Under review as a conference paper at ICLR 2026

CONSTRUCTING COHERENT SPATIAL MEMORY IN
LLM AGENTS THROUGH GRAPH RECTIFICATION

Anonymous authors
Paper under double-blind review

& Build me amap! [d
{ First, | walked east from the train station to the
supermarket, then | went north to the park...

, _-——————— -~ ~ , —_-——————— -~
I Directly Using Context I Incremental Graph
- V4 4 7 Construction
a, a) , 9
\
= A = 1 | Capped Memory

®
|:> But how to handle error
during Construction?

|
1 X Forgetting
|
I .
\ X Inconsistency
N\
~

4
-

1
: | Structured Storage
1 . |
Graph Version
‘\l— Control |
~

7/
________ -

\
1
1
1 X Memory Explosion :
1
1
1
1
/

N

Figure 1: Spatial reasoning paradigms for LLM agents: Direct context-based approach with inherent
limitations versus incremental graph construction with structured error handling capabilities.

ABSTRACT

Given a map description through global traversal navigation instructions (e.g., vis-
iting each room sequentially with action signals such as north, west, etc.), an
LLM can often infer the implicit spatial layout of the environment and answer
user queries by providing a shortest path from a start to a destination (for instance,
navigating from the lobby to a meeting room via the hall and elevator). However,
such context-dependent querying becomes incapable as the environment grows
much longer, motivating the need for incremental map construction that builds a
complete topological graph from stepwise observations. We propose a framework
for LLM-driven construction and map repair, designed to detect, localize, and
correct structural inconsistencies in incrementally constructed navigation graphs.
Central to our method is the Version Control, which records the full history of
graph edits and their source observations, enabling fine-grained rollback, conflict
tracing, and repair evaluation. We further introduce an Edge Impact Score to prior-
itize minimal-cost repairs based on structural reachability, path usage, and conflict
propagation. To properly evaluate our approach, we create a refined version of the
MANGO benchmark dataset by systematically removing non-topological actions
and inherent structural conflicts, providing a cleaner testbed for LLM-driven con-
struction and map repair. Our approach significantly improves map correctness
and robustness, especially in scenarios with entangled or chained inconsistencies.
Our results highlight the importance of introspective, history-aware repair mech-
anisms for maintaining coherent spatial memory in LLM agents.

1 INTRODUCTION

LLMs have shown strong abilities in open-domain reasoning, sequential planning, and text-based
navigation. However, in text-processing environments, spatial cognition with LLMs still primarily
depends on direct reasoning within the context window (Ding et al.,|2024). However, this approach
presents several potential challenges: it may exceed context capacity limitations when processing

Under review as a conference paper at ICLR 2026

extensive texts, encounter context forgetting issues when addressing complex problems, and intro-
duce inconsistencies in iterative reasoning processes (see Figure [I). Consequently, when tackling
complex large-scale spatial problems, adopting a human-like cognitive approach—progressively as-
sembling local spatial cognition to achieve understanding of complex spaces (Xia et al., 2025)—may
constitute a superior solution. For LLMs, this methodology alleviates contextual pressure by incre-
mentally storing local spatial cognition in graph structures, requiring the context to process only
current local information. Furthermore, the structured storage through graph representation ensures
consistency in search structures and provides error correction capabilities when cognitive biases
occur. Despite this potential, the question of how to effectively represent and maintain complex
spatial layouts in such graph structures remains largely unexplored. In particular, small perceptual
or reasoning errors made early in the mapping process can silently propagate through the structure,
eventually leading to severe inconsistencies.

While structural conflicts such as duplicated node names in different location or multiple outgoing
edges in the same direction can be detected once they appear in the graph, the underlying errors
that cause these conflicts, such as incorrect edge insertions or misnamed nodes — may have been
introduced much earlier. These causal errors often remain unnoticed until enough context has accu-
mulated in the graph; only then do they emerge as inconsistencies. This temporal gap between the
cause and the observable conflict makes diagnosis and repair especially challenging.

