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Abstract

In classical AI, perception relies on learning state-based representations, while1

planning — temporal reasoning over action sequences — is typically achieved2

through search. We study whether such reasoning can instead emerge from3

representations that capture both perceptual and temporal structure. We show that4

standard temporal contrastive learning, despite its popularity, often fails to capture5

temporal structure due to its reliance on spurious features. To address this, we6

introduce Contrastive Representations for Temporal Reasoning (CRTR), a7

method that uses a negative sampling scheme to provably remove these spurious8

features and facilitate temporal reasoning. CRTR achieves strong results on9

domains with complex temporal structure, such as Sokoban and Rubik’s Cube.10

In particular, for the Rubik’s Cube, CRTR learns representations that generalize11

across all initial states and allow it to solve the puzzle using fewer search steps than12

BestFS — though with longer solutions. To our knowledge, this is the first method13

that efficiently solves arbitrary Cube states using only learned representations,14

without relying on an external search algorithm.15

16

1 Introduction17

Machine learning has achieved remarkable progress in vision [19], control [8], and language [23, 11].18

Yet it still struggles with structured, combinatorial reasoning. Even simple tasks like planning in19

puzzles or verifying symbolic constraints remain difficult for end-to-end systems [22, 14]. State-of-20

the-art solvers rely on computationally expensive search methods such as A* or BestFS [10]. This21

work asks: Can we learn representations that reduce or eliminate search in combinatorial reasoning?22
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Figure 1: CRTR learns temporally structured repre-
sentations. t-SNE visualization of Sokoban embeddings
learned by CRL (left) and CRTR (right). CRL clusters
within trajectories, missing global structure. CRTR orga-
nizes embeddings across trajectories and time (vertical
axis), capturing dynamics essential for planning.

We study whether temporal contrastive learn-23

ing [17, 8] can enable efficient reasoning di-24

rectly in latent space. While contrastive learning25

has shown promise in control, its performance26

in combinatorial domains is limited. We iden-27

tify a key failure mode: embeddings overfit to28

instance-specific context rather than temporal29

dynamics.30

We introduce Contrastive Representations for31

Temporal Reasoning (CRTR), a simple, theo-32

retically grounded contrastive method that uses33

in-trajectory negatives. By distinguishing tem-34

porally distant states within the same episode, CRTR avoids reliance on irrelevant context and instead35

encodes meaningful temporal dynamics.36

Our main contributions are:37
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1. We identify a critical failure mode of contrastive learning in domains with complex temporal38

structure.39

2. We propose Contrastive Representations for Temporal Reasoning (CRTR), a novel, theoretically40

grounded method using in-trajectory negatives to learn temporally structured representations.41

3. We show that CRTR outperforms prior methods on 4 of 5 combinatorial reasoning tasks, and42

enables solving the Rubik’s Cube with fewer search steps than BestFS (though with longer43

solutions).44

2 Method45

Failure of naı̈ve Contrastive Reinforcement Learning in combinatorial domains. A straight-46

forward approach to learning representations ϕ(s) is to employ contrastive reinforcement learning47

(CRL) [8]. We applied this method in Sokoban — a puzzle game where an agent must push boxes to48

target locations in a maze. Each problem instance is generated with a random wall pattern. Fig. 149

shows a t-SNE projection of representations learned by contrastive reinforcement learning on this task.50

The representations from standard CRL primarily encode the layout of the walls and not the temporal51

structure of the task. The reason representations use those features is that doing so minimizes the52

contrastive objective. Each batch element typically comes from a different maze, so representations53

that use the wall pattern to detect positive vs negative pairs achieve nearly perfect accuracy.54

A mathematical explanation. The failure of temporal contrastive learning can be explained by the55

presence of a context variable c. Each trajectory τ = (s1, . . . , sT ) can be decomposed into a fixed56

context c (e.g., the wall and goal layout in Sokoban) and a temporal part (f1, . . . , fT ) that evolves57

over time (e.g., player and box positions). For the sake of theoretial analysis, we assume that for58

any i < j, the future state sj is conditionally independent of c given si (sj ⊥ c | si), which holds in59

Sokoban.60

Learning representations that ignore context: an idealized algorithm. Our method samples61

negatives (x, x−) that share the same context, so context features cannot help distinguish pos-62

itives from negatives and are excluded from the learned representations. Formally, we draw63

c ∼ P(C), positives (x, x+) ∼ P(X,X+ | c), and negatives x
(i)
− ∼ P(X | c). The objective64

is maxf L(f) ≜ E
[

1
N

∑N
j=1

ef(xj,xj+)

ef(xj,xj+)+
∑N−1

k=1 e
f(xj,x

k
j−)

