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ABSTRACT

Recently, diffusion models have been successfully applied to improving adversarial
robustness of image classifiers by purifying the adversarial noises or generating
realistic data for adversarial training. However, the diffusion-based purification can
be evaded by stronger adaptive attacks while adversarial training does not perform
well under unseen threats, exhibiting inevitable limitations of these methods. To
better harness the expressive power of diffusion models, in this paper we propose
Robust Diffusion Classifier (RDC), a generative classifier that is constructed from a
pre-trained diffusion model to be adversarially robust. Our method first maximizes
the data likelihood of a given input and then predicts the class probabilities of the
optimized input using the conditional likelihood estimated by the diffusion model
through Bayes’ theorem. To further reduce the computational complexity, we
propose a new diffusion backbone called multi-head diffusion and develop efficient
sampling strategies. As our method does not require training on particular adversar-
ial attacks, we demonstrate that it is more generalizable to defend against multiple
unseen threats. In particular, RDC achieves 75.67% robust accuracy against ℓ∞
norm-bounded perturbations with ϵ∞ = 8/255 on CIFAR-10, surpassing the previ-
ous state-of-the-art adversarial training models by +4.77%. The findings highlight
the potential of generative classifiers by employing diffusion models for adversarial
robustness compared with the commonly studied discriminative classifiers.

1 INTRODUCTION

A longstanding problem of deep learning is the vulnerability to adversarial examples (Szegedy et al.,
2014; Goodfellow et al., 2015), which are maliciously generated by adding human-imperceptible
perturbations to natural examples, but can cause deep learning models to make erroneous predictions.
Since the adversarial robustness problem leads to security threats in real-world applications (e.g.,
face recognition (Sharif et al., 2016; Dong et al., 2019), autonomous driving (Cao et al., 2021; Jing
et al., 2021), healthcare (Finlayson et al., 2019)), there has been a lot of work on defending against
adversarial examples, such as adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Zhang
et al., 2019), image denoising (Liao et al., 2018; Samangouei et al., 2018; Song et al., 2018), certified
defenses (Raghunathan et al., 2018; Wong & Kolter, 2018; Cohen et al., 2019).

Recently, diffusion models have emerged as a powerful family of generative models, consisting of a
forward diffusion process that gradually perturbs data with Gaussian noises and a reverse generative
process that learns to remove noise from the perturbed data (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Nichol & Dhariwal, 2021; Song et al., 2021). Some researchers have tried to apply diffusion
models to improving adversarial robustness in different ways. For example, the adversarial images
can be purified through the forward and reverse processes of diffusion models before feeding into the
classifier (Blau et al., 2022; Nie et al., 2022; Wang et al., 2022). Besides, the generated data from
diffusion models can significantly improve adversarial training (Rebuffi et al., 2021; Wang et al.,
2023a), achieving the state-of-the-art results on robustness benchmarks (Croce et al., 2020). These
works show promise of diffusion models in the field of adversarial robustness.

However, there are still some limitations of the existing methods. On one hand, the diffusion-based
purification approach is a kind of gradient obfuscation (Athalye et al., 2018; Gao et al., 2022), and
can be effectively attacked by using the exact gradient and a proper step size1. We observe that the

1We lower the robust accuracy of DiffPure (Nie et al., 2022) from 71.29% to 53.52% under the ℓ∞ norm
with ϵ∞ = 8/255, and from 80.60% to 75.59% under the ℓ2 norm with ϵ2 = 0.5, as shown in Table 1.
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Figure 1: Illustration of our proposed Robust Diffusion Classifier (RDC). Given an input image x,
our approach first maximizes the data likelihood (Left) and then classifies the optimized image x̂ with
a diffusion model (Right). The class probability p(y|x̂) is given by the conditional log-likelihood
log pθ(x̂|y), which is approximated by the variational lower bound involving calculating the noise
prediction error (i.e., diffusion loss) averaged over different timesteps for every class.

adversarial example cannot make the diffusion model output an image of a different class, but the
perturbation is not completely removed. Therefore, the poor robustness of diffusion-based purification
is largely due to the vulnerability of downstream classifiers. On the other hand, although adversarial
training methods using data generated by diffusion models achieve excellent performance, they are
usually not generalizable across different threat models (Tramèr & Boneh, 2019). In summary, these
methods leverage diffusion models to improve adversarial robustness of discriminative classifiers, but
discriminative learning cannot capture the underlying structure of data distribution, making it hard to
control the predictions of inputs outside the training distribution (Schott et al., 2019). As a generative
approach, diffusion models provide a more accurate estimation of score function (i.e., the gradient of
log-density at the data point) across the entire data space (Song & Ermon, 2019; Ho et al., 2020),
which also have the potential to provide accurate class probabilities. Therefore, we try to explore
how to convert a diffusion model into a generative classifier for improved adversarial robustness?

In this paper, we propose Robust Diffusion Classifier (RDC), a generative classifier obtained from
a single pre-trained diffusion model to achieve adversarial robustness. Our method calculates the
class probability p(y|x) using the conditional likelihood pθ(x|y) estimated by a diffusion model
through Bayes’ theorem. The conditional likelihood is approximated by the variational lower bound,
which involves calculating the noise prediction loss for every class under different noise levels. In
order to avoid time complexity induced by the number of classes, we propose a new UNet backbone
named multi-head diffusion by modifying the last convolutional layer to output noise predictions of
all classes simultaneously. Theoretically, we validate that the optimal diffusion model can achieve
absolute robustness under common threat models. However, the practical diffusion model may have
an inaccurate density estimation pθ(x|y) or a large gap between the likelihood and its lower bound,
leading to inferior performance. To address this issue, we further propose Likelihood Maximization
as a pre-optimization step to move the input data to regions of high likelihoods before feeding into
the diffusion classifier. Our RDC, directly constructed from a pre-trained diffusion model without
training on specific adversarial attacks, can perform robust classification under various threat models.

We empirically compare our proposed method with various state-of-the-art methods against strong
adaptive attacks. Specifically, on CIFAR-10 (Krizhevsky & Hinton, 2009), RDC achieves 75.67% ro-
bust accuracy under the ℓ∞ norm threat model with ϵ∞ = 8/255, exhibiting a +4.77% improvement
over the state-of-the-art adversarial training method (Wang et al., 2023a), and a +3.01% improvement
over the state-of-the-art dynamic defenses and randomized defenses (Pérez et al., 2021; Blau et al.,
2023). Under unseen threats, RDC leads to a more significant improvement (> 30%) over adversarial
training models, DiffPure (Nie et al., 2022) and generative classifiers. We further conduct thorough
analysis of more carefully-designed adaptive attacks and various ablation studies to verify that the
achieved robustness is not caused by gradient obfuscation (Athalye et al., 2018). Our findings disclose
the potential of generative models for solving the adversarial robustness problem.

2 RELATED WORK

Adversarial robustness. Adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015)
are widely studied in the literature, which are generated by adding imperceptible perturbations to
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natural examples, but can mislead deep learning models. Many adversarial attack methods (Carlini
& Wagner, 2017; Athalye et al., 2018; Dong et al., 2018; Madry et al., 2018; Croce & Hein, 2020)
have been proposed to improve the attack success rate under the white-box or black-box settings,
which can be used to evaluate model robustness. To defend against adversarial attacks, adversarial
training (Madry et al., 2018; Zhang et al., 2019; Rebuffi et al., 2021) stands out as the most effective
method, which trains neural networks using adversarially augmented data. However, these models
tend to exhibit robustness only to a specific attack they are trained with, and have poor generalization
ability to unseen threats (Tramèr & Boneh, 2019; Laidlaw et al., 2021). Another popular approach
is adversarial purification (Liao et al., 2018; Samangouei et al., 2018; Song et al., 2018; Nie et al.,
2022), which denoises the input images for classification. Most of these defenses cause obfuscated
gradients (Athalye et al., 2018) and can be evaded by adaptive attacks (Tramer et al., 2020).

