adaptive.

We remark that our results do not rule out space-efficient robust algorithms that match the bounds of
the oblivious randomized algorithm of [49] for constant probability of success. We believe whether
or not there exists such an algorithm is a fascinating question for future work.
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A Additional Related Work on Adaptive Inputs

Motivated by non-independent inputs and adversarial attacks, adaptive inputs have recently been
considered in the centralized model [19, 41, 20, 21], in the streaming model [6, 12, 34, 57, 15, 18,
11, 1, 3, 22, 4, 28], and in the dynamic model [56, 10]. In particular, algorithms robust to inputs
that can depend on the previous outputs by the algorithm, i.e., black-box attacks, are also robust to
situations in which future inputs may be dependent on previous outputs. This is especially relevant in
applications such as forecasting, in which a prediction on day i can lead to a series of actions that
might impact outcomes and expert predictions on day i+ 1 and beyond.

Adaptive adversaries have received considerable attention in literature for online learning when
the goal is simply to achieve the best possible regret [13, 17, 44]. Building off a line of results on
multi-armed bandit problems [5, 7, 40], the work of [45] first considered the experts setting against
memory-bounded adaptive adversaries, giving an algorithm with regret O

(
T 2/3

)
. An early paper of

[25] introduced a family of algorithms for adaptive inputs, but provided guarantees using concepts not
quite related to the standard definitions of regret. More recent works have explored online learning
with additional considerations, such as alternative quantities to optimize [27], additional switching
costs [16, 26, 48], and feedback graphs [2]. The closest work to our setting is the recent result by [47]
showing that no algorithm using space sublinear in n can achieve regret sublinear in T when the
input is chosen by an adversary with access to the internal state of the algorithm, i.e., a white-box
adversary.

B Additional Technical Preliminaries

B.1 Information Theory

For any p ∈ [0, 1], we slightly abuse notation and let H(p) = −p log2 p− (1− p) log2(1− p) be the
binary entropy function. The following is a standard upper and lower bound of H(p).

Lemma B.1 (Bound on the binary entropy function; see e.g. [51]). For p ∈ [0, 1], the binary entropy
function satisfies

4p(1− p) ≤ H(p) ≤ 2(p(1− p))1/ ln 4.

B.2 Communication Complexity

Definition B.2 (Mutual information). Let X and Y be a pair of random variables with joint
distribution p(x, y). Then the mutual information is defined as I(X;Y ) :=

∑
x,y p(x, y) log

p(x,y)
p(x)p(y) ,

for marginal distributions p(x) and p(y).

In a multi-party communication problem of t players, each player is given xi ∈ Xt. They communi-
cate according to fixed protocol to compute a function f : Xt×· · ·×Xt → Y . A protocol Π is called
a δ-error protocol for f if there exists a function Πout such that Pr [Πout (Π(x, y)) = f(x, y)] ⩾ 1− δ.
For a (multi-party) communication problem, we denote the transcript of all communication in a
protocol as Π ∈ {0, 1}∗. The communication cost of a protocol, as a result, is the bit length of the
transcript. Let Rδ(f) denote the minimum communication cost across all δ-error protocols for f .

Definition B.3 (Information cost). Let Π be a randomized protocol that produces a random variable
Π(X1, . . . , XT ) as a transcript on inputs X1, . . . , XT drawn from a distribution µ. Then the
information cost of Π with respect to µ is defined as I(X1, . . . , XT ; Π(X1, . . . , XT )).

Definition B.4 (Information complexity). The information complexity of a function f with respect to
a distribution µ and failure probability δ is the minimum information cost of a protocol for f with
respect to µ that fails with probability at most δ on every input and denoted by ICµ,δ(f).

Lemma B.5 (Information cost decomposition lemma, Lemma 5.1 in [8]). Let µ be a mixture
of product distributions and suppose Π is a protocol for inputs (X1, . . . , XT ) ∼ µn. Then
I(X1, . . . , XT ; Π(X1, . . . , XT )) ≥

∑n
i=1 I(X1,i, . . . , XT,i; Π(X1, . . . , XT )), where Xi,j denotes

the j-th component of Xi.

