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Abstract

We consider stochastic optimization when one only has access to biased stochastic
oracles of the objective, and obtaining stochastic gradients with low biases comes
at high costs. This setting captures a variety of optimization paradigms widely
used in machine learning, such as conditional stochastic optimization, bilevel
optimization, and distributionally robust optimization. We examine a family of
multi-level Monte Carlo (MLMC) gradient methods that exploit a delicate trade-off
among the bias, the variance, and the oracle cost. We provide a systematic study of
their convergences and total computation complexities for strongly convex, convex,
and nonconvex objectives, and demonstrate their superiority over the naive biased
stochastic gradient method. Moreover, when applied to conditional stochastic
optimization, the MLMC gradient methods significantly improve the best-known
sample complexity in the literature.

1 Introduction

Solving modern machine learning tasks relies heavily on stochastic gradient descent (SGD) and many
of its variants. Whilst the vanilla SGD depends crucially on unbiased gradient oracles, constructing
unbiased gradient estimators can be very expensive or even impossible for many emerging machine
learning applications. Such applications include GANs with regularization [25], distributionally
robust optimization [26, 14], conditional stochastic optimization [20, 19], meta-learning [30, 11],
min-max optimization [32, 33], and bilevel optimization [16], just to name a few.

As an alternative, one often resorts to some natural biased gradient estimators. Existing work on
biased gradient methods [17, 1, 18, 7, 23] focuses on the iteration complexity given biased stochastic
oracles while ignoring the possibility of constructing refined stochastic oracles with lower bias at
a higher cost, e.g., more samples or more computation power. In this paper, we build a unified
framework to study the fundamental tradeoff among the bias, the variance, and the cost.

We study optimization problems of the general form

min
x∈Rd

F (x), (1)

and assume that one does not have access to unbiased gradient estimator of F (x) via simple Monte
Carlo sampling or simulation. Instead we assume that one can construct a sequence of approximations
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of F (x), denoted as {F l(x)}∞l=0. Unlike the original objective F (x), unbiased function value and
gradient estimators of each F l(x) (correspondingly biased estimators of F (x)) are accessible through
some oracles. However, the cost for querying such oracles increases as the approximation accuracy
increases. We measure the bias level using the approximation error either in term of the function
values |F (x)− F l(x)| or in terms of the gradient ∥∇F l(x)−∇F (x)∥22. For simplicity, throughout
the paper, we assume F and F l are smooth, namely, they have Lipschitz continuous gradients.

More precisely, without loss of generality, we assume that (i) for any given x, the function approxi-
mation error satisfies |F l(x)− F (x)| = O(2−al) for some constant a > 0 under the convex setting,
or the gradient approximation error satisfies ∥∇F l(x)−∇F (x)∥22 = O(2−al) under the nonconvex
setting; (ii) for each l ∈ N, there exists a stochastic oracle (SOl) that returns an unbiased estimator
H l(x, ζl) of ∇F l(x) − ∇F l−1(x) given x with bounded variance: V(H l(x, ζl)) = O(2−bl) for
some constant b > 0; (iii) the cost to query the oracle SOl is Cl = O(2cl) for some constant c > 0.
Assumption (ii) indicates that the variance of the stochastic estimator of the function difference
decreases with l. Intuitively, as function F l is close to function F l−1, one can construct highly
correlated gradient estimators for ∇F l(x) and ∇F l−1(x) such that the variance of their difference
is small.As we will show later, these constants a, b, c play a crucial role in the complexity of the
problems of our interest.

1.1 Motivational Examples

Conditional Stochastic Optimization (CSO) In CSO [19], the objective function has the following
form: F (x) := Eξfξ(Eη|ξgη(x, ξ)), where ξ and η are random vectors. In general, it is not easy
to directly obtain unbiased gradient estimators from samples of P (ξ) and P (η|ξ), because of the
nonlinearity of fξ(·). Instead, we can construct a sequence of approximation functions given by

F l(x) = Eζl=[ξ,η1,...,η2l
]

[
fξ
(

1
2l

∑2l

j=1 gηj
(x, ξ)

)]
, l = 0, 1, . . ., where {ηj}2

l

j=1 are independent and
identically distributed (i.i.d.) random vectors from P(η|ξ). Unlike F (x), unbiased estimators for
∇F l(x) can be easily obtained directly through samples. Under mild conditions, we can show that
assumptions (i)-(iii) hold true; in particular, we have a = 1, b = 1, c = 1.

Distributionally Robust Optimization (DRO) DRO minimizes the expected loss with respect to
the worst distribution in an uncertainty set U(P ) for a given distribution P . The objective of DRO
has the form: minx∈X FP (x) := supQ∈U(P ) Eξ∼Qℓ(x; ξ). Because of the maximal operator over
the uncertainty set, it is hard to obtain unbiased gradient estimator using samples from P . Instead one
constructs a series of approximation functions given by F l(x) =

∑2l

i=1 q
∗
i ℓ(x; ξi), where {ξi}2

l

i=1 are
i.i.d. samples from P , Pn denotes the empirical distribution, and q∗ = {q∗i }2

l

i=1 attains the maximum

of supq∈∆
2l
,q∈U(Pn)

∑2l

i=1 qiℓ(x; ξi) for a 2l-dimensional simplex ∆2l . For CVaR and χ2-penalty
DRO problems, Levy et al. [26] showed that assumptions (i)-(iii) hold true with a = 2, b = 1, c = 1
for CVaR DRO and a = 1, b = 1, c = 1 for χ2-penalized DRO.