Worse still, many of these errors exhibit coupled dependencies: A single erroneous edge or misin-
terpretation of spatial relationships can trigger a cascading sequence of incorrect additions, creating
interconnected chains of errors that cannot be resolved through examination of the current graph
state alone. Since most LLMs lack persistent memory or Version Control, they are poorly equipped
to trace the provenance of errors or reason about when and why a faulty edge was introduced.

To address this challenge, we propose LLM-MapRepair, a modular framework for detecting and
repairing topological inconsistencies in navigation graphs constructed by LLM agents. At the core
of our method is the Version Control, a versioned graph history that records every modification to
the graph, along with its originating observation and time indexed head. Version Control enables
time-aware tracing, rollback, and structural comparison, allowing the system to pinpoint the specific
actions that introduced inconsistencies, even if they occurred many steps earlier.

To improve the efficiency of graph repair, we introduce an Edge Impact Score to prioritize repair
actions by estimating the potential downstream effects of each edge based on reachability, usage
frequency, and conflict propagation. This enables the system to identify low-impact edges that can
be safely edited or removed, thereby reducing the risk of introducing further inconsistencies during
the repair process.

We evaluate our approach on environments from the MANGO benchmarks (Ding et al.| 2024),
where LLM agents construct navigation graphs from raw textual observations. Experiments show
that our method significantly improves structural integrity and overall task performance, especially
in cases involving long-range error propagation. Our contributions are as follows:

* We identify a critical limitation of LLM-based agents in long-horizon exploration: their
inability to detect and correct accumulated structural errors that emerge from temporally
distant actions.

* We propose a history-aware graph repair framework, integrating Version Control-based
error tracing, Edge Impact scoring.

* We refine the MANGO (Ding et al., |2024) benchmark dataset by systematically remov-
ing all non-topological actions and inherent structural conflicts, creating a topologically
consistent dataset better suited for evaluating LLM-based spatial mapping and navigation.

1.1 RELATED WORK

Enhancing LLMs Spatial Reasoning. Recent advances have improved LLMs’ spatial reasoning
through specialized training and prompting. AlphaMaze (Dao & Vu, [2025) combines supervised
learning with reinforcement learning (GRPO) for maze navigation, while Mind’s Eye (Wu et al.,
2024b) employs visualization-of-thought” prompting to simulate internal spatial imagery. Despite
these improvements, both approaches remain fundamentally limited by the model’s contextual ca-
pacity and lack mechanisms to maintain consistency across extended spatial reasoning tasks.

Under review as a conference paper at ICLR 2026

Original Graph with Conflict Detection Error Localization
Possible Conflict (Sec 2.2) g (Sec 2.3) 1
}L ‘-%'E> m A ‘-;"E> m é ‘.-:."E> m Version Control
G ﬁ G G A (Sec 2.4)
P # Pod o3 8
L= . : N
O h et O 9 i O 9 & | Step1 A @Jﬁ}\ 1
= = - 1 o =
w 80F w Rof w ROF | .. wBow.
- [t~ 1 . = B
I?I <y | Step3 @E>=‘\ :
Repaired Graph . ! i
epaired Grap m search and check }Z—(— ______ _\,'
P | - 1 i .:. [®] i
d“@ = A Until no more A ‘---'E> il A
conflicts . _J_L_I ﬁ Q P ininitetetttelelttal b
= - 1 | - 1 -
Sofdow — | de @ — o |
G ﬁ ~ G |:> G ﬁ | Step Edit History: i
g y _ ! = 1
E\\\E> T = h\\ T w : Observation: :
1 Inside Building & 's lobby, the entrance !
! to Building 4> is on the east wall. :
Then back to Conflict Detection i
1

Thought:
%

1
1
1
(e 22) @ I\ %> is located in the east side of & .
Figure 2: Overview of the LLM-MapRepair framework.

