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Abstract

Developing high-performance software is a complex task that requires specialized
expertise. We introduce GSO, a benchmark for evaluating language models’ ca-
pabilities in developing high-performance software. We develop an automated
pipeline that generates and executes performance tests to analyze repository com-
mit histories to identify 102 challenging optimization tasks across 10 codebases,
spanning diverse domains and programming languages. An agent is provided
with a codebase and performance test as a precise specification, and tasked to
improve the runtime efficiency, which is measured against the expert developer
optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle
significantly, achieving less than 5% success rate, with limited improvements even
with inference-time scaling. Our qualitative analysis identifies key failure modes,
including difficulties with low-level languages, practicing lazy optimization strate-
gies, and challenges in accurately localizing bottlenecks. We release the code and
artifacts of our benchmark along with agent trajectories to enable future research.

Website: https://gso-bench.github.io/
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Figure 1: An example GSO task. We develop an automated pipeline that generates performance
tests and analyzes repository commit history to identify real-world code optimization tasks. Each
task consists of a codebase, performance tests, and the expert developer commit that serves as
the performance target for the optimization problem. LLM-based SWE-Agents are then tasked
with generating optimization patches using the performance test as a precise specification for the
optimization problem. We evaluate the patches for both correctness and runtime efficiency, measuring
whether they match or exceed the human expert optimization performance while ensuring equivalence.

https://gso-bench.github.io/


Benchmark
Repo
Level

Evaluate
Runtime

Multi-
Lingual

Precise
Specification

HUMANEVAL ✗ ✗ ✗ ✓
EVALPERF ✗ ✓ ✗ ✓
ECCO ✗ ✓ ✗ ✓
LIVECODEBENCH ✗ ✗ ✗ ✓
KERNELBENCH ✗ ✓ ✗ ✓

SWEB-VERIFIED ✓ ✗ ✗ ✗
SWEB-MULTI ✓ ✗ ✓ ✗
MULTISWE-MINI ✓ ✗ ✓ ✗

GSO (Ours) ✓ ✓ ✓ ✓

Figure 2: Benchmark Feature Comparison and Performance Gap. Left: Depicting how GSO im-
proves over existing benchmarks across key dimensions. Middle: Distribution of oracle LoC changes
across benchmarks, showing GSO solutions require over 4-15x larger edits than existing benchmarks.
Right: Performance comparison of O4-MINI across LCB (algorithmic puzzles), SWEBENCH-VERIFIED

(repository-level bug-fixes), and GSO depicting the performance gap on optimization tasks.

High-performance software is critical for modern computing systems, from data analytics frameworks
to machine learning infrastructure. Developing such systems demands specialized expertise in
algorithmic optimization, hardware-aware programming, performance analysis, and reasoning across
multiple layers of the software stack. The complexity of these tasks is evident in production-
critical systems like VLLM [Kwon et al., 2023], HPC [Bradski, 2000], and VERL [Sheng et al.,
2024], where teams dedicate substantial efforts to iterative and continuous maintenance over long
development cycles. Simultaneously, SWE-Agents are gaining rapid traction in software development,
demonstrating remarkable results on simple bug-fixing tasks [Jimenez et al., 2024]. This has also
spurred excitement in adapting LLMS to aid in automating research tasks themselves, for example
improving deep learning kernels [Ouyang et al., 2024]. In this work, we study the question – “Can
LLM agents aid in the development of high-performance software?”. To answer this, we introduce
GSO, a benchmark for evaluating SWE-Agents on challenging software optimization tasks.

To create GSO, we develop an automated pipeline that generates performance tests and runs them
across a repository’s commit history to identify substantial optimizations discovered by expert
developers. After careful manual curation, we extract 102 challenging tasks across 10 codebases,
spanning diverse domains and languages including Python, C, and SIMD. Each task consists of a
codebase, performance tests exercising real-world workloads, and a target optimization from expert
developer commits. SWE-Agents receive a performance test as task specification and must produce
an optimization patch that improves runtime efficiency while maintaining correctness. We evaluate
these patches using our OPT@K metric, providing reliable assessment in a machine-agnostic manner.
Rather than naively measuring machine-dependent speedups, we assess whether model-generated
patches can consistently match or exceed the performance of human expert optimizations.

Our benchmark evaluates the capabilities needed for high-impact optimization work, tracking useful-
ness for real-world high-performance software development. Particularly, problems in GSO evaluate
challenging systems engineering tasks, including optimizing Pandas operations, Pillow image or
video processing operations (like GIF animation), and LLaMA-CPP model inference runtimes.

Code optimization uniquely bridges algorithmic reasoning and systems engineering, providing a
challenging yet well-specified evaluation domain for LLM-based programming agents. Unlike bug-
fixing SWE benchmarks that rely on potentially ambiguous natural language specifications [Aleithan
et al., 2024], performance tests natively provide precise specifications for correctness and efficiency.
Our tasks require substantial code changes, with gold-patches containing 4-15× more lines edited
than previous benchmarks (Figure 2-middle). We evaluate leading LLMS on GSO using the state-of-
the-art OPENHANDS agent framework [Wang et al., 2024b] (Section 3). Our evaluation reveals that
most agents struggle with the benchmark, achieving less than 5% success rate measured by OPT@1,
with test-time compute also providing only modest improvements (OPT@10 remaining around 15%).

To understand why SWE-Agents struggle with GSO, we perform a qualitative analysis of agent
behavior and failure modes (Section 5). First, agents struggle with low-level languages, often avoiding
them entirely or introducing fatal errors.Second, agents resort to superficial optimizations (“lazy
optimizations”) like compiler flag manipulation or input-specific fast-paths insertion, often making
bizarre non-idiomatic code changes. Third, localization remains challenging - agents frequently
misdiagnose the root cause of performance issues, leading to ineffective optimization attempts.
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Tasks # Total 102
# Codebases 10
# Languages 5
# Domains 8

Commit # Lines (avg) 250
# Lines (median) 110
# Lines (max) 2278
# Files (avg) 3.9
% Non-Py 58.8%

Tests # Per-task (avg) 12.45
# Per-task (max) 20

Figure 3: Left. Popular optimization concepts and examples of algorithms used in ground-truth
human commits for GSO tasks highlighting the algorithmic complexity of the tasks. Right. Summary
statistics for GSO tasks, the groundtruth human commits, and the performance tests highlighting the
repository-level nature of the tasks spanning diverse domains and languages.

The key contributions of this paper are: 1) An automated pipeline leveraging test-generation and
execution information for generating software optimization tasks from real-world codebases, resulting
in the GSO benchmark. 2) Evaluation of leading SWE-Agents on GSO, revealing a substantial
performance gap in systems engineering tasks. 3) Qualitative analysis of agent behavior and failure
modes with directions for future research. Given the substantial performance gap, we believe
considerable progress in reasoning capabilities and SWE-Agents will be required to close the gap
and hope GSO serves as a valuable resource for future LLM-based programming agent research.

2 GSO

Global Software Optimization (GSO) is a benchmark for evaluating SWE-Agent capabilities for
aiding in high-performance software development. Each task consists of an initial codebase snapshot,
performance tests measuring runtime and correctness, a build script for environment setup, and a
reference human commit establishing the target performance threshold. The goal is to generate a
patch that improves the performance of the codebase while maintaining functional correctness.

2.1 Task Formulation

Input. The agent receives the initial codebase, build script, and a performance test serving as input
and is tasked with correctly improving the runtime on the given workload in a generalizable manner.

Output. The agent produces a unified patch that implements the required performance improvements.

Evaluation. We apply the generated patch and execute all associated performance tests. Success
requires that the patch (1) applies cleanly, (2) passes all correctness checks, and (3) matches or
exceeds the target human commit’s performance.