1.2 Multilevel Monte Carlo (MLMC) Techniques

A naive approach to solve (1) is to perform SGD on the approximation function FL(x) with a level L
such that the bias is small and within a targeted accuracy ϵ. We call such a framework L-SGD. This
encapsulates several existing algorithms under different contexts, such as BSGD [20] in conditional
stochastic optimization, multi-step MAML [21] in meta-learning, and biased gradient method [26]
in distributionally robust optimization. Despite its simplicity, L-SGD generally fails to achieve the
smallest total cost since it requires expensive stochastic oracles to ensure small bias.

On the other hand, the multi-level Monte Carlo (MLMC) sampling technique, originally designed for
stochastic simulation [15], is amenable to obtain better gradient estimators by exploiting the bias-cost
tradeoff. The idea is to query fewer oracles with higher cost and smaller bias, and more oracles with
lower cost and larger bias; thus, the cost can be effectively reduced. There exist several variations of
MLMC with randomization, including the MLMC estimator with randomized truncation (denoted as
RT-MLMC) [5], the MLMC estimator with importance sampling (denoted RU-MLMC), the Russian
roulette estimator (denoted as RR-MLMC) that uses randomized telescope [22].
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Table 1: Summary of the total costs of the algorithms for finding ϵ-optimal solution for (strongly)
convex F and ϵ-stationary point for nonconvex smooth F . Here a is the decrease rate in the bias,
b is the decrease rate of the variance, c is the increase rate of oracle cost, and Õ(·) represents
the order hiding logarithmic factors. N.A. stands for not applicable. Let n1 = max{1, c/a},
n2 = max{1 + (c− b)/a, c/a}.

Algorithms V-MLMC RT-MLMC RU-MLMC
RR-MLMC

L-SGD Convexity

Bias O(ϵ) O(ϵ) 0 O(ϵ)

Mini-batch Yes No No No
Variance
when c < b

O(ϵ) O(1) O(1) O(1)

Per-iter cost
when c < b

O(ϵ−1) O(1) O(1) O(ϵ−c/a)

Total Cost
if c < b

Õ(ϵ−n1) O(ϵ−1) O(ϵ−1) O(ϵ−1−c/a) Strongly Convex
O(ϵ−1−n1) O(ϵ−2) O(ϵ−2) O(ϵ−2−c/a) Convex
O(ϵ−2−2n1) O(ϵ−4) O(ϵ−4) O(ϵ−4−2c/a) Nonconvex

Total Cost
if c ≥ b

Õ(ϵ−n2) Õ(ϵ−1−(c−b)/a) N.A. O(ϵ−1−c/a) Strongly Convex
Õ(ϵ−1−n2) Õ(ϵ−2−(c−b)/a) N.A. O(ϵ−2−c/a) Convex
Õ(ϵ−2−2n2) Õ(ϵ−4−2(c−b)/a) N.A. O(ϵ−4−2c/a) Nonconvex

These MLMC techniques have been recently explored in different optimization contexts. For instance,
Blanchet and Glynn [5] combined the MLMC idea with sample average approximation to address
stochastic optimization. Dereich and Müller-Gronbach [10] integrated the vanilla MLMC (denoted
as V-MLMC) gradient estimator with Robbins-Monro and Polyak-Ruppert stochastic approximation
schemes, and analyzed their convergences. Recently, the RT-MLMC technique was applied to
stochastic compositional optimization with strongly convex objectives in Blanchet et al. [4] and
distributional robust optimization in Levy et al. [26], Ghosh and Squillante [14]. Beatson and
Adams [3] studied the asymptotic behaviors of stochastic gradient descent with RT-MLMC and RR-
MLMC estimators. Concurrently, Asi et al. [2] applied RT-MLMC to estimating proximal points and
Moreau-Yoshida envelope gradient, minimization of maximal loss, and proximal gradient methods.

1.3 Our Contributions

In this paper, we provide a systematic comparison among these MLMC techniques when combined
with stochastic gradient descent. Our primary focus is on the analysis of their total computation cost
for achieving an ϵ-optimal solution for convex problems and an ϵ-stationary point for nonconvex
problems, which is largely missing in the literature. Our contributions are three-fold:

Non-asymptotic analysis of MLMC gradient methods. We analyze the non-asymptotic per-
formances and computation complexities of various MLMC gradient methods under the general
stochastic optimization framework in all regimes, e.g., different convexity assumptions and different
combinations of a, b, c. Our main results are summarized in Table 1. Previous results either focus on
specific applications [4, 26] or only asymptotic behaviors [3] in restricted regimes.