Generative classifiers. Generative classifiers, like naive Bayes (Ng & Jordan, 2001), predict
the class probabilities p(y|x) for a given input x by modeling the data likelihood p(x|y) using
generative models. Compared with discriminative classifiers, generative classifiers are often more
robust and well-calibrated (Raina et al., 2003; Schott et al., 2019; Li et al., 2019; Mackowiak
et al., 2021). Modern generative models like diffusion models (Ho et al., 2020) and energy-based
models (LeCun et al., 2006) can also be used as generative classifiers. SBGC (Zimmermann et al.,
2021) utilizes a score-based model to calculate the log-likelihood log p(x|y) by integration and then
calculates p(y|x) via Bayes’ theorem. HybViT (Yang et al., 2022) directly learns the joint likelihood
log p(x, y) = log p(x) + log p(y|x) by training a diffusion model to learn log p(x) and a standard
classifier to model log p(y|x) at training time, and direct predicts p(y|x) at test time. JEM (Grathwohl
et al., 2019) utilizes the energy-based model to predict joint likelihood log p(x, y) and Bayes’ theorem
to get p(y|x). We also compare with these generative classifiers in the experiments. Recently,
diffusion models has also been used for generative classification. Hoogeboom et al. (2021); Han et al.
(2022) perform diffusion process in logit space to learn the categorial classification distribution. Two
concurrent works (Clark & Jaini, 2023; Li et al., 2023) also convert diffusion models to generative
classifiers in a similar way to ours, but they mainly focus on zero-shot classification while do not
consider the adversarial robustness.

Diffusion models for adversarial robustness. As a powerful family of generative models (Dhariwal
& Nichol, 2021), diffusion models have been introduced to further improve adversarial robustness.
DiffPure (Nie et al., 2022) utilizes diffusion models to purify adversarial perturbations by first adding
Gaussian noises to input images and then denoising the images. Diffusion models can also help to
improve the certified robustness with randomized smoothing (Carlini et al., 2023; Xiao et al., 2023).
Besides, using data generated by diffusion models can significantly improve the performance of
adversarial training (Rebuffi et al., 2021; Wang et al., 2023a). However, DiffPure is vulnerable to
stronger adaptive attacks while adversarial training models do not generalize well across different
threat models, as shown in Table 1. A potential reason of their problems is that they still focus on
discriminative classifiers, which do not capture the underlying structure of data distribution. As
diffusion models have more accurate score estimation in the whole data space, we aim to explore
whether a diffusion model itself can be leveraged to build a robust classifier.

3 METHODOLOGY

In this section, we present our Robust Diffusion Classifier (RDC), a robust (generative) classifier
constructed from a pre-trained diffusion model. We first provide an overview of diffusion models
in Sec. 3.1, then present how to convert a (class-conditional) diffusion model into a classifier in
Sec. 3.2 with a robustness analysis considering the optimal setting in Sec. 3.3, and finally detail the
likelihood maximization and time complexity reduction techniques to further improve the robustness
and efficiency in Sec. 3.4 and Sec. 3.5, respectively. Fig. 1 illustrates our approach.

3.1 PRELIMINARY: DIFFUSION MODELS

We briefly review discrete-time diffusion models (Ho et al., 2020). Given a data distribution q(x), the
forward diffusion process gradually adds Gaussian noise to the data to obtain a sequence of noisy
samples {xt}Tt=1 according to a scaling schedule {αt}Tt=1 and a noise schedule {σt}Tt=1 as

q(xt|x0) = N (xt;
√
αtx0, σ

2
t I). (1)
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Assume that the signal-to-noise ratio SNR(t) = αt/σ
2
t is strictly monotonically decreasing in time,

the sample xt is increasingly noisy during the forward process. The scaling and noise schedules are
prescribed such that xT is nearly an isotropic Gaussian distribution.

To generate images, we need to reverse the diffusion process. It is defined as a Markov chain with
learned Gaussian distributions as

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ̃
2
t I), (2)

where p(xT ) = N (xT ;0, I) is a prior distribution. Instead of directly parameterizing µθ via neural
networks, it is a common practice (Ho et al., 2020; Kingma et al., 2021) to rewrite µθ as

µθ(xt, t) =

√
αt−1

αt

(
xt −

√
σt

1− αt
ϵθ(xt, t)

)
, (3)

and learn the time-conditioned noise prediction network ϵθ(xt, t). It can be learned by optimizing
the variational lower bound on log-likelihood as

log pθ(x) ≥ Eq[−DKL(q(xT |x0)∥p(xT ))−
∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt)) + log pθ(x0|x1)]

= −Eϵ,t

[
wt∥ϵθ(xt, t)− ϵ∥22

]
+ C1,

(4)
where Eϵ,t[wt∥ϵθ(xt, t)− ϵ∥22] is called diffusion loss (Kingma et al., 2021), ϵ follows the standard
Gaussian distribution N (0, I), xt =

√
αtx0 + σtϵ given by Eq. (1), C1 is typically small and can be

dropped (Ho et al., 2020; Song et al., 2021), and wt =
σtαt−1

2σ̃2
t (1−αt)αt

. In practice, we set wt = 1 for
convenience and good performance as in (Ho et al., 2020).

The conditional diffusion model pθ(x|y) can be parameterized by ϵθ(xt, t, y), while the unconditional
model pθ(x) can be viewed as a special case with a null input as ϵθ(xt, t) = ϵθ(xt, t, y = ∅). A
similar lower bound on the conditional log-likelihood is

log pθ(x|y) ≥ −Eϵ,t

[
wt∥ϵθ(xt, t, y)− ϵ∥22

]
+ C, (5)

where C is another small constant that is negligible.

3.2 DIFFUSION MODEL FOR CLASSIFICATION

Given an input x, a classifier computes the probability pθ(y|x) for all classes y ∈ {1, 2, ..,K}
with K being the number of classes and outputs the most probable class as ỹ = argmaxy pθ(y|x).
Popular discriminative approaches train Convolutional Neural Networks (Krizhevsky et al., 2012; He
et al., 2016) or Vision Transformers (Dosovitskiy et al., 2020; Liu et al., 2021) to directly learn the
conditional probability pθ(y|x). However, they cannot predict accurately for adversarial example x∗

that is close to the real example x under the ℓp norm as ∥x∗ − x∥p ≤ ϵp, since it is hard to control
how inputs are classified outside the training distribution (Schott et al., 2019).

On the other hand, diffusion models are trained to provide accurate density estimation over the entire
data space (Song & Ermon, 2019; Song et al., 2021). By transforming a diffusion model into a
generative classifier through Bayes’ theorem as pθ(y|x) ∝ pθ(x|y)p(y), we hypothesize that the
classifier can also give a more accurate conditional probability pθ(y|x) in the data space, leading
to better adversarial robustness. In this paper, we assume a uniform prior p(y) = 1

k for simplicity,
which is common for most of the datasets (Krizhevsky & Hinton, 2009; Russakovsky et al., 2015).
We show how to compute the conditional probability pθ(y|x) via a diffusion model in the following
theorem.

Theorem 3.1. (Proof in Appendix A.1) Let d(x, y, θ) = log pθ(x|y) + Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22]
denote the gap between the log-likelihood and the diffusion loss. Assume that y is uniformly distributed
as p(y) = 1

K and ∀y, d(x, y, θ) → 0. The conditional probability pθ(y|x) can be approximated by

pθ(y|x) =
exp(−Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22])∑
ŷ exp(−Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22])

. (6)
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In Theorem 3.1, we approximate the conditional log-likelihood with the (negative) diffusion loss,
which holds true when the gap d(x, y, θ) is 0. In practice, although there is inevitably a gap between
the log-likelihood and the diffusion loss, we show that the approximation works well in experiments.
Eq. (6) requires calculating the noise prediction error over the expectation of random noise ϵ and
timestep t, which is efficiently estimated with the variance reduction technique introduced in Sec. 3.5.
Besides, our method is also applicable when the prior p(y) is not uniform if we add the logit of class
y by log p(y), where p(y) can be estimated from the training data. Below, we provide an analysis on
the adversarial robustness of the diffusion classifier in Eq. (6) under the optimal setting.