Lemma B.6 (Information complexity lower bounds communication complexity; Proposition 4.3 [8]).
For any distribution µ and error δ, Rδ(f) ≥ ICµ,δ(f).
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C Proof of Theorem 3.1 and Formal Algorithm

We give a formal description of our deterministic robust algorithm in pseudocode.

Algorithm 2 Deterministic algorithm for the experts problem

Input: A stream of length T with n experts, upper bound M on the number of mistakes made by the
best expert, and target regret R

Output: A sequence of predictions with regret R
1: k ← 4nM

RT log n
2: S ← ∅
3: while the stream persists do
4: if S is empty then ▷We have cycled through all n experts once
5: S ← [n]

6: Let P be the first k indices of S
7: S ← S \ P
8: while P ̸= ∅ do
9: For each following day, choose the outcome output by the majority of the experts in P

10: Delete the incorrect experts on that day from P

We now prove the correctness and space complexity of Algorithm 2.

Proof of Theorem 3.1. We first remark that the algorithm can make at most log k ≤ log n mistakes
over the lifespan of each pool of size k := 2nM

RT log n because each time the algorithm makes a
mistake, at least half of the pool must be incorrect and deleted, so the size of the pool decreases by
at least half with each mistake the algorithm mistakes. Note that k ≤ n for R ≥ 4M logn

T , so the
algorithm is well-defined.

Since each pool P has size k and there are n experts, then there are at most 4n
k pools before the entire

set S, which is initialized to n, is depleted. Thus, there are at most 4n
k pools to iterate through the

entire set of experts. Moreover, each time the algorithm has iterated through the entire set of experts,
each expert must have made at least one mistake. This is because an expert is only deleted from the
pool P when it has made a mistake and since all experts have been deleted from P , then all experts
have made at least one mistake.

Since the best expert makes at most M mistakes, then the best expert can be deleted from the pool P
at most M times. In other words, the algorithm can cycle through the entire set of n experts at most
M + 1 times.

Hence, the total number of mistakes by the algorithm is at most

2n

k
· log n · (M + 1) ≤ 4n

k
· log n ·M ≤ 4nRT

4nM log n
· log n ·M = RT,

so the algorithm achieves regret at most R. Since the algorithm selects a subset of k = 4nM
RT log n

experts, then the space complexity follows.

D Proofs of the Lower Bounds for Arbitrary-Order Streams

In this section, we give space lower bounds for the experts problem on arbitrary-order streams. As
a warm-up, we first show in Section D.1 a general space lower bound for randomized algorithms
when the best expert makes a “small” number of mistakes. We then give our main lower bound result
in Section D.2, showing that any deterministic algorithm achieving regret R must use space Ω

(
nM
RT

)
when the best expert makes M mistakes.

D.1 Warm-up: Lower Bound for Accurate Best Expert

In this section, we show that any randomized algorithm that achieves regret R must use Ω
(

n
RT

)
space, even when the best expert makes Θ(RT ) mistakes. In contrast, [49] give an Ω

(
n

R2T

)
space

lower bound:
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Theorem D.1 (Memory lower bound; Theorem 1 of [49]). Let R > 0, p < 1
2 be fixed constants, i.e.,

independent of other input parameters. Any algorithm that achieves R regret for the experts problem
with probability at least 1− p must use at least Ω

(
n

R2T

)
space.

Furthermore, this lower bound holds even when the costs are binary, and expert predictions, as well
as the correct answers, are constrained to be i.i.d. across the days, albeit with different distributions
across the experts.

The proof of this lower bound exploits a construction where the best expert makes Θ(T ) mistakes.
Thus, it is not clear how the space complexity of the problem behaves when the best expert makes a
smaller number of mistakes. In fact, [49] also give an algorithm that uses Õ

(
n
RT

)
space when the

best expert makes O(RT ) mistakes, bypassing the aforementioned lower bound.

We now prove that in this small mistake regime, this algorithm is tight. Towards this goal, we first
define the ε-DIFFDIST problem that reduces to the experts problem. It was proposed by [49] to prove
memory lower bounds for the expert problem in random order stream.

Definition D.2 (The ε-DIFFDIST Problem). We have T players, each of whom holds n bits, indexed
from 1 to n. We must distinguish between two cases, which we refer to as “V = 0" and “V = 1". Let
µ0 be a Bernoulli distribution with parameter 1

2 , i.e., a fair coin, and let µ1 be a Bernoulli distribution
with parameter 1

2 + ε.

