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Hessian Aware Low-Rank Perturbation for
Order-Robust Continual Learning

Jiaqi Li, Yuanhao Lai, Rui Wang, Changjian Shui, Sabyasachi Sahoo, Charles X. Ling, Shichun Yang,
Boyu Wang, Christian Gagné, Fan Zhou

Abstract—Continual learning aims to learn a series of tasks sequentially without forgetting the knowledge acquired from the previous
ones. In this work, we propose the Hessian Aware Low-Rank Perturbation algorithm for continual learning. By modeling the parameter
transitions along the sequential tasks with the weight matrix transformation, we propose to apply the low-rank approximation on the
task-adaptive parameters in each layer of the neural networks. Specifically, we theoretically demonstrate the quantitative relationship
between the Hessian and the proposed low-rank approximation. The approximation ranks are then globally determined according to
the marginal change of the empirical loss estimated by the layer-specific gradient and low-rank approximation error. Furthermore, we
control the model capacity by pruning less important parameters to diminish the parameter growth. We conduct extensive experiments
on various benchmarks, including a dataset with large-scale tasks, and compare our method against some recent state-of-the-art
methods to demonstrate the effectiveness and scalability of our proposed method. Empirical results show that our method performs
better on different benchmarks, especially in achieving task order robustness and handling the forgetting issue. The source code is at
https://github.com/lijiaqi/HALRP.

Index Terms—Non-stationary Environment, Continual Learning, Low-rank Perturbation, Hessian information
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1 INTRODUCTION

THE conventional machine learning paradigm assumes
all the data are simultaneously accessed and trained.

However, in practical scenarios, data are often collected
from different tasks and sequentially accessed in a specific
order. Continual Learning (CL) aims to gradually learn from
novel tasks and preserve valuable knowledge from previous
ones. Despite this promising paradigm, CL is usually faced
with a dilemma between memory stability and learning plas-
ticity: when adapting among the dynamic data distributions,
it has been shown that the neural networks can easily forget
the learned knowledge of previous tasks when facing a new
one, which is known as Catastrophic Forgetting (CF) [1].

One possible reason for this forgetting issue can be the
parameter drift from the previous tasks to the new ones,
which is caused by the optimization process with the use of
stochastic gradient descent and its variants [2], [3]. To miti-
gate the obliviousness to past knowledge, some works [4]–
[8] proposed to constrain the optimization objective for the
knowledge of new tasks with additional penalty regular-
ization terms. These approaches were shown as ineffective
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under the scenarios of a large number of tasks, lacking long-
term memory stability in real-world applications.

To address this problem, some methods choose to ex-
pand the model during the dynamic learning process in
a specific way, leading to inferencing with task-specific
parameters for each task. For example, a recent work [9]
proposed to decompose the model as task-private and task-
shared parameters via an additive model parameters de-
composition. However, this method only applies an atten-
tion vector for the masking of the task-shared parameters.
Furthermore, the private parameters were controlled by
a regularization and consolidation process, which lead to
the linear model increment along with the increasing task
number, damaging the scalability for deploying a CL system.
Another solution to reduce the parameter increase is to
apply factorization for the model parameters. In this re-
gard, [10] proposed a low-rank factorization method for the
model parameters decomposition with a Bayesian process
inference. However, this approach required a large rank
for achieving desirable accuracy and also suffered from
ineffectiveness in some complex data scenarios.

In this work, we propose a low-rank perturbation
method to learn the relationship between the learned model
(base parameters) and the parameters for new tasks. By
formulating a flexible weight transition process, the model
parameters during the CL scenario are decomposed as
task-shared ones and task-adaptive ones. The former can
be adopted from the base task to new tasks. The latter
conforms to a low-rank matrix, and the number of relevant
parameters can be effectively reduced for every single layer
in a neural network across the tasks. With a simple warm-
up training strategy, low-rank task adaptive parameters can
be efficiently initialized with singular value decomposition.

Furthermore, to determine which ranks should be pre-
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served for the low-rank approximation in different layers
in a model, we propose to measure the influences of the
introduced low-rank parameters by the Hessian-aware risk
perturbation across layers of the whole model. This allows
the model to automatically assign larger ranks to a layer
that contributes more to the final performance under a
specific parameter size budget. We theoretically support
this approach by providing a formal demonstration that the
empirical losses derived from the proposed low-rank pertur-
bation are bounded by the Hessian and the approximation
rate of the decomposition. This leads to a Hessian-aware
framework that enables the model to determine perturba-
tion ranks that minimize the overall empirical error. Lastly,
we apply a pruning technique to control the introduced
parameter size and reduce some less important perturba-
tion parameters through the aforementioned Hessian-aware
framework by evaluating their importance.

Based on the theoretical analysis, we proposed the
Hessian Aware Low-Rank Perturbation (HALRP) algo-
rithm, which enables the model to leverage the Hessian in-
formation to automatically apply the low-rank perturbation
according to a certain approximation rate. To summarize,
the contributions of our work mainly lie in three-fold:

• We proposed a Hessian-aware low-rank perturba-
tions framework that allows efficient memory and
computation requests for learning continual tasks.

• Theoretical analyses were investigated to show that
Hessian information can be used to quantitatively
measure the influences of low-rank perturbation on
the empirical risk. This leads to an automatic rank
selection process to control the model increment.

• Extensive experiments on several benchmarks and
recent state-of-the-art baselines (e.g., regularization-
, expansion-, and replay-based) were conducted to
demonstrate the effectiveness of our method. The
results testify the superiority of our HALRP, in terms
of accuracy, computational efficiency, scalability, and
task-order robustness.

2 RELATED WORK

Regularization-based approaches diminish catastrophic
forgetting by penalizing the parameter drift from the previ-
ous tasks using different regularizers [4]–[6]. Batch Ensem-
ble [11] designed an ensemble weight generation method by
the Hadamard product between a shared weight among all
ensemble members and an ensemble member-specific rank-
one matrix. [12] indicated that learning tasks in different
low-rank vector subspaces orthogonal to each other can
minimize task interferences. [13] applied a regularizer with
decoupled prototype-based loss, which can improve the
intra-class and inter-class structure significantly. Compared
to this kind of approach, our method applied task-specific
parameters and introduced an explicit weight transition
process to leverage the knowledge from the previous tasks
and overcome the forgetting issue.

Expansion-based methods utilize different subsets of
model parameters for each task. [14] proposed to memorize
the learned knowledge by freezing the base model and
progressively expanding the new sub-model for new tasks.
In [15], the reuse and expansion of networks were achieved

dynamically by selective retraining, with splitting or du-
plicating components for newly coming tasks. Some work
(e.g., [16]) tried to determine the optimal network growth
by neural architecture search. To balance memory stability
and learning plasticity, [17] adopted a distillation-based
method under the class incremental scenario. To achieve
the scalability and the robustness of task orders, Additive
Parameter Decomposition (APD) [9] adopted sparse task-
specific parameters for novel tasks in addition to the dense
task-shared ones and performed hierarchical consolidation
within similar task groups for the further knowledge shar-
ing. [18] introduced Channel-Wise Linear Reprogramming
(CLR) transformations on the output of each convolutional
layer of the base model as the task-private parameters.
However, this method relied on the prior knowledge from a
disjoint dataset (e.g., ImageNet-1K). Winning Subnetworks
(WSN) [19] jointly learned the shared network and binary
masks for each task. To address the forgetting issue, only
the model weights that had not been selected in the previ-
ous tasks were tendentiously updated during training. But
this method still needs to store task-specific masks for the
inference stage and relies on extra compression processes
for mask encoding to achieve scalability.

Replay-/Memory-based approaches usually leverage
different types of replay buffers (e.g., [12], [20]–[25]) to mem-
orize a small episode of the previous tasks, which can be
rehearsed when learning the novel ones to avoid forgetting.
In [25], a dynamic prototype-guided memory replay module
was incorporated with an online meta-learning framework
to reduce memory occupation. [26] proposed to process both
specific and generalized information by the interplay of
three memory networks. To avoid the repeated inferences
on previous tasks, Gradient Episodic Memory [27] and its
variant [28] projected the new gradients into a feasible
region that is determined by the gradients on previous task
samples. Instead, Gradient Projection Memory (GPM) [2]
chose to directly store the bases of previous gradient spaces
to guide the direction of parameters update on new tasks.
Compared to these approaches, our proposed method does
not rely on extra storage for the data or gradient information
of previous tasks, avoiding privacy leakage under some
sensitive scenarios.

Low-rank Factorization for CL Low-rank factoriza-
tion [29] has been widely studied in deep learning to de-
compose the parameters for model compression [30], [31]
or data projection [32], [33]. In the context of CL, [10] con-
siders the low-rank model factorization and automatic rank
selection per task for variational inference, which requires
significant large rank increments per task to achieve high
accuracy. GPM [2] applied the singular value decomposition
on the representations and store them in the memory. [12]
proposed to learn tasks by low-rank vector sub-spaces to
avoid a joint vector space that may lead to interferences
among tasks. The most similar work is Incremental Rank
Updates (IRU) [34]. Compared to the decomposition in IRU,
we adopted the low-rank approximation on the residual
representation in the weights transitions. Furthermore, the
rank selection in our work was dynamically and automati-
cally determined according to Hessian-aware perturbations,
rather than the manual rank increment in [34].
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TABLE 1: List of main notations.

Notation Description
T ,t Total task number, task index
Tt,Dt t-th task, and the related dataset
x, y input/sample, class label
W model weights
R,S,B task private model weights
U,Σ,V SVD decomposition on B shown in Sect. 3.2
diag(Σ) the set of diagonal elements of Σ
Diag(σ1, · · · , σn) diagonal matrix elements {σ1, · · · , σn}
M(k) k-rank low-rank approximation of M
∥ · ∥F Frobenius norm
L loss function for the task (e.g, cross-entropy)
Lreg regularization loss
H Hessian matrix
α loss approximation rate for rank selection
l layer index in a neural network
gl gradient vector for layer l
rl full rank of layer l
kl approximated rank for layer l
n number of total training epochs
nr number of warm-up epochs

3 PRELIMINARY AND BACKGROUND

This section introduces the basic knowledge of continual
learning and singular value decomposition. In Table 1, we
provide a list of the main notations used in our paper.
Specifically, the bold uppercase (or lowercase) letters indi-
cate the matrices (or vectors) in the remaining part.