]
a lower bound on I(X;X+ | C) [15].65

Using the decomposition I(X+;X | C) = I(X+;X) − I(X+;C) (since X+ ⊥ C | X), we see66

that the objective encourages maximizing temporal information I(X;X+) while minimizing context67

information I(X+;C).68

A practical method. While the idealized method is useful for analysis, it assumes that the context69

is clearly separable from the observation, which is rarely the case. We propose a practical algorithm70

that avoids this assumption. The method modifies contrastive sampling: instead of one positive per71

trajectory, we sample multiple positives, so that some negatives in the batch come from the same72

trajectory at different times. Implementing this idea in practice requires changing just a few lines of73

code from prior temporal contrastive learning methods, as highlighted in Appendix I). Using data74

sampled in this way guarantees that some negative training pairs in each batch come from the same75

trajectory. We compare with potential alternative approaches in Appendix J. These within-trajectory76

negatives differ systematically from positives and push the model to focus on temporal variations77

rather than trajectory-wide constants. This method can be applied without any knowledge of the78

context, even to problems without a constant context (e.g., the Rubik’s Cube).79

3 Experiments80

Experimental setup. We evaluate on five combinatorial reasoning tasks: Sokoban [7], Rubik’s81

Cube, N-Puzzle [12], Lights Out [2], and Digit Jumper [3]. Most of these are NP-hard [6, 4, 20] and82

serve as standard RL benchmarks [1, 18, 25]. See Appendix A for full environment details.83

Baselines include: standard CRL [21, 17, 8], a supervised value-based approach[5, 24]; Deep-84

CubeA [1]; and a random network. We test with and without search. When we use search, all85

methods, including DeepCubeA, use BestFS for planning. In the setting without search we plan86
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Figure 2: CRTR performs well in all the evaluated domains. Success rate as a function of search budget
across five domains. CRTR compared to baselines: CRL [8], Supervised [5] and DeepCubeA [1].
Results are averaged over 5 seeds; shaded regions indicate standard error.

by greedily selecting the neighbor with minimum predicted distance under known, deterministic87

dynamics. All the methods avoid loops by only considering states that were not already processed.88

Further evaluation details are provided in Appendix D. The hyperparameters for each method are89

provided in Appendix C.90

Context-free representations for combinatorial reasoning. We analyze learned representations91

in Sokoban, where wall layouts provide clear context features. Fig. 1 compares CRTR with standard92

temporal contrastive learning (CRL). Using t-SNE, we find that CRL clusters trajectories by static93

context, encoding all states from a trajectory similarly, while CRTR aligns states by temporal progress,94

indicating that it discards irrelevant context in favor of task-relevant structure.95
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Figure 3: Distances given by CRTR
representations reflect the temporal
structure well. Correlation (Spear-
man’s ρ) between the distance induced
by learned embeddings and actual dis-
tance across the training, CRTR com-
pared with CRL.

Our second experiment studies whether the learned CRTR repre-96

sentations are useful for decision making and how they compare97

to supervised approaches [1, 5]. We use the representations98

to construct a heuristic for search. As shown in Fig. 2, CRTR99

consistently achieves among the highest success rates, strictly100

the best in two of them. The strong performance relative to101

CRL highlights the importance of removing context informa-102

tion from learned representations. In Appendix E, we provide103

additional, smaller-scale experiments showing that these im-104

provements also hold when using a non-greedy solver. The105

improvement in performance in comparison to supervised base-106

lines suggests that CRTR’s advantage comes from representing107

values as distances between learned representations rather than108

as outputs of a monolithic neural network.109

The t-SNE visualizations (Figure 1) suggests that CRL focuses110

primarily on the static context, while CRTR focuses on the111

temporal structure. Below, we present additional empirical112

evidence supporting this interpretation.113

We perform further analysis in Sokoban environments. Without negative pairs, the classification114

task becomes nearly trivial: the model leverages context cues to achieve close to 100% accuracy115

(Appendix E). Despite this, the learned representations exhibit low correlation with ground-truth116

state-space distances (Figure 3), indicating that the model ignores temporal structure and instead117

relies on static context. In contrast, CRTR prevents reliance on contextual shortcuts, resulting in118

representations that better capture the underlying geometry of the environment (Figure 3). We provide119

a similar analysis for Digit Jumper in Appendix E. We also demonstrate that using CRTR leads to120

improved temporal structure in robotic domains (See Appendix F). In Appendix H we show that121