Theoretical comparisons and new insights. Our comparative study of different MLMC techniques
yields several interesting findings: (1) When b > c, i.e., the variance decays faster than the increase
of the cost, all three randomized MLMC gradient methods and V-MLMC (only when a ≥ min{b, c})
nearly match the complexity of classical unbiased SGD, implying that the problem is no harder
than classical stochastic optimization, regardless of the bias. (2) When b ≤ c, the unbiased MLMC
constructions, RU-MLMC and RR-MLMC, are no longer applicable since either the expected per-
iteration cost or the variance of the gradient estimator goes to infinity. In this case, RT-MLMC is the
most favorable approach without requiring a mini-batch. (3) In all regimes with 0 < a < ∞ (i.e.,
bias exists), using the naive L-SGD is strictly sub-optimal in terms of the total cost, demonstrating
the importance of the exploitation of the bias-variance-cost tradeoff.

Improved sample complexity for conditional stochastic optimization. When applied to CSO prob-
lems (resp. a = b = c = 1), we show that the RT-MLMC and the vanilla MLMC gradient methods
significantly improve over existing results reported in the literature. In particular, for nonconvex
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smooth CSO problems, RT-MLMC and vanilla MLMC achieve Õ(ϵ−4) sample complexity, which is
even better than the best-known Õ(ϵ−5) achieved by the variance reduction technique [20].

1.4 Preliminaries

A function f(·) : Rd → R is L-Lipschitz continuous if |f(x) − f(y)| ≤ L∥x − y∥2 holds for
any x, y ∈ Rd. A function f(·) is S-smooth on Rd, if it is continuously differentiable on Rd and
it holds that ∥∇f(x) − ∇f(y)∥2 ≤ S∥x − y∥2 for any x, y ∈ Rd. For any x, y ∈ Rd, and a
continuously differentiable function f , if it holds that f(x)− f(y)−∇f(y)⊤(x− y) ≥ µ

2 ∥x− y∥22,
we say f is µ-strongly convex when µ > 0 and f is convex when µ = 0. Let x∗ ∈ argminx F (x).
We say x is an ϵ-optimal solution if F (x) − F (x∗) ≤ ϵ, and x is an ϵ-stationarity point of F if
∥∇F (x)∥22 ≤ ϵ. Polyak-Łojasiewicz (PL) condition [24] is a generalization of strong convexity
such that ∥∇F (x)∥22 ≥ 2µ(F (x) − F (x∗)) for µ > 0. By convention we let ∇F−1(x) = 0. For
simplicity, throughout the paper, we assume the desired accuracy ϵ > 0 is small enough so that
ϵ−1 ≥ log(ϵ−1) ≥ 1. We use O(·) to hide constants that does not depend on the desired accuracy ϵ.
Õ further hides the log(ϵ−1) term.

2 MLMC Gradient Methods

2.1 Assumptions

We first formally restate the problem setting and assumptions we use throughout the paper.
Assumption 2.1. We assume that there exist constants a, b, c,Ma,Mb,Mc, σ > 0 such that for any
x ∈ Rd and l ∈ N, the following hold.

(a). The function value approximation error is bounded: |F l(x)− F (x)| ≤ Bl := Ma2
−al.

(b). There exits a stochastic oracle, SOl, that for given x returns stochastic estimators hl(x, ζl)
and H l(x, ζl) such that

Ehl(x, ζl) = ∇F l(x);V(hl(x, ζl)) ≤ σ2, (2)
EH l(x, ζl) = ∇F l(x)−∇F l−1(x),V(H l(x, ζl)) ≤ Vl := Mb2

−bl. (3)

(c). The cost to query SOl is bounded: Cl ≤ Mc2
cl.

(d). The objective F and the approximation function F l are SF -smooth.

Assumptions 2.1 (a) and (c) imply that obtaining unbiased gradient estimator of more accurate
approximation functions F l (namely smaller bias from the true gradient) requires higher cost. The
variance decay of the difference estimator H l(x, ζl) in Assumption 2.1(b) is the key assumption for
MLMC methods. Intuitively, since ∇F l(x)−∇F l−1(x) becomes very small for large l, constructing
highly correlated estimators of ∇F l(x) and ∇F l−1(x) using the same samples ζl will likely yield
small variance of their difference.

In the nonconvex setting, since we care about ϵ-stationarity point rather than function values, we use
the following assumption on approximation error of the gradient.
Assumption 2.2. There exists Ma > 0 such that for any l ∈ N, it holds

∥∇F l(x)−∇F (x)∥22 ≤ Bl := Ma2
−al.