2.2 Benchmark Construction

Unlike prior benchmarks that rely on manually written issues and test cases, we develop an automated
pipeline to construct GSO tasks from GITHUB repositories. Our key insight is that software
optimization problems can be identified by executing tests across commit boundaries and measuring
performance improvements with minimal human curation. Therefore, we use LLMS to identify
performance-related commits, generate performance tests, and execute them to identify optimization
tasks. Particularly, we use the following two-stage pipeline:

Stage I: Identifying Performance Improving Commits. We scan popular open-source GITHUB
repositories using an LLM-based judge with code-change heuristics to identify performance-related
commits. For each candidate, we extract context including relevant files, commit messages, linked
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issues, pull requests, and endpoints exercising the affected code. This efficient filtering process
handles large commit volumes while gathering the rich context needed for test generation.

Stage II: Generating and Executing Performance Tests. We generate performance tests via
execution-based rejection sampling using an LLM prompted with the commit context. Tests exercise
the codebase with real-world workloads, e.g., generating completions from qwen-7b for the sharegpt
dataset using llama-cpp. They measure runtime, and verify equivalence between the pre- and post-
commit codebase states via assertions on the outputs. We retain commits showing significant
performance improvements across multiple test cases. See Appendix C.1 for further details.

Final Curation. We perform a careful manual review of the automatically collected candidates to
ensure the benchmark’s quality and diversity. We remove instances with weak tests or reproducibility
issues, selecting problems spanning various optimization techniques, difficulty levels, and application
domains. Additional curation details and examples of generated tests are in Appendices C.2 and C.3.

2.3 Designing OPTp@K Metric

Evaluating code optimization presents unique aggregation challenges absent in traditional code
generation benchmarks. Existing metrics fail to handle two critical issues: (1) different tasks have
varying baseline performance levels, making cross-task comparison and aggregation difficult, and (2)
within tasks, tests with disparate speedup magnitudes can considerably skew aggregate metrics.

Robust Speedup Calculation. Prior work aggregates per-test speedups using geometric mean, but
this approach is vulnerable to outliers. A model achieving speedups of [0.1, 1000] across two tests
yields a geometric mean of 10, despite degrading performance on one test. In Section 5, we show that
agents indeed perform such optimizations and thus can “game” the geometric mean. Drawing from
systems optimization literature [Jacob and Mudge, 1995], we compute speedup using the harmonic
mean of individual test speedups which is more robust to extreme positive outliers. Let si =

T (C1,i)
T (C2,i)

denote the speedup on test i, where C1 and C2 represent two codebase states and T (C, i) denotes
runtime on test i. We then define the overall speedup as the harmonic mean:

S(C1, C2) =
n∑n

i=1
1
si

=
n∑n

i=1
T (C2,i)
T (C1,i)

We discuss these characteristics of our metric and other potential metrics in Appendix E.

Relative Performance Evaluation. To enable cross-task comparison, we evaluate model patches
against human-authored optimization targets rather than absolute speedups against the original
codebase. For each task, we measure whether the model achieves performance comparable to expert
developers. Thus, we measure the speedup against the human target as S(Ch, Ca), where Ch is the
codebase state from the human target optimization and Ca is the codebase after applying the model’s
patch. For each task, we define success using both performance and correctness criteria:

OPTp =

{
true, if S(Ch, Ca) ≥ p and correct(Ca)

false, otherwise

The first criterion ensures that the model’s patch achieves at least p fraction of the human speedup.
The second criterion (correct(Cm)) ensures functional equivalence through test assertions.

Final Metric Definition. We compute OPTp@K as the fraction of tasks where at least one successful
solution exists among K attempts:

OPTp@K =
1

N

N∑
i=1

1(∃k ∈ [K] : OPTp)

We estimate confidence intervals following established methods for pass@K metrics [Chen et al.,
2021, Lightman et al., 2023]. Our OPTp@K metric provides machine-independent assessment
by comparing against human baselines rather than absolute speedups. While raw speedups vary
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significantly across machines (Appendix D), the relative evaluation ensures consistent assessment
across different hardware configurations. Finally, we denote OPT@K as the OPT0.95@K metric that
uses a 95% threshold for evaluating success against the human target.

2.4 Distinctive Features of GSO

Precise task specification. GITHUB issues provide ambiguous specifications, especially for complex
software engineering tasks [Aleithan et al., 2024]. GSO employs performance tests as specifications
that unambiguously define optimization targets, enabling rigorous evaluation.

Unifying algorithmic coding with real-world SWE. Code LLM research is divided across isolated
but algorithmically-focused benchmarks, and simple bug-fixing based SWE benchmarks. GSO
bridges these two domains by integrating algorithmic challenges with real-world software tasks.

Diverse tasks spanning system boundaries. ≈60% of tasks demand non-Python modifications
across five programming languages, reflecting production environments where performance-critical
components leverage systems languages beneath high-level interfaces (Figure 2-right).

Challenging tasks via strong human targets. Each task centers on human-authored commits
averaging 108 lines, establishing demanding optimization targets requiring sophisticated code com-
prehension and algorithmic reasoning. Figure 9a shows the LoC distribution for our target commits.

Unbounded performance measurement. Software optimization inherently enables unbounded
performance improvements through identification of previously unexplored bottlenecks. Speedups
thus serve as a critical secondary metric for quantifying exceptional performance beyond human
optimization targets. Since task-specific factors can skew raw speedup metrics, we establish OPT@K
as our primary metric while providing comprehensive speedup analysis in the appendix.

Evading contamination. Contamination represents a fundamental concern for agent benchmarks,
particularly with real-world codebases potentially present in pretraining data. Our speedup metric
provides a continuous signal that systematically detects potential contamination between human and
model patches. We posit that models substantially outperforming human-written patches demonstrate
generalization capabilities and thus can transcend contamination concerns.

3 Evaluation Setup
Machine Configuration. We use Docker to containerize the task environment for each task in GSO.
The initial codebase is cloned and installed into a local environement in the container before providing
it to the agent. All tasks are run on a single Google Cloud n2-standard-64 VM (64 vCPUs, 256
GB Memory). While raw speedups may vary across machines, we empirically find that measuring
OPT@K is resilient to machine variations, provided each task gets sufficent resources (Appendix D)

Agent Scaffold. We use OPENHANDS [Wang et al., 2024b] (CodeActAgent-v0.35.0), as our common
agent scaffold for all models and experiments. The scaffold provides access to a file-editor tool and a
bash terminal tool to the agent to perform code changes and execute commands. To support lengthy
and frequent codebase rebuilds (in the case of C or C++ code changes), we configure the agent with a
3-hour time limit per task and a 20-minute timeout per step. Our task-specific prompt instructs the
agent to optimize the runtime of the specification performance test and also contains the build and
test commands. See Appendix G.1 for the complete agent prompts and details.

Models. We evaluate GPT-4O, O3-MINI, O4-MINI, and the SONNET version of CLAUDE-3.5-V2 (re-
ferred as CLAUDE-3.6), CLAUDE-3.7, and CLAUDE-4.0. Our experiments focus on two settings: OPT@1
(Section 4.1) and inference-time scaling (Section 4.2). For OPT@1, we sample 3 rollouts (trajectories)
at temperature T = 0.1. For inference-time scaling (Section 4.2), we limit our evaluations to O4-MINI

and CLAUDE-3.5-V2 due to API rate limits and high cost and sample rollouts at temperature T = 0.8.

4 Experiments & Results
4.1 OPT@1

Figure 4-left shows consistently poor OPT@1 performance across agents based on all models, con-
firming software optimization as a significant challenge for current SWE-Agents. Even the best
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Figure 4: OPT@1 performance. (a) Left: OPT@1 (speedup threshold p set to 0.95) across models,
with all models achieving less than 5% success (b) Right: OPTp@1 indicating portion of problems
where model patches match p fraction of human commit’s performance. We find that strongest
performing models remain strong throughout, with the success rates reducing as it becomes more
challenging to match human-level performance.