• (NO Case, “V = 0") Every index for every player is drawn i.i.d. from a fair coin, i.e., µ0.

• (YES Case, “V = 1") An index L ∈ [n] is selected arbitrarily—the L-th bit of each player
is chosen i.i.d. from µ1. All other bits for every player are chosen i.i.d. from µ0.

Any protocol that successfully solves the ε-DIFFDIST problem with a constant probability greater
than 1

2 must use at least Ω
(

n
ε2

)
communication, a result due to [49]:

Lemma D.3 (Communication complexity of ε-DIFFDIST; Lemma 3 of [49]). The communication
complexity of solving the ε-DIFFDIST problem with a constant 1− p probability, for any p ∈ [0, 0.5),
is Ω

(
n
ε2

)
.

The proof of Theorem D.1 by [49] uses n coin flips across each of the T players to form the n expert
predictions over each of the T days. In the NO case, each expert will be correct on roughly T

2 days,
while in the YES case, a single expert will be correct on roughly T

2 + εT days, so that an algorithm
with regret R = O(ε) will be able to distinguish between the two cases. There is a slight subtlety
in the proof that uses a masking argument to avoid “trivial” algorithms that happen to succeed on a
“lucky” input, but for the purposes of our proof in this section, the masking argument is not needed.
It then follows that the total communication is Ω

(
n
R2

)
across the T players, so that any streaming

algorithm must use at least Ω
(

n
R2T

)
bits of space.

Suppose we instead consider the ε-DIFFDIST problem over RT players, representing RT days in
the experts problem. Moreover, suppose we set ε = Θ(1) in the ε-DIFFDIST problem, so that in
the NO case, each of the experts will be correct on roughly RT

2 days, while in the YES case, a
single expert will be correct on roughly RT

2 + CRT days, for some constant C > 0. Suppose we
further pad all of the experts with incorrect predictions across an additional T −RT days, so that the
total number of days is T , but the number of correct expert predictions remains the same. Then an
algorithm achieving regret O(R) will be able to distinguish between the two cases, so that the total
communication is Ω

(
n
R

)
, so that any streaming algorithm must use at least Ω

(
n
RT

)
bits of space.

Corollary D.4. Let R, p < 1
2 be fixed constants, i.e., independent of other input parameters. Any

algorithm that achieves R regret for the experts problem with probability at least 1 − p must use
at least Ω

(
n
RT

)
space even when the best expert makes as few as Θ(RT ) mistakes. This lower

bound holds even when the costs are binary and expert predictions, as well as the correct answer, are
constrained to be i.i.d. across the days, albeit with different distributions across the experts.

Proof. The claim follows from setting T = RT and R = Θ(1) in the proof of Theorem D.1.
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D.2 Lower Bound for Deterministic Algorithms

We now prove our main space lower bound for deterministic algorithms (Theorem 1.3). We first set
up some basic notations and introduce a hard distribution.

Let T be any fixed positive integer. Let D(n)
NO be the distribution over matrices A with size T × n

such that all entries of the matrix are i.i.d. Bernoulli with parameter 1
2 , i.e., each entry of A is 0

with probability 1
2 and 1 with probability 1

2 . Let D(n)
YES be the distribution over matrices M with size

T × n such that there is a randomly chosen column L ∈ [n], which is i.i.d. Bernoulli with parameter(
1− M

T

)
and all other columns are i.i.d. Bernoulli with parameter 1

2 . Let BIASDETECTn be the
problem of detecting whether A is drawn from D(n)

YES or D(n)
NO , so that BIASDETECTn is simply the

ε-DIFFDIST problem with ε = 1
2 −

M
T .

Let Π be a communication protocol for BIASDETECTn that is correct with probability at least
1− exp(−Θ(T )). Since D(n)

NO is a product distribution across columns, then it can be written as ζn,
where ζ is the distribution over a single column such that all entries of the column are i.i.d. Bernoulli
with parameter 1

2 . Let BIASDETECT1 denote the problem of distinguishing between D(1)
NO and D(1)

YES

on a single column, i.e., n = 1. Using D(n)
NO as the hard distribution, we have the following direct

sum theorem.
Lemma D.5 (Direct sum for BIASDETECT). The information complexity of BIASDETECTn satisfies

ICD(n)
NO ,2−Θ(T )(BIASDETECTn) ≥ n · ICD(1)

NO ,2−Θ(T )(BIASDETECT1).