Remark 2.1 (Relationship between the assumptions). Our main results in the strongly convex
case can be easily extended to the PL condition [24]. Particularly, under PL condition, Assumption
2.1(a) and Assumption 2.2 are exchangeable for biased gradient-based methods to achieve the same
convergence and total cost results. We defer the related discussion to Appendix D.1. In general,
these two assumptions do not imply each other. Both of them hold for convex CSO problems, as we
will show in Section 4. In general, these two assumptions reflect two different ways of constructing
approximations. Constructing uniform function approximation first then taking gradient is more
suitable for a problem when the form of the true gradient is unknown, for instance, DRO problems.
On the other hand, directly constructing gradient approximations is more suitable when one knows
the form of the true gradient and particularly when the approximated gradient does not have a
corresponding objective function.
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2.2 SGD with MLMC Estimators

In the sequel, we construct a direct biased gradient estimator and four different multilevel Monte
Carlo gradient estimators based on the oracle SOl. These estimators will be fed in the generic
stochastic gradient descent (SGD) algorithm given as follows.

Algorithm 1 SGD Framework
Input: Number of iterations T , stepsizes {γt}Tt=1, initialization point x1.

1: for t = 1 to T do
2: Construct a gradient estimator v(xt) of ∇F (xt).
3: Update xt+1 = xt − γtv(xt).
4: end for

Output: {xt}Tt=1.

Due to potential computing limitation, one might only have access to the stochastic oracles of the first
L levels of approximation functions {F l(x)}Ll=0, for some L > 0. Let {nl}Ll=0 denote some batch
sizes.

L-SGD estimator: at a query point x, query oracle SOL at point x for nL times to obtain
{hL(x, ζLi )}

nL
i=1, and then construct

vL-SGD(x) := 1
nL

∑nL

i=1h
L(x, ζLi ). (4)

V-MLMC estimator: at a query point x, query the oracle SOl at x for nl times to obtain
{H l(x, ζli)}

nl
i=1 for l = 0, ..., L, and then construct

vV-MLMC(x) :=
∑L

l=0
1
nl

∑nl

i=1 H
l(x, ζli). (5)

RT-MLMC estimator: at a query point x, first sample a random level ι according to the probability
distribution Q1 = {ql}Ll=0, such that P (ι = l) = ql, where

∑L
l=0 ql = 1, then query only oracle

SOι at x once to obtains Hι(x, ζι).

vRT-MLMC(x) := q−1
ι Hι(x, ζι). (6)

RU-MLMC estimator: at a query point x, first sample a random level ι according to the probability
distribution Q2 = {ql}∞l=0, such that P (ι = l) = ql, where

∑∞
l=0 ql = 1, then query only oracle

SOι at x once to obtains Hι(x, ζι).

vRU-MLMC(x) := q−1
ι Hι(x, ζι). (7)

RR-MLMC estimator: at a query point x, first sample a random level L according to the probability
distribution Q2 = {ql}∞l=0, such that P (L = l) = ql, where

∑∞
l=0 ql = 1, then query oracle SOl at

point x once for l = 0, .., L to obtain {H l(x, ζl)}Ll=0.

vRR-MLMC(x) :=
∑L

l=0 plH
l(x, ζl), (8)

where pl =
1

1−
∑l−1

l′=0
ql′

, and
∑−1

l′=0 ql′ = 0.

Note that the V-MLMC estimator requires querying the stochastic oracles for each level l = 0, . . . , L
with some fixed L. The other three MLMC estimators only query the stochastic oracle from a random
level or a random subset of levels, with appropriate reweighing. As an immediate observation, we
summarize the bias, variance, and (expected) computation cost in Table 2 when x ∈ Rd is independent
from vA for A being L-SGD, V-MLMC, RT-MLMC, RU-MLMC, RR-MLMC. In the table, CA

iter
denotes the expected computation cost for constructing estimator A. See Lemmas B.1 and B.2 for a
detailed derivation.

Both RU-MLMC and RR-MLMC give unbiased gradient estimators of F , whereas the other three
estimators are biased. As a result, combining SGD with L-SGD estimator, V-MLMC estimator,
and RT-MLMC estimator will only lead to a stationary point of the approximation function FL(x),
assuming the variance of these estimators are bounded.
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Table 2: Bias, Variance, and Cost of Gradient Estimators.

Estimators A Expectation EvA(x) Variance V(vA(x)) Cost CA
iter

L-SGD ∇FL(x) n−1
L σ2 nLCL

V-MLMC ∇FL(x)
∑L

l=0n
−1
l Vl

∑L
l=0nlCl

RT-MLMC ∇FL(x)
∑L

l=0q
−1
l Vl

∑L
l=0qlCl

RU-MLMLC ∇F (x)
∑∞

l=0q
−1
l Vl

∑∞
l=0qlCl

RR-MLMC ∇F (x)
∑∞

L=0 qL
(∑L

l=0 p
2
l Vl

) ∑∞
L=0 qL

(∑L
l=0 Cl

)
Remark 2.2 (Conditions and computation costs of RU-MLMC and RR-MLMC). For both RU-
MLMC and RR-MLMC, invoking the definitions of Cl and Vl, it can be easily seen that when b ≤ c,
either the variance or the expected per-iteration cost will be unbounded. Hence, these two unbiased
MLMC estimators are only useful in the restrictive regime when b > c. In fact, when b > c, by
setting ql ∝ 2−(b+c)l/2, we immediately have that V(vA(x)) = O(1), CA