Figure 5: Scaling test-time compute for O4-MINI and CLAUDE-3.5-V2. (a) Left: OPT@K per-
formance as a function of inference steps (L) and parallel rollouts (K), showing parallel compute
scales more efficiently than serial compute. (b) Right: OPT@K performance with increasing rollouts,
improving to 15% with diminishing returns beyond eight rollouts.

performing model, CLAUDE-4.0, achieves less than 5% success, while GPT-4O fails completely at
0.0%. These results demonstrate that success on SWE-Bench-like benchmarks does not transfer to
more-challenging real-world tasks like software optimization requiring both algorithmic reasoning
and engineering expertise.

We next vary p in OPTp@1 (Figure 4-right). Recall that OPTp@1 evaluates whether the agent’s patch
is able to match p fraction of the human commit’s performance. Thus p = 0 evaluates whether the
agent’s patch is correct, regardless of its performance, while p = 1 evaluates whether the agent’s
patch is identical to the human commit, increasing in difficulty. We find that OPT0@1 performances
shows considerably more variation with CLAUDE-4.0 achieving 70% OPT0@1 while O4-MINI achieves
45%. We also find that the trend stays the strongest performing model, but the gap compresses as p
increases, indicating challenges in matching human-level performance.

4.2 Scaling Inference-time Compute

Drawing inspiration from [Olausson et al., 2023], we examine two dimensions of test-time compute
scaling: (1) sampling multiple trajectories and picking the best (referred to as parallel compute) and
(2) allowing more steps per trajectory (referred to as serial compute).

Scaling serial vs parallel compute. In Figure 5-left, we analyze steps scaling from 50 to 400 with
different numbers of rollouts between 1 and 8. Results show parallel compute scales more efficiently
than serial compute. With only 50 steps, 8 rollouts yields higher performance (8.82 for O4-MINI
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Figure 7: Qualitative analysis of agents. Model failures are classified into three high-level categories:
(1) Localization: misidentifying code regions or opportunities for optimization, (2) Mismanage
Compute: battling explore-exploit tradeoffs, and (3) Avoid Complexity: challenges with low-level
code changes. Left: CLAUDE-3.5-V2 shows an exploit-heavy behaviour, making massive code
changes with lesser exploration of the codebase. It also attempts deeper changes but fails to localize
bottlenecks and changes to the right abstraction level. Right: O4-MINI in contrast is explore-heavy,
avoids low-level code, and makes “lazy” optimizations like spurious compiler flag modifications.

and 11.76 for CLAUDE-3.5-V2) than 400 steps with a single rollout (1.96 for O4-MINI and 4.95
for CLAUDE-3.5-V2). This indicates increased sample diversity across trajectories can effectively
compensate for reduced step counts, providing insights for optimal inference-time compute allocation.
Low OPT@10 performance. Building on these findings, we further examine performance with
extended parallel compute. Figure 5-right demonstrates both models gain performance with additional
rollouts, with OPT@K increasing from under 4% to over 12% with 8 rollouts. Despite these
improvements, OPT@10 performance remains modest (under 20%) for both models with diminishing
returns, indicating fundamental limitations in current SWE-Agents.

4.3 Performance with Ground-Truth Plans

Figure 6: O4-MINI performance with and with-
out backtranslated ground-truth plans describ-
ing the human commit’s optimization strategy.

Beyond engineering, solving GSO requires identi-
fying bottlenecks and planning optimization strate-
gies over a long horizon. Inspired by prior work
on “backtranslation” guided reasoning [Li et al.,
2023, Wang et al., 2024a, Pham et al., 2021, Sen-
nrich et al., 2015], we assess the impact of guided
reasoning by prompting O4-MINI with descriptive
backtranslated plans of ground-truth optimizations.
We provide O4-MINI with the groundtruth diff and
sample 5 plans describing the optimization strategy
and specific file-localized changes. Appendix H
details the prompt and example plans.

We observe that prompting agents with backtrans-
lated plans improves performance suggesting that
high-level plans aid in matching human-level per-
formance. However, OPT@1 only reaches 5.7%
and OPT@5 improves by just 9% with these plans. So while strategic planning and reasoning helps,
implementing low-level system changes remains challenging for current models.

5 Qualitative Analysis of Agent Behavior
We use an LLM-aided pipeline (details in Appendix I) to qualitatively analyze agent behavior
and failure modes. We categorize the failures as (1) challenges with low-level code, (2) compute
management issues, and (3) localization errors.
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5.1 Agents Struggle with Low-Level Code Changes

Subset OPT@10

Py only (42) 21.4%
non-Py only (60) 4.0%

Poor performance on low-level problems. We identify sharp
declines in agent performance as language complexity increases.
Models perform best with high-level languages, with O4-MINI

achieving 21% on Python tasks. Performance drops drastically
to 4% when Cython, C and C++, etc. are involved.

Figure 8: File extensions modified in model
patches, indicating additions or omissions relative
to the reference human commit.

Modifications at the wrong abstraction level.
Production codebases have a hierarchy of ab-
straction levels, from high-level APIs to low-
level implementations, with each layer encap-
sulating complexity beneath it. Our analysis
reveals that operating at inappropriate abstrac-
tion levels contributes to 25-30% of agent fail-
ures. However, interestingly, models exhibit
opposite but equally problematic approaches.
Figure 8 shows that O4-MINI avoids making
changes to the C/C++ files 40% of the times
even when it was necessary based on the human
optimization commit. CLAUDE-3.5-V2 on the
other hand surprisingly makes unnecessary low-
level C changes (9.2%) when even the human
optimization commit was Python-only!

In Example F.1, O4-MINI attempted to optimize NumPy’s np.subtract.at function. NumPy con-
ceptually implements this in a layer below the Python API called ufunc (universal function) written
in C. While the model scrolled through these C files, it decided to not make changes there and instead
tried to override it with a Python function, completely avoiding the required deeper change.

Fundamental errors in low-level programming. Beyond selecting incorrect abstraction levels,
agents also struggle with fundamental low-level programming concepts. In Example F.2, CLAUDE-
3.5-V2 incorrectly modified Pillow’s SIMD pointer arithmetic, causing segmentation faults.

5.2 Agents Favor Lazy Optimizations

Optimization Minimalism: The Path of Least Resistance. Agents consistently favor trivial code
changes to meet performance targets rather than investigating and implementing more substantial
improvements. O4-MINI exhibits this behavior in nearly 30% of trajectories (Figure 7), with patch
sizes significantly smaller than human-written optimizations. In fact, in over 60% of incorrect
trajectories, the agent made ≤ 15% of the edits compared to the corresponding human developer
commit, as shown in Appendix F.2.

Spurious compiler-flag twiddling. In Example F.3, CLAUDE-3.5-V2 attempted to optimize Pillow’s
SIMD implementation by simply adding −O3 compiler flags. This approach is ineffective since the
Pillow project already uses optimized builds by default. This pattern appears across many agent
trajectories, revealing a fundamental misunderstanding of real-world project configurations.

Input-specific fast paths. Agents frequently implement narrow optimizations targeting only the
specific input patterns present in given performance test. In Example F.4, O4-MINI created a
specialized fast path for NumPy’s ljust API that only handled “matching-shaped” input arrays. Our
test suite identifies these narrow optimizations as failures due to their poor generalization properties.

Bizarre overrides in __init__.py. A recurring pattern in O4-MINI trajectories is modifying
__init__.py files to override functions instead of making core improvements. These overrides
typically implement input-specific optimizations in a non-idiomatic manner, as shown below:

# __init__.py
_orig_strftime = _PeriodCls.strftime
def _fast_strftime(self, fmt):

if fmt is None and getattr(self, "freqstr", None) == "M":
return f"{y:04d}-{m:02d}" # Fast path for default monthly formatting

return _orig_strftime(self, fmt)

See examples and analysis for this behavioral pattern in Example F.5 and Example F.6.
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5.3 Agents Mismanage Compute

Underutilize available compute. First, we find that agents often underutilize their available compute
budget. We observe this quantitatively in our inference-time scaling experiments (Section 4.2), where
we increased the number of available agent steps. Even with larger budgets of 200+ steps, 75% of
trajectories terminate before 100 steps! This again underscores the lazy behavior discussed earlier and
highlights the need for better agent scaffolding and model improvements to optimally use compute.