CRTR results in representations that optimize conditional mutual information I(X,X+|C), while122

CRL does not.123

Is search necessary? Do good representations allow us to solve combinatorial problems without124

search, or at least reduce the amount of search required to get high success rates? We study this125

question by using the learned representations to perform greedy planning for up to 6000 search steps.126

We present the results from this experiment in Figure 4, showing the fraction of problems solved127

with fewer than a certain number of steps. We compare to the variant of CRTR used in Sec. 3. On 4128

/ 5 tasks, CRTR solves nearly all problem instances. The key takeaway is thus: for most problems,129
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Figure 4: CRTR solves most tasks without requiring any search. We plot the fraction of configurations
solved with a solution length of at most x, while limiting the number of nodes created to 6000.
Surprisingly, on the Rubik’s cube CRTR achieves a higher success rate without search, solving all
board configurations within the budget.

CRTR can find solutions without needing any search at all. Perhaps the most interesting result is the130

Rubik’s cube, where we found that our representations can solve all problem instances in less than131

6000 moves. Surprisingly, using search decreases the total fraction of Cube configurations that are132

solved. However, avoiding search comes at a cost: the solutions found without search are typically133

longer than those found with search.134

This simple greedy approach — just picking the neighbor closest to the goal — starts to show hints of135

algorithmic behavior. On Rubik’s Cube, for example, it learns something that looks like a rudimentary136

form of block-building (See Fig. 5), a common strategy used by humans for solving the cube. This137

block building strategy was not programmed or explicitly rewarded, but instead emerged from training138

the representations on random data.139

Ablation experiments. Appendix J presents additional ablation experiments. We find that (1) our140

strategy for sampling data (Alg. 2) outperforms several alternatives, and (2) CRTR is robust to the141

repetition factor hyperparameter, with 2 being a good choice in all settings we have tested.142

4 Conclusions143

In our work, we introduced CRTR, an algorithm for learning high-quality representations in com-144

binatorial reasoning tasks. Our analysis revealed a critical limitation of prior approaches: when145

training demonstrations are separable, their learned representations become trivial and ineffective for146

planning. CRTR addresses this by balancing global negatives, which capture overall task structure,147

with local negatives, which enforce temporal consistency. Experimental results across five domains148

highlight its effectiveness. Notably, the representations learned with CRTR can successfully guide149

search even without explicit planning, suggesting a promising direction for future research. and broad150

applicability. We share the code for reproducibility. 1151

1Our code is available at: https://github.com/combinatorialreasoning/crcr.
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Figure 5: CRTR without search exhibits a block-building-like behavior. Intermediate states from solving
a randomly scrambled cube, illustrating how the algorithm gradually builds partial structure. The
average solve is about 400 moves, and we see similar block building behavior across solves.
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(a) N-Puzzle. (b) Lights Out. (c) Digit Jumper.

Figure 6: Environments: Our experiments used Sokoban (Fig. 1), the Rubik’s Cube (Fig. 5), and the
three environments shown above.

A Environments223

Sokoban. Sokoban is a well-known puzzle game in which a player pushes boxes onto designated224

goal positions within a confined grid. It is known to be hard from a computational complexity225

perspective. Solving it requires reasoning over a vast number of possible move sequences, making it226

a standard benchmark for both classical planning algorithms and modern deep learning approaches227

[7]. Solving Sokoban requires balancing efficient search with long-term planning. In our experiments,228

we use 12×12 boards with four boxes.229

Rubik’s Cube. The Rubik’s Cube is a 3D combinatorial puzzle with over 4.3 × 1019 possible230

configurations, making it an ideal testbed for algorithms tackling massive search spaces. Solving231

the Rubik’s Cube requires sophisticated reasoning and planning, as well as the ability to efficiently232

navigate high-dimensional state spaces. Recent advances in using neural networks for solving233

this puzzle, such as [1], highlight the potential of deep learning in handling such computationally234

challenging tasks.235

N-Puzzle. N-Puzzle is a sliding-tile puzzle with variants such as the 8-puzzle (3×3 grid), 15-puzzle236