iter = O(1), for A being
either RU-MLMC or RR-MLMC. As a result, the convergence rates of SGD based on RU-MLMC
and RR-MLMC estimators can be directly obtained from the standard results for unbiased SGD; see,
e.g., [6, 29, 13]. In particular, the iteration complexities (hence, expected total costs) of RU-MLMC
or RR-MLMC to achieve an ϵ-optimal solution are O(1/ϵ) for strongly convex F and O(1/ϵ2) for
general convex F , under appropriately chosen stepsize. For nonconvex smooth objective F , the
expected total cost for achieving an ϵ-stationary point such that E[∥∇F (x)∥22] ≤ ϵ is O(1/ϵ4). For
completeness, we provide detailed analysis in Appendix B about the bias, the variance, and the
per-iteration cost and in Appendix C.4 about the total cost.

For ease of notation, let x̂A
T denote the output of SGD using estimator A after T iterations, where A

corresponds to L-SGD, V-MLMC, or RT-MLMC. Under Assumption 2.2 we have the decomposition
of errors in the (strongly) convex case:

E[ F (x̂A
T )− F (x∗)︸ ︷︷ ︸

Error of Algorithm A on F

] =E[F (x̂A
T )− FL(x̂A

T )︸ ︷︷ ︸
Approximation Error≤BL

+FL(x̂A
T )− FL(xL)︸ ︷︷ ︸

Error of SGD on FL

]

+ FL(xL)− FL(x∗)︸ ︷︷ ︸
≤0 by optimality of xL

+ FL(x∗)− F (x∗)︸ ︷︷ ︸
Approximation Error≤BL

,
(9)

where xL is the minimizer of FL(x). The decomposition suggests that as long as the level L is large
enough, e.g., L = ⌈a−1 log(4Maϵ

−1)⌉ such that 2BL ≤ ϵ/2, and the number of iteration T is large
enough such that expected error of SGD on FL is smaller than ϵ/2, the output of these methods will
be ϵ-optimal in the convex setting.
Remark 2.3 (Computation costs of L-SGD). For L-SGD, the total cost is given by T · (nLCL). With
the above choice of L, we have CL = O(ϵ−c/a). From standard analysis of SGD (see Theorem A.1
in Appendix A), if the variance of the gradient estimator is O(1), we have T = O( σ2

nLϵ ) when FL is

strongly convex [6], and we have T = O( σ2

nLϵ2 ) when FL is convex and smooth. See Appendix C.1
for detailed results on L-SGD. Therefore, the total computation costs for L-SGD to achieve an
ϵ-optimal solution are O(ϵ−1−c/a) and O(ϵ−2−c/a), respectively in the (strongly) convex settings.

3 Total Cost Analysis of V-MLMC and RT-MLMC

This section mainly focuses on the total cost analysis of the two biased MLMC gradient methods,
V-MLMC and RT-MLMC. Due to the page limit, we only demonstrate the regime when b ≥ c, i.e.,
the decrease rate of the variance is larger than or equal to the increase rate of the cost. Full results
can be found in Appendix C. Let x̂A

T be selected uniformly from xA
1 , ..., x

A
T for A being V-MLMC or

RT-MLMC.
Theorem 3.1 (Expected Total cost of RT-MLMC). For RT-MLMC with a distribution Q = {ql}Ll=0

such that ql ∝ 2−(b+c)l/2, when b ≥ c, its expected total cost satisfies the followings.

• If Assumption 2.1 holds and FL is strongly convex, let γt = 1/(t + S2
F /µ

2) and L =
⌈1/a log(4Maϵ

−1)⌉. Then xRT-MLMC
T is an ϵ-optimal point of F after T = O(ϵ−1) iterations.

The total cost of RT-MLMC satisfies C = Õ(ϵ−1).
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• If Assumption 2.1 holds and FL is convex, let stepsizes γt = O(1/
√
T ) and L =

⌈1/a log(4Maϵ
−1)⌉. Then x̂RT-MLMC

T is an ϵ-optimal point of F after T = O(ϵ−2) iterations,
and the total cost of RT-MLMC satisfies C = Õ(ϵ−2).

• If Assumption 2.1(b)(c)(d) and 2.2 hold, let stepsizes γt = O(1/
√
T ) and L =

⌈1/a log(4Maϵ
−2)⌉. Then x̂RT-MLMC

T is an ϵ-stationarity point of F after T = O(ϵ−4) iter-
ations. The total cost of RT-MLMC satisfies C = Õ(ϵ−4).

Remark 3.1 (Selection of {ql}Ll=0). We use the RT-MLMC for convex objectives to illustrate how we
select the ql. To minimize the total cost for achieving ϵ-optimality, conceptually, we are solving the
following optimization problem:

min
{ql}L

l=0

TRT−MLMCCRT−MLMC
iter

s.t. (a)

L∑
l=0

ql = 1, (b) ql ≥ 0,∀ l = 0, ..., L.
(10)

where the constraints are to make sure that Q = {ql}Ll=0 is a distribution. Problem (10) is nonconvex
and we cannot directly solve it. Later in Section C, we show that under properly selected stepsizes, it
holds that

TRT−MLMCCRT−MLMC
iter ∝ V(vRT−MLMC)CRT−MLMC

iter = (

L∑
l=0

qlCl)(

L∑
l=0

Vl/ql).