Imbalance in exploration and exploitation. Figure 7 reveals a dichotomy in exploration-exploitation
behaviours. O4-MINI trajectories are rated as explore-heavy meaning they spend most of their steps
examining the codebase without converging on actionable optimizations. On the other hand, CLAUDE-
3.5-V2 trajectories are rated as exploit-heavy, meaning they commit to solutions with insufficient
exploration of alternatives, and eagerly make tons of code changes. This also indicates a promising
research direction to improve agent performance by leveraging the strengths of the two models.

5.4 Agents Misdiagnose Optimizations

Misidentify bottlenecks and solutions. Agents misdiagnose performance bottlenecks, implement-
ing ineffective optimizations. In Example F.7, CLAUDE-3.5-V2 attempted to parallelize NumPy’s
char.count API, ignoring Python’s GIL and process startup overhead, resulting in worse perfor-
mance. After multiple failures, the model concluded: "For this specific use case, numpy’s string
operations are already highly optimized, stick with the original implementation."

5.5 Analyzing Model Successes

Section 4.2 shows the with increasing test-time compute, SWE-Agents can solve a small fraction
of the tasks. Here, we analyze the characteristics of the tasks that SWE-Agents can solve. We find
that agent solutions vary significantly in sophistication, ranging from simple but effective changes to
genuinely impressive algorithmic improvements.

Some successful optimizations are less impressive when compared to what humans achieved on
the same problems. In Example F.8, O4-MINI added a fast path for writing data when network
streams are idle, avoiding unnecessary buffering. But the human developer completely redesigned the
entire buffering system with a much more sophisticated approach. In Example F.9, CLAUDE-3.5-V2
optimized database-style lookups using bit-combining. The human solution was more comprehensive,
upgrading the underlying search algorithms across the entire codebase. In Example F.10, O4-MINI

improved sorting by working directly with integer codes instead of string values. However, the human
approach was cleaner, refactoring shared utilities that benefited multiple sorting operations.

However, agents can also implement sophisticated optimizations that outperform human solutions. O4-
MINI completely rewrote image file parsing to read only essential metadata instead of decompressing
entire frames, reducing algorithmic complexity from O(n²) to O(n) (Example F.11). The human
developer only made a simple check, while the agent delivered a fundamentally superior approach.
CLAUDE-3.5-V2 eliminated memory waste by calculating exact allocation sizes upfront instead of
repeatedly resizing arrays (Example F.12). The human solution still used dynamic resizing, just with
better growth patterns, while the agent eliminated resizing entirely.

6 Related Work

Code LLM Benchmarks. Initial code generation benchmarks like HumanEval [Chen et al., 2021,
Liu et al., 2023] and MBPP [Austin et al., 2021] focused on isolated small programs with simple
specifications. These benchmarks have since evolved to evaluate LLMs across multiple languages
(MultiPL-E [Cassano et al., 2022]), Data Science (DS-1000 Lai et al. [2023]), Arcade [Yin et al.,
2022]), API usage (Jigsaw [Jain et al.], ODEX [Wang et al., 2022], BigCodeBench [Zhuo et al.,
2024]), and more complex algorithmic tasks in competitive programming (LiveCodeBench [Jain
et al., 2024b], APPS [Hendrycks et al., 2021], CodeContests [Li et al., 2022], XCodeEval [Khan
et al., 2023], CodeScope [Yan et al., 2023]). However, these benchmarks remain focused on isolated
puzzle-solving tasks rather focusing on only code correctness and not performance optimization.
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Performance Evaluation. Various works have introduced benchmarks to evaluate the performance
capabilities of LLMS. EvalPerf [Liu et al., 2024] and EffiBench [Huang et al., 2024] assess runtime
efficiency of code generated from natural language specifications on HumanEval and LeetCode tasks.
In contrast, PIE [Madaan et al., 2023], ECCO [Waghjale et al., 2024], and NoFunEval [Singhal
et al., 2024] focus on code optimization capabilities, where models improve existing programs while
maintaining functional equivalence. Chambon et al. [2025] studies code complexity guided code
generation. These benchmarks employ different approaches to reliably measure program runtimes.
PIE simulates hardware-level runtime for C++ programs while EvalPerf employs hardware counters
for precise performance measurement. While providing reliability, these approaches unfortunatly
do not scale to larger codebases considered in our work. Other works [Coignion et al., 2024, Niu
et al., 2024] utilize LeetCode’s execution environment to evaluate LLM-generated code performance
adding unwarranted dependence on external services. ECCO, similar to our approach, leverages
cloud computing environments to ensure consistent benchmarking.

Repo-Level SWE-Agent Benchmarks. SWE-Bench [Jimenez et al., 2024] evaluates issue resolution
in open-source repositories. Extensions include multi-modal capabilities [Yang et al., 2024] and
multi-lingual capabilities [Zan et al., 2025, Kabir et al., 2024]. SWE-Lancer [Miserendino et al., 2025]
evaluates agent performance on varied JavaScript coding tasks collected from Upwork. Specialized
benchmarks address test generation [Jain et al., 2024a, Ahmed et al., 2024] and bug-localization [Chen
et al., 2025]. Zhao et al. [2024] proposed Commit-0 for library generation from scratch while Jain
et al. [2024c, 2025], Xie et al. [2024, 2025] propose frameoworks for function level code generation.
These benchmarks do not study performance optimization, the focus of our work.

Recently, using LLMS to generate code has been receiving considerable attention, with hopes of
automating AI research and development. Particularly, KernelBench [Ouyang et al., 2024] and
METR-KernelEngineering [METR, 2025] are two benchmarks that evaluate the performance of
LLMS in generating performant code for kernel engineering. While they focus on a specific domain
of kernel engineering, we explore sofware optimization capabilities of LLMS across domains.

7 Limitations and Conclusion

Benchmark Size. Our benchmark contains 102 software optimization tasks, which may introduce
variance in results due to its limited size. Nevertheless, each task represents a challenging real-world
optimization problem, making successful completion a strong indicator of model capabilities for
high-performance software development. We will consider expanding the benchmark based on
community feedback, identifying additional representative tasks.

Hacky Optimizations. Reward hacking plagues software agent benchmarks [Gu et al., 2025] with
agents circumventing test cases in unintended ways [Lange et al., 2025]. As noted in Section 5, models
already attempt to overfit tests and produce non-idiomatic code. Our precise task specifications and
test suite currently detect such issues, but monitoring these behaviors remains critical for future work,
and we recommend community efforts to develop mitigation approaches.

Evaluation Beyond Speedup. Our work focuses on improving the runtime performance of the code,
but practical software development also requires other metrics such as memory usage, maintainability,
and idiomaticity. For example, optimization often requires trade-offs between different metrics, which
are not captured by our speedup metric. Unfortunately, automated evaluation of these properties is
challenging, and we hope to tackle these challenges in future work.

Contamination. The current low performance suggests contamination is not a risk for existing
LLMS despite our tasks being collected from GitHub repositories. Additionally, as discussed in
Section 2.4, our continuous speedup metric helps detect contamination, as agent solutions that exceed
human performance demonstrate generalization beyond mere memorization.