Proof. By definition, D(n)
NO = ζn is a product distribution over n columns. The lemma follows from

the standard direct sum lemma of information cost (Lemma B.5).

With the above direct sum theorem for BIASDETECTn, it now suffices to provide a single-coordinate
information cost lower bound against BIASDETECT1. The proof is delayed to Section D.3.
Lemma D.6 (Single-coordinate information cost lower bound). Let c ∈ (0, 1) and Π be any protocol
with error δ = 2−Θ(T ) for BIASDETECT1. We have that the information cost of Π with respect to ζ
is at least

I(Π(C1, C2, . . . , CT );C1, C2, . . . , CT ) ≥ Ω (M) , (D.1)

where the bits Ci ∼ ζ are i.i.d. single coordinates.

Combining Lemma D.6 with the direct sum theorem (Lemma D.5), we immediately get the following
information complexity lower bound for BIASDETECTn:
Theorem D.7 (n-Coordinate information complexity lower bound). Let c ∈ (0, 1). Then

ICD(n)
NO ,2−Θ(T )(BIASDETECTn) = Ω(nM).

Proof. This follows by applying the direct sum theorem (Lemma D.5) to the single-coordinate bound
Lemma D.6.

This implies that any algorithm with R regret and success rate at least 1− 2−Θ(T ) requires Ω
(
nM
RT

)
memory, where M is the mistake bound on the best expert.
Theorem D.8 (Memory lower bound for expert learning). Let R,M be fixed and independent of
other input parameters. Any streaming algorithm that achieves R regret for the experts problem
with probability at least 1− 2−Θ(T ) must use at least Ω(nMRT ) space, for n = o

(
2T

)
, where the best

expert makes M mistakes.

Proof. We now consider the problem BIASDETECTn on a matrix of size RT × n. Note that in the
NO case, at any fixed column i ∈ [n], the probability that there are more than 3RT

5 −
M
2 instances of

0, for M ≤ RT
8 , is at most 2 exp(−c1RT ), for a sufficiently small constant c1 ∈ (0, 1). Thus, by a

union bound, the probability that there exists an index i ∈ [n] with more than 3RT
4 −

M
2 instances of

0 is at most 2n exp(−c1RT ).
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Similarly in the YES case, the probability that there are fewer than 4RT
5 − M

2 instances of 0 for a
fixed i ∈ [n] and for M ≤ RT

8 is at most 2 exp(−c2RT ), for a sufficiently small constant c2 ∈ (0, 1)

and so by a union bound, the probability that there exists an index i ∈ [n] with fewer than 3RT
4 −

M
2

instances of 0 is at most 2n exp(−c2RT ). Hence, for n = o(2T ), there exists a constant c ∈ (0, 1)
such that any algorithm that achieves total regret at most RT

5 with probability at least 1− exp(−cT )
can distinguish between the YES and NO cases with probability 1− exp(−Θ(T )).

By Theorem D.7 and Lemma B.6, the total communication across the RT players must be at least
Ω(nM). Therefore, any streaming algorithm that achieves average R regret for the experts problem
with probability at least 1− 2−Θ(T ) must use at least Ω(nMRT ) space.

D.3 Proof of the Single-Coordinate Information Cost Lower Bound

We now show the single-coordinate lower bound of Lemma D.6.

Proof of Lemma D.6. Consider a protocol that is correct with probability 1 − 2−Θ(T ) and let
(C1, C2, . . . , CT ) ∼ ζT be a single column drawn from the NO case, where each coordinate is
i.i.d. Bernoulli with parameter 1/2. For notational convenience, let Π = Π(C1, · · · , CT ) denote
the transcript given the input (C1, C2, · · · , CT ). We consider the one-way message-passing model,
where each player Pi holds the input Ci. For all i < T , let Mi denote the message sent from player
Pi to player Pi+1.