Optimizing the Lagrange function over {ql}Ll=0 gives ql ∝ 2−(b+c)l/2. Although they might not be
the optimal solution of (10), we have shown that such choice of ql can greatly reduce the total cost
significantly comparing to L-SGD.

Note that when b > c, the total cost of RT-MLMC gets rid of the dependence on log(ϵ−1). Similar
to RU-MLMC and RR-MLMC, RT-MLMC achieves an O(1) expected per-iteration cost and O(1)
variance.
Theorem 3.2 (Total cost for V-MLMC). When b ≥ c, for V-MLMC with batch sizes nl =
⌈2−(b+c)l/2N⌉ for some N > 0, its total cost satisfies the followings.

• If Assumption 2.1 holds and FL is strongly convex, let stepsizes γt = 1/SF , L =

⌈1/a log(4Maϵ
−1)⌉, and N = Õ(ϵ−1). Then xV-MLMC

T is an ϵ-optimal solution of F after
T = O(log(ϵ−1)) iterations. The total cost of V-MLMC satisfies C = Õ(ϵ−max{1,c/a}).

• If Assumption 2.1 holds and FL is convex, let stepsizes γt = 1/(2SF ), L = ⌈1/a log(4Maϵ
−1)⌉,

and N = Õ(ϵ−1). Then x̂V-MLMC
T is an ϵ-optimal solution of F after T = O(ϵ−1) iterations.

The total cost of V-MLMC satisfies C = Õ(ϵ−1−max{1,c/a}).

• If Assumption 2.1(b)(c)(d) and 2.2 hold, let stepsizes γt = 1/(SF ), L = ⌈1/a log(4Maϵ
−2)⌉,

and N = Õ(ϵ−2). Then x̂V-MLMC
T is an ϵ-stationarity point of F after T = O(ϵ−2) iterations.

The total cost of V-MLMC satisfies C = Õ(ϵ−2−2max{1,c/a}).
Remark 3.2. Optimizing the total cost with respect to {nl}Ll=0 in the continuous space shows that
nl ∝ 2−(b+c)l/2. Since mini-batch size nl has to be integer numbers, we set nl = ⌈2−(b+c)l/2N⌉ for
some constant N > 0. Since nl ≤ 2−(b+c)l/2N + 1, the per-iteration cost satisfies

CV-MLMC
iter ≤

L∑
l=0

2(c−b)l/2N +

L∑
l=0

2cl
(if b>c)
= O(N) +O(ϵ−c/a). (11)

where L = ⌈1/a log(4Maϵ
−1)⌉ as specified in the theorem. The first term in (11) represents the

desired balanced per-iteration cost of MLMC, while the second term refers to the cost incurred by
rounding to integer numbers. When c < b and N = O(1), under the specified L in the theorem, the
second term dominates the per-iteration cost. At the same time, since the variance of V-MLMC is
O(N−1) = O(1), the iteration complexity and the per-iteration cost of V-MLMC are the same as
L-SGD. Therefore V-MLMC cannot reduce the total cost comparing to L-SGD when N is small.
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Using large N = O(ϵ−1) reduces the variance to O(ϵ) and V-MLMC behaves like gradient descent.
Thus the iteration complexity of V-MLMC is reduced by O(ϵ−1) in the strongly convex case and the
convex case and the total cost becomes Õ(ϵ−max{1,c/a}) and O(ϵ−1−max{1,c/a}), respectively. In
any case, V-MLMC is always O(ϵ−min{1,c/a}) better than L-SGD.

One may also use N = k2(b+c)L/2 with certain k so that 2−(b+c)l/2N is integer for any l ∈ [L].
Then there will be no extra cost incurred by rounding to integers, i.e., the second term on the right
hand side of (11) becomes 0. In such cases, the total cost of V-MLMC matches that of RT-MLMC
and is always O(ϵ−c/a) better than L-SGD.

The drawback is that V-MLMC has to use very large N and thus large mini-batch {nl}Ll=0 for small l.
Note that L-SGD cannot use large batch to reduce the total cost.