Evaluation of Map Construction in Language Agents. While LLMs demonstrate local spatial
understanding, they fail to maintain consistent global world models during incremental exploration.
The MANGO benchmark (Ding et al, [2024) reveals that even GPT-4 struggles with long-distance
planning and localization under partial observations, with performance degrading beyond 70 reason-
ing steps due to context limitations. Modular navigation frameworks (Zhang & Ji, 2025) attempt to
address this through planning-execution modules but critically lack graph-level consistency track-
ing, leaving structural inconsistencies undetected and uncorrected during extended exploration.

Spatial Representations and Vision assisted Scene Graphs. Explicit graph representations have
shown promise for structured navigation. SG-Nav (Yin et al.| |2024) constructs 3D scene graphs
for zero-shot object navigation, UniGoal (Yin et al., [2025) provides unified multi-modal graph rep-
resentations, and VoroNav (Wu et al.l |2024a) uses Voronoi-based spatial partitioning. However,
these methods suffer from two critical limitations: they assume static environments where graphs
remain unchanged, and they rely heavily on pre-built visual scene graphs, making them unsuitable
for dynamic text-based exploration where errors accumulate over time. Existing approaches fail to
address the fundamental challenge of maintaining graph consistency during dynamic construction
from textual input. Current methods lack systematic error detection and repair mechanisms, lead-
ing to compounding inconsistencies that degrade performance over extended exploration sequences.
Our work fills this gap by introducing a comprehensive framework for graph construction and re-
pair that operates solely on textual descriptions while actively detecting and correcting structural
inconsistencies as they emerge.

2 APPROACH

2.1 OVERVIEW OF THE FRAMEWORK

As mentioned in Sec/I} directly using LLM context to process complex textual scenarios is imprac-
tical. For instance, the spirit game in the MANGO dataset contains up to 1,264 observation steps,
a text length that greatly exceeds LLM capabilities. Consequently, when Ding et al.| (2024) tests
the MANGO dataset, the authors only evaluated the first 70 steps of each game. To enable LLMs
to handle complex long texts, we introduce an incremental graph construction approach. The LLM
incrementally updates a graph by recording spatial relationships from each new observation and

Under review as a conference paper at ICLR 2026

; \
1+ Topology Conflict 1. Directional Conflict i Naming Conflict
Hallway A 3 south (should be north) left

\

/ \ | 2 -
poth 5 /N | e ' L M =t ’
l \

: \ : | Room C west Room B east |
: s Hallway
Room B north north Kitchen B south X south (should be north)
south l south

l west left
north
| (o}
e —

N / N Graph with conflicts VAEAN Repaired Graph

\

(a) Conflict Types (b) Challenge Scenario

Figure 3: (a) Three types of structural conflicts — naming conflict, directional conflict, and topolog-
ical conflict. Highlighted nodes indicate the conflicting pairs. (b) A challenging conflict scenario:
a misdirected edge from Room E to Room G introduces a latent spatial misalignment. A visible
topology conflict emerges later between Room D and Room I (highlighted), while correcting the
edge E—G may trigger a new conflict between Room H and Room A. The edge E—J is incorrect,
though it is unrelated to the current conflict.

automatically merging them into a complete graph.To ensure the structural consistency of topolog-
ical maps incrementally constructed by LLMs in partially observable environments, we propose a
modular repair framework that detects and corrects errors as they emerge during exploration.

Figure 2] illustrates the complete workflow of the LLM-MapRepair framework for spatial graph
construction and repair. The framework operates cyclically to transform conflict-laden graphs into
structurally consistent representations through systematic error detection and targeted corrections.

The repair process consists of three integrated stages that work in concert. Conflict Detection (Sec
[2.2) systematically identifies structural inconsistencies within the graph, highlighting problematic
connections that violate spatial constraints. Error Localization (Sec then analyzes these de-
tected conflicts, employing an Edge Impact Scorer to prioritize high-weight erroneous edges and
trace their origins to specific reasoning steps. The Version Control component (Sec [2.4) maintains
comprehensive historical context through a Version Control module, preserving both original obser-
vations and the reasoning processes that generated each edge.