3.1 Continual Learning
Assume the learner receives a series of T tasks
{T0, . . . , TT−1} sequentially, and denote the dataset of the
tth task as Dt = {xi

t, y
i
t}

Nt
i=1, where xi

t and yit corresponds
to the ith instance and label in the total of Nt data points.
In the context of CL, the dataset Dt will become inaccessible
after the time step t.

3.2 Low-Rank Approximation of Matrix with SVD
The singular value decomposition (SVD) factorizes a rectan-
gular matrix B ∈ RJ×I with three matrices1: B = UΣV⊤,
where U ∈ RJ×J , V ∈ RI×I , and Σ ∈ RJ×I . Denote
the rank of B with r ≤ min{I, J}, then B can be further
expressed as B =

∑r
i=1 σiuiv

⊤
i , where σi ∈ diag(Σ) is

the singular values, ui and vi are respectively the left and
right singular vectors. In this work, we take the property
of k-rank approximation of B (with k ≤ r) by lever-
aging the Eckart–Young–Mirsky theorem [35], which can be
expressed with top-k leading singular values and vectors:
B(k) = U(k)Σ(k)(V(k))⊤ =

∑k
i=1 σiuiv

⊤
i , where U(k),

Σ(k), V(k) are the corresponding leading principal sub-
matrices2. k is chosen to tolerate a certain approximation
error under the Frobenius norm ∥ · ∥F (See Appendix A for
the proof):

∥B−B(k)∥F =
√
σ2
k+1 + · · ·+ σ2

r . (1)

1. In this paper, we assume the eigenvalues are always sorted with
descending order in such SVD decompositions, i.e., σ1 ≥ σ2 ≥ ... ≥ σr .

2. With a slight abuse of notation, the notation M(k) refers to
the k-rank approximation of the matrix M according to the context:
(1) U(k),Σ(k),V(k) indicate the top-k leading submatrices; (2) B(k)

means the r-rank low-rank approximation for B, then same for W(k).

W𝑏𝑎𝑠𝑒 +W1 = B1R1

S1

W𝑏𝑎𝑠𝑒 +W1

V1
𝑘 ⊤

Σ1
(𝑘)

≈ U1
(𝑘)R1

S1

loss

low-rank perturbation

𝒟0 𝒟1

Fig. 1: Low rank decomposition between T1 and T0

4 METHODOLOGY

Our framework leverages the low-rank approximation of
neural network weights. In the following parts, we present
the methodology for handling the fully connected layers
and the convolutional layers. The analysis herein can be
applied to any layer of the model. Without loss of generality,
we omit the layer index l in this section. For simplicity,
we illustrate the learning process using tasks T0 and T1 in
Sections 4.1 and 4.2, which can be applied to the successive
new tasks as shown in Section 4.5.

4.1 Fully Connected Layers
We first consider linear layers of neural networks. We begin
by learning task T0 without any constraints on the model
parameters. Specifically, we train the model by minimiz-
ing the empirical risk to get the base weights Wbase =
argminW L(W;D0), where Wbase ∈ RJ×I , J is the output
dimension, and I is the input dimension of the layer.

Then, when the task T1 comes to the learner, we can
train the model fully on D1 and get the updated weights
W1 ∈ RJ×I . However, undesired model drifts can lead
to worse performance on T0 if no constraints are applied
to the parameters update. Previous work [4] applied a L2

regularization to enforce that the weights learned on the
new model will not be too far from those of the previous
tasks. Although this kind of method only expands the
base model with limited parameters, it can lead to worse
performance on both T0 and T1.

To pursue a better trade-off between the model size
increment and overall performance on both T0 and T1,
we assume the unconstrained trained parameters W1 on
T1 can be transformed from Wbase by the low-rank weight
perturbation (LRWP, as illustrated in Figure 1),

W1 = R1W
baseS1 +B1 (2)

where B1 ∈ RJ×I is a sparse low-rank matrix, R1 =
Diag(r1, . . . , rJ), and S1 = Diag(s1, . . . , sI) are task-private
parameters for T13.

The form of the proposed low-rank decomposition in
Eq. 2 has differences with the additive parameter decompo-
sition proposed in [9]. In fact, the task-adaptive bias term

3. We will show later that B can be further approximated by
U(k),Σ(k),V(k) with low-rank approximation, so we can write
the task-private weights for task t as either {Rt,St,B

(k)
t } or

{Rt,St,U
(k)
t ,Σ

(k)
t ,V

(k)
t }.
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B1 conforms to a low-rank matrix, which reduces both
the parameter storage and the computational overhead.
Moreover, the task-adaptive mask terms R1 and S1 include
both row-wise and column-wise scaling parameters instead
of only column-wise parameters like [9] to allow smaller
and possibly sparser discrepancy: B1 = W1 −R1W

baseS1.
In addition, regarding the parameter estimation, we

can substitute B1 with its k-rank approximation B
(k)
1 =∑k

i=1 σiuiv
⊤
i in Eq. 2 and directly minimize the empirical

risk on task T1 to get the parameter estimation through
stochastic gradient descent with the random initialization
of {ui}ki=1 and {vi}ki=1. However, in practice, we found it
challenging to learn a useful decomposition in this way (i.e.,
the estimations converge to a local optimum quickly) and
the empirical risk minimization does not benefit from the
low-rank decomposition. Due to the homogeneity among
the one-rank components {uiv

⊤
i }ki=1, random initialization

cannot sufficiently distinguish them and hence make the
gradient descent ineffective.

To address the aforementioned ineffective training prob-
lem, we first train the model fully on task T1 for a few
epochs (e.g., one or two) to get rough parameter estimations
Wfree

1 ∈ RJ×I of the new task, indicating free-trained
weights without any constraints. Then, a good warm-up ini-
tialized values for Eq. 2 can then be obtained by solving the
following least squared error (LSE) minimization objective,

argmin
R,S,B

∥Wfree
1 −RWbaseS−B∥2F (3)

As R,S,B can correlate, minimizing them simultaneously
can be difficult. Thus, we minimize Eq. 3 alternately. First,
fix S,B and solve R, and so on.

Rfree
1 = argmin

R
∥Wfree

1 −RWbase∥2F

Sfree
1 = argmin

S
∥Wfree

1 −Rfree
1 WbaseS∥2F

Bfree
1 = Wfree

1 −Rfree
1 WbaseSfree

1

(4)

Eq. 4 can be solved efficiently via LSE minimiza-
tion. For example, for R, we have ∥Wfree − RWbase∥2F =∑I

i=1

∑J
j=1(w

free
ji − rjw

base
ji )2, where wfree

ji and wbase
ji are the

elements of j-th row and i-th column of Wfree and Wbase,
respectively. Applying the derivative w.r.t. rj and let it equal
0, we have rj = (

∑
i w

free
ji wbase

ji )/
∑

i(w
base
ji )2. Then, we can

solve S and B (see Appendix C for more details). Further-
more, with the SVD solver denoted by SVD(·), the values of
the low-rank decomposition for Bfree can be obtained:

Ufree
1 ,Σfree

1 ,Vfree
1 ← SVD(Bfree

1 ) (5)

A k-rank approximation U
(k)free
1 , Σ

(k)free
1 , V

(k)free
1 can be

obtained by retaining their corresponding leading principal
submatrix of order k ≤ r. So we can obtain a k-rank
approximation4 to Wfree

1 by

Wfree
1 ≈W

(k)free
1 = Rfree

1 WbaseSfree
1 +B

(k)free
1 , (6)

where B
(k)free
1 = U

(k)free
1 Σ

(k)free
1 (V

(k)free
1 )⊤.

4. With this approximation, the extra parameters introduced for each
successive task will be O((I+J)(k+1)+k). Then the model increment

ratio is ρ =
size{R,S,U(k),Σ(k),V(k)}

size{Wbase} =
(I+J)(k+1)+k

IJ
≪ 1 in practice.

Finally, we can initialize the values in Eq. 2 with Rfree
1 ,

Sfree
1 , U

(k)free
1 , Σ

(k)free
1 and V

(k)free
1 , and then fine-tune their

estimates by minimizing the empirical risk on task T1 to
achieve better performance. The proposed training tech-
nique not only enables well-behaved estimations of the low-
rank components but also sheds light on how to select ap-
proximation ranks of different layers to achieve an optimal
trade-off between model performance and parameter size,
as discussed in Section 4.3.

4.2 Convolutional Layers
In addition, we can decompose the weights of a convo-
lutional layer in a similar way. Suppose that the size of
the convolutional kernel is d × d. The base weights of the
convolution layer for task T0 would be a tensor Wbase

conv ∈
Rd×d×J×I . Similar to Eq. 2, a low-rank weight perturbation
for transforming Wbase

conv to Wconv,1 ∈ Rd×d×J×I is,

Wconv,1 = Rconv,1 ⊗Wbase
conv ⊗ Sconv,1 ⊕Bconv,1 (7)

where Rconv,1 ∈ R1×1×J×1, Sconv,1 ∈ R1×1×1×I and
Bconv,1 ∈ R1×1×J×I is sparse low-rank tensor (matrix), ⊗
and ⊕ are element-wise tensor multiplication and summa-
tion operators that will automatically expand tensors to be
of equal sizes, following the broadcasting semantics of some
popular scientific computation package like Numpy [36]
or PyTorch [37]. Thus, the number of parameters added
through this kind of decomposition is still O(I + J).

To get the estimations of the introduced parameters, we
can solve a similar LSE problem as in Eq. 3 to obtain initial
estimates Rfree

conv,1 and Sfree
conv,1. Then we take the average of

the first two dimensions to transform the discrepancy tensor
(Wfree

conv,1 −Rfree
conv,1 ⊗Wbase

conv ⊗ Sfree
conv,1) to be a 1× 1× J × I

tensor, which can then be applied a similar decomposition
with the linear layers (Eq. 5 and 6.) to obtain the low-rank
estimates of Bfree

conv,1.

4.3 Rank Selection for each layer based on Hessian
Information
Sections 4.1 and 4.2 present how the low-rank approxima-
tion can be used to transfer knowledge and reduce the num-
ber of parameters for a single layer across the tasks in con-
tinual learning. However, how to select the preserved rank
for each layer remains unsolved. We tackle this problem by
measuring how the empirical risk L(W) is influenced by
the introduced low-rank parameters across different layers
so that we can assign a larger rank to a layer that contributes
more to the risk. Inspired by the previous studies [38], [39]
about the relationship between Hessian and quantization
errors, we establish the following Theorem 1. The full proof
is presented in Appendix B.