By the chain rule of mutual information, the information cost of the transcript, the left-side of
Equation D.1 that we need to bound, can be written as

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;C1, C2, . . . , CT |M<j) . (D.2)

By the independence of one-way communication, we have

I (Mj ;C1, C2, . . . , CT |M<j) = I (Mj ;Cj |M<j) . (D.3)

Combining the two equalities above, the information cost equals

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;Cj |M<j) . (D.4)

We now lower bound the right-side. First, we make the following definition. For any i ∈ [T ], we say
that (Mi,M<i) is informative for i with respect to the input C and the transcript Π = (M1, . . . ,MT )
if

|Pr(Ci = 0 |Mi,M<i)− Pr(Ci = 1 |Mi,M<i)| ≥ c (D.5)
for some constant c > 0; and uninformative otherwise. Intuitively, an informative index i with respect
to (Mi,M<i) means that conditional on the past messages M<i, the message Mi reveals much
information about Ci. Hence, in this case, I(Mi, Ci |M<i) would be large. Now for all i ∈ [T ], let
pi be the probability that (Mi,M<i) is informative (for i with respect to C and Π).

Conceptually, we need to show that
∑

i pi is large, since then there would be sufficiently many
informative messages, and so the information cost in the left-side of Equation D.4 is high. We
formalize this idea in the following lemma.

Lemma D.9. In the setting above, where c > 0 is a constant, the information cost can be lower
bounded by

I(Π;C1, C2, . . . , CT ) =

T∑
j=1

I (Mj ;Cj |M<j) ≥ Ω

 T∑
j=1

pj

 (D.6)

Proof. We start by expanding the definition of the mutual information terms. For each j ∈ T , we
have

I (Mj ;Cj |M<j) = H (Cj |M<j)−H (Cj |Mj ,M<j) (D.7)
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For the first term, notice that Cj and M<j are independent by one-way communication. Moreover,
by definition Cj is Bernoulli with parameter 1/2. Therefore,

H(Cj |M<j) = H(Cj) = H(1/2) = 1.

For the second term,

• either (Mj ,M<j) is informative, which holds with probability pj , and in this case, the
conditional entropy is upper bounded by H (Cj |Mj ,M<j) ≤ H(1/2 + c/2);

• or (Mj ,M<j) is uninformative, and in this case, we trivially upper bound the conditional
entropy by H (Cj |Mj ,M<j) ≤ 1;

Putting the observations together and using Equation D.7, it follows that

I (Mj ;Cj |M<j) = H (Cj |M<j)−H (Cj |Mj ,M<j)

≥ 1− (pj ·H(1/2 + c/2) + (1− pj) · 1)
= pj − pj ·H(1/2 + c/2)

≥ pj

(
1− (1− c2)1/ ln 4

)
.

where the last step uses the upper bound of Lemma B.1. Then we have

I (Mj ;Cj |M<j) ≥ pj

(
1− (1− c2)1/ ln 4

)
≥ c3 · Ω(pj),

where the last step follows since 1 − (1 − x2)1/ ln 4 ≥ x3/100 for x ∈ [0, 1]. Summing over
j = 1, 2, . . . , T in Equation D.6 finishes the proof.

To prove the claimed information cost inequality Equation D.1, we show that
∑

i pi = Ω(M).

Lemma D.10. There exists a constant γ > 0 such that

T∑
j=1

pj > γ ·M.

Proof. Suppose by way of contradiction that
∑T

j=1 pj = o(M). Let A be a protocol that sends
(possibly random) messages M1, . . . ,MT on a random input C ∈ {0, 1}T ∼ ζT drawn uniformly
from the NO distribution, i.e., each coordinate of C := C1, . . . , CT is picked to be 0 with probability
1
2 and 1 with probability 1

2 . Moreover, suppose A is a protocol that distinguishes between a YES
instance and a NO instance with probability at least 1− e−cT 2−T

8 , for some constant c > 0.

Since pi is the probability that Mi is informative, then by assumption, the expected number of
informative indices i over the messages M1, . . . ,MT is f(M) for some f(M) = o(M). Thus by
Markov’s inequality, the probability that the number of informative indices is at most 10f(M) =
o(M) with probability at least 9

10 . Let S be the set of the uninformative indices so that |S| =
T − 10f(M) = T − o(M). Let C ′ be an input that agrees with C on the informative indices [T ] \ S
and is chosen arbitrarily on uninformative indices S, so that C ′i = Ci for i ∈ [T ] \ S.

