
Semi-Autonomous Planning and Visualization in Virtual Reality
Gregory LeMasurier

University of Massachusetts Lowell
gregory_lemasurier@student.uml.edu

Jordan Allspaw
University of Massachusetts Lowell

jallspaw@cs.uml.edu

Holly A. Yanco
University of Massachusetts Lowell

holly@cs.uml.edu

ABSTRACT
Virtual reality (VR) interfaces for robots provide a three-dimensional
(3D) view of the robot in its environment, which allows people to
better plan complex robot movements in tight or cluttered spaces.
In our prior work, we created a VR interface to allow for the teleop-
eration of a humanoid robot. As detailed in this paper, we have now
focused on a human-in-the-loop planner where the operator can
send higher level manipulation and navigation goals in VR through
functional waypoints, visualize the results of a robot planner in the
3D virtual space, and then deny, alter or confirm the plan to send to
the robot. In addition, we have adapted our interface to also work
for a mobile manipulation robot in addition to the humanoid robot.
For a video demonstration please see the accompanying video at
https://youtu.be/wEHZug_fxrA.

CCS CONCEPTS
•Human-centered computing→Virtual reality; •Computer
systems organization→Robotic control; External interfaces for
robotics.
KEYWORDS
Human-robot interaction (HRI), virtual reality (VR), shared control,
manipulation planning, motion planning, Functional Waypoints

1 INTRODUCTION
The availability of Augmented Reality (AR) and Virtual Reality (VR)
is leading many researchers to investigate different potential use
cases of this technology, ranging from various training applica-
tions [3] to robot interfaces [19]. Using VR for robots is particularly
appealing as three dimensional (3D) sensors are increasingly being
used on robot systems to provide point clouds of their environ-
ment — and these point clouds can be visualized within the VR
environment to provide the operator with an understanding of the
robot’s operating environment. Providing an operator with a 3D
view of the environment that can be visualized from all directions
improves situation awareness and can prevent robot collisions with
the environment.

Our initial inspiration for using VR as a robot interface stems
from our analysis of the DARPA Robotics Challenge (DRC) Fi-
nals [14], a competition where teams teleoperated a humanoid
robot to perform several difficult tasks such as navigating through
uneven terrain and operating a hand drill. From the analysis, we
found that teams used a variety of different control methods, but
autonomy was very limited. Many teams found that combining
some level of direct joint control with specific scripted actions was
necessary. For example, Team THOR used "sets of algorithms that
gracefully switch among high level autonomous behaviors and low
levels of teleoperated control" [12]. Team IHMC initially used tele-
operated interfaces to send the robot into a known state, whereby
an autonomous script could finish the task, but knew that such

an approach was brittle, and so transitioned to more interactive
tools whereby teleoperation and autonomy could be combined to
provide an easy and effective control [7]. Both approaches took
advantage of human-in-the-loop planning, where a robot creates
a plan based on sensors and human input, then human views the
plan and potentially adjusts it, before allowing the robot to carry
out the plan.

In our prior work, we set out to create a VR interface [1] with the
goal of enabling an operator to complete a variety of tasks remotely,
including robot navigation and various dexterous manipulation
tasks. After internal testing of our previous interface, we found
that, while functional, our prior design was limited to imitating
many of the controls as they appeared in a traditional 2D interface
(e.g., relying on similar menu options that are found in traditional
2D interfaces) in virtual 2D panels. We redesigned the interface
to expand the controls to take advantage of the unique features
in VR. In particular, our goal setting and plan visualization meth-
ods needed to be expanded to address limitations in our previous
interface. We determined that new methods needed to be added
for goal interactions to take advantage of the 3D virtual space and
ultimately reduce the time an operator spends interacting with a
menu interface. Additionally, our interface needed to be expanded
to include a human-in-the-loop planning system.

To facilitate planning in a VR environment, we propose the con-
cept of Functional Waypoints. Functional waypoints differ from
traditional waypoints, in that they not only provide intermediate
goals for the desired trajectory but also enable the operator to send
additional commands to alter the robot’s state at these intermediate
points. Functional waypoints consist of a target goal position as
well as state information that is used to provide additional control
of the robot such as opening or closing the robot’s endeffector, ad-
justing the height of the robot, changing the direction that a robot
is looking, or specifying other joint states. Functional waypoints
differ from Affordance Templates [6] as functional waypoints en-
able a higher resolution of joint control and a variety of joints to
be modified. Additionally functional waypoints enable an operator
to specify additional state information, such as collision avoidance,
at each waypoint. By providing the operator with the ability to set
additional functionality at each waypoint, we reduce the need for
an operator to switch between control methods or user interface
menus. This ultimately enables the operator to fluently create a
complex plan for the robot to complete a task, meaning that after
the plan is approved, the operator does not need to provide addi-
tional commands, freeing the operator to monitor the robot or to
work on other tasks.