Theorem 1. Assume that a neural network of L layers with
vectorized weights (ω⋆

1, . . . ,ω
⋆
L) that have converged to local

optima, such that the first and second order optimally conditions
are satisfied, i.e., the gradient is zero, and the Hessian is positive
semi-definite. Suppose a perturbation ∆ω⋆

1 applied to the first
layer weights, then we have the loss change

|L(ω⋆
1 −∆ω⋆

1, . . . ,ω
⋆
L)− L(ω⋆

1, . . . ,ω
⋆
L)|

≤ 1

2
∥H1∥F · ∥∆ω⋆

1∥2F + o
(
∥∆ω⋆

1∥2F
)
,

(8)
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where H1 = ∇2L(ω⋆
1) is the Hessian matrix at only the variables

of the first layer weights.

Remark: Theorem 1 demonstrated the relationship be-
tween the perturbation ∆w⋆

1 on weights and the effect on the
loss objective ∆L. Specifically, when a weight perturbation
∆w⋆

1 is applied to the related weight matrix w⋆
1 , the per-

turbation introduced on the loss function is upper bounded
mainly by the product of the Frobenius norms of Hessian
matrix (i.e., ∥H1∥F ) and weight perturbation (i.e., ∥∆ω⋆

1∥2F ).
It further inspires us to follow this rule to select the proper
ranks by considering the low-rank approximation in the
previous section as a perturbation to the model weights.

In our low-rank perturbation setting, we assume that
Wfree

1 by warm-up training is a local optimum. By Theo-
rem 1, we consider the difference between Wfree

1 and its
k-rank approximation W

(k)free
1 as a perturbation ∆Wfree

1

for the weights. Then the amount of perturbation can be
computed with the low-rank approximation error:

∥∆Wfree
1 ∥F =∥Wfree

1 −W
(k)free
1 ∥F =

√√√√ r∑
i=k+1

σ2
i (9)

where {σi}ri=1 are the singular values of Wfree
1 and r is the

matrix rank of Wfree
1 .

Thus, according to Theorem 1, the influence on the loss
introduced by this low-rank weight perturbation is given by

|L(W(k)free
1 )− L(Wfree

1 )|

≤ 1

2
∥H1∥F ·

(
r∑

i=k+1

σ2
i

)
+ o

(
r∑

i=k+1

σ2
i

)
(10)

where the Hessian matrix H1 can be approximated by
the negative empirical Fisher information [40], i.e., the
outer product of the gradient vector for the layer weights.
So ∥H1∥F can be approximated by ∥g1∥22, where g1 =
∂L

∂W1
|W1=Wfree

1
. Finally, we can quantitatively measure the

contribution of the loss of adding a marginal rank k for
a particular layer l by ∥gl∥22σ2

l,k, where gl is the gradient
for the layer-l weights and σl,k is the k-th singular value
of the free-trained layer-l weights, and sort them by the
descending order of importance.

For a given loss approximation rate α (e.g., 0.9), we can
determine the rank kl (with kl ≤ rl where rl is the total rank
of the layer l) for each layer l = 1, ..., L by solving

min
k1,...,kL

L∑
l=1

kl∑
i=1

∥gl∥22σ2
l,i

s.t.
L∑

l=1

kl∑
i=1

∥gl∥22σ2
l,i ≥ α

(
L∑

l=1

rl∑
i=1

∥gl∥22σ2
l,i

) (11)

Remark: Eq. 11 enables a dynamic scheme for the trade-
off between the approximation precision and computational
efficiency. For a given approximation rate, the model can
automatically select the rank for all the layers in the model.

4.4 Regularization and Pruning on Parameters
The proposed low-rank perturbation method introduced
extra parameters compared to a single-task model. For these

Algorithm 1 Hessian Aware Low-Rank Perturbation

Require: Task data {Dt}T−1
t=0 ; total epochs for one task n;

rank estimation epochs nr ; parameter increments limi-
tation ratio p, approximation rate α.

Ensure: Base weights Wbase and {W⋆
t }T−1

t=1 for each task.
1: Obtain Wbase = argminW L(W;D0) on task T0.
2: for t = 1, · · · , T − 1 do
3: Warm-up pre-training on task Tt for nr epochs:

Wfree
t = argminW L(W;Dt).

4: Low-rank decomposition for all layers via Eq. 2 or
Eq. 7: Wfree

t = Rfree
t WbaseSfree

t +Bfree
t .

5: Apply Ufree
t ,Σfree

t ,Vfree
t ← SVD(Bfree

t ).
6: Select the ranks kl for each layer l through Eq. 11.
7: Re-initialize the task Tt parameters with Eq. 6.
8: Fine-tuning on Tt for (n− nr) epochs with:

W⋆
t = argmin

W

[
L(W;Dt) + Lreg(W;λ0, λ1)

]
(13)

9: If the size of the introduced parameters is larger than a
threshold p, apply the pruning method in Section 4.4.

10: end for
11: return Wbase and {W⋆

t }T−1
t=1 .

parameters, we can further add regularization to avoid over-
fitting. To control the model growth, we can further prune
the introduced parameters to improve memory efficiency.

Firstly, by following [9], we can add regularizations on
U(k)free, V(k)free, Rfree,Sfree since second task T1 to enhance
the sparsity of the task-private parameters (see Appendix D
for more discussion for this fine-tuning objective):

Lreg(Wt;λ0, λ1) =
∑
l

[
λ0(∥U(kl)free

t,l ∥+ ∥V(kl)free
t,l ∥)

+ λ1(∥Rfree
t,l ∥22 + ∥Sfree

t,l ∥22
+ ∥U(kl)free

t,l ∥22 + ∥V
(kl)free
t,l ∥22)

] (12)

where λ0, λ1 are balancing coefficients, and the subscripts
(t, l) indicate the relevant weights for layer l in task t.

Secondly, we can also prune the extra parameters by
setting zero values for elements whose absolute values are
lower than a certain threshold. The threshold can be selected
in the following three ways:

(1) Pruning via absolute value: a fixed tiny positive
value (e.g., 10−5) is set for the threshold.

(2) Pruning via relative percentile: to control the ratio
of increased parameter size over a single-task model
size under γ, the pruning threshold is selected as the
(1−γ)-percentile of the low-rank parameters among
all layers of all tasks.

(3) Pruning via mixing absolute value and relative per-
centile: we set a threshold as the maximum of the
thresholds obtained from the above two methods to
prune using relative percentiles.

4.5 Summary of Algorithm
In the previous sections, we described the model update

from T0 to T1 with an illustrative example. The overall de-
scription of our proposed HALRP is shown in Algorithm 1.
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At the start, the learner was trivially trained on the
first task T0 to obtain Wbase. As for each incoming task Tt
with t = 1, ..., T − 1, we first train the model without any
constraints for nr epochs to get a rough initialization Wfree

t .
Secondly, we apply the low-rank decomposition on all lay-
ers with Eq. 2 (for linear layers) or Eq. 7 (for convolutional
layers) by solving a least square error minimization problem
described in Eq. 4. Then, we further apply the singular
value decomposition for the residual matrix Bfree

t . With this
decomposition, we can measure the Hessian-aware pertur-
bations and the rank kl for each layer l through Eq. 11. After
the rank selection, we can re-initialize the model parameters
with the approximated weights W

(k)free
t ≈ Wfree

t and then
fine-tune the model for the remaining (n − nr) epochs to
obtain the optimal weights for Tt. As for the inference stage,
the base weights and the task-specific parameters can be
adopted to make predictions for each task.

5 EXPERIMENTAL RESULTS

We first compare the accuracy over several recent baselines
with standard CL protocol. Then, we studied the task order
robustness, forgetting, memory cost, training time efficiency,
and the ablation study to show the effectiveness further.
We briefly describe the experimental setting herein while
delegating more details in Appendix F.

5.1 Experimental Settings

Datasets: We evaluate the algorithm on the following
datasets: 1) CIFAR100-Split: Split the classes into 10 groups;
for each group, consider a 10-way classification task. 2)
CIFAR100-SuperClass: It consists of images from 20 su-
perclasses of the CIFAR-100 dataset. 3) Permuted MNIST
(P-MNIST): obtained from the MNIST dataset by random
permutations of the original MNIST pixels. We follow [41] to
create 10 sequential tasks using different permutations, and
each task has 10 classes. 4) Five-dataset: It uses a sequence of
5 different benchmarks including CIFAR10 [42], MNIST [43],
notMNIST [44], FashionMNIST [45] and SVHN [46]. Each
benchmark contains 10 classes. 5) Omniglot Rotation [47]:
100 12-way classification tasks. The rotated images in 90◦,
180◦, and 270◦ are generated by following [9]. 6) TinyIm-
ageNet: a variant of ImageNet [48] dataset containing 200
classes. Here, we adopted two settings, one with 20 10-
way classification tasks (TiyImageNet 20-split) and another
more challenging setting with 40 5-way classification tasks
(TinyImageNet 40-split).

Baselines: We compared the following baselines by
the publicly released code or our re-implementation: STL:
single-task learning with individual models for each task.
MTL: multi-task learning with a single for all the tasks
simultaneously [49]. EWC: Elastic Weight Consolidation
method proposed by [4]. L2: the model is trained with L2-
regularizer [4] λ∥θt−θt−1∥22 between the current model and
the previous one. BN: The Batch Normalization method [50].
BE: The Batch Ensemble method proposed by [11]. APD: The
Additive Parameter Decomposition method [9]. Each layer of
the target network was decomposed into task-shared and
task-specific parameters with mask vectors. APDfix: We
modify the APD method by fixing the model parameters

while only learning the mask vector when a new task comes
to the learner. IBPWF: Determine the model expansion
with non-parametric Bayes and weights factorization [10].
GPM [2]: A replay-based method by orthogonal gradient
descent. WSN [19]: Introduce learnable weight scores to
generate task-specific binary masks for optimal subnetwork
selection. BMKP [51]: A bilevel memory framework for
knowledge projection: a working memory to ensure plastic-
ity and a long-term memory to guarantee stability. CLR [18]:
An expansion-based method by applying Channel-Wise Lin-
ear Reprogramming transformations on each convolutional
layer in the base model. This method originally relies on a
model pre-trained on an extra dataset (i.e., ImageNet-1K)
disjoint with the above task datasets, rather than the train-
from-scratch manner adopted by other baselines. To make a
fair comparison, we pre-trained the base model on the first
task of the above task datasets and applied it to all tasks.
PRD [52]: Prototype-sample relation distillation with super-
vised contrastive learning. Furthermore, we also compared
our methods with IRU [34], a method also based on the low-
rank decomposition. However, due to the code limitation5

of IRU [34], we further implemented our method under the
dataset protocol and model architecture setting in [34] and
compared our performance with the results reported in [34].
For the implementation of all the methods, we applied the
same hyperparameters (e.g., batch size, training epochs,
regularization coefficient) to realize fair comparisons. See
Appendix F.3 for more details.