By definition, each uninformative index only changes the distribution of the output by a (1± c) factor.
In particular, for c ∈ (0, 1/2), the probability that the protocol A generates Π on input C ′ is at least
(1− c)T ≥ e−2cT times the probability that the protocol A generates Π on input C. However, since
C can differ from C ′ on S, then C can differ from C ′ on |S| = T − 10f(M) = T − o(M) indices.

Now since each coordinate of C is picked to be 0 with probability 1
2 and 1 with probability 1

2 , then
the probability that C contains more than T −M zeros is at least 1 − TM · 1

2T
≥ 1 − 2T/2 for

sufficiently large T . But then there exists a choice of C ′ that contains fewer than M
2 zeros such that

A will also output Π with probability at least e−cT

2 . Since C ′ contains fewer than M
2 , then C ′ is more

likely to generated from a YES instance and indeed a YES instance will generate C with probability
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2−T . On the other hand, since Π corresponds to a transcript for which A will output NO, then the
probability that A is incorrect on C ′ is at least e−cT

4 , which contradicts the claim that A succeeds
with probability 1− e−cT 2−T

8 . Thus it follows that
∑T

j=1 pj = Ω(M), as desired.

Now we combine Lemma D.9 and Lemma D.10. This implies that the information cost can be lower
bounded by

I(Π;C1, C2, . . . , CT ) ≥ Ω

 T∑
j=1

pj

 ≥ γM, (D.8)

for a constant γ > 0. This completes the proof.

E An Alternative Proof in the Large Mistake Regime

We give another analysis of the information cost when M = Ω(T ), where M is the number of
mistakes of the best expert.

Lemma E.1 (Single-Coordinate Information Cost Lower Bound). Let c ∈ (0, 1) and Π be any
protocol with error δ = 2−T for BIASDETECT1. Suppose that the best expert makes M = c′T
mistakes for some constant c′. We have that the information cost of Π with respect to ζ is at least

I(Π(C1, · · · , CT );C1, · · · , CT ) ≥ Ω
(
(1− c)2T

)
, (E.1)

where Ci ∼ ζ are i.i.d. single coordinates.

Applying direct sum theorem (Lemma D.5), we get the following information complexity lower
bound for BIASDETECTn:

Theorem E.2 (n-Coordinate Information Complexity Lower Bound). Let c ∈ (0, 1) and assume
M = c′T for some constant c′. Then

ICD(1),2−Θ(T )(BIASDETECTn) = Ω
(
(1− c)2nT

)
.

By an argument similar to Theorem D.8, we have:

Theorem E.3 (Memory lower bound for expert learning). Let M = c′T for some constant c′. Any
streaming algorithm that achieves constant regret for the experts problem with probability at least
1− 2−Θ(T ) must use at least Ω(n) space, where the best expert makes M mistakes.

For the purpose of proving Lemma E.1, we need some technical lemmas.

Lemma E.4 (Lemma 3.5 of [39]). Consider any communication protocol Π where each player
receives one bit and condition on any fixed input b ∈ {0, 1}T . Each player i can be implemented
such that, if the other players receive input b−i, player i only observes their input with probability
dTV(Πb,Πb⊕ei).

Lemma E.5 (Lemma 3.6 of [39]). Let c ∈ (0, 1), p ∈ (0, 1−c
2 ) and γc = 1

c log(e/c) . For a set of
binary random variables Y1, Y2, · · · , Yk such that E [

∑
i Yi] = pk, there exists a set S ⊂ [n] of size

ck such that Pr(Yj = 0,∀j ∈ S) > e−k/γc−1.

Proof of Lemma E.1. Let (C1, C2, · · · , Cn) ∼ ζn be a single column drawn from the NO case,
where each coordinate is i.i.d. Bernoulli with parameter 1/2. Let M = c′T for some constant c′. We
consider the one-way message-passing model, where for all i < T , Mi denotes the message sent
from player Pi to player Pi+1. It suffices to lower bound

I(Π;C1, · · · , CT ) =

T∑
j=1

I(Π;Cj |C<j).

by the chain rule of mutual information. We claim that for any j

I(Π;Cj |C<j) = I(Π;Cj |C−j).
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First, by data processing and the one-way nature of the protocol

I(Π;Cj |C<j) = I(M≤j ;Cj |C<j).

for any j. Now we just need to show that

I(M≤j ;Cj |C<j) = I(Π;Cj |C−j).