In analysis of our initial interface, we found that many actions
required operators to use a 2D menu interface in the virtual world
or to switch modes to send complex plans to the robot. This is not
a fluent control method, as an operator would have to plan and exe-
cute a partial trajectory to each location where they wanted to send

https://youtu.be/wEHZug_fxrA

Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO Gregory LeMasurier, Jordan Allspaw, and Holly A. Yanco

additional commands to the robot. For example, in a pick and place
task, functional waypoints can be used to send a trajectory with
additional end effector state information that enables the operator
to specify how open or closed the end effector should be at each
waypoint. Without functional waypoints, an operator would need
to use several control methods and send several plans in order to
complete the same task. Our interface adds two types of functional
waypoints, one for manipulation and another for navigation, to
enable the operator to fluently create complex manipulation and
navigation plans.

In this paper, we discuss improvements to the visualization and
control scheme for our updated VR interface. In particular, we
focus on the development of VR controls to allow an operator to
create functional waypoints for a robot planner, and then visualize
the resulting plan from the robot. At that point, the operator can
approve, disprove, or adjust the plan as necessary. We have also
generalized much of the interface to work with additional robots,
including a wheeled mobile manipulation robot. Our goal is to allow
an operator to control a robot to perform dexterous tasks entirely
from within VR without ever needing to remove the headset in
order to use a command line or a supplementary interface. We also
want to allow the operator to complete the tasks quickly and, most
importantly, accurately.

2 SYSTEM AND ENVIRONMENT
For our VR Headset we used an HTC Vive [13] with the two in-
cluded controllers. We also have an alternative setup with the same
headset, but with Manus VR Gloves [11] substituting the controllers.
In both cases, there is position and orientation tracking of the oper-
ator’s hands and head. The controllers provide the tracking natively
while the Manus gloves are augmented with SteamVR Trackers that
provide the feature. While the gloves do not have physical buttons,
as provided on the controller, they add in accurate finger tracking
and gesture control. In the work described in this paper, we have
focused on the use of the controllers.

The HTC Vive headset is running on Windows using Unity1 and
ROS.NET2 to communicate with the robot. We have also used a
couple scripts from the VRTK3 library, namely for teleportation
and user interface (UI) interaction. The user interface components
are modular, which allowed us to add ROS subscribers for common
robot displays such as the robot description, camera streams, and
point clouds. This modular design allowed us to easily adapt the
VR interface to control different kinds of robots.

The first robot that we used for the VR interface development
was the NASA Valkyrie R5 [15], a humanoid robot with two 7-DOF
arms, each with a four fingered hand, in addition to its 3-DOF torso
and 3-DOF neck. Valkyrie has an RGB-D sensor and a LiDAR in
the head, along with two RGB cameras in the torso, setup in a
stereo configuration. We expanded our platform options to include
the Fetch Mobile Manipulation robot [18], a mobile robot which
has a single 7-DOF arm. Fetch comes with a LiDAR located just
above ground level for obstacle detection and avoidance during
navigation, as well as a RGB-D camera in the head used for vision.

1https://unity.com/
2https://github.com/uml-robotics/ROS.NET_Unity
3https://vrtoolkit.readme.io/

Screw

Caddy Small
Gear

Large
Gear

Gearbox
Top

Gearbox
Bottom

Inspection
Table

Figure 1: Simulation of Fetch inside the "FetchIt! TheMobile
Manipulation Challenge" Arena

Both robots run ROS and thus are able to communicate with
our interface. Fetch is running many standard packages including
Moveit [4] for manipulation and the ROS Navigation stack [5] for
SLAM and autonomous navigation. For Valkyrie, the manipulation
and balancing code utilizes IHMC’s [9] planner. Both robots have
simulators in Gazebo [8], which we use for testing. In this paper,
we used the Fetch robot for all examples.