When b > c, the total cost of V-MLMC can get rid of the dependence on log(ϵ−1) in the convex
and nonconvex smooth case by setting N = O(ϵ−1) or N = O(ϵ−2) in the convex case or the
nonconvex case, respectively. The logarithmic term in the strongly convex case comes from the
iteration complexity. When b = c, O(N) in (11) becomes O(N log(ϵ−1)) and when b < c, O(N)
in (11) becomes O(Nϵ−(c−b)/2a). Note that the variance will increase by the same amount, which
explains why the cost of the MLMC methods increases gets larger when b ≤ c. Detailed discussions
are in Appendix C.3.
Remark 3.3 (Applicability of MLMC gradient methods). When b > c, RU-MLMC and RR-MLMC
are the most favorable among the four MLMC methods since they have unbiased gradient estimators
and do not need to specify L in advance. When b ≤ c, only RT-MLMC and V-MLMC are applicable.
They introduce bias to avoid the high computation cost. RT-MLMC is the most versatile algorithm
among the four MLMC methods since it has no restrictions on a, b, c and does not need any mini-
batch. It suits the situations when the per-iteration budget is limited, e.g., when one only has limited
samples or computation power. V-MLMC uses large mini-batches that lead to a very small variance.
Therefore a constant stepsize O(1) is sufficient to guarantee convergence.
Remark 3.4 (Unbiased gradient estimator is not necessarily the best). When b ≤ c, RU-MLMC
and RR-MLMC can still build up unbiased gradient estimators. However, the variance and the
expected cost cannot stay finite at the same time. As a result, the expected total cost for achieving
ϵ-optimality becomes infinite. Such observation suggests that unbiased gradient estimator are not
necessarily the best. It further strengthens the importance of balancing the bias, variance, and cost.

4 Applications to Conditional Stochastic Optimization

Conditional stochastic optimization has been utilized to model and solve many applications in
machine learning, including the optimal control in linearly-solvable Markov decision process [8],
policy evaluation and control in reinforcement learning [8, 9, 28], meta-learning [20], instrumental
variable regression [27]. Previously, Hu et al. [20] considered biased SGD method and biased variance
reduction methods using SPIDER [12]. Note that the biased SGD method they used can be treated as
a special case of the L-SGD in our paper.

In the following, we show that MLMC methods can significantly reduce the sample complexity and
achieve better results than the biased variance reduction methods proposed in their paper. Recall the
definition of CSO problem and its approximation function F l(x).

min
x∈Rd

F (x) := Eξfξ(Eη|ξgη(x, ξ)); F
l(x) = EξlE{ηl

j}2l
j=1|ξl

[
fξl

( 1

2l

2l∑
j=1

gηl
j
(x, ξl)

)]
, (12)

where ξl ∼ P(ξ) and {ηlj}2
l

j=1 ∼ P(η|ξli). Denote ζl = (ξl, {ηlj}2
l

j=1) and ĝn1:n2(x, ζ
l) = (n2 −

n1 + 1)−1
∑n2

j=n1
gηl

j
(x, ξl) for some 1 ≤ n1 ≤ n2. For each query on a query point x, SOl returns

(hl(x, ζl), H l(x, ζl)) such that

hl(x, ζl) = ∇ĝ1:2l(x, ζ
l)⊤∇fξl(ĝ1:2l(x, ζ

l));

H l(x, ζl) = ∇x

[
fξl(ĝ1:2l(x, ζ

l))− 1

2
fξl(ĝ1:2l−1(x, ζl))− 1

2
fξl(ĝ1+2l−1:2l(x, ζ

l))
]
.

(13)
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Table 3: Comparison of Algorithms on CSO

Convexity of F V-MLMC RT-MLMC RU-MLMC/RR-MLMC [20]
Strongly Convex Õ(ϵ−1) Õ(ϵ−1) N.A. Õ(ϵ−2)

Convex Õ(ϵ−2) Õ(ϵ−2) N.A. O(ϵ−3)

Nonconvex Smooth Õ(ϵ−4) Õ(ϵ−4) N.A. O(ϵ−6)†

† becomes O(ϵ−5) when further applying variance reduction.

We denote the cost as the total number of samples η. Thus the cost to query oracle SOl is Cl = 2l.
To apply the MLMC methods, it remains to verify that Assumption 2.1 and Assumption 2.2 hold. We
follow Hu et al. [20] and make some assumptions on the CSO problem.
Assumption 4.1. We assume that the followings hold for CSO problems.

• σ2
g := supx∈Rd,ξEη|ξ||gη(x, ξ)− Eη|ξgη(x, ξ)||22 < +∞.

• fξ(·) is Sf -smooth and Lf -Lipschitz continuous;

• gη(·, ξ) is Sg-smooth and Lg-Lipschitz continuous.
Proposition 4.1. Under Assumption 4.1, we have the following results:

• The functions F and F l are (SgLf + SfL
2
g)-smooth for any l ∈ N. It holds that

∥∇F l(x)−∇F (x)∥22 ≤ L2
gS

2
fσ

2
g2

−l and |F l(x)− F (x)| ≤ Sfσ
2
g2

−l.

• The variance of the oracle SOl satisfies

Var(hl(x, ζl)) ≤ L2
fL

2
g and Var(H l(x, ζl)) ≤ L2

gS
2
fσ

2
g2

−l.

Proposition 4.1 implies that under Assumption 4.1, CSO problems have the following parameter:

a = 1, b = 1, c = 1.