Model Architecture: For CIFAR100-Split, CIFAR100-
SuperClass, and P-MNIST datasets, we adopted LeNet as
the base model. As for Five-dataset and ImageNet datasets,
we evaluated with AlexNet and reduced ResNet18 networks
wehre the latter has reduced filters compared to standard
ResNet18 (see Appendix F.2). And we followed [19] to use
an extended LeNet model on the Omniglot-Rotation dataset.

Evaluation Metrics: We mainly adopted the average of
the accuracies of the final model on all tasks (we simply
call “accuracy” or “Acc.” later) for the empirical compar-
isons. As for the forgetting statistics, we applied backward
transfer (BWT) [2] as a quantitive measure. Especially, we
also compared the order-robustness of different methods by
calculating the Order-normalized Performance Disparity that
will be introduced later. For each single experiment (e.g.,
each task order), we repeat with five random seeds to
compute the average and standard error.

5.2 Empirical Accuracy
We provide the average accuracies on the six benchmarks in
Table 2 and Table 3. From these numerical results, we can
conclude our method achieved state-of-the-art performance
compared to the baseline methods.

According to the evaluations on CIFAR100-Split and
CIFAR100-SuperClass in Table 2, we can observe that our
proposed HALRP outperforms the recent methods (e.g.,
GPM (replay-based), APD and WSN (expansion-based))
with a significant margin (e.g., with an improvement about
1% ∼ 3%). Especially, we also evaluated the performances
of all the methods under different amounts of training data

5. IRU code only contains the implementation on the multi-layer per-
ceptron. See https://github.com/CSIPlab/task-increment-rank-update
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CIFAR100-Split (with LeNet) CIFAR100-SuperClass (with LeNet)
Method 5% 25% 50% 100% 5% 25% 50% 100%

STL 45.13 ± 0.04 59.04 ± 0.03 64.38 ± 0.06 69.55 ± 0.06 43.76 ± 0.68 56.09 ± 0.07 60.06 ± 0.06 64.47 ± 0.05
MTL 44.95 ± 0.11 60.21 ± 0.28 65.65 ± 0.20 69.70 ± 0.28 40.43 ± 0.15 49.88 ± 0.27 53.83 ± 0.27 55.62 ± 0.41

L2 37.15 ± 0.21 48.86 ± 0.28 53.35 ± 0.34 58.09 ± 0.43 34.03 ± 0.08 43.40 ± 0.27 46.10 ± 0.28 48.75 ± 0.24
EWC 37.76 ± 0.20 50.09 ± 0.38 55.65 ± 0.40 60.53 ± 0.26 33.70 ± 0.32 44.02 ± 0.39 47.35 ± 0.47 49.97 ± 0.39
BN 37.60 ± 0.17 50.70 ± 0.28 54.79 ± 0.28 60.34 ± 0.40 36.76 ± 0.14 48.20 ± 0.16 51.43 ± 0.16 55.44 ± 0.19
BE 37.63 ± 0.15 51.13 ± 0.3 55.37 ± 0.28 61.09 ± 0.33 37.05 ± 0.20 48.48 ± 0.14 51.78 ± 0.17 55.97 ± 0.17
APD 36.60 ± 0.14 54.59 ± 0.07 59.71 ± 0.03 66.54 ± 0.03 32.81 ± 0.29 49.00 ± 0.06 52.64 ± 0.19 60.54 ± 0.23
APDfix 35.66 ± 0.33 54.62 ± 0.11 59.86 ± 0.24 66.64 ± 0.14 24.27 ± 0.22 48.71 ± 0.11 53.42 ± 0.12 61.47 ± 0.16
IBWPF 38.35 ± 0.26 47.87 ± 0.25 53.46 ± 0.13 57.13 ±0.15 33.09 ± 0.50 51.32 ± 0.27 52.52 ± 0.26 55.98 ± 0.33
GPM 32.86 ± 0.35 51.61 ± 0.22 57.60 ± 0.19 64.49 ± 0.10 34.88 ± 0.30 47.31 ± 0.51 51.23 ± 0.55 57.91 ± 0.28
WSN 37.01 ± 0.63 55.21 ± 0.59 61.56 ± 0.42 66.56 ± 0.49 36.89 ± 0.49 52.42 ± 0.62 58.23 ± 0.38 61.81 ± 0.54
BMKP 42.36 ± 0.90 56.81 ± 1.05 62.87 ± 0.60 66.95 ± 0.53 37.26 ± 0.87 53.62 ± 0.59 57.76 ± 0.66 61.97 ± 0.19
CLR 36.46 ± 0.29 51.44 ± 0.35 57.00 ± 0.43 61.83 ± 0.60 37.93 ± 0.25 49.82 ± 0.56 53.86 ± 0.63 57.07 ± 0.60
PRD 31.58 ± 0.29 56.07 ± 0.22 59.61 ± 0.33 62.74 ± 0.45 33.34 ± 0.48 52.99 ± 0.28 55.85 ± 0.45 57.80 ± 0.50

HALRP 45.09 ± 0.05 58.94 ± 0.09 63.61 ± 0.08 67.92 ± 0.17 43.84 ± 0.04 54.93 ± 0.04 58.68 ± 0.11 62.56 ± 0.30

TABLE 2: Accuracies↑ on CIFAR100-Split/-SuperClass with different percentages of training data.

(i.e., 5% ∼ 100%) on these two benchmarks. It was interest-
ing to see that our proposed method had advantages in deal-
ing with extreme cases with limited data. Compared to other
methods, the performance margins become more significant
with fewer training data. For example, on CIFAR100-Split,
our proposed HALRP outperforms APD and WSN with an
improvement of 1.28% and 1.36% respectively, but these
margins will dramatically rise to ∼ 8% if we reduce the
training set to 5% of the total data. These results showed
that our method can work better in these extreme cases.

On Five-dataset, we adopted two types of neural net-
work, i.e., AlexNet and ResNet18, to verify the effectiveness
of HALRP under different backbones. We can observe that
our method consistently outperforms the other methods
under different backbones, indicating the applicability and
flexibility for different model choices. Compared with the
analyses in the following part, we can conclude that our
method is also robust under different orders of tasks.

Especially, we also conducted experiments on the
Omniglot-Ratation dataset to demonstrate the scalability of
our method. We follow [19] to learn the 100 tasks under the
default sequential order. The average accuracy was shown
in Table 3c. We demonstrate that our method is applicable
to a large number of tasks and can still achieve comparable
performance with limited model increment.

On TinyImageNet dataset, we evaluated our methods on
two settings, one with 20-split and another with 40-split, and
the results are posted in Table 3d. According to the empirical
results, we can conclude that our proposed method can
perform well on this challenging dataset, with a better trade-
off between the average accuracy and task order robustness.
Compared to the previous methods APD and APDfix that
aim to address the issue of task order robustness, our
HALRP can perform well in a more consistent manner.
Furthermore, our methods also have advantages regarding
computational efficiency and memory consumption that we
will discuss later in the following sections.

Additionally, we also provide comparisons with IRU [34]
that is also based on low-rank decomposition. We note
that the official code of IRU only contains a demo for
multi-layer perceptron (MLP), and no complete code for the
convolutional network (even LeNet) can be found. Due to
this limitation, we cannot implement IRU under our setting.

To make fair comparisons, we re-implement our method
under the setting of IRU [34]. We describe the setting as
follows: 1) Dataset Protocol: [34] generated 20 random tasks
on PMNIST, rather than 10 tasks in this work. Moreover, [34]
randomly divided the CIFAR100 dataset into 20 tasks, rather
than the superclass-based splitting in our paper. Thus,
we denote the two datasets in [34] as “PMNIST-20” and
“CIFAR100-20”, to distinguish them from the “PMNIST”
and “CIFAR100-SuperClass” used in the common setting.
(2) Model Architecture: Apart from the architectures we
introduced before, we also follow the MLP used in [34], a
three-layer (fully-connected) multilayer perceptron with 256
hidden nodes. The results of our method and IRU are listed
in Table 4. We can conclude that our method achieved a
large performance gain compared to IRU.

In the following parts, we will further investigate the
empirical performance under different aspects, i.e., task
order robustness, forgetting statistics, model growth, and
time complexity. We will show that our proposed method
can achieve a better trade-off among these realistic metrics
apart from the average accuracy.

5.3 Robustness on Task Orders

We evaluate the robustness of these algorithms under dif-
ferent task orders. Following the protocol of [9], we as-
sessed the task order robustness with the Order-normalized
Performance Disparity (OPD) metric, which is computed
as the disparity between the performance P̄t of task t
under R different task orders: OPDt ≜ max{P̄ 1

t , . . . , P̄
R
t }−

min{P̄ 1
t , . . . , P̄

R
t }. The maximum OPD (MOPD) and aver-

age OPD (AOPD) are defined by

MOPD ≜ max{OPD0, . . . ,OPDT−1}

AOPD ≜
1

T

T−1∑
t=0

OPDt

(14)

respectively.
Thus, smaller AOPD and MOPD indicate better task-

order robustness. For CIFAR100-Split and SuperClass
datasets, we adopted different orders by following [9]. For
the P-MNIST and Five-dataset, we report the averaged
results over five different task orders. The results on MOPD
and AOPD on P-MNIST, Five-dataset, Omniglot-Rotation,
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P-MNIST
LeNet

Method Acc.↑ MOPD↓ AOPD↓
STL 98.24±0.01 0.15 0.09
MTL 96.70±0.07 1.58 0.81
L2 79.14±0.70 29.66 18.94
EWC 81.69±0.86 21.51 12.16
BN 81.04±0.15 19.77 8.18
BE 83.80±0.08 16.76 6.88
APD 97.94±0.02 0.25 0.16
APDfix 97.99±0.01 0.10 0.11
GPM 96.69±0.02 0.45 0.27
WSN 97.91±0.02 0.36 0.22
BMKP 97.08±0.01 3.21 1.04
CLR 88.55±0.20 14.97 7.88
PRD 83.16±0.17 7.91 6.16

HALRP 98.10±0.03 0.47 0.24

(a) Results on P-MNIST.