For the Fetch robot, we used the arena seen in Figure 1 from the
standardized task designed for the “FetchIt! The Mobile Manipula-
tion Challenge” (at ICRA2019)4 competition, where an autonomous
Fetch robot was tasked with gathering objects from tables located
around the robot in the arena, then placing the objects into specific
compartments in a caddy. The objects were different sizes and in
different conditions (i.e., gears and gearbox parts were spread out
on a table, while screws were bunched up inside a bin). The com-
pleted caddy also needed to be picked up and placed at a designated
location. In the challenge, the task needed to be completed fully
autonomously; however, the task also serves as a good test envi-
ronment for a operator interface. This environment is identical in
both real world and simulation, with only some minor differences
due to Gazebo’s physics quirks. In the Fetchit challenge arena Fetch
is surrounded by five tables: three of the tables contain objects
the robot must grab, the top table has the caddies that the robot
must deposit the objects into, and the inspection table is the dropoff
location for the completed caddy.

Many other VR interfaces focus on efficiently completing a spe-
cific task, such as commanding a Rethink Robotics Baxter to pick
and place objects on a table in front of the robot [10] or mobile
robots navigating a maze [2]. This test environment allowed us to
combine navigation and manipulation planning, while also requir-
ing the operator to have good situation awareness of the remote
environment to complete all components successfully without col-
liding with the environment.

3 MANIPULATION PLANNING IN VR
One major limitation of our prior interface was a lack of sophisti-
cated control methods for robot manipulation. The operator can

4https://opensource.fetchrobotics.com/competition

https://unity.com/
https://github.com/uml-robotics/ROS.NET_Unity
https://vrtoolkit.readme.io/
https://opensource.fetchrobotics.com/competition

Semi-Autonomous Planning and Visualization in Virtual Reality Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO

Figure 2: Virtual wristwatch user interface which the oper-
ator can activate by looking at their wrist, as if they were
looking at a wristwatch. The operator can switch to differ-
ent tabs using the buttons at the bottom of the interface.

only control the positioning of the robot’s end effector in a very low
level manner, through the use of sliders. In our previous paper, we
described a virtual wristwatch user interface whereby the operator
could look at their wrist as if it had a watch on it, which would open
up a user interface attached to the controller as seen in Figure 2.
We allowed the operator to switch between different tabs on the
wristwatch depending on what the operator needed to do. One of
the tabs included sliders that allowed the operator to individually
control each joint between its entire range of motion. Sliders are
beneficial to make adjustments, but they are very difficult to use
to command a robot as they require the adjustment of one joint at
a time. It would be very difficult for a novice user to understand
how a robot’s joints would need to move to complete their desired
trajectory.

We had also provided a very high level direct control method.
This method would enable a novice user to easily guide the robot
through a trajectory, by moving their own arms through their de-
sired path, then having the robot mimic the trajectory using inverse
kinematics. Since this method occurs in real time the operator has
no way to view the robot plan before it occurs. It is also difficult to
interact with other VR elements without disabling direct control.
To do a simple action such as pick up an object, the operator would
need to enable direct control, guide the robot towards an object,
disable direct control, close the gripper, enable direct control again,
and guide the robot away. Switching modes like this is less than
ideal for the operator as it over complicates the process. While very
fast, this method is also problematic because the inverse kinematics
solver can sometimes produce undesirable solutions, such as irregu-
lar joint configurations, or needlessly move uncomfortably close to
an obstacle. Since the method is instantaneous, the operator has no
opportunity to correct a problem before it occurs. In many cases it
can be more desirable to have a human-in-the-loop planning, such
as those used in the DRC interfaces discussed previously, whereby

Figure 3: A manipulation functional waypoint for the Fetch
robot, including a Fetch gripper model, a numeric label in-
dicating the waypoint’s order in the trajectory, and a slider
interface to control how open or closed the gripper should
be after the arm moves to this waypoint.

Figure 4: An example of an operator specified trajectory to
command the Fetch robot to grab an object in the green bin
using four manipulation functional waypoints.

the operator can view, alter, and approve the plan proposed by the
robot.

Thus, we expand upon our previous interface by adding a new set
of functional waypoint style virtual artifacts [17], or elements that
can be moved around the virtual world by the operator, to create
and view manipulation plans. Using the manipulation functional
waypoint artifacts, as shown in Figure 3, the operator can quickly
create and view a series of goal states for the robot’s motion planner.
In this case, Moveit will then plan the trajectory and return the com-
pleted plan, which the operator can then view in the virtual world.
An example of this can be seen in Figure 4, where you can see the
four solid blue manipulation functional waypoints created by the
operator. After the functional waypoints are sent to the planner, the
system displays the white and blue virtual robot mirroring its real
world position, and the turquoise robot currently demonstrating
the completed plan, as seen in Figure 5. If the operator is satisfied
with the completed plan, they can then confirm it and watch the
robot execute its plan. This approach intends to preserve and take

Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO Gregory LeMasurier, Jordan Allspaw, and Holly A. Yanco

Figure 5: The turquoise virtual copy of the robot shows the
robot’s planned trajectory to the operator.

advantage of the operator’s situational awareness by keeping them
engaged with the robot environment they are working in, rather
than dealing with the tabs in the wristwatch user interface.