3.3 ROBUSTNESS ANALYSIS UNDER THE OPTIMAL SETTING

To provide a deeper understanding of the robustness of our diffusion classifier, we first derive the
optimal solution of the diffusion model (i.e., diffusion model that has minimal diffusion loss over
both the training set and the test set), as shown in the following theorem.
Theorem 3.2. (Proof in Appendix A.2.1) Let D denote a set of examples and Dy ⊂ D denote a
subset of examples whose ground-truth label is y. The optimal diffusion model ϵθ∗

D
(xt, t, y) on the

set D is

ϵθ∗
D
(xt, t, y) =

∑
x(i)∈Dy

1

σt
(xt −

√
αtx

(i)) ·
exp(− 1

2σ2
t
∥xt −

√
αtx

(i)∥22)∑
x(j)∈Dy

exp(− 1
2σ2

t
∥xt −

√
αtx(j)∥22)

, (7)

Given the optimal diffusion model in Eq. (7), we can easily obtain the optimal diffusion classifier by
substituting the solution in Eq. (7) into Eq. (6).
Corollary 3.3. (Proof in Appendix A.2.2) The conditional probability pθ∗

D
(y|x) given the optimal

diffusion model ϵθ∗
D
(xt, t, y) is

pθ∗
D
(y|x) = softmax

(
fθ∗

D
(x)

)
y
, fθ∗

D
(x)y = −Eϵ,t

αt

σ2
t

∥∥∥ ∑
x(i)∈Dy

s(x,x(i), ϵ, t)(x− x(i))
∥∥∥2
2

 ,

where

s(x,x(i), ϵ, t) =
exp

(
− 1

2σ2
t
∥√αtx+ σtϵ−

√
αtx

(i)∥22
)

∑
x(j)∈Dy

exp
(
− 1

2σ2
t
∥√αtx+ σtϵ−

√
αtx(j)∥22

) .
Remark. Intuitively, the optimal diffusion classifier utilizes the ℓ2 norm of the weighted average
difference between the input example x and the real examples x(i) of class y to calculate the logit for
x. The classifier will predict a label ỹ for an input x if it lies more closely to real examples belonging
to Dỹ . Moreover, the ℓ2 norm is averaged over t with weight αt

σ2
t

. As αt

σ2
t

is monotonically decreasing
w.r.t. t, the classifier gives small weights for noisy examples and large weights for clean examples,
which is reasonable since the noisy examples do not play an important role in classification.

Empirically, we evaluate the robust accuracy of the optimal diffusion classifier under the ℓ∞ norm
with ϵ∞ = 8/255 and the ℓ2 norm with ϵ2 = 0.5. We find that the optimal diffusion classifier achieves
100% robust accuracy in both cases, validating our hypothesis that accurate density estimation of
diffusion models facilitates robust classification. However, the diffusion models are not optimal in
practice. Our trained diffusion classifier can only achieve 35.94% and 76.95% robust accuracy under
the ℓ∞ and ℓ2 threats, as shown in Table 1. Despite the non-trivial performance without adversarial
training, it still lags behind the state-of-the-art. To figure out the problem, we find that the diffusion
loss Eϵ,t[wt∥ϵθ(xt, t, y) − ϵ∥22] is very large for some adversarial example with the ground-truth
class. This is caused by either the inaccurate density estimation of pθ(x|y) of the diffusion model or
the large gap between the log-likelihood and the diffusion loss violating d(x, y, θ) → 0. Developing
a better conditional diffusion model can help to address this issue, but we leave this to future work.
In the following section, we propose an optimization-based algorithm as an alternative strategy to
solve the problem with off-the-shelf diffusion models.

3.4 LIKELIHOOD MAXIMIZATION

To address the aforementioned problem, a straightforward approach is to minimize the diffusion loss
Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22] w.r.t. x such that the input can escape from the region that the diffusion
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model cannot provide an accurate density estimation or the gap between the likelihood and diffusion
loss d(x, y, θ) is large. However, we do not know the ground-truth label of x, making the optimization
infeasible. As an alternative strategy, we propose to minimize the unconditional diffusion loss as

min
x̂

Eϵ,t[wt∥ϵθ(x̂t, t)− ϵ∥22], s.t. ∥x̂− x∥∞ ≤ η, (8)

where we restrict the ℓ∞ norm between the optimized input x̂ and the original input x to be smaller
than η, in order to avoid optimizing x̂ into the region of other classes. As Eq. (8) actually maximizes
the lower bound of the log-likelihood in Eq. (4), we call this approach Likelihood Maximization.

This method can also be viewed as a new diffusion-based purification defense. On one hand, Xiao
et al. (2023) prove that for purification defense, a higher likelihood and a smaller distance to the real
data of purified input x̂ tends to result in better robustness. Compared to DiffPure, our method restricts
the optimization budget by η, leading to a smaller distance to the real data. Besides, unlike DiffPure
which only maximizes the likelihood with a high probability (Xiao et al., 2023), we directly maximize
the likelihood, leading to improved robustness. On the other hand, because the adversarial example
usually lies in the vicinity of its corresponding real example of the ground-truth class y, moving
along the direction towards higher log p(x) will probably lead to higher log p(x|y). Therefore, the
optimized input x̂ could be more accurately classified by the diffusion classifier.

3.5 TIME COMPLEXITY REDUCTION

Accelerating diffusion classifier. A common practice for estimating the diffusion loss in Eq. (6) is
to adopt the Monte Carlo sampling. However, this will lead to a high variance with few samples or
high time complexity with many samples. To reduce the variance with affordable computational cost,
we directly compute the expectation over t instead of sampling t as

Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22] =
1

T

T∑
t=1

Eϵ[wt∥ϵθ(xt, t, y)− ϵ∥22]. (9)

Eq. (9) requires to calculate the noise prediction error for all timesteps. For ϵ, we still adopt Monte
Carlo sampling, but we show that sampling only one ϵ is sufficient to achieve good performance. We
can further reduce the number of timesteps by systematic sampling that selects the timesteps at a
uniform interval. Although it does not lead to an obvious drop in clean accuracy, it will significantly
affect robust accuracy as shown in Sec. 4.5, because the objective is no longer strongly correlated
with log-likelihood after reducing the number of timesteps.

Our diffusion classifier in Eq. (6) requires K × T NFEs (Number of Function Evaluations), which
limits the applicability to large datasets. This is because current diffusion models are mainly designed
for image generation tasks, they can only provide predictions for one class at a time. To obtain the
predictions of all classes in a single forward pass, we propose to modify the last convolutional layer
in the UNet backbone to output predictions for K classes (i.e., K × 3 dimensions) simultaneously,
which only requires T NFEs for a single image. We name this set of novel diffusion backbones as
multi-head diffusions. For more details, please refer to Appendix B.1.

Accelerating likelihood maximization. To further reduce the time complexity of likelihood maxi-
mization, for each iteration, instead of calculating the diffusion loss using all timesteps like Eq. (9),
we only uniformly sample a single timestep to approximate the expectation of the diffusion loss.
Surprisingly, this modification not only reduces the time complexity of likelihood maximization
from O(N × T ) to O(N), but also greatly boosts the robustness. This is because this likelihood
maximization induces more randomness, thus it is more effective to smooth the local extrema. We
provide more in-depth analysis in Appendix B.2.

Given the above techniques, the overall algorithm of RDC is outlined in Algorithm 1.

4 EXPERIMENTS

In this section, we first provide the experimental settings in Sec. 4.1. We then show the effectiveness
of our method compared with the state-of-the-art methods in Sec. 4.2 and the generalizability across
different threat models in Sec. 4.3. We provide thorough analysis to examine gradient obfuscation in
Sec. 4.4 and conduct various ablation studies in Sec. 4.5.
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Algorithm 1 Robust Diffusion Classifier (RDC)
Require: A pre-trained diffusion model ϵθ , input image x, optimization budget η, step size γ, optimization

steps N , momentum decay factor µ.
1: Initialize: m = 0, x̂ = x;
2: for n = 0 to N − 1 do
3: Estimate g = ∇xEϵ,t[wt∥ϵθ(x̂t, t)− ϵ∥22] using one randomly sampled t and ϵ;
4: Update momentum m = µ ·m− g

∥g∥1
;

5: Update x̂ by x̂ = clipx,η(x̂+ γ ·m);
6: end for
7: Calculate Eϵ,t[wt∥ϵθ(x̂t, t, y)− ϵ∥22] for all y ∈ {1, 2, ...,K} simultaneously using multi-head diffusion;
8: Calculate pθ(y|x) by Eq. (6);
9: Return: ỹ = argmaxy pθ(y|x).