Five-dataset

AlexNet ResNet-18

Method Acc.↑ MOPD↓ AOPD↓ Acc.↑ MOPD↓ AOPD↓
STL 89.32±0.06 0.74 0.30 94.24±0.05 0.67 0.24
MTL 88.02±0.18 2.08 0.68 93.82±0.06 0.67 0.30
L2 78.24±2.00 35.11 15.35 85.94±2.79 37.03 12.72
EWC 78.44±2.20 33.29 13.18 86.32±2.80 33.84 11.80
BN 82.35±2.45 34.83 12.56 88.36±2.21 30.22 9.55
BE 82.91±2.37 33.91 11.63 88.75±2.14 29.22 8.97
APD 83.70±0.90 4.80 3.45 92.18±0.28 3.50 1.54
APDfix 84.03±1.24 5.50 3.66 91.91±0.48 6.74 1.98
GPM 87.27±0.61 4.54 1.88 88.52±0.28 6.97 2.82
WSN 86.74±0.40 8.54 2.89 92.58±0.39 4.62 1.21
BMKP 84.03±0.55 9.32 3.07 92.57±0.65 9.08 2.13
CLR 86.68±1.41 19.78 7.08 90.04±1.04 14.05 4.51
PRD 74.74±0.69 17.53 9.23 88.45±0.93 14.17 5.37

HALRP 88.81±0.31 4.28 1.31 93.39±0.30 4.39 1.27

(b) Results on Five-dataset with different backbones.

Omniglot-Rotation
LeNet

Method Acc.↑ MOPD↓ AOPD↓
STL 80.93±0.18 20.83 3.42
MTL 93.95±0.11 6.25 2.11
L2 69.86±1.23 17.23 6.96
EWC 69.75±1.28 21.39 7.02
BN 77.08±0.86 14.41 5.58
BE 78.24±0.69 17.17 5.53
APD(⋆) 81.60±0.53 8.19 3.78
APDfix 78.14±0.12 6.53 2.63
GPM 80.41±0.16 28.33 13.02
WSN 82.55±0.44 17.09 7.57
BMKP 81.12±2.71 26.53 16.17
CLR 72.75±1.41 24.30 12.27
PRD 74.49±2.78 49.17 18.44

HALRP 83.08±0.73 10.36 3.91

(c) Results on Omniglot.
TinyImageNet 20-split TinyImageNet 40-split

AlexNet ResNet18 AlexNet ResNet18

Method Acc.↑ MODP↓ AODP↓ Acc.↑ MODP↓ AODP↓ Acc.↑ MODP↓ AODP↓ Acc.↑ MODP↓ AODP↓
STL 66.78±0.18 6.20 3.43 67.00±0.30 5.87 2.87 74.65±0.17 8.16 4.36 74.08±0.25 8.13 4.08
MTL 71.23±0.54 6.87 3.42 73.64±0.46 6.94 3.31 78.80±0.25 7.74 3.92 80.05±0.22 9.07 4.04
L2 56.33±0.22 11.93 5.72 60.80±0.56 8.27 4.23 63.47±1.35 16.27 7.42 65.59±1.03 14.80 7.00
EWC 56.55±0.22 10.93 5.53 60.88±0.56 7.54 4.63 64.11±1.36 17.87 6.91 66.54±0.94 14.67 6.99
BN 57.20±0.11 12.07 5.37 61.03±0.65 9.73 4.24 64.04±1.15 19.07 7.23 66.17±1.75 15.33 6.92
BE 57.62±0.41 11.80 4.98 61.52±0.68 7.00 4.09 64.70±1.08 23.47 6.97 66.77±1.61 16.94 7.07
APD 67.26±0.38 12.00 5.43 68.76±0.58 9.86 4.33 73.88±0.46 8.53 5.04 73.85±0.40 11.46 5.57
APDfix 63.59±0.25 5.40 3.68 67.69±0.41 6.54 3.64 67.91±1.33 23.47 8.95 58.11±2.11 26.93 11.70
GPM 60.84±0.32 11.00 4.44 48.09±1.07 9.27 4.80 70.14±0.38 10.90 4.52 43.40±7.68 48.80 38.80
WSN 65.73±0.21 5.06 3.31 68.27±0.47 8.40 4.52 73.46±1.27 8.00 4.23 75.29±0.46 12.27 4.75
BMKP 65.01±0.41 5.87 3.37 67.45±0.59 10.60 6.69 73.57±0.21 9.60 4.31 74.84±0.63 12.90 4.95
CLR 57.29±0.39 8.80 4.42 61.77±0.47 10.27 5.42 65.22±0.49 9.86 5.74 67.59±0.92 16.54 9.30
PRD 46.49±0.30 15.40 8.33 49.65±0.57 19.33 11.59 53.54±0.45 19.74 10.02 63.78±0.59 20.27 7.93

HALRP 66.68±0.20 5.60 3.43 70.09±0.29 4.67 3.20 74.01±0.25 7.47 4.12 75.53±0.50 7.87 4.48

(d) Results on TinyImageNet with different backbones.

TABLE 3: Performance on P-MNIST, Five-dataset, Omniglot-Rotation and TinyImageNet. We ran experiments with five
different task orders generated by different seeds on first two datasets. As for Omniglot-Rotation, we follow [19] to show
the scalability under the original sequential order. Acc.↑ refers to the empirical accuracy, MOPD↓ and AOPD↓ refer to the
task order robustness as discussed in Section 5.3. Results with ⋆ are from [9].

PMNIST-20
(MLP)

CIFAR100-20
(ResNet18)

CIFAR100-20
(MLP)

Multitask(⋆) 96.8 70.2 16.4
IRU(⋆) 85.60± 0.15 68.46± 2.52 65.90± 2.16
Ours 92.02± 0.04 73.71± 0.87 67.21± 0.68

TABLE 4: Accuracies under the IRU [34] setting. Results
with ⋆ are reported in [34].

TinyImageNet, and CIFAR100-Splits/-SuperClass are re-
ported in Table 3a, Table 3b, Table 3c, Table 3d and Table 5,
respectively. According to these results, we can generally
conclude that our method can achieve a better accuracy-
robustness trade-off, compared to the recent baseline APD.

5.4 Handling the Catastrophic Forgetting

We then evaluated the abilities of different methods for
overcoming catastrophic forgetting. We illustrate the av-
erage forgetting (BWT) on the CIFAR100 Split/SuperClass
dataset under different amounts of data in Fig. 2. Our pro-
posed method can effectively address the forgetting issue,
comparable with some state-of-the-art methods like WSN.
We further provide detailed forgetting statistics within five
different task orders in Appendix E.2.

5.5 Model Increment Analysis
Another potential issue in continual learning is the model
size growth as the number of tasks increases. To compare
increased model capacities among different methods, we vi-
sualize the ratio of increased parameters w.r.t to base model on
the sequential 20 tasks of CIFAR100-SuperClass dataset in
Fig. 3a. We can observe that our proposed HALRP can better
control the model capacity increment. After the first four
tasks, the model parameters increased by around 19% and
grow slowly during the last sixteen tasks (finally ≤ 28%).
In contrast, the model parameters of APD grew quickly by
around 40% in the first two or three tasks and kept a high
ratio during the following tasks.

5.6 Computational Efficiency
We visualize the average time complexity ratio on the ten
tasks of the PMNIST dataset in Fig. 3b. The time complexity
ratio is computed by dividing the accumulated time across
the tasks w.r.t. the time cost on the first task of single-
task learning. We observe that our proposed method is also
computationally efficient with limited time consumption
compared to most baselines, with a better trade-off between
performance and efficiency. Especially, our method needs
less training time compared to WSN, BMKP and APD.

The major reason that should account for the inefficiency
of WSN is that this method needs to optimize a weight
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CIFAR100-Split (with LeNet) CIFAR100-SuperClass (with LeNet)
5% 25% 50% 100% 5% 25% 50% 100%

Method MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓
STL 1.96 1.38 3.44 2.41 3.68 2.57 4.38 3.13 2.52 1.48 3.64 1.44 2.52 1.48 2.64 1.45
MTL 1.44 0.93 1.34 0.87 1.66 0.71 1.54 0.84 6.96 2.66 12.04 4.89 13.96 5.74 13.48 6.29
L2 11.66 6.13 13.14 6.96 15.02 7.50 15.18 7.15 9.92 4.55 13.24 6.43 13.32 7.04 14.44 6.82
EWC 11.92 6.07 13.20 6.85 13.78 6.96 13.44 6.48 13.24 5.60 10.92 6.53 13.48 8.03 21.60 8.32
BN 11.70 5.95 13.28 7.37 12.40 6.91 13.92 7.90 8.52 3.35 11.20 3.99 11.64 4.05 11.40 4.25
BE 12.12 5.47 12.92 6.13 9.28 5.56 8.50 5.35 9.56 3.46 11.88 4.00 11.80 3.88 10.84 4.03
APD 11.42 7.21 6.48 3.77 8.00 4.10 8.88 4.07 26.56 12.98 8.64 4.39 8.28 4.48 6.72 3.26
APDfix 6.64 4.39 8.32 4.94 8.92 5.54 7.40 4.21 9.04 4.90 10.28 5.68 8.56 5.32 6.04 2.70
IBPWF 4.30 2.84 4.60 2.73 5.40 3.07 3.68 2.68 14.84 7.45 4.44 2.45 5.36 2.86 5.52 3.38
GPM 11.14 6.37 6.32 4.22 6.32 3.69 2.28 1.348 9.32 4.46 10.00 5.53 8.84 5.89 7.68 4.47
WSN 4.16 2.57 4.42 2.71 4.2 2.62 3.56 2.39 5.08 3.14 4.76 3.192 4.00 2.16 3.76 2.36
BMKP 12.98 7.63 13.22 6.50 6.52 4.30 8.34 3.35 11.72 6.03 13.32 5.27 11.08 4.43 3.72 1.99
CLR 13.50 7.14 12.77 6.13 8.90 5.82 9.37 5.34 10.00 4.01 7.67 3.84 6.60 3.71 9.00 4.06
PRD 5.80 3.80 4.60 2.66 4.16 2.63 5.20 3.16 7.47 4.28 8.33 3.95 5.33 3.29 5.00 2.86
HALRP 2.56 1.34 2.58 1.44 2.34 1.71 3.90 2.56 2.96 1.65 3.40 1.91 4.48 1.65 4.34 1.96