Conclusion. We present GSO, a benchmark for evaluating LLMS in aiding the development of
high-performance software. Our quantitative results demonstrate that current LLMS fall short in this
domain and our qualitative analysis identifies various failure modes. We hope GSO can serve as a
valuable resource for future works in this direction in building more capable SWE-Agents, including
improvements to both the model and the agent scaffold.
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A Code and Dataset

We release our codebase at https://github.com/gso-bench/gso and our datasets at https:
//huggingface.co/datasets/gso-bench/gso. Note: GSO is collected entirely from public
repositories with licenses that permit software usage that our contributions are in accordance with.
Details of the licenses are included in Table 1. During the collection or evaluation processes, we
do not collect information about GitHub users, and the GSO task instances do not use GitHub data
beyond what is offered via the public API and website. Our contributions do not involve any human
subject participation; we do not perform crowdsourcing or recruit human task workers for any part
of GSO, including its collection and evaluation procedures, along with the experiments. GSO’s
filtering criteria for GitHub repositories based on popularity do not implicitly or explicitly rely on
discriminative or biased heuristics for repository selection.

B Features of GSO

B.1 Distribution of Codebases and Tasks in GSO

Codebase #Tasks Languages Domain License

numpy 36 Py, C, C++ Scientific Computing BSD 3-Clause
pandas 34 Py, Cy Data Analysis BSD 3-Clause
pillow-simd 7 Py, C Image Processing HPND
pillow 4 Py, C Image Processing HPND
pydantic 4 Py Data Validation MIT License
tornado 4 Py Web & Network Apache License 2.0
tokenizers 4 Py, Rust LLM Tokenizers Apache License 2.0
transformers 4 Py ML Inference Apache License 2.0
datasets 3 Py ML Datasets Apache License 2.0
llama-cpp 2 Py, C, C++ ML Inference MIT License

Total 102

Table 1: Distributions of codebases and tasks in GSO.

B.2 Line Changes and Complexity of GSO Tasks

Benchmark Min Median Mean Max Characteristics
SWEBENCH-VERIFIED 0.0 6.0 12.6 215.0 Bug fixes, small targeted changes
SWEB-MULTI 0.0 9.5 46.6 3,178.0 Multilingual bug fixes, small-moderate scope
MULTISWE-MINI 0.0 24.0 135.4 5,648.0 Multilingual bug fixes, small-moderate scope
GSO 7.0 108.0 231.5 1,477.0 Performance optimization, algorithmic changes

Table 2: Detailed comparison of lines changed across benchmarks. GSO contains significantly larger
changes across all statistical measures, reflecting the complexity of performance optimization tasks
compared to bug fixes or feature additions.

Procedure. For our benchmark comparison analysis, we compute the number of lines changed
in each benchmark by parsing the patch files and counting non-test file line modifications. Our
parser extracts line additions and deletions while filtering out test files using comprehensive pattern
matching heuristics across various programming languages and frameworks. We identify test files
through common path patterns (e.g., /tests/, __tests__/), filename conventions (e.g., test_*.py,
*_test.go), and standard test extensions (e.g., .spec.js, Test.java).

Insights. The substantially higher line count statistics for GSO underscore a key aspect of perfor-
mance optimization: these tasks frequently require algorithmic changes, data structure modifications,
or architectural adjustments that span multiple files and functions. This contrasts with bug fixes (as
in SWEBENCH-VERIFIED), which are often localized to specific functions or methods. The more
extensive code changes in GSO create a more challenging environment for testing the capabilities of
large language models in software engineering tasks.
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Note while our dataset extraction aims to identify optimization-focused commits, these may not
always represent minimal changes. Some commits contain peripheral modifications like code format-
ting, documentation updates, or minor refactorings alongside the core performance improvements.
This reflects real-world development practices where optimizations often co-occur with other changes.
This might skew the line count statistics but we believe median line counts would remain a good
proxy for the complexity avoiding such outliers.

(a) Lines of Code edited in groundtruth commits (b) Groundtruth commit performance

Figure 9: Distributions of code changes and performance improvements from groundtruth commits.

C Problem Collection Framework

C.1 Generating Performance Tests

Setting % Retained

Testgen 32.5
+ w/ Commit context 43.3

Table 3: Rich commit context increases
performance test quality and yield of re-
tained commits after execution.

Our benchmark construction pipeline’s (described in Sec-
tion 2.2) effectiveness stems from two aspects: First, ex-
ecution precisely identifies commits with consistent per-
formance improvements across test cases. Second, as
shown in Table 3, rich context from affected files and PRs
yields gains in commits retained (pass functional equiva-
lence checks and show performance improvement) for the
benchmark. While a more sophisticated approach could
be used (e.g., using SWE-agents Yang et al. [2025]) we
use a pipeline that uses sampling to scale tests for a large number of commits cost-effectively.

C.2 Manual Curation of Benchmark Instances

Once we generate candidate tasks from our automated pipeline, we manaually curate the benchmark
instances to ensure diversity and complexity of problems. For this, we mainly used metrics such as
lines of code (LOC) edited, number of files changed, number of functions or hunks added or removed,
and the languages used in the groundtruth human commit. Beyond patch size and complexity, we
also considered the performace improvement of the commit.

Outside of metrics, we also validated some early candidate problems qualitatively by evaluation on
a few language models to identify potential ways in which models can "hack" problems. Reward
hacking is a common issue in SWE-benchmarks, where models can exploit potentially weak test cases
to pass without truly solving the task. In our case, we identified ground truth commits that were easily
matched in terms of performance with trivial optimizations such as caching output values, using
@lrucache or @memoize decorators to memoize function calls. In another case, we found that our
tests initially indicated repeated calls to functions with the same arguments for robust measurements.
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However, this led to models generating patches that simply cached the output of the function calls!
We resolved this by removing any such hints that promoted hacking and perform runs outside the test
scripts instead. We also identified cases where our generated tests did not cover all edge cases or only
covered a small subset of the input space, making them susceptible to overoptimization by the model.
We oversampled tests with diverse input distributions to mitigate this issue, or remove such problems
from the benchmark to ensure high construct validity.

C.3 Example Performance Test

Below is an example of a performance test generated for evaluating NumPy’s string replacement
operations. This test demonstrates our approach to creating comprehensive benchmarks that exercise
real-world usage patterns while ensuring functional correctness.

def setup() -> np.ndarray:
"""
Prepare a diverse dataset of text strings from Project Gutenberg and random generation.
"""
# Download real-world text dataset
url = "https://www.gutenberg.org/files/1342/1342-0.txt"
response = requests.get(url)
response.raise_for_status()
text_lines = response.text.splitlines()

# Generate random strings for corner cases
random.seed(42)
np.random.seed(42)
letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
punctuation = ".,;:!?’\"-()[]{}"
whitespace = " "

def generate_random_string():
length = random.randint(20, 200)
parts = []
for _ in range(length):

choice = random.random()
if choice < 0.75:

parts.append(random.choice(letters))
elif choice < 0.90:

parts.append(random.choice(punctuation))
else:

parts.append(" ")
return "".join(parts)

random_strings = [generate_random_string() for _ in range(1000)]

# Combine and shuffle the dataset
combined = text_lines + random_strings
random.shuffle(combined)
data = np.array(combined, dtype=np.str_)
return data

def experiment(data: np.ndarray):
"""
Execute string replacement operations using numpy.char.replace API.
"""
# First replacement: full replacement of " the " with " THE "
replaced = np.char.replace(data, " the ", " THE ")
# Second replacement: replace "and" with "AND", limited to 2 occurrences
replaced = np.char.replace(replaced, "and", "AND", count=2)
# Third replacement: full replacement of " of " with " OF "
replaced = np.char.replace(replaced, " of ", " OF ")

# Return result summary
result_summary = {
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"shape": list(replaced.shape),
"first_entries": replaced[:5].tolist()