Table 1: Clean accuracy (%) and robust accuracy (%) of different methods against unseen threats.

Method Architecture Clean Acc Robust Acc
ℓ∞ norm ℓ2 norm StAdv Avg

AT-DDPM-ℓ∞ WRN70-16 88.87 63.28 64.65 4.88 44.27
AT-DDPM-ℓ2 WRN70-16 93.16 49.41 81.05 5.27 45.24
AT-EDM-ℓ∞ WRN70-16 93.36 70.90 69.73 2.93 47.85
AT-EDM-ℓ2 WRN70-16 95.90 53.32 84.77 5.08 47.72
PAT-self AlexNet 75.59 47.07 64.06 39.65 50.26
DiffPure (t∗ = 0.125) UNet+WRN70-16 87.50 53.12 75.59 12.89 47.20
DiffPure (t∗ = 0.1) UNet+WRN70-16 90.97 53.52 72.65 12.89 46.35
SBGC UNet 95.04 0.00 0.00 0.00 0.00
HybViT ViT 95.90 0.00 0.00 0.00 0.00
JEM WRN28-10 92.90 8.20 26.37 0.05 11.54
LM (ours) UNet+WRN70-16 87.89 71.68 75.00 87.50 78.06
DC (ours) UNet 93.55 35.94 76.95 93.55 68.81
RDC (LM+DC) (ours) UNet 89.85 75.67 82.03 89.45 82.38

4.1 EXPERIMENTAL SETTINGS

Datasets and training details. Following Nie et al. (2022), we randomly select 512 images from
the CIFAR-10 test set (Krizhevsky & Hinton, 2009) for evaluation due to the high computational
cost of the attack algorithms. We also conduct experiments on other datasets and other settings in
Appendix B.2. We adopt off-the-shelf conditional diffusion model in Karras et al. (2022) and train
our multi-head diffusion as detailed in Appendix B for 100 epochs on CIFAR-10 training set.

Hyperparameters. In likelihood maximization, we set the optimization steps N = 5, momentum
decay factor µ = 1, optimization budget η = 8/255 (see Sec. 4.5 for an ablation study), step size
γ = 0.1. For each timestep, we only sample one ϵ to estimate Eϵ[wt∥ϵθ(xt, t, y)− ϵ∥22].
Robustness evaluation. Following Nie et al. (2022), we evaluate the clean accuracy and robust
accuracy using AutoAttack (Croce & Hein, 2020) under both ℓ∞ norm of ϵ∞ = 8/255 and ℓ2
norm of ϵ2 = 0.5. To demonstrate the generalization ability towards unseen threat models, we
also evaluate the robustness against StAdv (Xiao et al., 2018) with 100 steps under the bound of
0.05. Since computing the gradient through likelihood maximization requires calculating the second-
order derivative, we use BPDA (Athalye et al., 2018) as the default adaptive attack, approximating
the gradient with an identity mapping. We conduct more comprehensive evaluations of gradient
obfuscation in Sec. 4.4, where we show that BPDA is as strong as computing the exact gradient.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

We compare our method with the state-of-the-art defense methods, including adversarial training with
DDPM generated data (AT-DDPM) (Rebuffi et al., 2021), adversarial training with EDM generated
data (AT-EDM) (Wang et al., 2023a), and DiffPure (Nie et al., 2022). We also compare with perceptual
adversarial training (PAT-self) (Laidlaw et al., 2021) and other generative classifiers, including SBGC
(Zimmermann et al., 2021), HybViT (Yang et al., 2022), and JEM (Grathwohl et al., 2019). Notably,
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robust accuracy of most baselines does not change much on our selected subset. We also compare the
time complexity and robustness of our model with more methods in Table 3 in Appendix B.2.

DiffPure incurs significant memory usage and substantial randomness, posing challenges for robust-
ness evaluation. Their proposed adjoint method (Nie et al., 2022) is insufficient to measure the model
robustness. To mitigate this issue, we employ gradient checkpoints to compute the exact gradient
and leverage Expectation Over Time (EOT) to reduce the impact of randomness during optimization.
Rather than using the 640 times EOT recommended in Fig. 2(a), we adopt PGD-80 (Madry et al.,
2018) with 10 times EOT and a large step size 1/255 to efficiently evaluate DiffPure.

Table 1 shows the results of Likelihood Maximization (LM), Diffusion Classifier (DC) and Robust
Diffusion Classifier (RDC) compared with baselines under the ℓ∞ and ℓ2 norm threat models. We
can see that the robustness of DC outperforms all previous generative classifiers by a large margin.
Specifically, DC improves the robust accuracy over JEM by +27.74% under the ℓ∞ norm and
+50.58% under the ℓ2 norm. RDC can further improve the performance over DC, which achieves
75.67% and 82.03% robust accuracy under the two settings. Notably, RDC outperforms the previous
state-of-the-art model AT-EDM (Wang et al., 2023a) by +4.77% under the ℓ∞ norm.

4.3 DEFENSE AGAINST UNSEEN THREATS

Adversarial training methods often suffer from poor generalization across different threat models,
while DiffPure requires adjusting purification noise scales for different threat models, which limits
their applicability in real-world scenarios where the threat models are unknown. In contrast, our
proposed methods are agnostic to specific threat models. To demonstrates the strong generalization
ability of our methods across different threat models, we evaluate the generalization performance of
our proposed method by testing against different threats, including ℓ∞, ℓ2, and StAdv.

Table 1 presents the results, demonstrating that the average robustness of our methods surpass the
baselines by more than 30%. Specifically, RDC outperforms ℓ∞ adversarial training models by
+12.30% under the ℓ2 norm and ℓ2 adversarial training models by +22.35% under the ℓ∞ norm.
Impressively, LM, DC and RDC achieve 87.50%, 93.55% and 89.45% robustness under StAdv,
surpassing previous methods by more than 53.90%. These results indicate the strong generalization
ability of our method and its potential to be applied in real-world scenarios under unknown threats.

4.4 EVALUATION OF GRADIENT OBFUSCATION

Diffusion Classifier can be directly evaluated by AutoAttack. However, Robust Diffusion Classifier
could not be directly evaluated by AutoAttack due to the indifferentiable likelihood maximization.
To demonstrate the effectiveness of BPDA adaptive attack, we conduct the following experiments.

Table 2: Robust accuracy (%) of RDC under
different adaptive attacks. BPDA (N = 5)
and Lagrange (N = 5) are adaptive attacks
for RDC with 5 steps of LM, while Exact
Gradient (N = 1) and BPDA (N = 1) are
adaptive attacks for RDC with 1 step.

Attack Robust Acc

BPDA (N = 5) 75.67
Lagrange (N = 5) 77.54

Exact Gradient (N = 1) 69.53
BPDA (N = 1) 69.92

Exact gradient attack. To directly evaluate the ro-
bustness of RDC, we utilize gradient checkpoint and
create a computational graph during backpropagation
to obtain exact gradients. However, we could only eval-
uate RDC when N = 1 due to the large memory cost.
As shown in Table 2, our RDC with N = 1 achieves
69.53% robust accuracy under the exact gradient attack,
about 0.39% lower than BPDA. This result suggests
that BPDA suffices for evaluating RDC.

Lagrange attack. RDC optimizes the unconditional
diffusion loss before feeding the inputs into DC. If
our adversarial examples already have a small uncon-
ditional diffusion loss or a large log p(x), it may not be
interrupted during likelihood maximization. Therefore, to produce adversarial examples with a small
diffusion loss, we set our loss function as

Lagrange(x, y, ϵθ) = log pθ(y|x) + l · Eϵ,t[wt∥ϵθ(xt, t)− ϵ∥22], (10)

where pθ(y|x) is given by Eq. (6), and the first term is the (negative) cross-entropy loss to induce
misclassification. For an input, we craft adversarial examples using three different weights, l =
0, 1, 10. If one of these three loss functions successfully generate an adversarial example, we count it
as a successful attack. As shown in Table 2, this adaptive attack is no more effective than BPDA.
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Figure 2: (a-b): Impact of T ′ and η in our method on standard accuracy and robust accuracy against
our BPDA adaptive attack. (c): Randomness of different methods.