By chain rule of mutual information, we can write the right-hand side as

I(Π;Cj |C−j) = I(M≤j ;Cj |C−j) + I(M>j ;Cj |M≤j , C−j)
= I(M≤j ;Cj |C−j) + I(M>j ;Cj |M≤j , C>j)

Observe that M>j and Cj are independent, conditional on M≤j and C>j . Hence,

I(M>j ;Cj |M≤j , C>j) = 0

and this proves the claim.

Let Πb be the distribution of the protocol transcript when the input is fixed to be b ∈ {0, 1}n and ⊕
denote the binary XOR. Now we can bound

I(Π;C1, · · · , CT ) =

T∑
j=1

I(Π;Cj |C<j)

=

T∑
j=1

I(Π;Cj |C−j)

≥ 1

8

1

2T

∑
b∈{0,1}T

T∑
j=1

d2TV(Πb⊕ej ,Πb)

≥ 1

8

1

2T

∑
b∈{0,1}T

∑
j:bj=0

d2TV(Πb⊕ej ,Πb). (E.2)

Conditioned on an input b ∈ {0, 1}T , let k = |{i : bi = 0}| and assume for the sake of a contradiction
that ∑

i:bi=0

dTV(Πb⊕ei ,Πb) = kp, (E.3)

where p < 1−c
2 . Let pi = dTV (Πb⊕ei ,Πb) for every player i ∈ [T ]. Lemma E.4 implies that the

protocol can be equivalently implemented such that if the other players receive b−i, player i only
looks at their input with probability pi. If the player i does not look at their bit, then their message
Mi is independent of their input bit. Let Yi denote the indicator random variable for the event that
player i looks at their input in this equivalent protocol.

It follows from our assumption (E.3) that if the input is b, then E
[∑

i:bi=0 Yi

]
=

∑
i pi = kp. By

the definition of Yi, if for any set S, Yi = 0 for all i ∈ S, then all players in S do not look at their
input bits. Let ES denotes the event that Yi = 0 for all i ∈ S, for some S ⊆ {i : bi = 0}. Then since
the players in S do not look at their input bits,

dTV(Πb⊕eS |ES ,Πb|ES) = 0.

In particular, using this and the law of total probability, we get that

dTV(Πb⊕eS ,Πb) = Pr(ES) · dTV(Πb⊕eS |ES ,Πb|ES) + Pr(ES) · dTV(Πb⊕eS |ES ,Πb|ES)

≤ Pr(ES). (E.4)

By our assumption, E
[∑

i:bi=0 Yi

]
= kp for p < 1−c

2 . Applying Lemma E.5, we obtain that

there exists a set S ⊆ {i : bi = 0} with |S| = ck such that Pr(ES) ≥ e−k/γc−1. For any
k < (T − 2)γc < T − 2, we have Pr(ES) > eδ, and so Pr(ES) < 1 − eδ. By Eqn. (E.4),
dTV(Πb⊕eS ,Πb) < 1− eδ. Observe that b⊕ eS differs from b by having |S| = ck more 1’s; and they
have same value at all other coordinates. Recall that in a typical single-coordinate YES instance, there
are T −M number of 1’s, which is T/2−M more than a typical NO instance. Now suppose this
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gap T/2−M < ck; then solving BIASDETECT1 is at most as hard as distinguishing b and b⊕ eS .
Hence, if we choose c′ such that M = c′T > T/2− ck, then the protocol Π fails with probability
greater than δ. This is a contradiction.

Thus, for any b such that ck = c · |{i : bi = 0}| > T/2−M ,∑
i:bi=0

dTV(Πb⊕ei ,Πb) ≥ Ω

(
(1− c)T

2

)
.

From (E.2) and Jensen’s inequality,

I(Π;C1, · · · , CT ) ≥ Ω
(
(1− c)2T

)
.

This finishes the proof.
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