(4×4 grid), and 24-puzzle (5×5 grid). The objective is to rearrange tiles into a predefined order by237

sliding them into an empty space. It serves as a classic benchmark for testing the planning and search238

efficiency of algorithms. The problem’s difficulty increases with puzzle size, requiring effective239

heuristics for solving larger instances.240

Lights Out. Lights Out is a single-player game invented in 1995. It is a grid-based game in which241

each cell (or light) can be either on or off. Pressing a cell flips its state and those of its immediate242

neighbors (above, below, left, and right). Corner and edge lights have fewer neighbors and therefore243

affect fewer lights. The goal is to press the lights in a strategic order to turn off all the lights on the244

grid.245

Digit Jumper. Digit Jumper is a grid-based game in which the objective is to get from the top-left246

corner of the board to the bottom-right corner. At each point, the player can move n steps to the left,247

right, up, or down, where n is determined by the number written on the current cell. Digit Jumper is248

an example of an environment with a constant context, as is Sokoban.249

B Best-First Search250

Algorithm 1 Best-First Search [10]

while has nodes to expand do
Take node N with the highest value
Select children ni of N
Compute values vi for the children
Add (ni, vi) to the search tree

end while

Best-First Search (BestFS) greedily prioritizes251

node expansions with the highest heuristic esti-252

mates, aiming to follow paths that are likely to253

reach the goal. Although it does not guarantee254

optimality, BestFS offers a simple and efficient255

strategy for navigating complex search spaces.256

The high-level pseudocode for BestFS is pre-257

sented in Algorithm 1.258
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Figure 8: Learning rate and batch size grid for Rubik’s
Cube. The success rate is evaluated on cubes scrambled
with 10 random moves after 700k training steps.
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Figure 9: CRTR is the only effective normalization
strategy in Sokoban. Effect of using negatives in con-
trastive learning in Sokoban. We compare the setting
where the distance to positives is normalized by the
sum over all batch elements or only the in-batch nega-
tives. The success rate is evaluated on cubes scrambled
with 10 random moves after 400k training steps.

C Training Details259

Code to reproduce all results is available in the anonymous repository referenced in the main text.260

Below, we document the training procedures for the supervised baseline, contrastive baseline, and261

CRTR.262

Training data. For Sokoban, we use trajectories provided by Czechowski et al. [5] and train on263

a dataset of 105 trajectories. For 15-Puzzle, Rubik’s Cube, and Lights Out, we generate training264

trajectories by applying a policy that performs n random actions, where n is set to 150, 21, and 49,265

respectively. In the case of 15-Puzzle, we additionally remove single-step cycles from the dataset266

to improve data efficiency. For Digit Jumper, we generate training data by sampling a random path267

from the upper-left corner to the bottom-right corner on a standard 20× 20 grid. All grid cells not268

required for this path are filled by sampling uniformly from the set 1, . . . , 6. The network for Digit269

Jumper typically converges after a few hours of training, so we train until convergence is observed.270

For Sokoban, Rubik’s Cube, Lights Out, and 15-Puzzle, we adopt an unlimited data setup and train all271

models for two days. This results in the models performing approximately 8× 106 gradient updates272

for Rubik’s Cube, 7× 106 for 15-Puzzle, and 9× 106 for Lights Out.273

Training hyperparameters. We use the Adam optimizer with a constant learning rate throughout274

training. A learning rate of 0.0003 was found to perform well across all environments, with the275

exception of Lights Out, where this setting led to unstable training. For this environment, we instead276

use a reduced learning rate of 0.0001. In all environments, we use a batch size of 512. The choice of277
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Figure 10: Success rate on Rubik’s Cube scrambled with 10 random moves, for models trained with different
contrastive losses. Models using the backward loss consistently achieve better performance than those using
the symmetric variant. Using the dot product without in-trajectory negatives performs similarly to the ℓ2
metric, while combining the dot product with in-trajectory negatives yields the highest success rate. In contrast,
combining in-trajectory negatives with symmetric loss results in a drop in performance, likely because, in CRTR,
such negatives are often closer to the correct solution in the state-space.

learning rate and batch size was guided by the performance of the contrastive baseline on Rubik’s278

Cube. Specifically, we evaluated solve rates on cubes shuffled 10 times, as shown in Figure 8. We279

also conducted grid searches to find the optimal training parameters (learning rate and batch size)280

for the supervised baseline on Sokoban, Lights Out, and Rubik’s Cube . We use the same batch281

size and learning rate across all methods and environments, with the exception of Lights Out, where282

increasing the batch size and learning rate in the supervised baseline led to a higher success rate.283