The manipulation functional waypoints use a 3D model of the
robot’s end effector. The model is copied from the virtual robot
which is created using the ROS robot description parameter, which
only requires specifying the link name of the end effector when
changing robots, allowing the implementation to be fairly robot
agnostic. By using a 3D model of the robot’s end effector, the op-
erator can specify the position and orientation of goals for the
robot’s end effector with a complete spatial understanding of the
goal they are sending to the robot. In combination with the point
cloud visualization, the operator can ensure that their functional
waypoints are not colliding with obstacles. In addition, the operator
is able to identify a target for a pick action by looking at the point
cloud visualization. Then they can place a manipulation functional
waypoint in the appropriate grasping position for this object.

Additionally, these goals are labeled with a number above the
gripper. This number indicates the order that the functional way-
points will be executed, to prevent any confusion to the operator.
These labels also serve as an identifier, so that our interface can
provide more meaningful feedback of the motion plan and during
execution of the plan. This label will always will face the operator
so that it is readable at all times.

Finally, the manipulation functional waypoints have a slider
interface that enables the operator to specify how open or closed the
gripper should be after executing the motion plan to this functional
waypoint. This feature is what makes these functional waypoints
rather than traditional waypoints, as additional commands are
sent using the state information from the slider interface. This
is particularly useful when an operator wants to grasp an object,
for example. An example of this interface can be seen in Figure 7.
As this is a slider interface, the operator can specify how closed
the robot’s gripper should be. The fingers in the manipulation
functional waypoint model will move according to the slider value,
enabling the operator to be aware of how the robot’s fingers align to

Figure 6: Operator aligning the manipulation functional
waypoint with the desired object.

the point cloud of the desired object as seen in Figure 6. The operator
can thus specify a trajectory where the robot can pick up or release
an object, without requiring the operator to switch between modes
or open a tab in the wristwatch user interface. When executing
the motion plan, the robot will first execute the trajectory to reach
the first functional waypoint, then it will execute the end effector
command, if the operator moved the slider. After the end effector
command is completed, the robot will then continue to the next
functional waypoint, if any, in the operator’s specified trajectory.

3.1 Waypoint Creation and Modification
We further expand our control methods to enable operators to cre-
ate, remove, and modify the manipulation functional waypoints. To
take advantage of situational awareness in VR, the operator should
have options to add functional waypoints without needing to open
up the wristwatch interface. This enables the operator to main-
tain an understanding of the surrounding environment without
losing focus while interacting with the tabs in the wristwatch user
interface.

We offer three methods for creating newmanipulation functional
waypoints. The first is to simply grab onto the virtual robot’s gripper
which will spawn a new manipulation functional waypoint, at
the end of the trajectory, in the operator’s hand. The operator
can then move this manipulation functional waypoint touching
it with their controller and pressing and holding the grip button
located on the side of the controller. While holding the grip button,
the manipulation functional waypoint will follow the operator’s
virtual controller, much like they were holding the object. When
the manipulation functional waypoint is in the desired location,
the operator can release the grip button which will stop the object
from following the controller, as if they had let go of the object.

The second way of creating a manipulation functional waypoint
is to press the trigger button, typically where the index finger holds
the controller, while holding a manipulation functional waypoint.
This leaves the current functional waypoint where it was when the

Semi-Autonomous Planning and Visualization in Virtual Reality Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO

Figure 7: Fetch manipulation functional waypoints in the
default state (left, blue), pre-check determined to be out of
reach from the robot (middle, orange), and planner error
(right, red)

operator pressed the button, and creates a new functional waypoint
at the controller’s current location. The newly created functional
waypoint is always placed after the functional waypoint the opera-
tor was holding. For example, if there were already four functional
waypoints, and the operator grabbed the first functional waypoint,
labeled with a number one, and duplicated it, their new functional
waypoint would be second in the trajectory, and the previous func-
tional waypoints two, three and four would adjust themselves to
be three, four, and five.