Gradient randomness. To quantify the randomness, we compute the gradients of each model w.r.t.
the input ten times and compute the pairwise cosine similarity between the gradients. We then average
these cosine similarities across 100 images. To capture the randomness when using EOT, we treat the
gradients obtained after applying EOT as a single time and repeat the same process to compute their
cosine similarity. As shown in Fig. 2(a), the gradients of our methods exhibit low randomness, while
DiffPure is more than 640 times as random as DC, RDC, and about 16 times as random as LM. Thus,
the robustness of our methods is not primarily due to the stochasticity of gradients.

4.5 ABLATION STUDIES

In this section, we perform ablation studies of several hyperparameters in our algorithm with the first
100 examples in the CIFAR-10 test set. All the experiments are done under AutoAttack with BPDA
of ℓ∞ bounded perturbations with ϵ∞ = 8/255.

Optimization budget η. To find the best optimization budget η, we test the robust accuracy of
different optimization budgets. As shown in Fig. 2(b), the robust accuracy first increases and then
decreases as η becomes larger. When η is small, we could not move x out of the adversarial region.
However, when η is too large, we may optimize x into an image of another class. Therefore, we
should choose an appropriate η. In this work, we set η = 8/255.

Sampling timesteps. We also attempt to reduce the number of timesteps used in calculating the
diffusion loss. Since only the DC is influenced by this parameter, we conduct this experiment
exclusively on DC to minimize the impact of other factors. One way is to only calculate the diffusion
loss of the first T ′ timesteps {i}T ′

i=1 (“first-clean” and “first-robust” in Fig. 2(c)). Inspired by Song et al.
(2020), another way is to use systematic sampling, where we use timesteps {iT/T ′}T ′

i=1 (“uniform-
clean” and “uniform-robust” in Fig. 2(c) ). Both methods achieve similar results on clean accuracy
and robust accuracy. Although a significant reduction of T ′ does not lead to an obvious drop in clean
accuracy, it will significantly affect robust accuracy due to the reason discussed in Sec. 3.5.

Sampling steps for ϵ. We also attempt to improve the estimation of Eϵ[wt∥ϵθ(xt, t, y) − ϵ∥22] by
sampling ϵ multiple times or keeping ϵ the same for different timesteps or different classes. However,
these increase neither robustness nor accuracy because we have already computed T times for the
expectation over t. From another perspective, the cosine similarity of the gradients is about 98.48%,
suggesting that additional sampling of ϵ or using the same ϵ is unnecessary.

5 CONCLUSION

In this paper, we propose a novel defense method called Robust Diffusion Classifier (RDC), which
leverages a single diffusion model to directly classify input images by predicting data likelihood by
diffusion model and calculating class probabilities through Bayes’ theorem. We theoretically analyze
the robustness of our diffusion classifier, propose to maximize the log-likelihood before feeding the
input images into the diffusion classifier. We also propose multi-head diffusion which greatly reduces
the time complexity of RDC. To demonstrate the performance of our method, we evaluate our method
with strong adaptive attacks and conduct extensive experiments. Our method achieves state-of-the-art
robustness against these strong adaptive attacks and generalizes well to unseen threat models.
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A PROOFS AND DERIVATIONS

A.1 PROOF OF THEOREM 3.1

Proof.

pθ(y|x) =
pθ(x, y)∑
ŷ pθ(x, ŷ)

=
pθ(x|y)pθ(y)∑
y pθ(x|ŷ)pθ(ŷ)

=
pθ(x|y)∑
ŷ pθ(x|ŷ)

=
elog pθ(x|y)∑
ŷ e

log pθ(x|ŷ)

=
exp

(
Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22] + log pθ(x|y)− Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22]

)
∑

ŷ exp
(
Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22] + log pθ(x|ŷ)− Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22]

)
=

exp
(
d(x, y, θ)

)
exp

(
− Eϵ,t[w∥ϵθ(xt, t, y)− ϵ∥22]

)
∑

ŷ exp
(
d(x, ŷ, θ)

)
exp

(
− Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22]

) .
When ∀ŷ, d(x, ŷ, θ) → 0, we can get:

∀ŷ, exp
(
Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22] + log pθ(x|ŷ)

)
→ 1.

Therefore,

pθ(y|x) =
exp

(
− Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22]

)
∑

ŷ exp
(
− Eϵ,t[wt∥ϵθ(xt, t, ŷ)− ϵ∥22]

) .

A.2 DERIVATION OF THE OPTIMAL DIFFUSION CLASSIFIER

A.2.1 OPTIMAL DIFFUSION MODEL: PROOF OF THEOREM 3.2

Proof. The optimal diffusion model has the minimal error Ex,t,y[∥ϵ(xt, t, y)− ϵ∥22] among all the
models in hypothesis space. Since the prediction for one input pair (xt, t, y) does not affect the
prediction for any other input pairs, the optimal diffusion model will give the optimal solution for any
input pair (xt, t, y):

Ex(i)∼p(x(i)|xt,y)[∥ϵθ∗
D
(xt, t, y)− ϵi∥22] = min

θ
Ex(i)∼p(x(i)|xt,y)[∥ϵθ(xt, t, y)− ϵi∥22],

where ϵi =
xt−

√
αtx

(i)

σt
.

Note that

p(x(i)|xt, y) =
p(x(i)|y)p(xt|x(i), y)

p(xt|y)
=

p(x(i)|y)q(xt|x(i))

p(xt|y)
.

Assume that

p(x(i)|y) =
{ 1

|Dy| ,x(i) ∈ Dy

0 ,x(i) /∈ Dy

Solving ∂
∂ϵθ(xt,t,y)

Ex(i)∼p(x(i)|xt,y)[∥ϵθ(xt, t, y)− ϵi∥22] = 0, we can get:
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Ex(i)∼p(x(i)|xt,y)[ϵθ(xt, t, y)− ϵi] = 0,∑
x(i)∈D

p(x(i)|xt, y)ϵθ(xt, t, y) = ϵθ(xt, t, y) =
∑

x(i)∈Dy

p(x(i)|xt, y)ϵi.

Substitute ϵi by Eq. (1):

ϵθ(xt, t, y) =
∑

x(i)∈Dy

p(x(i)|xt, y)
xt −

√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)q(xt|x(i))

p(xt|y)
xt −

√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

p(N (xt|
√
αtx

(i), σ2
t I) =

xt −
√
αtx

(i)

σt
)
xt −

√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

1

(2πσt)
n
2
exp (−

∥xt −
√
αtx

(i)∥22
2σ2

t

)
xt −

√
αtx

(i)

σt

To avoid numerical problem caused by 1

(2πσt)
n
2

and intractable p(x(i)|y)
p(xt|y) , we re-organize this equation

using softmax function:

ϵθ(xt, t, y) =
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

1

(2πσt)
n
2
exp (−∥xt−

√
αtx

(i)∥2
2

2σ2
t

)∑|Dy|
j=1 p(xj |xt, y)

xt −
√
αtx

(i)

σt

=
∑

x(i)∈Dy

p(x(i)|y)
p(xt|y)

1

(2πσt)
n
2
exp (−∥xt−

√
αtx

(i)∥2
2

2σ2
t

)∑|Dy|
j=1

p(xj |y)
p(xt|y)

1

(2πσt)
n
2
exp (−∥xt−

√
αtxj∥2

2

2σ2
t

)

xt −
√
αtx

(i)

σt

=
∑

x(i)∈Dy

1

σt
(xt −

√
αtx

(i))
exp(− 1

2σ2
t
∥xt −

√
αtx

(i)∥22)∑
x(j)∈Dy

exp(− 1
2σ2

t
∥xt −

√
αtx(j)∥22)

.

This is the result of Eq. (7).