Network architecture. We adopt the network architecture proposed by Nauman et al. [16], using 8284

layers with a hidden size of 512 and a representation dimension of 64. This configuration was found285

to yield optimal performance for the contrastive baseline on Rubik’s Cube, as illustrated in Figure 7.286

We observed that this architecture performs well in all environments except for two cases:287

• In Sokoban, a convolutional architecture was required to achieve strong performance.288

• In Lights Out, the convolutional network was necessary to ensure training stability.289

Test set. For Sokoban, we construct a separate test set comprising 100 trajectories, which is used290

to compute evaluation metrics such as accuracy, correlation, and t-SNE visualizations. For all other291

environments, a separate test set is unnecessary, as we train for only a single epoch. In this setting,292

evaluation is performed directly on unseen data sampled during training.293

Contrastive loss. We use the backward version of the contrastive loss, which we found to consis-294

tently outperform the symmetrized variant on Rubik’s Cube as shown in Figure 10. We also found295

the backward version to work better on 15-Puzzle and slightly better in the remaining environments.296

For Rubik’s Cube, we use the dot product as the similarity metric. Performance across different297

metrics is presented in Figure 10. While the contrastive baseline performs comparably under the ℓ2298

metric, CRTR achieves significantly better results with the dot product. Based on similar empirical299

evaluations, we use the following metrics for other environments:300

• Lights Out: ℓ2 distance,301

• Digit Jumper and 15-Puzzle: dot product,302
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• Sokoban: squared ℓ2 distance.303

We set the temperature parameter in the contrastive loss to the square root of the representation304

dimension.305

Supervised baseline. The supervised baseline takes as input a pair of states and predicts the306

distance between them by classifying into discrete bins, where the number of bins corresponds to the307

maximum trajectory length observed in the dataset.308

In all environments, the supervised baseline uses the same architecture as the contrastive baseline.309

D Evaluation Details310

We evaluate all networks on 1000 problem instances per environment. For Rubik’s Cube, each311

instance is a cube scrambled using 1000 moves. For 15-Puzzle, Lights Out, and Digit Jumper,312

evaluation boards are sampled randomly. For Sokoban, we follow the same instance generation313

procedure as described by Czechowski et al. [5].314

E Additional Experiments315

A* solver. To verify that the improvements achieved by CRTR are not specific to greedy solvers, we316

conducted an additional experiment using the A* search algorithm. A* employs a heuristic function317

of the form heuristic+α ·cost, where varying α allows trading off between the search budget required318

to solve the problem and the average solution length. As shown in Table 1, for the Rubik’s Cube,319

increasing α from 0 (equivalent to BestFS) to 500 consistently yields better performance for CRTR320

compared to CRL. We therefore hypothesize that the improvement reported in Section 3 is not specific321

to greedy solvers.

Table 1: CRTR effectiveness is not BestFS specific. A* search results on the Rubik’s Cube with a node budget
of 6000, varying α in the priority function. CRTR performs better than CRL for all values of α, achieving shorter
solution lengths and higher solved rates.

α 0 100 200 300 400
CRTR Avg. Solution Length 56.76 46.35 38.42 32.84 29.16
CRTR Success Rate 0.63 0.62 0.59 0.54 0.33
CRL Avg. Solution Length 62.96 49.88 41.94 36.11 31.77
CRL Success Rate 0.54 0.50 0.44 0.40 0.30

322

No-search results. The no-search approach selects, at each step, the state that appears most likely323

to lead toward the solution—based on the learned representation. If the representation were perfect,324

this strategy would yield optimal solutions. In practice, however, suboptimal representations often325

cause the agent to wander through latent states far from the goal before eventually converging. As326

a result, the quality of the representation is reflected in the length of these trajectories: the better it327

captures directionality in latent space, the shorter the resulting solutions.328

Table 2 reports the average solution lengths for the no-search approach on Rubik’s Cube and 15-329

Puzzle. The results suggest that the representations learned by CRTR are better suited to this approach330

than those learned by the contrastive baseline, and they significantly outperform those derived from331

the supervised method. This supports the conclusion that CRTR provides a more reliable notion of332

direction in latent space. Notably, the average solution lengths for both CRTR and CRL are shorter333

than the length of training trajectories in 15-Puzzle (150), indicating evidence of trajectory stitching.334

We furthermore present the distributions of solution lengths for all the methods in Figure 11.335