The framework’s strength lies in its introspective capabilities. When examining the commit his-
tory, the agent can access complete contextual information, including original observations (“Inside
Building is lobby, the entrance to Building is on the east wall”’) and associated reasoning thoughts
(”is located in the east side of””). This historical transparency enables the agent to identify flaws in
original spatial reasoning and apply targeted repairs. After each “Fix the error” operation, the system
returns to Conflict Detection to verify that corrections haven’t introduced new inconsistencies, con-
tinuing until a conflict-free "Repaired Graph” is achieved. By maintaining versioned graph history
and performing targeted, low-impact corrections, this framework enables robust introspective rea-
soning over dynamically constructed maps, proving especially effective in long-horizon exploration
scenarios where early errors may only manifest during later stages of the process.

2.2 CONFLICT DETECTION

As LLM agents build navigation graphs from text, inconsistencies may gradually accumulate, result-
ing in structural conflicts. We identify three major types—naming, directional, and topological—as
illustrated in Figure[3{a) conflict types:

* Topological Conflict: Arises from invalid graph structures such as cycles in tree-like
spaces, unreachable nodes, or over-connected components. Detection: Use graph traversal,
cycle detection, and connected component analysis.

* Directional Conflict: Happens when a node has multiple outgoing edges labeled with the
same direction (e.g., two “north” edges), which violates spatial constraints. Detection:
Enforce a single outgoing edge per direction for each node.

Under review as a conference paper at ICLR 2026

* Naming Conflict: Occurs when different locations are assigned the same name (e.g., two
“Kitchens” in distinct positions), leading to ambiguity in reasoning and localization. Detec-
tion: Check for identical names associated with distinct coordinates using name hashing.

2.3 ERROR LOCALIZATION

Resolving conflicts in LLM-generated navigation graphs is often more difficult than detecting them,
due to several intertwined challenges illustrated in Figure[3(b). The primary complexity stems from
delayed conflicts, where errors introduced early may not be noticed until much later in the explo-
ration process. As demonstrated in the challenge scenario, a wrong direction from Room E to G
leads to a cascade of misplacements, but the actual conflict only becomes apparent when the loop
reaches overlapping Rooms D and I. This temporal gap between error introduction and detection
is further complicated by entangled conflicts, where attempting to fix one edge can inadvertently
create new conflicts elsewhere in the graph. For instance, adjusting the Room E—G connection
resolves the initial overlap but simultaneously causes a new conflict between Rooms H and A. Per-
haps most problematically, silent errors can persist undetected due to the absence of contradictory
evidence. The incorrect direction from Room E to J exemplifies this issue, causing no immediate
conflict while silently corrupting the underlying map structure.

The asynchrony between graph construction errors and structural conflicts motivate our framework’s
separation of conflict detection and error localization, enabling robust identification of true error
sources through temporal and structural reasoning.

Once a conflict is detected, the system must identify not just the conflicting edges, but the actual root
cause that introduced the inconsistency. This is non-trivial, as the erroneous edge may lie far from
the observed conflict and may even appear structurally correct in isolation. Our localization pipeline
proceeds in four stages: (1) identifying the minimal conflicting path pair, (2) computing their lowest
common ancestor (LCA), (3) extracting divergent edges as error candidates, and (4) scoring and
ranking these candidates by impact.

Minimal Conflicting Path Pair Given a structural conflict (e.g., naming or topology), we first
locate two distinct paths that lead to the conflicting nodes. For instance, in Figure [3] challenge
scenario, the topology conflict between Room D and Room I can be traced to two paths:

Path; : RoomB — C —» D
Path, : RoomB - E—+G > H — 1

Both paths result in overlapping node positions, violating spatial exclusivity constraints.