A.2.2 OPTIMAL DIFFUSION CLASSIFIER: PROOF OF THEOREM 3.3

Proof. Substitute Eq. (7) into Eq. (6):

fθ∗
D
(x)y

=− Et,ϵ[∥ϵθ(xt, t, y)− ϵ∥22]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
(xt −

√
αtx

(i))

σt

exp(− ∥xt−
√
αtx

(i)∥22
2σ2

t
)∑

x(j)∈Dy
exp(− ∥xt−

√
αtx(j)∥22
2σ2

t
)
]− ϵ∥22]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
(
√
αtx+ σtϵ−

√
αtx

(i))

σt

exp
(
− ∥√αtx+σtϵ−

√
αtx

(i)∥22
2σ2

t

)
∑

x(j)∈Dy
exp

(
− ∥√αtx+σtϵ−

√
αtx(j)∥22

2σ2
t

) ]− ϵ∥22]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
1

σt
(
√
αtx−

√
αtx

(i))s(x,x(i), ϵ, t) + ϵ
∑

x(i)∈Dy

s(x,x(i), ϵ, t)]

=− Et,ϵ[∥
∑

x(i)∈Dy

[
1

σt
(
√
αtx−

√
αtx

(i))s(x,x(i), ϵ, t)]∥22]

=− Eϵ,t[
αt

σ2
t

∥
∑

x(i)∈Dy

s(x,x(i), ϵ, t)(x− x(i))∥22].

We get the result.
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A.3 DERIVATION OF CONDITIONAL ELBOS IN EQ. (5)

We provide a derivation of conditional ELBO in the following, which is similar to the unconditional
ELBO in Ho et al. (2020).

log pθ(x0|y)

= log

∫
pθ(xt:T |y)q(x1:T |x0, y)

q(x1:T |x0, y)
dx1:T

= logEq(x1:T |x0,y)[
pθ(xT |y)pθ(xt:T−1|xT , y)

q(x1:T |x0, y)
]

≥Eq(x1:T |x0,y)[log
pθ(xT |y)pθ(xt:T−1|xT , y)

q(x1:T |x0, y)
]

=Eq(x1:T |x0,y)[log
pθ(xT |y)

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0 q(xi+1|xi,x0, y)
]

=Eq(x1:T |x0,y)[log
pθ(xT |y)

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0
q(xi+1|x0,y)q(xi|xi+1,x0,y)

q(xi|x0,y)

]

=Eq(x1:T |x0,y)[log
pθ(xT |y)

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0 q(xi|xi+1,x0, y)
− log q(xT |x0, y)]

=Eq(x1:T |x0,y)[log

∏T−1
i=0 pθ(xi|xi+1, y)∏T−1

i=0 q(xi|xi+1,x0, y)
− log

q(xT |x0, y)

pθ(xT |y)
]

=

T−1∑
i=0

Eq(xi,xi+1|x0,y)[log
pθ(xi|xi+1, y)

q(xi|xi+1,x0, y)
]−DKL(q(xT |x0, y)∥pθ(xT |y))

=

T−1∑
i=0

Eq(xi+1|x0,y)Eq(xi|xi+1,x0,y)[log
pθ(xi|xi+1, y)

q(xi|xi+1,x0, y)
]−DKL(q(xT |x0, y)∥pθ(xT |y))

=C −
T−1∑
i=1

Eq(xi+1|x0,y)[DKL(q(xi|xi+1,x0, y)∥pθ(xi|xi+1, y))]

=− Eϵ,t

[
wt∥ϵθ(xt, t, y)− ϵ∥22

]
+ C.

We get the result of Eq. (5).

A.4 CONNECTION BETWEEN ENERGY-BASED MODELS (EBMS)

The EBMs (LeCun et al., 2006) directly use neural networks to learn pθ(x) and pθ(x|y).

pθ(x|y) =
exp(−Eθ(x)y)

Z(θ, y)
,

Where Eθ(x) : R
D → Rn, and Z(θ, y) =

∫
exp(−Eθ(x)y)dx is the normalizing constant.

As described in Grathwohl et al. (2019), we can use EBMs to classify images by calculating the
conditional probability:

pθ(y|x) =
exp(−Eθ(x)y)∑
ŷ exp(−Eθ(x)ŷ)

. (11)

Compare Eq. (11) and Eq. (6), we can also set the energy function as:

Eθ(x)y ≈ Et,ϵ

[
wt∥ϵθ(xt, t, y)− ϵ∥22

]
. (12)

Therefore, our diffusion classifier could be viewed as an EBM, and the energy function is the
conditional diffusion loss.
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A.5 COMPUTING GRADIENT WITHOUT COMPUTING UNET JACOBI

We propose another way to compute the gradient of Eq. (9) without backpropagating through the
UNet. Note that we do not use this method in any of the experiments. We only derive this method
and conduct some theoretical analysis.
Lemma A.1. Assuming that z ∼ N (µ,Σ), f : Rni → Rno , p : Rn → R. We can get

∇µEz[f(z)] = Ez[∇µ log p(z)f(z)T ]. (13)

Proof. Inspired by Wierstra et al. (2014), we derive

∇µE[f(z)] = ∇µ

∫
f(z)p(z|µ)dz

= lim
dµ→0

∫
f(z)p(z|µ+ dµ)dz−

∫
f(z)p(z|µ)dz

dµ

=

∫
∇µp(z|µ)f(z)T dz

=

∫
p(z)∇µ log p(z|µ)f(z)T dz

= Ez[∇µ log p(z|µ)f(z)T ].

According to Lemma A.1, we can derive the gradient of Eq. (9) as

d

dx
Eϵ[∥ϵθ(xt, t)− ϵ∥22]

=
d

dx
Ext [∥ϵθ(xt, t)−

xt −
√
αtx

σt
∥22]

=
d

dx
Ext

[g(xt,x, t)]

=
∂

∂xt
Ext [g(xt,x, t)]

∂xt

∂x
+

∂

∂x
Ext [g(xt,x, t)]

=Ext [
∂ log p(xt|x)

∂x
g(xt,x, t)] +

∂

∂x
Ext [g(xt,x, t)]

=Ext
[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t)−

xt −
√
αtx

σt
∥22] + Ext

[2(ϵθ(xt, t)−
xt −

√
αtx

σt
)

√
αt

σt
]

=Eϵ[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t)− ϵ∥22] + Eϵ[(ϵθ(xt, t)− ϵ)

2
√
αt

σt
].

(14)

Similarly, we can get the gradient of conditional diffusion loss

d

dx
Eϵ[∥ϵθ(xt, t, y)− ϵ∥22]

=Ext
[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t, y)−

xt −
√
αtx

σt
∥22] + Ext

[(ϵθ(xt, t, y)−
xt −

√
αtx

σt
)
2
√
αt

σt
]

=Eϵ[
∂ log p(xt|x)

∂x
∥ϵθ(xt, t, y)− ϵ∥22] + Eϵ[(ϵθ(xt, t, y)− ϵ)

2
√
αt

σt
].

(15)

As shown, the gradient of Eq. (9) have two terms. The first term equals to the weighted sum of
∂ log p(xt|x)

∂x . In VE-SDE case, where xt = x+ σtϵ, the negative gradient direction is aligned with
x− xt (a vector starting from xt and ending at x). The second term is proportional to the gradient of
Score Distillation Sampling (Poole et al., 2022; Wang et al., 2023b), which also point toward real data.
Consequently, optimizing the diffusion loss will move x toward a region with higher log likelihood.
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Algorithm 2 Training of multi-head diffusion
Require: A pre-trained diffusion model ϵθ , dataset D, a multi-head diffusion model ϵϕ
1: repeat
2: x0, y ∼ D;
3: t ∼ Uniform({1, 2, ..., T}), ϵ ∼ N (0, I);
4: for y = 0 to K − 1 do
5: Take gradient descent step on ∇ϕEϵ,t[wt∥ϵθ(x̂t, t, y)− ϵϕ(x̂t, t, y)∥22];
6: end for
7: until converged;

B MORE EXPERIMENTAL RESULTS

B.1 TRAINING DETAILS

Computational resources. We conduct Direct Attack on 1× A40 GPUs due to the large memory cost
of computational graphs for second-order derivatives. We use 2× 3090 GPUs for other experiments.
We also analyze the time complexity and test the real-time cost on a single 3090 GPU, as demonstrated
in Table 3. We are unable to assess the real-time cost of some methods due to difficulties in replicating
them.

Training details of multi-head diffusion. To reduce the time complexity of the diffusion classifier
from O(K × T ) to O(T ), we propose to slightly modify the architecture of the UNet, enabling it to
predict for all classes at once. Since our changes are limited to the UNet architecture, all theorems
and analyses remain applicable in this context.