Accuracy in Sokoban training. During the training of CRL on the Sokoban environment, a perfect336

accuracy is acquired almost immediately, due to the method relying on the context, as demostrated in337

Figure 14.338

10



15 300 6000
Solution Length

0.0

0.5

1.0

Su
cc

es
s 

R
at

e

Rubik

10 200 4000
Solution Length

Lights Out

10 30 90
Solution Length

Sokoban

9 27 81
Solution Length

Digit Jumper

40 120 360
Solution Length

15-Puzzle

CRTR without Search
CRTR with BestFS

CRL without Search
CRL with BestFS

Supervised without Search
Supervised with BestFS

Figure 11: CRTR produces shorter solutions without explicit search in comparison to baselines. Search
can help reduce solution length further. Fraction of boards solved with a solution length of at most x,
comparing CRTR to baselines. Figure 4 in the main text presents analogous results, but only CRTR,
for clarity.

Table 2: Average solution length of the baselines and CRTR on Rubik’s Cube and 15-Puzzle without using
search. Supervised baseline fails to solve Rubik’s Cube without search.

Problem CRTR Contrastive
Baseline

Supervised
Baseline

Rubik’s Cube 448.7 1830.3 NaN
15-puzzle 82.4 119.5 1054.3

Digit Jumper analysis. Digit-Jumper is an example of another constant context (defined in Sec. 2)339

environment, as is Sokoban. It is therefore another environment in which CRL fails rather spectacu-340

larly and therefore, we observe a similar effect to that seen in Sokoban when comparing CRTR to341

standard CRL. As shown in Figure 12, CRL rapidly achieves 100% training accuracy. However, de-342

spite this perfect accuracy, the resulting representations exhibit poor correlation with actual temporal343

structure (Figure 13). This is consistent with the t-SNE visualization (Figure 15): as with Sokoban,344

CRL collapses each trajectory into a single point in the representation space, discarding temporal345

information. In contrast, CRTR preserves a clear temporal structure within the latent space (see346

Figure 15). For non-constant context environments, the difference in representation quality is also347

visible in success rates, accuracy and correlation, it is however much less pronounced.348

F Generalization to Temporal Reasoning in Non-Combinatorial Domains349
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Figure 16: CRTR improves temporal
structure in robotics environments. Com-
parison of Spearman’s rank correlation met-
ric for CR2 (solid) and CRL (dashed) for
D4RL offline datasets.

To investigate whether CRTR also identifies temporal350

features in non-combinatorial domains, we apply it to a351

dataset of robotic manipulation trajectories (the Adroit352

dataset from D4RL [9]). Those tasks require using a353

high-dimensional robotic hand to perform fine motor ac-354

tivities, and are designed to test fine motor control and355

long-horizon planning. We quantify representation quality356

by measuring the predicted distance from each state in357

a trajectory to the final state in a trajectory. Specifically,358

we look at the rank correlation between the time step and359

predicted distance, with a correlation of 1 indicating that360

the learned representations are highly predictive of the361

temporal distance from each state to the final state.362

We look at the correlation through training for CRTR and363

CRL (Fig. 16). CRTR results in a higher correlation (more364

than 0.9 in comparison to 0.5 – 0.8 depending on the en-365

vironment), as well as visibly better training stability – for366

standard CRL, the correlation is visibly unstable through367
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Figure 12: In Digit Jumper, CRL
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curacy, however this is due to re-
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Figure 13: In Digit Jumper,
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ture in robotics environments.
Comparison of Spearman’s rank cor-
relation metric for CR2 (solid) and
CRL (dashed) for D4RL offline
datasets.
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Figure 14: In Sokoban, CRL
quickly acquires near-perfect ac-
curacy, however this is due to re-
lying only on superficial features,
such as walls. Accuracy of clas-
sifying whether two states form a
positive pair across training: CRTR
compared with CRL. The accuracy
saturates at a value smaller than 1
for CRTR, as a result of containing
in-trajectory negatives.