Lowest Common Ancestor (LCA) To identify where the error first diverged, we compute the
lowest common ancestor (LCA) of the two conflicting paths. This is the last node shared between
them before the divergence that leads to inconsistency. Formally, for paths p; and po, let:

LCA(p1,p2) = max{v | v € p1 N pe, order(v) is minimal} (1)

In Figure |3} Room B serves as the LCA. Edges beyond this node are considered candidate error
sources.

Candidate Edge Extraction We extract the divergent subpaths from the LCA to each conflict
node and collect all edges along these subpaths as potential causes of the inconsistency. In the
example:

Candidate edges = {B - C, C — D, E — G,

G—H H->T1}

Additionally, silent errors (e.g., E—J) not yet resulting in conflicts can also be included as fallback
candidates for global ranking.

Edge Scoring and Ranking To determine which candidate edge to prioritize for inspection and
repair, we assign each edge a composite score based on three factors: reachability, conflict count,
and usage. These reflect the potential structural impact, the degree of inconsistency evidence, and
the reliance of observed paths on the edge, respectively.

Under review as a conference paper at ICLR 2026

PageRank-Based Heuristic Motivation. We draw theoretical motivation from PageRank (Brin &
Page, |1998)), which models the importance of a node as the stationary distribution of a random
walk. Extending this idea to edges, we treat error propagation as a stochastic process over the
graph and model the importance of an edge in contributing to potential error spread and repair cost.
Specifically, we define three factors, each reflecting a different mode of edge influence:

» Reachability captures the structural influence of an edge: the number of downstream nodes
reachable from edge e, reflecting how far an error at e could theoretically propagate in the
graph.

* Conflict Count captures the error-generating potential of an edge: the number of distinct
conflicts in which e participates, serving as direct evidence of its contribution to observed
inconsistencies.

» Usage captures the contextual dependency of an edge: the number of conflict-related paths
that include e, indicating how often it is actually relied upon in failure scenarios. While
usage is constrained by reachability, they capture distinct dimensions—reachability reflects
global potential, whereas usage reflects local empirical relevance.

According to the convergence properties of the PageRank process, a uniform combination of influ-
ence features—without weighting—is sufficient to approximate relative importance under general
assumptions. To avoid introducing hard-to-tune hyperparameters, we adopt a simple unweighted
scoring function, after min-max normalization within the candidate set:

score(e) = @1(6) + Cmt(e) + @(e) (2)

Repair Prioritization Objective Edge scoring not only identifies likely error sources, but also
informs which edge to inspect or repair first. We prioritize edges that can either resolve existing
conflicts or trigger new ones—thereby reducing ambiguity and accelerating convergence.

To formalize this, we define the expected Conflict Revelation Gain (CRG) of an edge e as:
CRG(e) £ E[|Cry1| — |Cy| | repair(e)] 3)

where C, is the set of known conflicts at time ¢. A high-CRG edge is likely to expose hidden errors
or clarify causal paths.

While CRG is hard to compute directly, our score approximates it:
score(e) = Reach(e) + Conflict(e) + Usage(e), &)
capturing structural influence, inconsistency evidence, and observed dependency.

Edges are thus prioritized by descending score. However, to trace an edge’s origin, estimate its
downstream effects, or reverse a mistaken fix, we must maintain temporal structure over graph
edits—this motivates the next component: the Version Control.

2.4 VERSION CONTROL

To support long-term consistency in LLM-driven graph construction, we introduce the Version Con-
trol—a lightweight, structured history mechanism that logs all changes to the navigation graph
across time. Unlike flat logs or linear event lists, Version Control maintains versioned snapshots
of the graph in a directed chain, enabling targeted rollback, difference analysis, and recall thinking
history.

Version Control Structure. Version Control is a directed chain of version records
[Go, G, . .., G¢], where each commit history G; represents a step-wise change to the graph. Rather
than storing full graph snapshots, each version logs only the incremental updates. (See Figure)

G; = {Step,id, Commit, Trigger_event, Observation_id, Analysis}

This structure minimizes memory cost while enabling exact reconstructions.