Both of these methods allow for a simple way of creating func-
tional waypoints without switching between different modes, ul-
timately creating a more fluid way of setting a trajectory for the
robot to follow while maintaining situational awareness. However
both of these methods require the operator to be near the virtual
robot, or one of their goals, which may not be possible or desirable
in all situations. For example, if the robot has a very long arm that
the operator cannot reach, or if the operator is on the other side of
the virtual room but still wishes to create goals. To handle these
situations, we have also created a third method of creating manipu-
lation functional waypoints using the wristwatch user interface. By
opening the wristwatch user interface, selecting the manipulation
tab, and pressing the create waypoint button the operator can create
a new functional waypoint a short distance in front of them, near
eye level. While the first two methods are much faster and more
convenient, this method allows the operator to always be able to
create functional waypoints even when they are not near the robot.
There is also a button in the wristwatch user interface to remove
the last functional waypoint in the trajectory.

3.2 Plan Visualization
Our interface was improved to provide a human-in-the-loop plan-
ning system. This planning system utilizes visualizations as well
as alerts to inform the operator of the state of the plan. We also
add a pre-check system to our interface to identify manipulation
functional waypoints that are likely to fail and communicates this
information to the operator. The operator can then adjust the plan
on the fly, while they are setting up their trajectory, as opposed
sending a trajectory that is likely to fail to the motion planner. Our
pre-check system checks if manipulation functional waypoints are
out of reach, meaning that they are further than the robot’s arm’s
length from the robot. If a manipulation functional waypoint is

determined to be out of bounds by our pre-check system, then it is
recolored orange to indicate a warning to the operator that it is very
likely that the Maniuplation functional waypoint is unreachable
by the robot. This method does not actually calculate a motion
plan for the functional waypoints, it just removes some physically
impossible to reach positions. Functional waypoints that are within
the robots reach, but are unreachable by the motion planner due
to impossible orientations can still lead to false positives. Our pre-
check system will be further improved in future versions of our
interface to prevent false positives.

If a manipulation functional waypoint is determined to be un-
reachable by the motion planner, the operator should be informed
so that they can properly adjust their trajectory and send their new
plan to the robot. To communicate this to the operator, Manipu-
lationfunctional waypoints are recolored red, indicating that the
robot encountered an error while planning to that point. A plan-
ner status message is also updated indicating in red text that the
manipulation functional waypoint is unreachable. Figure 7 shows
the state indication of the manipulation functional waypoint for a
Fetch robot.

When the robot successfully plans the operator’s trajectory, this
plan should then be displayed to the operator so that they can make
all necessary adjustments prior to approving the plan. To do this,
we have a copy of the virtual robot execute the robot’s planned
trajectory. This enables the operator to visualize the robot’s plan,
with respect to the surrounding environment, before they approve
for the actual robot to execute the trajectory. The operator can then
adjust the robot’s plan, if the robot’s plan seems unsafe. This visu-
alization method is similar to other commonly used visualization
methods, such as the one proposed by Rosen et al. for augmented
reality interfaces [16].

To provide human-in-the-loop planning, our interface must also
communicate the state of the planner to the operator. The planner
status is conveyed to operator with the following phrases:

• Ready to plan!
• Planning...
• Plan Successful!
• Executing Waypoint [#] / [Total #]
• Plan Failed at Waypoint [#]

4 NAVIGATION PLANNING IN VR
The previous iteration of our interface provided three methods for
an operator to send navigation commands to a robot. First, the
operator could press down the controller’s trackpad to move the
robot, a method very similar to controlling an RC car. The second
method allowed the operator to create a navigation goal by clicking
on a location in a minimap UI element, which would generate a goal
at the corresponding point. The final method made use of a point
and click method, where the operator would point to a location
with the controller which is then sent to the robot as a navigation
goal. In that iteration of our VR interface, the robot would then
immediately create a navigation plan to the destination.

Since our prior implementation focused on a humanoid robot,
footstep markers were generated to show the operator the robot’s
planned path. An operator could then move these footstep markers
to adjust the robot’s plan. While the path the robot would take

Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO Gregory LeMasurier, Jordan Allspaw, and Holly A. Yanco

Figure 8: Example of a navigation functional waypoint for
the Fetch robot including the Fetch robot model, a label in-
dicating the functional waypoint’s order in the trajectory, a
switch to enable or disable collision detection, and a slider
interface to control the height of the robot.

was displayed in the virtual world, the final position was not, so it
could be difficult to tell exactly how close to an obstacle the robot
would travel. There was also no way to send a series of waypoints
that the robot should travel through. Additionally, when navigat-
ing, the operator may want to adjust the height of the robot at
various points in its path, to get a better vantage point of the sur-
rounding environment, which was not possible with our previous
implementation.