Figure 15: CRTR makes representations reflect the structure of the combinatorial task. t-SNE visualization
of representations learned by CRTR (left) and CRL (right) for Digit Jumper. Colors correspond to trajectories.
CRL representations (right) cluster within trajectories, making them useless for planning.

training and in some cases even becomes smaller as the training progresses. This result is a little368

surprising, and it is not fully clear why does the improvement happen. We hypothesize that this is369

because the initial position of the robot differs between trajectories and serves as a sort of slowly370

changing context, similarly to the Rubik’s Cube case. We conclude that using CRTR results in a371

better temporal structure in the representation space for non-combinatorial problems.372

G Correlation as a Measure of Representation Quality373

To assess whether Spearman rank correlation is a reliable indicator of representation quality, we374

performed a grid of 96 short runs for each of three environments: Sokoban (12×12), Sokoban (16×16),375

and the Rubik’s Cube. We varied four factors: network depth (8, 6, 4, 2), network width (1024, 16),376

representation dimension (64, 32, 16, 8), and the distance metric used in the contrastive loss (dot377

product, ↕2, ↕22).378

Across all environments, the final Spearman correlation (computed with a budget of 1000 nodes)379

showed a strong relationship with the final success rate: 0.89 for 12×12 Sokoban, 0.80 for 16×16380

Sokoban, and 0.90 for the Rubik’s Cube. These results support the conclusion that Spearman rank381

correlation is a good measure of representation quality.382

H Mutual Information Analysis383

To estimate the conditional mutual information, we use NPEET package, which implements the384

method proposed in [13] that uses k-nearest neighbours for entropy estimation. We conduct the385

analysis using trajectories collected from the Sokoban or Digit Jumper environment, utilizing all386
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Figure 17: CRTR optimizes the conditional mutual information while CRL does not, confirming out
theoretical results 2. Conditional mutual information estimated in Sokoban (left) and Digit Jumper (right) for
representations learned by CRTR and CRL, for different values of nearest neighbors used for estimation.

Algorithm 2 CRTR performs temporal contrastive learning, but samples negatives in a different way
so that representations discard task-irrelevant context, boosting performance (See Fig. 2).

# dataset.shape == [num_traj, traj_len, obs_dim]

t0 = np.random.choice(dataset.shape[1], batch_size)

t1 = t0 + np.random.geometric(1 - discount, batch_size)

traj_id = np.random.choice(dataset.shape[0], batch_size)

# 1 new line of code for CRTR (our approach):

traj_id = np.repeat(traj_id[:batch_size // repetition_factor],

repetition_factor, axis=0)

batch = (dataset[traj_id, t0], dataset[traj_id, t1])

# further batch processing, the same for CRL and CRTR

transitions within these trajectories (> 45k transitions for Sokoban and > 20k for Digit Jumper).387

The variables used in the experiment are defined as follows:388

• X: Current state embeddings, standardized using z-score normalization (mean 0, standard389

deviation 1) across the dataset. These embeddings are then projected onto a 3-dimensional390

subspace using Principal Component Analysis (PCA).391

• X+: Next state embeddings corresponding to transitions from X . The same standardization392

parameters and PCA transformation applied to X are used for X+ to ensure consistency.393

• C: Trajectory identifiers (traj_id) encoded as 2-dimensional vectors sampled from a394

standard bivariate Gaussian distribution (i.e., N (0, I2)).395

To mitigate the effects of the curse of dimensionality and ensure reliable performance of k-nearest396

neighbor (kNN)-based estimators, we reduce all high-dimensional representations to low-dimensional397

spaces (3D for state embeddings, 2D for trajectory identifiers). The conditional mutual information398

for CRTR and contrastive baseline is reported in Figure 17.399

I Sampling Algorithm400

Implementing our sampling algorithm requires changing just a few lines of code from prior temporal401

contrastive learning methods, as highlighted in Algorithm 2). The repetition factor governs the402

proportion of such negatives, thereby providing a controllable mechanism to interpolate between the403

standard and proposed objectives. Using data sampled in this way guarantees that some negative404

training pairs in each batch come from the same trajectory. We compare with potential alternative405

approaches in Appendix J.406
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N-Puzzle, and Rubik’s Cube, respectively.

Repetition factor. Our method introduces a single ad-408

ditional hyperparameter: the repetition factor R. This409

parameter controls the proportion of in-trajectory nega-410

tives and is critical for achieving strong performance. As411

shown in Figure 18, the impact of increasing R varies by412

environment. For Sokoban, higher values of R lead to413

only a slight decline in performance. In contrast, in many414

other environments, excessive repetition can significantly415

degrade results. While R = 2 is not always optimal, it con-416

sistently improves performance across all environments417

we evaluated and serves as a strong default choice.418

In Figure 19, we present detailed results showing how varying the repetition factor influences the419

success rate.
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Figure 19: Influence of the repetition factor depends on the environment type. Increasing the repetition
factor for Sokoban, N-Puzzle, and Rubik’s Cube, respectively.