However, this architecture only achieves 60% accuracy on the CIFAR10 dataset, even with nearly the
same number of parameters as the original UNet. We tried to solve this problem by using a larger
CFG (i.e., viewing extrapolated result (1 + cfg) · ϵθ(xt, t, y) − cfg · ϵθ(xt, t) as the prediction of
UNet), but it does not work.

We hypothesize that with the traditional conditional architecture, the UNet focuses on extracting
features relevant to specific class labels, leading to a more accurate prediction of the conditional score.
In contrast, multi-head diffusion must extract features suitable for predicting all classes, as different
heads use the same features for their predictions. To test this hypothesis, we measure the cosine
similarity between features of a given xt with different embeddings y. We find that for the traditional
diffusion architecture, these features differ from each other. However, for multi-head diffusion, the
cosine similarity of these predictions exceeds 0.98, indicating that the predictions are almost identical
due to the identical feature.

It’s worth noting that this does not mean traditional diffusion models are superior to multi-head
diffusion. Both architectures have nearly the same number of parameters, as we only modify the
last convolution layer. Additionally, the training loss curve and validation loss curve for both are
almost identical, indicating they fit the training distribution and generalize to the data distribution
similarly. The FID values of these two models are 3.14 and 3.13, very close to each other. The
decreased performance of multi-head diffusion in the diffusion classifier is likely because it isn’t clear
on which feature to extract first. The training dynamic lets multi-head diffusion extracts features
suitable for all classes, leading to similar predictions for each class, similar diffusion loss, and thus
lower classification performance.

To prevent predictions for all classes from being too similar, we first considered training the multi-
head diffusion with negative examples. Initially, we attempted to train the multi-head diffusion
using the cross-entropy loss. While this achieved a training accuracy of 91.79%, the test accuracy
only reached 82.48%. Moreover, as training continued, overfitting to the training set became more
pronounced. Notably, this model had 0% robustness. Fortunately, this experiment underscores the
strength of our adaptive attacks in evaluating such randomized defenses, affirming that the robustness
of the diffusion classifier is not merely due to its stochastic nature leading to an inadequate evaluation.
A lingering concern is our lack of understanding as to why switching the training loss from diffusion
loss to cross-entropy loss drastically diminishes the generalization ability and robustness.

Our hypothesis posits that, when trained with the diffusion loss, diffusion models are compelled
to extract robust features because they are required to denoise the noisy images. However, when
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Table 3: Clean accuracy (%) and robust accuracy (%) of different methods against unseen threats.

Method Architecture NFEs Real Time (s) Clean Acc Robust Acc
ℓ∞ norm ℓ2 norm Avg

AT-DDPM-ℓ∞ WRN70-16 1 0.01 88.87 63.28 64.65 63.97
AT-DDPM-ℓ2 WRN70-16 1 0.01 93.16 49.41 81.05 65.23
AT-EDM-ℓ∞ WRN70-16 1 0.01 93.36 70.90 69.73 70.32
AT-EDM-ℓ2 WRN70-16 1 0.01 95.90 53.32 84.77 69.05
PAT-self AlexNet 1 0.01 75.59 47.07 64.06 55.57
DiffPure (t∗ = 0.125) UNet 126 0.72 87.50 53.12 75.59 64.36
DiffPure (t∗ = 0.1) UNet 101 0.60 90.97 53.52 72.65 63.08
SBGC UNet 30TK 15.78 95.04 0.00 0.00 0.00
HybViT ViT 1 0.01 95.90 0.00 0.00 0.00
JEM WRN28-10 1 0.01 92.90 8.20 26.37 17.29
Pérez et al. (2021) WRN70-16 9 n/a 89.48 72.66 71.09 71.87
Schwinn et al. (2022) WRN70-16 KN n/a 90.77 71.00 72.87 71.94
Blau et al. (2023) WRN70-16 KN n/a 88.18 72.02 75.90 73.96
LM (ours) WRN70-16 1 +NT 2.50 95.04 2.34 12.5 7.42
LM (ours) WRN70-16 1 +N 0.10 87.89 71.68 75.00 73.34
DC (ours) UNet TK 9.76 93.55 35.94 76.95 55.45
RDC (ours) UNet NT + TK 12.26 93.16 73.24 80.27 76.76
RDC (ours) UNet N + TK 9.86 88.18 80.07 84.76 82.42
RDC (ours) UNet N + T 1.43 89.85 75.67 82.03 78.85

trained using the cross-entropy loss, there isn’t a necessity to denoise the noisy images, so the models
might not extract robust features. As a result, they may lose their image generation and denoising
capabilities, as well as their generalization ability and robustness. We evaluated the diffusion loss
of the diffusion models trained by cross-entropy loss and found that their diffusion losses hovered
around 10. Furthermore, the images they generated resembled noise, meaning that they lose their
generation ability.

To address this issue, we need to strike a balance between the diffusion loss, which ensures the
robustness of the diffusion models, and the negative example loss (e.g., cross-entropy loss, CW loss,
DLR loss) to prevent their predictions for various classes from becoming too similar. This balancing
act turns the training of multi-head diffusion into a largely hyper-parameter tuning endeavor. To
circumvent such a complex training process, we suggest distilling the multi-head diffusion from a
pretrained traditional diffusion model. As illustrated in Algorithm 2, the primary distinction between
multi-head diffusion distillation and traditional diffusion model training is that the predictions for
all classes provided by the multi-head diffusion model are simultaneously aligned with those of a
pre-trained diffusion model.

Note that in Algorithm 2, the predictions for different classes are computed in parallel. This
approach sidesteps the need for tedious hyper-parameter tuning. Nevertheless, there’s still potential
for refinement. In this algorithm, the input pair (xt, t, y) is not sampled based on its probability
p(xt, t, y) =

∫
p(x|y)p(t)p(xt|x)p(y)dx. This could be why the multi-head diffusion slightly

underperforms compared to the traditional diffusion model. Addressing this issue might involve
using importance sampling, a potential avenue for future research.

B.2 MORE ANALYSIS AND DISCUSSION
Table 4: Gradient magnitudes of different
methods

Method 1
D∥g∥1

Engstrom et al. (2019) 7.7× 10−6

Wong et al. (2020) 1.1× 10−5

Salman et al. (2020) 6.6× 10−6

Debenedetti et al. (2022) 9.8× 10−6

Ours 8.2× 10−6

Gradient magnitude. When attacking the diffusion
classifiers, we need to take the derivative of the diffu-
sion loss. This is exactly what people do when training
diffusion models, thus the gradient vanishing may not
occur. We also measure the average absolute value of
gradient (i.e., 1

D∥g∥1). As shown in Table 4, the mag-
nitude of the gradient of our method is at the same scale as that of other adversarial training models,
which validates that our method does not have gradient vanishing.
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Substituting likelihood maximization with DiffPure. We further study the performance by sub-
stituting likelihood maximization with DiffPure. We use the same hyperparameters as in Nie et al.
(2022) and follow the identical evaluation setup as described in Sec. 4.1. The robustness of each
method under the ℓ∞-norm threat model with ϵ∞ = 8/255 on the CIFAR-10 dataset is shown in
Table 5. As shown, DC+DiffPure outperforms DiffPure significantly, highlighting the effectiveness
of our diffusion classifier. Furthermore, RDC surpasses DC+DiffPure, indicating that likelihood
maximization is more compatible with the diffusion classifier. Besides, Xiao et al. (2023) provide an
interesting explanation of DiffPure. It has been demonstrated that DiffPure increases the likelihood
of inputs with high probability, resulting in better robustness. By directly maximizing the likelihood
of inputs, our likelihood maximization further enhances the potential for improved robustness.

Table 5: The robustness of DiffPure,
DiffPure+DC and RDC.