}
return result_summary

def store_result(result, filename: str):
"""Serialize experiment results to JSON"""
with open(filename, ’w’, encoding=’utf-8’) as f:

json.dump(result, f, ensure_ascii=False, indent=2)

def load_result(filename: str):
"""Load experiment results from JSON"""
with open(filename, ’r’, encoding=’utf-8’) as f:

return json.load(f)

def check_equivalence(reference_result, current_result):
"""Verify result equivalence against reference"""
# Check shape equivalence
ref_shape = list(reference_result["shape"])
cur_shape = list(current_result["shape"])
assert ref_shape == cur_shape, f"Shape mismatch: expected {ref_shape}, got {cur_shape}"

# Check content equivalence
ref_entries = list(reference_result["first_entries"])
cur_entries = list(current_result["first_entries"])
assert len(ref_entries) == len(cur_entries)
for ref_str, cur_str in zip(ref_entries, cur_entries):

assert ref_str == cur_str, f"Mismatch in entry: expected {ref_str!r}, got {cur_str!r}"

def run_test(eqcheck: bool = False, reference: bool = False, prefix: str = ’’) -> float:
"""Run performance and equivalence test"""
# Setup the dataset (not timed)
data = setup()

# Time the experiment over multiple iterations
execution_time, result = timeit.timeit(lambda: experiment(data), number=1)

# Handle reference results
ref_filename = f"{prefix}_result.json" if prefix else "reference_result.json"
if reference:

store_result(result, ref_filename)
if eqcheck:

ref_result = load_result(ref_filename)
check_equivalence(ref_result, result)

return execution_time

This performance test demonstrates a comprehensive approach to benchmarking NumPy’s string
replacement operations. The test creates a diverse dataset combining literary text with randomly
generated strings to exercise various edge cases. It then performs a series of cascaded string
replacements that mimic real-world text processing workflows, measuring execution time while
ensuring output correctness. The test framework includes robust validation mechanisms to verify that
optimizations maintain functional equivalence with reference implementations.
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D Measuring Cross-platform Variability in Speedup

Figure 10: Cross platform variation in measured speedups achieved by model patches over the initial
codebase. Here we measure speedup on three different machine configurations: Machine 1 (16 cores,
128GB RAM), Machine 2 (32 cores, 256GB RAM), and Machine 3 (64 cores, 512GB RAM).

In Figure 10, we show the speedup achieved by model patches over the initial codebase on three
different machine configurations. As shown the speedups achieved can be quite different across
machines, due to differences in CPUs, cache sizes, memory bandwidth, etc. However, we find that
given sufficient compute resources per task in the benchmark, our OPT@K metric is unaffected
by the machine configuration. Our metric controls for machine-specific variation by comparing
generated optimizations against expert developer implementations in the same environment, rather
than measuring absolute speedups, providing a more consistent evaluation.

E Comparison of Speedup Aggregation Metrics

Figure 11: Comparison of speedup aggregation metrics with its effect on OPT@1 scores. Left:
arithmetic mean, middle: geometric mean, right: risk-adjusted geometric mean (RAGM). Each metric
exhibits different sensitivities to outliers and distributional properties.

Arithmetic Mean: Treats every test equally but is highly susceptible to large outliers—a single
extreme speedup can disproportionately inflate the average and mask regressions elsewhere.

Geometric Mean: large speedups still exert substantial influence: for example, speedups of
[0.1, 1000] yield a GM of 10, despite a 90% slowdown on one test. This again allows dramatic wins
to disguise serious regressions.

Risk-Adjusted Geometric Mean (RAGM) Computed as exp
(
µ− 0.5γσ2

)
with µ = 1

n

∑
log si,

σ2 = 1
n

∑
(log si − µ)2, and tunable γ. By penalizing distributions with high variance, RAGM

ensures that extreme slowdowns and spikes are reflected, offering a symmetric treatment. However,
we do not want symmetric treatment—large wins on minor tests shouldn’t hurt, only significant
regressions matter.

We study several such aggregation metrics and find that Harmonic Mean was the most suitable for
our use case. Its asymmetric sensitivity punishes slowdowns heavily, while almost ignoring large
speedups. This matches our goal of flagging regressions without overstating trivial wins.
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F Additional Results on Model-Generated Patches

F.1 Test Pass Rate

(a) O4-MINI (b) CLAUDE-3.5-V2

Figure 12: Test pass rate (% problems where the model’s patch passed equivalence checks) and %
problems where the model’s patch showed some performance improvement on the initial codebase
during inference-time scaling for O4-MINI and CLAUDE-3.5-V2. These metrics are distinct from
and easier to achieve than OPT@K, which requires patches to both pass equivalence checks and
show performance improvements that match or exceed the target human commit’s performance.
The disparity between high test pass rates with some speedups versus low OPT@K scores indicates
significant headroom for improvement.

F.2 Patch Size Analysis

(a) Patch size ratio for O4-MINI (b) Patch size ratio for CLAUDE-3.5-V2

Figure 13: Ratio of lines of code edited in model-generated patches to groundtruth human commits.
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F.3 Speedups Achieved over Initial Codebase

(a) O4-MINI (b) CLAUDE-3.5-V2

Figure 14: Speedups achieved by model-generated patches on the initial codebase for all tasks passed
in the OPT@10 evaluation in Section 4.2. Left: O4-MINI. Right: CLAUDE-3.5-V2.
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G Prompts

G.1 Task Prompt for the Agent to Solve a GSO Task

Performance Optimization Task Prompt

I’ve uploaded a python code repository in the directory workspace_dir_name. Consider the
following test script showing an example usage of the repository:
<test_script>
[[ SPECIFICATION TEST]]
</test_script>
Can you help me implement the necessary changes to the repository so that the runtime of
the <test_script> is optimized? Basic guidelines:
1. Your task is to make changes to non-test files in the /workspace directory to improve the

performance of the <test_script>.
2. Make changes while ensuring the repository is functionally equivalent to the original.
3. Do not overoptimize for just the specific inputs in <test_script>. Make general perfor-

mance improvements for the usage scenario shown.
4. You may need to rebuild the repo for your changes to take effect before testing. Some

rebuilds may take time to run, so be patient with running them.
Follow these steps to improve performance:
1. As a first step, explore the repository structure.
2. Create a script in the /workspace directory (e.g., /workspace/test_opt.py) to reproduce and

time the example, then execute it with python /workspace/<filename.py>.
3. Edit the source code of the repository to improve performance.
4. Rebuild and rerun your script to confirm that performance has improved.

H Backtranslation

H.1 Backtranslation Prompt

Backtranslation Detailed Plan Prompt

You are a performance testing expert. You will generate a description of a performance
improving commit for a Python repository. The description MUST be a 10 point description
with sufficient detail, and sound like a plan.

## Repo: {repo}
## Commit Message: {commit_message}
## Commit Diff: {commit_diff}

Guidelines:
1. Carefully read and try to understand the commit and interpret the changes made in the

commit. Then, write a plan that describes the high-level idea of the optimization.
2. The description should detail the high-level ideas of the bottleneck, reasoning, and opti-

mization.
3. The description should be concise and clear.
4. The description should be specific to the commit and can describe the identified bottleneck

if any.
5. Distill the ideas into a maximum of 10 points when there are multiple ideas being used.

22



6. Only focus on core optimization ideas but be as clear as possible with the localization of
the changes as possible.

7. Use file paths to clearly indicate which files are to be changed. Use relative paths.
8. Indicate what changes are to be made in these files.
9. The change should be described in a way that an engineer can understand the bottleneck

and a potential solution.
10. Still keep the description concise and natural, not too verbose.
11. Do not refer to the "commit" anywhere in the description. The engineer should not know

there is an existing solution.
12. Completely ignore changes to comments, documentation, testing, formatting, CI, etc.
13. Also ignore non-optimization changes like bug fixes, completely irrelevant feature addi-

tions, etc.
14. Again do not ask for changes to tests, CI, documentation, etc. Only focus on core

optimization ideas
Respond in the following format enclosed in a code block:
```txt
To improve performance, we can <Your plan here>
```

H.2 Example Backtranslated Plan

Example Backtranslated Plan for https://github.com/numpy/numpy/commit/1fcda82

To improve performance, we can replace the Python-level vecdot implementation with a
C-level gufunc that uses BLAS-accelerated inner loops and avoids Python-layer dispatch and
array manipulations:

1. numpy/_core/numeric.py
• Delete the pure-Python _vecdot_dispatcher and def vecdot(...) body.
• Replace it with a simple wrapper that calls the compiled _core_vecdot gufunc.