TABLE 5: Task order robustness evaluation on CIFAR100-Split/SuperClass with different amounts of training data.
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Fig. 2: Average Forgetting Statistics

score for each model parameter and then generate binary
masks by locating a certain sparsity quantile among the
weight scores in each layer, which is very time-consuming.
Especially, we can observe a non-linear increase in behavior
for BMKP and APD in Fig. 3b. In BMKP, the pattern basis
of the core knowledge space increases along the sequen-
tial tasks and then the knowledge projection between two
memory levels will cost more time as the tasks pass. A
severe drawback of APD method is that when the task t
arrives for learning, it needs to recover the parameters θ⋆i
for all previous tasks i = 0, 1, ..., t − 1 and then apply
the regularization Σt−1

i=0∥θt − θ⋆i ∥22 between the weights of
current task (i.e., θt) and each previous task (i.e., θ⋆i ). This
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Fig. 3: (a) Average Capacity Increment ratio on CIFAR100-
SuperClass w.r.t. the base model. (b) Average Time Com-
plexity Ratio on PMNIST.

defect becomes more time-consuming as more tasks arrive.
Besides, an extra k-means clustering process is needed for
the hierarchical knowledge consolidation among tasks in
APD. The difference of computational efficiency becomes
more significant on the challenging scenarios with more
tasks and complex network architectures. As for PRD, it
is inefficient as this method converges slower than other
methods, due to the reason that it adopted supervised
contrastive loss instead of cross-entropy loss.

Apart from the time efficiency, we also tracked the GPU
memory usage during the training. The results showed that
our method only requires limited GPU memory for training
compared to other state-of-the-art methods. See Appendix
E.3 for more details.

5.7 Ablation Studies
In this part, we provide ablation studies about some hyper-
parameters in our method.

Ablation study about the rank selection We report the
additional studies to evaluate the impacts of hyperparame-
ter selection on the rank selection process. We conduct the
following ablations: (1) varying the warm-up epochs nr, (2)
varying the loss approximation rate α, (3) LRP: omitting the
importance estimation (step 6 of Algorithm 1), and (4) Ran-
dom LRP: replacing step 6 of Algorithm 1 with a random
decomposition. The relevant results on CIFAR100-Splits are
depicted in Table 6. We can observe that the performance
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Ablation Acc.↑ Size↓
α: 0.9, nr: 1 68.39± 0.13 0.234
α: 0.9, nr: 2 67.93± 0.19 0.234
α: 0.9, nr: 3 67.38± 0.12 0.234
α: 0.9, nr: 4 67.04± 0.08 0.234
α: 0.95, nr: 1 68.09± 0.15 0.234
α: 0.75, nr: 1 68.26± 0.11 0.217
α: 0.60, nr: 1 66.87± 0.23 0.165
α: 0.45, nr: 1 66.08± 0.14 0.100
LRP. 67.49± 0.13 0.234
Random LRP. 61.76± 0.18 0.235

TABLE 6: Ablation studies. Acc.↑ refers to the accuracy; Size
refers to the relative increment size.
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Fig. 4: Effect of regularization coefficients λ0 and λ1.

will not significantly rise as nr increases, which indicates
that only one epoch is enough for warm-up training. When
decreasing the approximate rate α, the accuracy will decay.
Furthermore, if we apply the random decomposition of
the model, the accuracy will sharply drop, indicating the
necessity of our Hessian aware-decomposition procedure.

Effect of the regularization coefficients λ0 and λ1

To investigate the effects of the regularization coefficients
introduced in Eq. 12, we further conducted experiments on
two datasets: CIFAR100-SuperClass and CIFAR100-Splits.
We adopted values from {0, 1e−6, 1e−5, 1e−4, 1e−3} for
λ0 and {5e− 4, 1e− 4, 5e− 5} for λ1. For each combination,
we reported MOPD/AOPD for task order robustness as
well as the average accuracy on the above two datasets,
and the results are illustrated in Fig. 4. We can see that the
regularization coefficients λ0 and λ1 have potential effects
on the final accuracy and task order robustness. In our
experiments, we choose the optimal hyperparameters by
validation. Furthermore, some selected hyperparameters are
also applied to other baselines to realize fair comparisons,
e.g., we set L2-regularizer coefficient λ1 = 1e−4 for all other
methods on CIFAR100-SuperClass and CIFAR100-Splits. See
Appendix F.3 for more details.

6 CONCLUSION

In this work, we propose a low-rank perturbation method
for continual learning. Specifically, we approximate the task-

adaptive parameters with low-rank decomposition by for-
mulating the model transition along the sequential tasks
with parameter transformations. We theoretically show the
quantitative relationship between the Hessian and the pro-
posed low-rank approximation, which leads to a novel
Hessian-aware framework that enables the model to au-
tomatically select ranks by the relevant importance of the
perturbation to the model’s performance. The extensive
experimental results show that our proposed method per-
forms better on the robustness of different task orders and
the ability to address catastrophic forgetting issues.
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APPENDIX A
BACKGROUND ON LOW-RANK FACTORIZATION FOR
MATRIX

Here, we provide more background knowledge about the
low-rank matrix factorization.

In this work, we leverage the Eckart–Young–Mirsky the-
orem [35] with the Frobenius norm. In this part, we provide
background knowledge for the self-cohesion of the paper.

Denote by B ∈ Rm×n a real (possibly rectangular) ma-
trix. Suppose that B = UΣV⊤ is the singular value decom-
position (SVD) of B, then, we can claim that the best rank k
approximation (k ≤ min{m,n}) to B under the Frobenius
norm ∥ · ∥F is given by Bk =

∑k
i=1 σiuiv

⊤
i , where ui and

vi denote the ith column of U and V, respectively. Then,

∥B−Bk∥2F =
∥∥∥ n∑
i=k+1

σiuiv
⊤
i

∥∥∥2
F
=

n∑
i=k+1

σ2
i

Thus, we need to show that if Ak = XY ⊤ where X and
Y has k columns

∥B−Bk∥2F =
n∑

i=k+1

σ2
i ≤ ∥B−Ak∥2F

.
By the triangle inequality, if B = B′ +B′′ then σ1(B) ≤

σ1(B
′)+σ1(B

′′). Denote by B′
k and B′′

k the rank k approxi-
mation to B′ and B′′ by the SVD method, respectively. Then,
for any i, j ≥ 1,

σi(B
′) + σj(B

′′) = σ1(B
′ −B′

i−1) + σ1(B
′′ −B′′

j−1)

≥ σ1(B−B′
i−1 −B′′

j−1)

≥ σ1(B−Bi+j−2)

= σi+j−1(B)

where the last inequality comes from the fact that
rank(B′

i−1 +B′′
j−1) ≤ rank (Bi+j−2).

Since σk+1(Bk) = 0, when B′ = B−Ak and B′′ = Ak

we conclude that for i ≥ 1, j = k + 1

σi(B−Ak) ≥ σk+i(B)

Therefore,

∥B−Ak∥2F =
n∑

i=1

σi(B−Ak)
2 ≥

n∑
i=k+1

σi(B)2 = ∥B−Bk∥2F

Thus, we can get Eq. 1 displayed in the paper.

APPENDIX B
PROOF TO THEOREM 1 AND DISCUSSION

Theorem 1. Assume that a neural network of L layers with
vectorized weights (ω⋆

1, . . . ,ω
⋆
L) that have converged to local

optima, such that the first and second order optimality conditions
are satisfied, i.e., the gradient is zero, and the Hessian is positive
semi-definite. Suppose a perturbation ∆ω⋆

1 applied to the first
layer weights, then we have the loss change

|L(ω⋆
1 −∆ω⋆

1, . . . ,ω
⋆
L)− L(ω⋆

1, . . . ,ω
⋆
L)|

≤ 1

2
∥H1∥F · ∥∆ω⋆

1∥2F + o(∥∆ω⋆
1∥2F ),

(15)

where H1 = ∇2L(ω⋆
1) is the Hessian matrix at only the variables

of the first layer weights.

Proof. Denote the gradient and Hessian of the first layer ω⋆
1

as g1 and H1. Through Taylor’s expansion, we have

L(ω⋆
1 −∆ω⋆

1, . . . ,ω
⋆
L)− L(ω⋆

1, . . . ,ω
⋆
L)

= −gT
1 ∆ω⋆

1 +
1

2
∆ω⋆T

1 H1∆ω⋆
1 + o(∥∆ω⋆

1∥2F ).

Using the fact that the gradient is zero at the local optimum
ω⋆

1 as well as the sub-additive and sub-multiplicative prop-
erties of Frobenius norm, we have,

|L(ω⋆
1 −∆ω⋆

1, . . . ,ω
⋆
L)− L(ω⋆

1, . . . ,ω
⋆
L)|

= |1
2
∆ω⋆T

1 H1∆ω⋆
1 + o(∥∆ω⋆

1∥2F )|

≤ ∥1
2
∆ω⋆T

1 H1∆ω⋆
1∥F + o(∥∆ω⋆

1∥2F )

≤ 1

2
∥H1∥F · ∥∆ω⋆

1∥2F + o(∥∆ω⋆
1∥2F ).

Thus, we conclude the proof.

Algorithm 1 implies that the Hessian information can be
used to quantitatively measure the influences of low-rank
perturbation on the model’s empirical losses. In practice,
we can approximate the Hessian by the negative empirical
Fisher information [40]. This enables a dynamic scheme for
the trade-off between the approximation error and compu-
tational efficiency. For a given loss approximation rate, the
model can automatically select the rank for all the layers.