420

Negatives. We explored alternative methods for incorporating in-trajectory negatives into the421

contrastive loss. The first approach mimics the standard addition of hard negatives: given a batch422

B = (xi, xi+)i∈{1..B}, we sample additional negatives (xi−)i∈{1..B}, and compute the loss as423

L =
1

B

∑
i

log

(
exp (f(xi, xi+))∑

j ̸=i exp(f(xi, xj+)) + exp(f(xi, xi−))

)
.

We considered three strategies for selecting in-trajectory negatives: sampling a state uniformly at424

random, choosing the first state, or choosing the last state of the trajectory. For Rubik’s Cube, instead425

of choosing the last state—which is identical for all trajectories—we sample a random state farther426

from the solution to serve as a negative.427
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Figure 20: In Rubik’s Cube, CRTR outperforms all negative sampling strategies, when the number of
scrambles increases. Comparison of different methods for introducing in-trajectory negatives in the Rubik’s
Cube environment, with an increasing number of cube scrambles. While normalized negatives perform similarly
to CRTR for a small number of scrambles, their performance deteriorates as the number of scrambles increases.
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Figure 21: We compare various methods for introducing in-trajectory negatives in the Sokoban environment
and find that only CRTR yields effective results.

As shown in Figures 20 and 21, training with this approach did not yield strong performance. We428

hypothesized that the large prediction error introduced by the in-trajectory negatives (xi−) caused429

excessively large gradients, destabilizing training. To mitigate this, we applied a normalization430

scheme: ensuring that the vector [f(x1, x1−) · · · f(xB , xB−)] has the same Frobenius norm as431

the B ×B matrix432 f(x1, x1+) f(x1, x2+) . . . f(x1, xB+)
...

...
. . .

...
f(xB , x1+) f(xB , x2+) . . . f(xB , xB+)

 .

This normalization enabled achieving comparable performance to CRTR on Rubik’s Cube scrambled433

10 times (Figure 20). However, CRTR still outperforms all negative sampling strategies on cubes434

scrambled 15 and 20 times.435

For Sokoban, the only approach that consistently improved performance is CRTR, as demonstrated in436

Figure 21. We hypothesize that this is because removing contextual information is more challenging437

in Sokoban than in Rubik’s Cube. In the latter, the context is more local and changes gradually438

over time, making it softer, while the context in Sokoban is constant throughout a trajectory. This is439

discussed in detail in Section 2.440

While at first glance, repeating trajectories in a batch may seem equivalent to sampling in-trajectory441

hard negatives, the two approaches are different. In standard contrastive learning (as in CRL), an442

anchor x pulls its positive x+ closer and pushes negatives (e.g., y+) away. However, negatives like443

y+ are simultaneously pulled by their own anchors (e.g., y), which limits how far they are pushed444

by x. In contrast, when using in-trajectory negatives without anchoring them (e.g., x pushes x−445

away, but x− has no anchor), these states can drift arbitrarily far in representation space. This is446

problematic, especially since in-trajectory negatives are harder (closer in structure), which results in447

stronger gradient updates. Our proposed method, CRTR, addresses this by anchoring all in-trajectory448

negatives. This keeps trajectories coherent and prevents such drift.449

K Computational Resources450

All training experiments were conducted using NVIDIA A100 GPUs and took between 5 and 48451

hours each. The solving runs ranged from 10 minutes to 10 hours. In total, the project required452

approximately 30,000 GPU hours to complete.453

L Things We Tried That Did Not Work454

• Using separate encoders for future and present states did not improve performance.455
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• Adding extra layers to encode the action led to lower success rates.456

• Using only in-trajectory negatives degraded performance.457

• Modifying how current states are sampled in CRL (e.g., deviating from uniform sampling)458

did not yield improvements.459

• Using A∗ solver with our representations could be greatly improved. Because distances in460

the latent space are only monotonically correlated—not linearly correlated—with actual461

distances, a modification to A∗ that would account for these discrepancies could bring huge462

gains.463

• Distances between Rubik’s Cube states, measured by the number of actions, almost always464

satisfy the triangle inequality with equality. Consequently, this metric cannot be faithfully465

embedded in Euclidean space, where equality in the triangle inequality occurs only for466

collinear points.467

• Since Rubik’s Cube actions are not commutative, a faithful Cayley graph structure could468

only emerge in a Euclidean space where vector addition is noncommutative—which would469

require a highly non-standard space.470
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