The first improvement was creating new navigation functional
waypoint that allows the operator to view the final goal state in the
environment, preserving situational awareness. Much like the ma-
nipulation functional waypoint, a navigation functional waypoint
consists of three visual components as seen in Figure 8.

To construct the navigation functional waypoints, we load the
3D model of the robot from the ROS robot description parameter,
which allows the interface to be robot agnostic. By using a 3Dmodel
of robot, the operator is able to specify the position and orientation
of navigation goals for the robot, and, most importantly, visualize
them clearly in the context of the remote environment. Axes of
these navigation goals are locked so that the goal can only be placed
on the floor in a reachable orientation. Additionally, the robot model
used as a navigation functional waypoint is updated to be in sync
with the real robot. For example, if the operator creates a navigation
functional waypoint and then moves the real robot’s arms, the robot
model in the functional waypoint will update to show the robot’s
new state. This ensures that the operator will understand how the
robot will fit in its environment when it reaches the goal, which is
important for preventing collisions.

These goals use the same labeling method as the manipulation
functional waypoints. The numeric labels are anchored to the ro-
bot’s head link, so if the robot changes its height, the label will
move correspondingly and thus will always be visible.

Finally, the navigation functional waypoints have two UI ele-
ments anchored to its back. The first UI element enables the operator
to toggle a collision avoidance mode on or off. When toggled on,
an operator will not be able to place a goal which collides with a
preloaded model in the environment. For example, with collision
mode enabled, an operator can not place a Navigation Funcational
Waypoint that would result in the robot colliding with the envi-
ronment, such as a table. Collision avoidance can be turned off
to accommodate scenarios where an operator may want to move
a functional waypoint through a wall, in order to set a goal in a
neighboring room. In these situations, an operator can disable colli-
sion avoidance, so that they can more conveniently move the goal
through the wall rather than having to move all the way around
the wall.

Below the collision avoidance toggle a vertical UI element en-
ables the operator to adjust the height of the robot. Many mobile
platforms have some means to adjust their height to get a better
vantage point of the environment. For example, the Fetch robot has
a torso that is driven by a motor. In this case the interface enables
the operator to specify the height of the torso at this navigation
functional waypoint. This interface is also applicable to humanoid
robots, such as the Valkyrie R5, which can crouch down or stand
up straight to get a better vantage point of their environment. Addi-
tionally, this interface can be extended to unmanned aerial vehicles
(UAVs) where the slider value could be used to control the robot’s
height from the ground.When the slider interface for height control
is moved and released by the operator, the navigation goal updates
its robot model to the height specified by the operator. When ex-
ecuting the plan, the robot will first navigate through the path to
reach the functional waypoint, then it will adjust its height to the
operator specified height, if the operator moved the slider. After
the robot has reached the desired height, the robot will then repeat
the same process for each additional functional waypoint in the
operator specified path.

4.1 Waypoint Creation and Modification
We attempted to keep the creation and modification of navigation
functional waypoints as similar as possible to the manipulation
functional waypoints previously discussed. We modified the point
and click method to generate a navigation functional waypoint
at the selected location instead of directly sending the goal to the
robot. Just like manipulation functional waypoints, when the oper-
ator is holding a navigation functional waypoint, they can press the
trigger button to place the current navigation functional waypoint
and to create a brand new navigation functional waypoint, allow-
ing the operator to easily create multiple navigation functional
waypoints quickly. Like manipulation functional waypoints, the op-
erator can create a navigation functional waypoint from within the
navigation tab in the wristwatch user interface, which will spawn
a navigation functional waypoint directly in front of the operator’s
virtual avatar. While more cumbersome than the other methods, we
wanted to keep this as a fallback method and to allow the functional
waypoints to have similar interaction methods independent of their
functionality.

Semi-Autonomous Planning and Visualization in Virtual Reality Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO

Figure 9: The path visualization for a Fetch mobile robot.

4.2 Path Visualization
As our previous work focused on humanoid robots, wewould visual-
ize the footsteps that the robot was planning to reach the navigation
goal. We have expanded upon this to be more robot agnostic. In our
new interface, we have added support for a non-humanoid mobile
robot path type. The desired path type can be changed by selecting
the mobility type of the robot from a drop down list in the Unity
Editor. For non-humanoid mobile robots, the planned path will be
shown with turquoise markers as seen in Figure 9.

Similarly to the manipulation functional waypoints, we have a
pre-check for the navigation functional waypoints. If a navigation
functional waypoint is colliding with a pre-loaded model of the
environment, then it will be recolored orange, which indicates to
the operator that the robot is likely unable to reach this goal. Finally,
we display planner status messages using the same phrases as the
manipulation functional waypoints.