APPENDIX C
SOLVING RFREE,SFREE,BFREE

In Section 4.1, we described that when a new task comes, we
first train the model on it for several epochs. With this step,
we can obtain a rough parameter estimation Wfree of this
new task, which indicates the freely-trained weights without
any constraints. Then, we can obtain Rfree,Sfree,Bfree by
solving the following problem:

Rfree = argmin
R

∥Wfree −RWbase∥2F (16)

Sfree = argmin
S

∥Wfree −RfreeWbaseS∥2F (17)

Bfree = Wfree −RfreeWbaseSfree (18)

Simply, ∥Wfree−RWbase∥2F =
∑I

i=1

∑J
j=1(w

free
ji −rjw

base
ji )2,

where wfree
ji and wbase

ji are the elements of j-th row and i-
th column of Wfree and Wbase, respectively. By taking the
derivative of the above expression w.r.t. rj and let it equals
0, we can obtain:

rfree
j =

∑I
i=1 w

free
ji wbase

ji∑I
i=1(w

base
ji )2

(19)

Similarly, ∥Wfree − RfreeWbaseS∥2F =
∑I

i=1

∑J
j=1(w

free
ji −

rfree
j wbase

ji si)
2. By taking the derivative w.r.t. si and let it

equals 0, we can obtain:

sfree
i =

∑J
j=1 r

free
j wfree

ji wbase
ji∑J

j=1(r
free
j wbase

ji )2
(20)
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Then, we can calculate Bfree by the third equation using the
obtained Rfree and Sfree.

Finally, the low rank approximation can be applied on
Wfree with SVD:

Wfree ≈W(k)free = RfreeWbaseSfree +B(k)free, (21)

where B(k)free = U(k)freeΣ(k)free(V(k)free)⊤.
Note that the number of parameters in the original

weights Wfree ∈ RJ×I is size{Wfree} = JI . After this
approximation, we only need to store the weights Rfree,
Sfree, U(k)free, Σ(k)free, V(k)free for a new task, whose param-
eter number is size{Rfree,Sfree,U(k)free,Σ(k)free,V(k)free} =
J+I+kJ+k+kI = (J+I)(k+1)+k. Thus, the incremental
ratio is ρ = (J+I)(k+1)+k

JI ≪ 1 in practice.

APPENDIX D
DISCUSSION ON THE FINE-TUNING OBJECTIVE ON
THE NEW TASK

In the proposed algorithm, we finally fine-tune the model
on the new task with Eq. 12 in the manuscript, which is
re-illustrated below,

min
Wt

L(Wt;Dt) + Lreg(Wt) (22)

where

Lreg(Wt) =
∑
l

[
λ0 (∥U(kl)free

i ∥+ ∥V(kl)free
i ∥)︸ ︷︷ ︸

L1−regularization

+ λ1 (∥Rfree
i ∥22 + ∥Sfree

i ∥22 + ∥U
(kl)free
i ∥22 + ∥V

(kl)free
i ∥22)︸ ︷︷ ︸

L2−regularization

]
(23)

The fine-tuning objective mainly consists of three parts,
the general cross-entropy loss on the new task Tt, a L1

regularization term on ∥U(kl)free
i ∥ + ∥V(kl)free

i ∥, and the L2

regularization terms on ∥Rfree
i ∥22+∥Sfree

i ∥22 and ∥U(kl)free
i ∥22+

∥V(kl)free
i ∥22, respectively.
As mentioned in the paper, we apply the L1 regular-

ization on U
(kl)free
i and V

(kl)free
i . Besides, as discussed in

Section 4.4 of the paper, we also apply to prune Ufree
i and

V
(kl)free
i , which further encouraged the sparsity.

Our method keeps Wbase as unchanged for new tasks
for knowledge transfer, while the Rfree

i , Sfree
i , U(k)free

i and
V

(k)free
i are left as task-adaptive parameters. Since Rfree

i and
Sfree
i are diagonal matrices, plus the fact that U

(k)free
i and

V
(k)free
i are sparse, thus the model only needs to learn a

small number of parameters. Unlike some regularization
methods (e.g. EWC [4]), which constrain the gradient update
and require to re-train a lot of parameters, our method can
update the model more efficiently. In addition, the empirical
results reported in the paper show that our method can also
achieve better performance with less time and memory cost.

APPENDIX E
ADDITIONAL EXPERIMENTAL RESULTS

E.1 Comparing with other low-rank methods
Our work also shares some similarities with the low-rank-
decomposition-based method IBPWF [10]. As discussed

P-MNIST

Acc.↑ MOPD↓ AOPD↓

IBWPF 78.12 ± 0.83 12.69 6.65
HALRP 98.10 ± 0.03 0.47 0.24

Five-dataset

Acc.↑ MOPD↓ AOPD↓

IBWPF 84.62 ± 0.36 5.06 1.72
HALRP 88.81 ± 0.31 4.28 1.31

TABLE 7: Comparison with low-rank factorization method

in [34] and in our paper (Sec. 1), this method requires larger
ranks to accept higher accuracy. Furthermore, as pointed
out by [53], IBPWF leverages Bayesian non-parametric to let
the data dictate expansion, but the benchmarks considered
in Bayesian methods have been limited to smaller datasets,
like MNIST and CIFAR-10. In addition to the experimental
comparisons with IBPWF reported in the paper, we further
report more results in Table 7. We can observe that our
method outperforms IBPWF with a large gap in terms of
Accuracy and MOPD↓ & AOPD↓. Furthermore, we observe
that IBPWF cannot perform well on P-MNIST, which is 10×
the number of data of MNIST. The gap is consistent with
observations in [53].

E.2 Performance on Alleviate Forgetting on Different
Task Orders

In the main paper, we report the forgetting performance on
the average of five task orders (A-E) on CIFAR100 Splits
and SuperClass. In this part, we provide the performance
on forgetting under each task order in Fig. 5 and Fig. 6,
under different amounts (i.e., 5% ∼ 100%) of training data
from.

E.3 Analysis of Memory Overhead

We also provided some quantitative results to support the
memory efficiency of our proposed HALRP. To compare the
GPU memory overhead among different methods, we visu-
alize the amount of GPU memory requested by each method
along the increase of task numbers during the training pro-
cess. Specifically, we tracked the GPU memory usage of two
groups of representative and challenging experimental sce-
narios: (1) Omniglot Rotation dataset with LeNet, which has
100 tasks in total; (2) TinyImageNet dataset with AlexNet,
which has the largest number of parameters (i.e., #parame-
ters ≈ 62 million, FLOPS ≈ 724 million in AlexNet) and the
second largest number of tasks (i.e., 40 tasks). To make fair
comparisons, we adopted the same hyperparemeters (i.e.,
batch size, number of threads used in the data loader) for all
the methods under each scenario, and moved all training-
related operations (i.e., Singular Value Decomposition) onto
the GPU devices. To monitor the GPU memory usage, we
embedded some snippets with the Python package GPUtil
(https://pypi.org/project/GPUtil/) into the training code.
The amount of GPU memory requested during the training
process is shown in the following Figure 7.

According to the visualization results in Figure 7, we can

https://pypi.org/project/GPUtil/
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Fig. 5: Forgetting comparison on CIFAR100-Split with different task orders (A-E) under different amounts of training data.
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Fig. 6: Forgetting on CIFAR100-SuperClass with different task orders (A-E) under different amounts of training data.
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Fig. 7: Empirical statistics of GPU memory usage. The local zone with red rectangle in left is shown in the right plot.

observe that our proposed HALRP is still memory effi-
cient compared to other baseline methods under these two
challenging scenarios. Specifically, under the scenario for
Omniglot Rotation datasets with LeNet (Fig. 7a, we can
see that the amount of GPU memory requested by HALRP
increased along the tasks but finally not exceeded 4GB for
these 100 tasks. In contrast, APD and APDfix needed more
GPU memory during training (i.e., maximum 80GB for APD
and 45GB for APDfix), making the related experiments hard
to be reproduced unless on some specific GPUs like NVIDIA
A100 80G. As for TinyImageNet dataset with AlexNet, our
proposed HALRP only requested about 3GB GPU memory

at the end of the 40-th task, which is much lower than
APD and APDfix that needed at least 40GB memory during
training, as well as BMKP that needs up to 8GB.

To summarize, our proposed method HALRP won’t intro-
duce heavy memory overhead. In the contrast, it is memory-
efficient. The empirical results show that the requirement of
training is easy to be satisfied and the scalability under the
above challenging scenarios is easy to achieve.
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APPENDIX F
EXPERIMENTAL DETAILS

F.1 Dataset Preparation

CIFAR100 Splits/SuperClass We used the CIFAR100
Splits/SuperClass dataset following the evaluation protocol
of [9], and follow the task order definition of [9] to test the
algorithms with five different task orders (A-E).

For the CIFAR100 Split, the task orders are defined as:

• Order A: [0,1,2,3,4,5,6,7,8,9]
• Order B: [1, 7, 4, 5, 2, 0, 8, 6, 9, 3]
• Order C: [7, 0, 5, 1, 8, 4, 3, 6, 2, 9]
• Order D: [5, 8, 2, 9, 0, 4, 3, 7, 6, 1]
• Order E: [2, 9, 5, 4, 8, 0, 6, 1, 3, 7]

For the CIFAR100 SuperClass, the task orders are:

• Order A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19]

• Order B: [15, 12, 5, 9, 7, 16, 18, 17, 1, 0, 3, 8, 11, 14, 10,
6, 2, 4, 13, 19]

• Order C: [17, 1, 19, 18, 12, 7, 6, 0, 11, 15, 10, 5, 13, 3, 9,
16, 4, 14, 2, 8]

• Order D: [11, 9, 6, 5, 12, 4, 0, 10, 13, 7, 14, 3, 15, 16, 8,
1, 2, 19, 18, 17]

• Order E: [6, 14, 0, 11, 12, 17, 13, 4, 9, 1, 7, 19, 8, 10, 3,
15, 18, 5, 2, 16]

Furthermore, as discussed in the paper, we demonstrate
the performance when handling limited training data. In
this regard, we randomly select 5%, 25%, 50% training data
from each task and report the corresponding accuracies.