2. numpy/_core/code_generators/generate_umath.py
• Add a new entry under def Ufuncs named ’vecdot’

with nin=2, nout=1, signature ’(n),(n)->()’, and attach
PyUFunc_SimpleUniformOperationTypeResolver.

3. numpy/_core/src/multiarray/arraytypes.h.src
• Extend the dot repeat block to generate @name@_dot for all numeric types (FLOAT,

DOUBLE, LONGDOUBLE, HALF, CFLOAT, CDOUBLE, CLONGDOUBLE, and
integer types), marked NPY_NO_EXPORT.

4. numpy/_core/src/multiarray/arraytypes.c.src
• Prepend NPY_NO_EXPORT to all existing *_dot functions.
• Add @name@_dotc variants for CFLOAT, CDOUBLE, CLONGDOUBLE that (a)

on BLAS-enabled builds call cblas_*dotc_sub in chunks for contiguous data, (b)
fallback to an explicit conjugate-multiply loop otherwise.

5. numpy/_core/src/umath/matmul.c.src
• After the existing matmul loops, insert a /** begin vecdot loops **/ block:

– Generate @TYPE@_vecdot(char **args, npy_intp const *dims,
npy_intp const *steps, void *func) for each TYPE.

– In the outer loop over n_outer, call either @TYPE@_dot or @TYPE@_dotc on the
inner length n_inner, passing raw pointers and strides.
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6. numpy/_core/src/umath/matmul.h.src
• Declare prototypes for @TYPE@_vecdot(...) alongside the existing
@TYPE@_matmul(...) declarations.

7. numpy/_core/umath.py
• Import and expose vecdot in __all__.
• Provide a concise Python docstring wrapper that invokes _core_vecdot(x1, x2,
axis=axis) without extra moveaxes or broadcast code.

8. numpy/__init__.pyi
• Add vecdot: _GUFunc_Nin2_Nout1[L[’vecdot’], L[19], None] to the stub

so IDEs/type checkers recognize the new gufunc.
9. BLAS integration and fallback

• In the *_dotc implementations, compute blockwise sums via cblas_*dotc_sub for
contiguous strides, accumulate into a temp double/double complex, then scatter to
output.

• When BLAS isn’t available or strides are non-unit, use a hand-rolled loop that
explicitly conjugates the first operand and multiplies.

10. Error and object handling
• In the OBJECT variant, call obj1.conjugate() via PyObject_CallMethod, mul-

tiply and sum with PyNumber_*, break the loop on first exception to preserve Python
error semantics, and store result in the gufunc output.

This moves all heavy per-element work into C/BLAS, eliminates Python-side broadcasting,
axis permutation and memory overhead, and delivers large speedups for high-throughput
vector dot products.

24



I Qualitative Analysis Pipeline

We used a hierarchical coding system to analyze how agents approach code optimization tasks. First,
we manually reviewed agent trajectories where they attempted to optimize code performance, com-
paring these against human-written solutions. From this analysis, we created a two-tier classification:
high-level categories (Localization, Mismanaged Compute, and Avoiding Complexity) with specific
subcategories for each. Given the agent’s action sequence, we then used an LLM judge (O4-MINI) on
this schema to classify all sampled trajectories.

We implemented our approach by prompting the LLM judge with three key inputs: the agent’s trajec-
tory, the human optimization diff, and whether the agent successfully matched human performance.
The judge first classified trajectories into high-level categories following strict guidelines; we then
repeated this procedure to assign appropriate subcategories.

Agent Trajectory Classification Prompt

You are a code optimization expert. You will be classifying the behaviour of an agent that
was tasked with optimizing a codebase to improve runtime of performance test.
Next you will see:

• compact history of the agent’s trajectory
• a human optimization diff: diff provided by a developer that gets good speedup on

the same task. use to compare the solution of the agent with the human optimization.
• success status (whether the agent’s optimization beats the human diff or not, depend-

ing on how much speedup was achieved by both)

Trajectory:
{trajectory}

Human Optimization Diff:
{human_diff}

Did the model’s optimization match the human commits performance? {status}

Your task is to classify the behaviour for this agent into one of the below codes.
List of codes (codename: description format) that broadly describe the behavior of an agent.
{codes_str}

Guidelines:
1. Return the code name only. Do not return anything else.
2. NOTE: It is not always necessary for the agent to profile before attempting optimiza-

tion. Be holistic about all the insights gathered.
3. Do not just go by the headings and order of codes (they are not ordered by priority).

Read the entire analysis and make a decision.
4. Be critical and thoughtful in your choice and pick the best code that best describes

the agent’s behaviour.
5. If none of the codes fit, do not hesitate to use the “Other” code.

Use the following format to write the code name in a markdown code block:
```
<CODE NAME>
```
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J Examples

Example 1: NumPy ufunc.at override in Python

Model: O4-MINI

Result: Fail
Groundtruth Commit: https://github.com/numpy/numpy/commit/eb21b25
Specification Test Summary: Performance test evaluating NumPy’s ufunc.at operations in
a sparse accumulation scenario. The test constructs a large-scale workload with a 1 million
element float array and performs 500,000 targeted update operations at random indices. The
test measures the execution time of chained accumulation operations (np.add.at followed
by np.subtract.at), simulating non-contiguous array updating patterns commonly found in
scientific computing and data analysis applications. Results are validated through shape, data
type, aggregate sum, and element-wise comparisons.

Model Generated Patch
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 864f479474..f01cf49612 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -33,6 +33,52 @@
ufunc = type(sin)
newaxis = None

+# Monkey-patch ufunc.at for faster add/subtract operations on 1D arrays
+_orig_ufunc_at = ufunc.at
+
+def _at_fast(self, a, indices, values=None):
+ """
+ Fast specialized implementation of ufunc.at for ’add’ and ’subtract’
+ on 1D numpy arrays using np.bincount.
+ """
+ # Only optimize for 1D numpy arrays and add/subtract ufuncs
+ name = getattr(self, ’__name__’, None)
+ if name in (’add’, ’subtract’) and isinstance(a, np.ndarray) and a.ndim == 1
\
+ and isinstance(indices, np.ndarray) and indices.ndim == 1:
+ # Prepare index and array size
+ idx = indices.astype(np.intp, copy=False)
+ size = a.shape[0]
+ # Determine weights for bincount
+ if values is None:
+ # No second operand; fallback to original
+ return _orig_ufunc_at(self, a, indices)
+ if np.isscalar(values) or not isinstance(values, np.ndarray) or getattr(
values, ’ndim’, 0) == 0:
+ # Scalar weights: count occurrences and multiply
+ ...
+ else:
+ ...
+ return None
+ # Fallback to original implementation
+ if values is None:
+ return _orig_ufunc_at(self, a, indices)
+ return _orig_ufunc_at(self, a, indices, values)
+
+# Override the C-implemented at
+ufunc.at = _at_fast
+
array_function_dispatch = functools.partial(

overrides.array_function_dispatch, module=’numpy’)
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Example 2: SIMD code changes leading to segmentation fault

Model: CLAUDE-3.5-V2
Result: Fail
Groundtruth Commit: https://github.com/uploadcare/pillow-simd/commit/
d970a39
Specification Test Summary: Performance test evaluating Image.reduce for efficient image
downsampling. The test processes the standard Lenna test image with various reduction factors,
including both uniform scaling (by factors of 2 and 3) and non-uniform scaling with different
horizontal and vertical factors. The test measures the execution time of multiple downsam-
pling operations while validating that each operation produces the expected output dimensions,
simulating common image processing workflows where rapid downscaling is required.