Under review as a conference paper at ICLR 2026

{step_id:1,
Commit: + A->B,
Trigger_event:
Observation,
Observation_id:
obs_1,

Version

{step_id:3,
Commit:
+B->D
-B->C,
Trigger_event:
conflcit_repair,
Observation_id: obs_3,

Analysis:...}

—

4

Analysis:...}

Go G1 H G2 EdgeG3B->D
(initial) Edge_A->B Edge_B->C (replaced)

y

t: + B->C,

Figure 4: Each commit G, represents a commit to the graph (e.g., edge additions or conflict-triggered
replacements). The Version Control system maintains a linear commit history where each commit
is indexed by its corresponding edge modification. Commit metadata includes the step identifier,
specific edge changes (+ for additions, - for removals during replacements), trigger event type, and
associated observation. The system supports three core operations: rollback to previous commits,
recall of commit details, and diff comparisons between commits.

Version

... Commi

Supported Operations. Version Control supports three key operations:
* rollback_to(version): Restores the graph to a prior state by undoing subsequent
steps.

* recall_step (version): Obtain the thinking history corresponding to the step.

* diff (G;, G;): Computes edge-level differences between two versions.

These operations support both runtime repair decisions and post hoc analysis.

Incremental Evolution. Every LLM-initiated interaction—whether through new observations
or repair actions—triggers a graph update and logs a new version in Version Control. This
guarantees that even failed or partially correct decisions are preserved for future analysis.
Version Control records whether an update was conflict-triggered (e.g., Trigger_event
conflict_repair) to provide interpretability in version history. Version Control enables fol-
lowing key capabilities:

* Graph alignment: Compare versions before and after a repair to assess changes.

* Structural diffing: Detect which steps introduced regressions or inconsistencies.

* Error propagation tracing: Model how errors spread over time.
Unlike flat logs or event lists, the versioned graph design supports non-destructive rollbacks and
dependency-aware repair strategies.

This aligns with well-established principles in database systems, where write-ahead logging
(WAL) (Gray & Reuter, [1993) ensures recoverability and traceability by recording all state changes.
Similarly, Version Control gives LLM-based systems a foundation for Version Control, self-
debugging, and structured repair—all essential for interactive, persistent reasoning tasks.

Under review as a conference paper at ICLR 2026

3 EXPERIMENT

3.1 DATASET

We conduct our experiments on the MANGO benchmark (Ding et al.,|[2024), a curated collection of
53 interactive fiction (IF) environments originally derived from the Jericho benchmark (Hausknecht
et al., 2019). Unlike Jericho, MANGO excludes non-spatial actions (e.g., “take” or “examine”),
ensuring that every action directly corresponds to a location change. This design choice makes the
environment ideal for evaluating the construction and repair of navigational graphs.

Each episode in MANGO consists of an agent performing a series of movement commands (e.g.,
“go north”, “go down”) based on textual observations. The resulting action-observation trajectory
is used to incrementally build a topological map. However, we found that the original dataset itself
contains numerous structural conflicts and non-topological actions, which requires us to first correct
the graphs. The detailed steps for removing structural conflicts can be found in the appendix.

3.2 GRAPH CONSTRUCTION PROCESS

We employ an LLM to incrementally construct navigation graphs by processing each step of the
walkthrough sequentially. For each game, the LLM reads the step-by-step walkthrough and builds
the navigation graph incrementally, where each action becomes an edge in the graph and each loca-
tion becomes a node. The LLM only creates new edges or nodes when it determines that the current
location has changed based on the textual observations.