5 ADDITIONAL CONTROLS
We found that there were several controls, such as adjusting the
robot’s height or gripper state, that we wanted to be able to use
without using the planner. Thus, we added environment-anchored
interface elements [17], which are anchored to either the robot
or world coordinate systems, to provide control methods which
were previously controlled exclusively within our wristwatch user
interface.

When using mobile robots that can adjust their height, an op-
erator may want to adjust the robot’s height on the fly. To enable
this, we attach a slider on the back of the virtual robot in a similar
manner to the slider interface for height control on the navigation
functional waypoints. This interface can be seen in Figure 10. When
an operator moves the slider, a command will be sent immediately
to the actual robot to adjust its height to the operator’s desired
height.

Additionally, an operator may want to open or close the robot’s
gripper on the fly, without using the manipulation functional way-
points. We have added a slider interface, just like the slider interface
on the manipulation functional waypoint that enables the operator

Figure 10: The operator can control the height of the robot
through the slider interface seen on the virtual robot’s back,
however, unlike the functional waypoint the robot’s state is
immediately updated.

Figure 11: The operator can control the state of the robot’s
gripper through the slider interface on the virtual robot’s
end effector, however, unlike the functional waypoint the
robot’s state is immediately updated.

to control the robot’s end effector without needing to use the plan-
ner or the wristwatch user interface. This interface can be seen in
Figure 11. When an operator moves the slider, a command will be
sent to the actual robot to open or close its gripper to the degree
specified by the operator.

Finally, an operator might want the robot to look at a partic-
ular object or direction. This allows the operator to get a better
understanding of the robot’s environment through the point cloud.
We have added an interface element where the operator can grab
the virtual robot’s head and pull down to where they want robot
to look. When the operator grabs the robot’s head, a 3D arrow is
created and follows the operator’s controller position as seen in
Figure 12. This marker indicates where the robot will be looking
once the operator releases the arrow.

We have also color coded our interface so that the operator can
associate the colors with their corresponding control methods. All
robot-related control methods use a light blue color, as seen in our

Virtual, Augmented, and Mixed Reality for HRI, March 2021, Boulder, CO Gregory LeMasurier, Jordan Allspaw, and Holly A. Yanco

Figure 12: The operator can command the robot to look at
a particular point in the environment by moving the arrow
marker to their desired location.

Figure 13: This figure shows our color coded navigation
control methods. The top image shows a yellow arc which
points to the location that the operator will teleport to. The
bottom image shows a blue arc from our point and click
method, which shows the operator where a navigation func-
tional waypoint will be generated.

Manipulation and navigation functional waypoints. Controls for
the operator are all color coded yellow. Figure 13 shows the color
coded controller arcs for mobility controls. The yellow arc points to
the location that the operator will teleport to when they release the
trackpad button. Similarly, the blue arc is used for the navigation
goal point and click method, after the operator releases the trackpad
button, a navigation functional waypoint would be generated at
the location they are pointing to.

6 CONCLUSION
In this paper, we have explained how our new interface expands
upon our previous iterations by making the interface more robot
agnostic, by enabling human-in-the-loop planning, and by intro-
ducing functional waypoints to allow the operator to command a
remote robot in a way that preserves situation and task awareness.

We will investigate the effectiveness of this design in an upcoming
user study using the Fetch robot.

ACKNOWLEDGMENTS
This work has been supported in part by the National Science Foun-
dation (IIS-1944584 and IIS-1451427), the Office of Naval Research
(N00014-18-1-2503), the Department of Energy (DE-EM0004482),
and NASA (NNX16AC48A).

REFERENCES
[1] Jordan Allspaw, Gregory LeMasurier, and Holly Yanco. 2020. Implementing

Virtual Reality for Teleoperation of a Humanoid Robot. In Proceedings of the 3rd
InternationalWorkshop on Virtual, Augmented, andMixed Reality for Human-Robot
Interaction.

[2] Greg Baker, Tom Bridgwater, Paul Bremner, and Manuel Giuliani. 2020. Towards
an immersive user interface for waypoint navigation of mobile robots. arXiv
(2020). arXiv:2003.12772

[3] Daniel W Carruth. 2017. Virtual reality for education and workforce training.
In 2017 15th International Conference on Emerging eLearning Technologies and
Applications (ICETA). IEEE, 1–6.

[4] Sachin Chitta, Ioan Sucan, and Steve Cousins. 2012. Moveit![ros topics]. IEEE
Robotics & Automation Magazine 19, 1 (2012), 18–19.