Method Robustness(%)

DiffPure 53.52
DiffPure+DC 69.92
RDC 75.67

Attacking using the adaptive attack in Sabour et al. (2015).
Tramer et al. (2020) proposes to add an additional feature
loss (Sabour et al., 2015) that minimizes the class score be-
tween the current image and a target image in another class.
This create adversarial examples whose class scores match
those of clean examples but belong to a different class, thereby
generating in-manifold adversarial examples, avoiding to be
detected by likelihood-based adversarial example detectors.
To evaluate the robustness of our method against these adaptive attacks, we integrate them with
AutoAttack and test the robust accuracy under ℓ∞ threat model with ϵ∞ = 8/255. Surprisingly, our
method achieves 90.04% robustness against attack using feature loss, and 86.72% robustness against
attack using feature loss combined with the cross entropy loss or DLR loss in AutoAttack. On one
hand, our Lagrange attack in Sec. 4.4 directly maximizes the lower bound of likelihood, making it
more effective than feature loss. On the other hand, our method does not incorporate adversarial
example detectors, making it unnecessary to strictly align the logits of adversarial examples with
those of clean images.

Comparison with other dynamic defenses. We also compare our methods with state-of-the-art
dynamic defenses. As some of these methods have not yet been open-sourced, we reference the
best results reported in their respective papers. We use N to denote the optimization steps in their
methods (e.g., qualification steps in Schwinn et al. (2022), PGD steps in Blau et al. (2023)). As
shown in Table 3, our methods are not only more efficient but also effective than these dynamic
defenses. Specifically, the time complexities of these dynamic defenses are related to the number of
classes K, which limits their applicability in large datasets. On the contrary, the time complexity of
our RDC does not depend on K. Moreover, our RDC outperforms previous methods by +3.01% on
ℓ∞ robustness and +6.33% on ℓ2 robustness, demonstrating the strong efficacy and efficiency of our
RDC.

Table 6: Comparison with other randomized defenses.
Method Attacker Robustness(%)

Fu et al. (2021) PGD-100 66.28
Dong et al. (2022) PGD-20 60.69
Hao et al. (2022) n/a 0
RDC (Ours) AutoAttack 75.67

Comparison with other randomized
defenses. As shown in Table 6, our
method outperforms previous state-of-
the-art randomized defenses. This is be-
cause diffusion models are naturally ro-
bust to such Gaussian corruptions, and
such high variance Gaussian corruptions
are much more effective than Fu et al.
(2021); Dong et al. (2022) to smooth the local extrema in loss landscape, preventing the existence of
adversarial examples.

Comparison between different likelihood maximizations. We compare the LM (1 +NT ) with
the improved version LM (1 +N ). Surprisingly, under the BPDA attack, LM (1 +NT ) achieves
only 2.34% robustness. On the one hand, the likelihood maximization moves the inputs towards high
log-likelihood region estimated by diffusion models, instead of traditional classifiers, thus it is more
effective when combined with diffusion classifiers. On the other hand, although the diffusion losses
of LM (1+NT ) and LM (1+N ) are same in expectation, the former induces less randomness, thus it
is less effective to smooth the local extrema. LLet’s delve into a special case with N = 1. In this case,
the expectation of LM (1 +NT ) is Eϵ[f(x+∇xEt[wt∥ϵθ(xt, t, y)− ϵ∥22])], while the expectation
of LM (1 + N ) is Eϵ,t[f(x +∇x[wt∥ϵθ(xt, t, y) − ϵ∥22])]. The primary difference between these
two is the placement of the expectation over T for LM (1 +N ), which is outside the function f . This
arrangement implies that the randomness associated with t also aids in smoothing out local extrema,
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Table 7: Clean accuracy (%) and robust accuracy (%) of different methods in Restricted ImageNet.
Method Clean Acc Robust Acc

Engstrom et al. (2019) 87.11 53.12
Wong et al. (2020) 83.98 46.88
Salman et al. (2020) 86.72 56.64
Debenedetti et al. (2022) 80.08 38.67
DiffPure (Nie et al., 2022) 81.25 29.30
RDC (ours) 87.50 58.40

leading to better smoothed landscape and higher robustness. It is essential to clarify that this is not a
result of the stochasticity hindering the evaluation of their robustness. We have already accounted for
their stochasticity by applying EOT 100 times, as illustrated in Fig. 2(a).

Comparison between different RDCs. As shown in Table 3, our vanilla RDC attains 73.24% ℓ∞
robustness and 80.27% ℓ2 robustness, surpassing prior adversarial training and diffusion-based purifi-
cation techniques. By substituting the LM with the enhanced likelihood maximization, we manage to
further boost the robustness by 6.83% and 4.49% against the ℓ∞ and ℓ2 threat models, respectively.
When employing multi-head diffusion, the RDC’s time complexity significantly diminishes, yet its
robustness and accuracy remain intact. This underscores the remarkable efficacy and efficiency of
our proposed RDC.

B.3 EXPERIMENT ON RESTRICTED IMAGENET

Datasets and training details. We conduct additional experiments on Restricted ImageNet (Tsipras
et al., 2019), since Karras et al. (2022) provides off-the-shelf conditional diffusion model for imagenet
dataset. Restricted ImageNet is a subset of ImageNet with 9 super-classes. For robustness evaluation,
we randomly select 256 images from Restricted ImageNet test set due to the high computational cost
of the attack algorithms, following Nie et al. (2022).

Hyperparameters and robustness evaluation. We use the same hyper-parameters and robustness
evaluation as in Sec. 4.1. Following Nie et al. (2022), we only evaluate ℓ∞ robustness with ϵ∞ =
4/255 in this subsection.

Compared methods. We compared our method with four state-of-the-art adversarial training
models (Engstrom et al., 2019; Wong et al., 2020; Salman et al., 2020; Debenedetti et al., 2022)
and DiffPure (Nie et al., 2022). For discriminative classifiers such as adversarially trained models,
DiffPure, and LM, we compute the logit for each super-class by averaging the logits of its associated
classes. For our RDC, we select the logit of the first class within the super-class to stand for the whole
super-class.

Results. As shown in Table 7, our RDC outperforms previous methods by +1.75%, even though
RDC only uses the logit of the first class of each super class for classification. This demonstrates that
our method is effective on other datasets as well.

B.4 EXPERIMENT ON CIFAR-100

We also test the robustness of different method against ℓ∞ threat model with ϵ∞ = 8/255, following
the same experimental settings as CIFAR-10. Due to the time limit, we only random sample 128
images. The results are shown in Table 8.

We find that RDC still achieves superior result compared with the state-of-the-art adversarially trained
models and DiffPure. More surprisingly, we discover that DiffPure does not work well on CIFAR-100.
We guess this is because CIFAR-100 has more fine-grained classes, and thus a small amount of noise
will make the image lose its semantic information of a specific class. Hence, DiffPure is not suitable
for datasets with more fine-grained classes but small resolution. This experiment indicate that our
methods could be easily scaled to fine-grained datasets.

22



Under review as a conference paper at ICLR 2024

Table 8: Clean Accuracy (%) and robust accuracy (%) on CIFAR-100.
Method Clean Acc Robust Acc

WRN40-2 78.13 0.00
Rebuffi et al. (2021) 63.56 34.64
Wang et al. (2023a) 75.22 42.67
DiffPure 39.06 7.81
DC 79.69 39.06
RDC 80.47 53.12
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Figure 3: The prediction of ELBO and BPD on CIFAR-10 test set and CIFAR-10-C.

B.5 DISCUSSIONS.

O.O.D. Detection. We test both the unconditional ELBO and the likelihood (expressed in Bits Per
Dim (BPD) as mentioned in Papamakarios et al. (2017)) on the CIFAR-10 test set and CIFAR10-C. As
demonstrated in Fig. 3, while both methods could distinguish in-distribution data from certain types
of corruptions such as Gaussian blur and Gaussian noise, they struggled to differentiate in-distribution
data from corruptions like fog and frost.

Generation of multi-head diffusion. Since our multi-head diffusion is initialized from an uncondi-
tional EDM and distilled by a conditional EDM, it achieves a generative ability comparable to EDM.
The images generated by our multi-head diffusion are shown in Fig. 4.

C LIMITATIONS

Despite the great improvement, our methods could still be further improved. Currently, our methods
requires N + T NFEs for a single images, and applying more efficient diffusion generative mod-
els (Song et al., 2023; Shao et al., 2023; Liu et al., 2023) may further reduce T . Additionally, while
we directly adopt off-the-shelf diffusion models from Karras et al. (2022), designing diffusion models
specifically for classification may further improve performance. We hope our work serves as an
encouraging step toward designing robust classifiers using generative models.
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Figure 4: The images generated by multi-head diffusion.
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