Table 1: Comparison of Repair Method Performance

Method Avg. Loops Repair Rate (%) Accuracy (%)
Edge-Impact Ranking Only 6.39 75.21 44.69
Version Control Only 7.44 63.03 54.00
Version Control+Edge-Impact Ranking 8.20 68.91 54.88
Baseline(GPT-40) 9.52 21.85 5.77

3.3 ABLATION STUDY

To evaluate the contribution of different components in our repair framework, we conduct an abla-
tion study based on the conflict-prone graphs identified in Table [[l We introduce the LLM-based
graph repair loop with different tool configurations to measure their individual impact on repair per-
formance. During the repair process, each conflict is given a maximum of 10 repair attempts. If
secondary conflicts arise during the repair process, they do not consume additional repair oppor-
tunities. Throughout the entire conflict resolution process, the LLM maintains context containing
historical repair information to inform subsequent decisions. In all experiments, the LLM is GPT-4o.

We compare four settings in Table[I} Edge-Impact Ranking Only, which prioritizes repair candidates
by their scores; Version Control Only, which relies solely on the Version Control for history and
rollback; Version Control + Edge-Impact Ranking, our full method combining both; and a Baseline
without filtering or prioritization.

The table shows three key metrics for each method: Avg. Loops (average number of repair iterations
required), repaired (number of conflicts successfully addressed), and correct (number of conflicts
resolved with correct solutions).

The results in Table[I|reveal distinct performance characteristics for each repair strategy. The Edge-
Impact Ranking Only method achieves the lowest average repair iterations (6.39 loops), requiring
approximately 14% fewer iterations compared to Version Control-only and 33% fewer than the
baseline approach. This efficiency stems from its focus on edge dependencies, preferring to quickly
modify edges that are likely to trigger secondary conflicts, thereby reducing the total number of
modifications needed. With a repair rate of 75.21% (179/238), the method successfully addresses
19% more conflicts than Version Control-only and over 240% more than the baseline. However,

Under review as a conference paper at ICLR 2026

while Edge Impact Ranking excels at conflict resolution, its accuracy is only 44.69%—fixing con-
flicts does not necessarily mean the underlying graph errors are properly corrected, as conflicts and
actual errors are not strongly correlated.

The Version Control-only approach exhibits higher average loop counts (7.44, approximately 16%
more than Edge Impact Ranking) due to the additional operations it performs, such as rollback
actions and edge information queries, each consuming iteration cycles. However, Version Control’s
access to historical context and reasoning information recorded during edge insertion enables more
accurate identification of root causes. With an accuracy of 54.00% (81/150), it achieves 21% higher
accuracy than Edge Impact Ranking despite a lower repair rate of 63.03%. This is particularly
effective when the candidate edge set is small, leading to more reliable corrections.

When combining both approaches (Version Control + Edge-Impact Ranking), we observe a syner-
gistic effect. While the average loop count increases to 8.20 (28% higher than Edge Impact Ranking
alone), the accuracy improves to 54.88% (90/164). This represents a 22.8% relative improvement
in accuracy over Edge Impact Ranking alone, while maintaining a reasonable repair rate of 68.91%.
The combined method leverages both structural impact analysis for efficient candidate identification
and temporal context for accurate root cause analysis.

The Baseline(GPT-40) without candidate filtering or prioritization mechanisms performs poorly
across all metrics. With an average of 9.52 loops per repair attempt, it achieves only a 21.85% repair
rate (52/238) and a mere 5.77% accuracy (3/52). Most conflicts reach the maximum iteration limit
without successful resolution, highlighting the critical importance of structured error localization
and prioritization in graph repair tasks.

We also embed Version Control + Edge-Impact Ranking into other LLM modules (e.g., GPT-40-
mini, GPT-4.1) to verify the generalization of our method, please refer to supplementary material
for more details. Using the game “event” from Mango benchmark as input, an example of graph
construction and repairing is appended to showcase the result from our method.

4 SUMMARY & LIMITATIONS

We present a framework for repairing navigation graphs constructed by LLms during exploration.
While LLMs can incrementally build topological maps from language observations, their outputs
are often noisy—introducing misaligned edges, duplicates, or subtle conflicts that accumulate and
degrade reasoning.