[5] Rodrigo Longhi Guimarães, André Schneider de Oliveira, João Alberto Fabro,
Thiago Becker, and Vinícius Amilgar Brenner. 2016. ROS navigation: Concepts
and tutorial. In Robot Operating System (ROS). Springer, 121–160.

[6] Stephen Hart, Paul Dinh, and Kimberly Hambuchen. 2015. The Affordance
Template ROS Package for Robot Task Programming. In 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 6227–6234.

[7] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Duncan Calvert,
TingfanWu, Daniel Duran, Douglas Stephen, NathanMertins, John Carff,William
Rifenburgh, Jesper Smith, Chris Schmidt-Wetekam, Davide Faconti, Alex Graber-
Tilton, Nicolas Eyssette, Tobias Meier, Igor Kalkov, Travis Craig, Nick Payton,
Stephen McCrory, George Wiedebach, Brooke Layton, Peter Neuhaus, and Jerry
Pratt. 2017. Team IHMC’s lessons learned from the DARPA Robotics Challenge:
finding data in the rubble. Journal of Field Robotics 34, 2 (2017), 241–261.

[8] Nathan Koenig and Andrew Howard. 2004. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 3. IEEE,
2149–2154.

[9] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas De Boer, Tingfan Wu, Jes-
per Smith, Johannes Englsberger, and Jerry Pratt. 2016. Design of a momentum-
based control framework and application to the humanoid robot atlas. Interna-
tional Journal of Humanoid Robotics 13, 01 (2016), 1650007.

[10] Jeffrey I. Lipton, Aidan J. Fay, and Daniela Rus. 2017. Baxter’s homunculus: Virtual
reality spaces for teleoperation in manufacturing. arXiv 3, 1 (2017), 179–186.

[11] ManusVR. [n.d.]. Manus VR | The Pinnacle of Virtual Reality Controllers. https:
//manus-vr.com/

[12] Stephen McGill, Seung Joon Yi, and Daniel D. Lee. 2015. Team THOR’s adaptive
autonomy for disaster response humanoids. IEEE-RAS International Confer-
ence on Humanoid Robots 2015-Decem (2015), 453–460. https://doi.org/10.1109/
HUMANOIDS.2015.7363589

[13] Diederick CNiehorster, Li Li, andMarkus Lappe. 2017. The accuracy and precision
of position and orientation tracking in the HTC vive virtual reality system for
scientific research. i-Perception 8, 3 (2017), 2041669517708205.

[14] Adam Norton, Willard Ober, Lisa Baraniecki, Eric McCann, Jean Scholtz, David
Shane, Anna Skinner, Robert Watson, and Holly Yanco. 2017. Analysis of human–
robot interaction at the DARPA Robotics Challenge Finals. The International
Journal of Robotics Research 36, 5-7 (2017), 483–513.

[15] Nicolaus A Radford, Philip Strawser, Kimberly Hambuchen, Joshua S Mehling,
William K Verdeyen, A Stuart Donnan, James Holley, Jairo Sanchez, Vienny
Nguyen, Lyndon Bridgwater, et al. 2015. Valkyrie: NASA’s First Bipedal Hu-
manoid Robot. Journal of Field Robotics 32, 3 (2015), 397–419.

[16] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James Tompkin,
George Konidaris, and Stefanie Tellex. 2020. Communicating robot arm mo-
tion intent through mixed reality head-mounted displays. In Robotics Research.
Springer, 301–316.

[17] Tom Williams, Daniel Szafir, and Tathagata Chakraborti. 2019. The Reality-
Virtuality Interaction cube. VAM-HRI (2019).

[18] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David Dymesich.
2016. Fetch and freight: Standard platforms for service robot applications. In
Workshop on autonomous mobile service robots.

[19] Nasif Zaman, Alireza Tavakkoli, and Christos Papachristos. 2020. Tele-robotics
via An Efficient Immersive Virtual Reality Architecture. (2020).

http://arxiv.org/abs/2003.12772
https://manus-vr.com/
https://manus-vr.com/
https://doi.org/10.1109/HUMANOIDS.2015.7363589
https://doi.org/10.1109/HUMANOIDS.2015.7363589

	Abstract
	1 Introduction
	2 System and Environment
	3 Manipulation Planning in VR
	3.1 Waypoint Creation and Modification
	3.2 Plan Visualization

	4 Navigation Planning in VR
	4.1 Waypoint Creation and Modification
	4.2 Path Visualization

	5 Additional Controls
	6 Conclusion
	Acknowledgments
	References