P-MNIST We follow [19] to evaluate the algorithms’
performance on the P-MNIST dataset. Each task of P-MNIST
is a random permutation of the original MNIST pixel. We
follow [19], [41] to generate the train/val/test splits and to
create 10 sequential tasks using different permutations, and
each task has 10 classes. We randomly generate five different
task orders with five different seeds.

• seed 0: [6, 1, 9, 2, 7, 5, 8, 0, 3, 4]
• seed 1: [2, 9, 6, 4, 0, 3, 1, 7, 8, 5]
• seed 2: [4, 1, 5, 0, 7, 2, 3, 6, 9, 8]
• seed 3: [5, 4, 1, 2, 9, 6, 7, 0, 3, 8]
• seed 4: [3, 8, 4, 9, 2, 6, 0, 1, 5, 7]

Five dataset It uses a sequence of 5 different benchmarks
including CIFAR10 [42], MNIST [43], notMNIST [44], Fash-
ionMNIST [45] and SVHN [46]. Each benchmark contains 10
classes. We follow [19] to generate the train/val/test splits
and to create 10 sequential tasks using different permuta-
tions, and each task has 10 classes. We randomly generate
five different task orders with five different seeds.

• seed 0: [2, 0, 1, 3, 4]
• seed 1: [1, 0, 4, 2, 3]
• seed 2: [2, 4, 1, 3, 0]
• seed 3: [3, 4, 1, 0, 2]
• seed 4: [0, 3, 1, 4, 2]

Omniglot-rotation We split this dataset [47] into 100 12-
way classification tasks. We follow the train/val/test split
of [19]. The five task order adopted in our experiments are:

• seed 0: [26, 86, 2, 55, 75, 93, 16, 73, 54, 95, 53, 92, 78,
13, 7, 30, 22, 24, 33, 8, 43, 62, 3, 71, 45, 48, 6, 99, 82, 76,
60, 80, 90, 68, 51, 27, 18, 56, 63, 74, 1, 61, 42, 41, 4, 15,
17, 40, 38, 5, 91, 59, 0, 34, 28, 50, 11, 35, 23, 52, 10, 31,
66, 57, 79, 85, 32, 84, 14, 89, 19, 29, 49, 97, 98, 69, 20,
94, 72, 77, 25, 37, 81, 46, 39, 65, 58, 12, 88, 70, 87, 36,
21, 83, 9, 96, 67, 64, 47, 44]

• seed 1: [80, 84, 33, 81, 93, 17, 36, 82, 69, 65, 92, 39, 56,
52, 51, 32, 31, 44, 78, 10, 2, 73, 97, 62, 19, 35, 94, 27, 46,
38, 67, 99, 54, 95, 88, 40, 48, 59, 23, 34, 86, 53, 77, 15,
83, 41, 45, 91, 26, 98, 43, 55, 24, 4, 58, 49, 21, 87, 3, 74,
30, 66, 70, 42, 47, 89, 8, 60, 0, 90, 57, 22, 61, 63, 7, 96,
13, 68, 85, 14, 29, 28, 11, 18, 20, 50, 25, 6, 71, 76, 1, 16,
64, 79, 5, 75, 9, 72, 12, 37]

• seed 2: [83, 30, 56, 24, 16, 23, 2, 27, 28, 13, 99, 92, 76,
14, 0, 21, 3, 29, 61, 79, 35, 11, 84, 44, 73, 5, 25, 77, 74,
62, 65, 1, 18, 48, 36, 78, 6, 89, 91, 10, 12, 53, 87, 54, 95,
32, 19, 26, 60, 55, 9, 96, 17, 59, 57, 41, 64, 45, 97, 8, 71,
94, 90, 98, 86, 80, 50, 52, 66, 88, 70, 46, 68, 69, 81, 58,
33, 38, 51, 42, 4, 67, 39, 37, 20, 31, 63, 47, 85, 93, 49, 34,
7, 75, 82, 43, 22, 72, 15, 40]

• seed 3: [93, 67, 6, 64, 96, 83, 98, 42, 25, 15, 77, 9, 71, 97,
34, 75, 82, 23, 59, 45, 73, 12, 8, 4, 79, 86, 17, 65, 47, 50,
30, 5, 13, 31, 88, 11, 58, 85, 32, 40, 16, 27, 35, 36, 92, 90,
78, 76, 68, 46, 53, 70, 80, 61, 18, 91, 57, 95, 54, 55, 28,
52, 84, 89, 49, 87, 37, 48, 33, 43, 7, 62, 99, 29, 69, 51, 1,
60, 63, 2, 66, 22, 81, 26, 14, 39, 44, 20, 38, 94, 10, 41, 74,
19, 21, 0, 72, 56, 3, 24]

• seed 4: [20, 10, 96, 16, 63, 24, 53, 97, 41, 47, 43, 2, 95,
26, 13, 37, 14, 29, 35, 54, 80, 4, 81, 76, 85, 60, 5, 70, 71,
19, 65, 62, 27, 75, 61, 78, 18, 88, 7, 39, 6, 77, 11, 59, 22,
94, 23, 12, 92, 25, 83, 48, 17, 68, 31, 34, 15, 51, 86, 82,
28, 64, 67, 33, 45, 42, 40, 32, 91, 74, 49, 8, 30, 99, 66, 56,
84, 73, 79, 21, 89, 0, 3, 52, 38, 44, 93, 36, 57, 90, 98, 58,
9, 50, 72, 87, 1, 69, 55, 46]

TinyImageNet This dataset contains 200 classes. In our
experiments, we adopted two split settings: 20 split and 40
split.

Each task in the 20-split setting consists of 10 classes. We
adopted five random tasks orders as follows:

• seed 0: [10, 18, 16, 14, 0, 17, 11, 2, 3, 9, 5, 7, 4, 19, 6, 15,
8, 1, 13, 12]

• seed 1: [11, 5, 17, 19, 9, 0, 16, 1, 15, 6, 10, 13, 14, 12, 7,
3, 8, 2, 18, 4]

• seed 2: [7, 6, 17, 8, 19, 15, 13, 0, 3, 9, 14, 4, 10, 12, 16,
5, 11, 18, 2, 1]

• seed 3: [8, 3, 6, 5, 15, 16, 2, 12, 0, 1, 13, 10, 19, 9, 14, 11,
4, 17, 18, 7]

• seed 4: [17, 19, 10, 14, 5, 18, 16, 11, 4, 8, 6, 0, 13, 1, 2,
15, 12, 3, 9, 7]

Each task in the 40-split setting consists of 5 classes. We
adopted five random tasks orders as follows:

• seed 0: [22, 20, 25, 4, 10, 15, 28, 11, 18, 29, 27, 35, 37,
2, 39, 30, 34, 16, 36, 8, 13, 5, 17, 14, 33, 7, 32, 1, 26, 12,
31, 24, 6, 23, 21, 19, 9, 38, 3, 0]

• seed 1: [2, 31, 3, 21, 27, 29, 22, 39, 19, 26, 32, 17, 30, 36,
33, 28, 4, 14, 10, 35, 23, 24, 34, 20, 18, 25, 6, 13, 7, 38,
1, 16, 0, 15, 5, 11, 9, 8, 12, 37]
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Dataset CIFAR100 Split CIFAR100 Super PMNIST Five dataset Omniglot TinyImageNet 40-split TinyImageNet 20-split

Network LeNet LeNet LeNet AlexNet ResNet18 extended LeNet AlexNet ResNet18 AlexNet ResNet18

n 20 20 12 12 12 20 50 50 50 50
nr 1 1 1 1 3 1 20 25 25 25
α 0.9 0.9 0.9 0.9 0.95 0.99 0.9 0.9 0.9 0.9
LR 1e-3 1e-3 1e-3 1e-3 1e-3 5e-3 1e-3 5e-4 1e-3 5e-4
λ0 1e-4 1e-4 1e-6 1e-6 1e-6 9e-5 5e-4 5e-4 1e-5 5e-4
λ1 1e-4 1e-4 1e-3 1e-4 1e-4 1e-4 1e-4 1e-4 5e-4 1e-4
Bcsz 128 128 128 128 128 16 32 32 32 32

TABLE 8: Hyperparameters for the experiments. n: total epoch. nr : warm-up epochs for a new task. LR: Learning rate.
λ0, λ1: coefficients for the regularization terms as discussed in Appendix D. Bcsz: training batch size.

• seed 2: [27, 9, 14, 0, 2, 30, 13, 36, 17, 37, 38, 29, 24, 12,
16, 1, 33, 23, 25, 19, 32, 10, 4, 6, 3, 34, 5, 28, 20, 26, 39,
21, 35, 31, 7, 11, 18, 22, 8, 15]

• seed 3: [29, 16, 9, 27, 4, 18, 28, 38, 15, 26, 25, 11, 30, 32,
13, 34, 39, 37, 5, 1, 31, 2, 22, 17, 14, 7, 12, 20, 36, 6, 23,
35, 33, 10, 19, 21, 0, 8, 3, 24]

• seed 4: [28, 39, 4, 15, 26, 20, 31, 7, 16, 11, 19, 33, 12, 18,
38, 13, 10, 22, 32, 25, 17, 36, 29, 14, 2, 24, 27, 6, 35, 34,
21, 37, 0, 3, 30, 9, 8, 23, 1, 5]

F.2 Model Architecture
In the experimental evaluations, we implement various
kinds of backbone architectures to demonstrate our pertur-
bation method for different deep models. We introduce the
model architectures used in the paper

LeNet We implement two kinds of LeNet models: 1): For
CIFAR100 Splits/SuperClass and P-MNIST, we implement
the general LeNet model with neurons 20-20-50-800-500. 2):
For Omniglot-Rotation, we follow [9], [19] to implement the
enlarged LeNet model with neurons 64-128-2500-1500.

AlexNet For the experiments on Five-dataset and Tiny-
ImageNet, we implement AlexNet model by following [2],
[19].

ResNet-18 We adopted the reduced ResNet-18 model
(i.e., reduce half of the filters in each convolutional layer
from the standard Resnet18) on the Five-dataset and Tiny-
ImageNet by following [19].

F.3 Training Hyperparameters
We reimplement the baselines by rigorously following the
official code release or publicly accessible implementations
and tested our proposed algorithm with a unified test-bed
with the same hyperparameters to get fair comparison re-
sults. The training details for our experiments are illustrated
in Table 8. The hyperparameters are selected via grid search.
We also provide descriptions of the hyperparameters in the
source code.
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