To address this, we propose a three-stage repair pipeline: conflict detection, error localization, and
impact-aware correction. Central to this is the Version Control, a versioned history of the map
that supports rollback, difference analysis, and causal tracing of errors. We also introduce an Edge
Impact Score to prioritize low-risk edits by quantifying structural and usage-based influence.

Experiments on grid-like maps show significant gains in reliability, though challenges remain in
generalizing to dynamic environments, refining heuristic-based edge ranking, and detecting silent
errors beyond visible conflicts. These results highlight the importance of making LLM agents not
only build but also check and repair their evolving world models.

5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs were employed solely as a tool for text refinement and did not contribute to the
conceptualization of the work.

REFERENCES

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1-7):107-117, 1998. doi: 10.1016/S0169-7552(98)
00110-X. URL http://infolab.stanford.edu/~backrub/google.html.

Gia Tuan Dao and Dinh Bach Vu. Alphamaze: Enhancing large language models’ spatial intelli-
gence via grpo. arXiv preprint arXiv:2502.14669, 2025.

http://infolab.stanford.edu/~backrub/google.html

Under review as a conference paper at ICLR 2026

Peng Ding, Jiading Fang, Peng Li, Kangrui Wang, Xiaochen Zhou, Mo Yu, Jing Li, Matthew R.
Walter, and Hongyuan Mei. Mango: A benchmark for evaluating mapping and navigation abilities
of large language models, 2024. URL https://arxiv.org/abs/2403.19913.

Jim Gray and Andreas Reuter. Transaction processing: Concepts and techniques. In Morgan Kauf-
mann, 1993.

Matthew Hausknecht, Prithviraj Ammanabrolu, C6té Marc-Alexandre, and Yuan Xingdi. Interactive
fiction games: A colossal adventure. CoRR, abs/1909.05398, 2019. URL http://arxiv.
org/abs/1909.05398.

Pengying Wu, Yao Mu, Bingxian Wu, Yi Hou, Ji Ma, Shanghang Zhang, and Chang Liu.
Voronav: Voronoi-based zero-shot object navigation with large language model. arXiv preprint
arXiv:2401.02695, 2024a. URL https://voro—nav.github.iol

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei.
Mind’s eye of llms: Visualization-of-thought elicits spatial reasoning in large language mod-
els. In Advances in Neural Information Processing Systems (NeurlPS), 2024b. URL https:
//microsoft.github.io/visualization—-of-thought.

Sirui Xia, Aili Chen, Xintao Wang, Tinghui Zhu, Yikai Zhang, Jiangjie Chen, and Yanghua Xiao.
Can llms learn to map the world from local descriptions?, 2025. URL |https://arxiv.org/
abs/2505.20874l

Hang Yin, Xiuwei Xu, Zhenyu Wu, Jie Zhou, and Jiwen Lu. Sg-nav: Online 3d scene graph prompt-
ing for llm-based zero-shot object navigation. In Advances in Neural Information Processing
Systems (NeurIPS), 2024. URL https://bagh2178.github.i0/SG-Nav.

Hang Yin, Xiuwei Xu, Linging Zhao, Ziwei Wang, Jie Zhou, and Jiwen Lu. Unigoal: Towards
universal zero-shot goal-oriented navigation. arXiv preprint arXiv:2503.10630, 2025. URL
https://bagh2178.github.io/UniGoal.

Anlong Zhang and Jianmin Ji. Research on navigation methods based on llms. arXiv preprint
arXiv:2504.15600, 2025.

10

https://arxiv.org/abs/2403.19913
http://arxiv.org/abs/1909.05398
http://arxiv.org/abs/1909.05398
https://voro-nav.github.io
https://microsoft.github.io/visualization-of-thought
https://microsoft.github.io/visualization-of-thought
https://arxiv.org/abs/2505.20874
https://arxiv.org/abs/2505.20874
https://bagh2178.github.io/SG-Nav
https://bagh2178.github.io/UniGoal