Since b = c, RU-MLMC and RR-MLMC are not applicable. By Theorem 3.2 and Theorem 3.1, we
have the total sample complexity of RT-MLMC and V-MLMC, which is summarized in Table 3.
Corollary 4.1. Under Assumption 4.1, for strongly convex CSO problem, the sample complexity
of V-MLMC and RT-MLMC for finding ϵ-optimal solution is Õ(ϵ−1); for convex CSO problem, the
sample complexity of V-MLMC and RT-MLMC is Õ(ϵ−2); for nonconvex smooth CSO problem, the
sample complexity of V-MLMC and RT-MLMC for finding ϵ-stationary point is Õ(ϵ−4).
Remark 4.1. The sample complexities of V-MLMC and RT-MLMC are better than the lower bounds
proved in Hu et al. [20]. The reason is that Hu et al. [20] assumed access to a stochastic gradient
oracle (black-box oracle) that returns a biased gradient of CSO with O(ϵ) bias and variance O(1)
at a query cost of O(ϵ−1). In contrast, our paper shows that using RT-MLMC, one can construct a
specific gradient estimator (white-box oracle) that has the same O(ϵ) bias and O(1) variance, but
the cost to query such oracle is of order O(log(ϵ−1)). Since the iteration complexity (which only
depends on the bias and the variance) stays the same, the reduced cost to query the oracle leads to a
reduced total cost. Such observation further strengthens the importance of taking into account the
oracle cost when studying the complexity of biased oracle models.

5 Numerical Experiments

In numerical experiments, we apply four MLMC gradient methods and LSGD on three problems, a
synthetic problem with biased oracles, invariant least square, and invariant absolute regression.

The synthetic problem with biased oracles is of the form: minx∈Rd F (x) := 1
2∥x − z∞∥2, where

z∞ = limn→∞ zn and stochastic observation of zn can be obtained via some simulation process
with cost n. Thus the approximation function is F l(x) = 1

2∥x − z2l∥2. Let zn = (1 + bias/n)1d

where ẑn is the output of a simulation such that ẑn ∼ N(zn, σ
2Id). Here bias is a hyperparameter

that controls the bias.
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Figure 1: Top row: synthetic problem. Bottom row: invariant least square. “LR”: learning rate or
stepsizes. “Error”: average error of last iterate. Each subfigure represents the best average last iterate
error a method can achieve with truncation level L selected within {0, ..., 10}, geometry distribution
with parameter p within {0.1, ..., 0.9}, and stepsizes. Each line in the subfigure represents an instance
of the method with a different random initialization. For the synthetic problem, we do not use any
mini-batches, while for invariant least square, we apply mini-batches on randomized MLMC methods
to control variance. The performance is measured by the average error of last iterate.

The invariant least square is a special case of CSO problem with linear function and is of the form:

min
x∈Rd

Eξ=(a,b)f(Eη|aη
⊤w − b),

where f is a loss function, ξ = (a, b) represents the feature label pair, η represents a perturbed
feature. For f , we consider absolute loss and square loss. For simplicity, let η ∼ N(a, σ2Id). We
generate 2000 sample from ξ, i.e., 2000 feature label pairs such that a follows some multivariate
normal distribution and b = a⊤x∗ with x∗ generated via a multivariate normal distribution. The
MLMC gradient is constructed following (13).

Figure 1 summarizes the optimal parameter setup that achieves the smallest average error over a
certain number of trials under a given total budget for quadratic program and invariant least square.
More detailed setup and report on comparison and discussion on RR-MLMC and invariant absolute
regression are given in Appendix F.

• We observe that V-MLMC has the smallest variance as suggested by the theory while the variances
of RT-MLMC, RU-MLMC, and RR-MLMC are larger than the variance of LSGD due to the
extra randomness caused by additional sampling. Thus we use mini-batch for randomized MLMC
methods to obtain a stable training process while using larger stepsizes.

• In practice, we observe that sometimes LSGD outperforms MLMC gradient methods, especially
when we are only aiming for low accuracy solution. This may be caused by the high variance of
MLMC methods and possibly large hidden constant factor in the complexity bounds. When using
the same truncation level, we observe that RT-MLMC generally converges faster than LSGD in the
early stages but suffers more from the high variance in later stages.

• We observe that biased MLMC methods generally outperform unbiased MLMC methods. It further
justifies the importance of bias, variance, cost tradeoff as we mentioned in Remark 3.4.

6 Conclusion

This paper provides a systematic study of the bias-variance-cost tradeoff of several MLMC gradient
methods under a generic biased oracle model for stochastic optimization, shedding light on their
superiority and limitations under different situations. For future work, combing variance reduction
techniques with MLMC gradient estimators should further reduce the total costs in the nonconvex
smooth setting. Second, the current MLMC techniques focus on constructing gradient estimators
whose bias level maintains the same at each iteration. Another possible approach is to construct
MLMC gradient estimators that adaptively reduce the bias. Lastly, it remains interesting to explore
the power of MLMC gradient methods on other applications, for instance, quantization in distributed
optimization and federated learning. It also remains open to characterize the conditions when MLMC
can greatly outperform LSGD numerically in real-world applications.
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