Model Generated Patch (Summarized)
# Key file modifications:
~ Modified src/libImaging/Reduce.c
+ Added new files: Reduce_SIMD.c and Reduce_opt.c
+ Added ReduceParams struct
+ Added USE_SIMD_REDUCE flag

# Major functional changes:
+ Added AVX2 implementation for RGB/RGBA image reduction
+ Added OpenMP parallel processing directives
~ Replaced specialized reduction functions with calls to NxN implementation
+ Added new memory access patterns
+ Added SIMD vector processing using AVX2 intrinsics

# Implementation details:
+ Added vectorized pixel processing (8 pixels at once)
+ Added edge case handling code
- Removed redundant code in specialized reduction functions
+ Added function pointers for different reduction strategies

Test Errors
Running test /pyperf_test_2.py 5 times...
Iteration 1/5

timeout: the monitored command dumped core
/eval.sh: line 53: 973 Segmentation fault timeout 300s python "$test_file" "
$result_file" "$flag" --file_prefix "$prefix"
>>>>> Tests Errored

Discussion Agent attempted to optimize image reduction operations by implementing AVX2
SIMD vectorization and OpenMP parallelization to process multiple pixels simultaneously.
The optimization rewrote core image processing functions with vector intrinsics to handle 8
pixels at once while adding multi-threading support. However, the implementation failed with
segmentation faults due to unsafe memory access patterns at image boundaries and inconsistent
function interfaces across the codebase, which was uncovered by our extensive test suite.
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Example 3: Lazy optimization with compiler flag modifications

Model: O4-MINI

Result: Fail
Groundtruth Commit: https://github.com/uploadcare/pillow-simd/commit/
0514e20
Specification Test Summary: Performance test evaluating Pillow’s Image.alpha_composite
function with a realistic image processing workload. The test uses a high-resolution photograph,
converts it to RGBA format, resizes it to 800×600 pixels, and applies random transparency
values to create source and destination images. It then measures the execution time of performing
five consecutive alpha compositing operations while validating pixel-perfect output consistency,
simulating a common graphics workflow where multiple semi-transparent layers are blended
together.

Model Generated Patch
diff --git a/setup.py b/setup.py
index aa9095f72..553a82158 100755
--- a/setup.py
+++ b/setup.py
@@ -980,7 +980,7 @@ for src_file in _IMAGING:
for src_file in _LIB_IMAGING:

files.append(os.path.join("src/libImaging", src_file + ".c"))
ext_modules = [
- Extension("PIL._imaging", files, extra_compile_args=["-msse4"]),
+ Extension("PIL._imaging", files, extra_compile_args=["-mavx2", "-O3"]),

Extension("PIL._imagingft", ["src/_imagingft.c"]),
Extension("PIL._imagingcms", ["src/_imagingcms.c"]),
Extension("PIL._webp", ["src/_webp.c"]),

Discussion The agent attempted to optimize Pillow’s alpha compositing by simply adding com-
piler flags (−mavx2− O3) to setup.py, Meanwhile, the human patch implemented sophisticated
hand-crafted vectorization using explicit AVX2 and SSE4 intrinsics with carefully designed data
movement patterns, specialized shuffle masks, and a tiered approach (8-pixel AVX2, 4-pixel
SSE4, scalar fallback) - demonstrating remarkable differences in approaching optimization.
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Example 4: NumPy ljust input-specific fast-path

Model: O4-MINI

Result: Fail
Groundtruth Commit: https://github.com/numpy/numpy/commit/cb0d7cd
Specification Test Summary: Performance test evaluating NumPy’s string justification oper-
ations using numpy.strings.ljust. The test operates on a linguistically diverse dataset of
8,000+ English words combined with carefully selected edge cases, including empty strings,
whitespace-only strings, Unicode characters, and strings of varying lengths. Each string is
processed with different target widths and fill characters to comprehensively evaluate padding
performance across multiple iterations while ensuring consistent results.

Model Generated Patch
diff --git a/numpy/_core/strings.py b/numpy/_core/strings.py
index 78e39add63..6793140c21 100644
--- a/numpy/_core/strings.py
+++ b/numpy/_core/strings.py
@@ -654,6 +654,16 @@ def ljust(a, width, fillchar=’ ’):

"""
a_arr = np.asarray(a)
width_arr = np.asarray(width)

+ fill_arr = np.asarray(fillchar)
+ # fast path: vectorized element-wise operations when shapes match
+ if a_arr.dtype.kind == ’U’ and fill_arr.dtype.kind == ’U’ and a_arr.shape ==
width_arr.shape == fill_arr.shape:
+ s_list = a_arr.tolist()
+ w_list = width_arr.tolist()
+ f_list = fill_arr.tolist()
+ max_width = max(w_list) if w_list else 0
+ out_list = [s.ljust(w, f) for s, w, f in zip(s_list, w_list, f_list)]
+ return np.array(out_list, dtype=f’

Discussion
The model’s optimization attempt created a narrow Python-level "fast path" for NumPy’s ljust
function that would only handle matching-shaped arrays using Python’s built-in string methods.
The human solution instead implemented comprehensive C++ ufuncs for all string padding o
perations like ljust, with proper buffer management respecting NumPy’s fixed-width string repre-
sentation. This architectural understanding delivered much higher performance improvements
across all test cases by eliminating Python callbacks and operating directly at the C++ level,
showing the need for deep system knowledge rather than surface-level hacks.
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Example 5: Python override for NumPy’s character replace

Model: O4-MINI

Result: Fail
Groundtruth Commit: https://github.com/numpy/numpy/commit/1b861a2
Specification Test Summary: Performance test measuring NumPy string operations, specifically
np.char.replace, on the complete text of Pride and Prejudice. The test constructs a NumPy
array from the novel’s 7,000+ lines, performs string replacements across the dataset, and records
execution time over multiple iterations while verifying output correctness against reference
results.

Model Generated Patch
diff --git a/numpy/char/__init__.py b/numpy/char/__init__.py
index 9eb66c180f..aa44c26b15 100644
--- a/numpy/char/__init__.py
+++ b/numpy/char/__init__.py
@@ -1,2 +1,27 @@
from numpy._core.defchararray import __all__, __doc__

from numpy._core.defchararray import *
+import numpy as _np
+
+# Store original replace function
+_orig_replace = replace
+
+# Override replace to optimize for 1D Unicode arrays without count argument
+
+def replace(a, old, new, count=None):
+ # Convert input to numpy array
+ arr = _np.asarray(a)
+ # Optimize only for 1D unicode arrays without count
+ if arr.dtype.kind == ’U’ and arr.ndim == 1 and count is None:
+ # Convert to list of Python strings
+ lst = arr.tolist()
+ # Use a null character as delimiter (unlikely to appear in data)
+ delim = ’\0’
+ # Join into a single string, perform replace, then split back
+ s = delim.join(lst)
+ s = s.replace(old, new)
+ new_lst = s.split(delim)
+ # Return numpy array with same dtype as input (unicode)
+ return _np.array(new_lst, dtype=arr.dtype)
+ # Fallback to original implementation
+ return _orig_replace(a, old, new, count)

Discussion
By overriding replace in __init__.py with a join/replace/split solution, the agent applied a lazy
Python-only patch, completely ignoring the underlying ufunc and C-buffer mechanisms in
NumPy. This failed because it treated fixed-width string arrays as Python strings, ignoring
NumPy’s internal buffers. By joining elements with null delimiters, performing a single replace,
and then splitting, it couldn’t grow strings beyond their original fixed width, causing truncation
errors in our tests. The human-written solution succeeded by implementing proper C++ code that
calculated required buffer sizes ahead of time, allocated new arrays with sufficient space for the
replacements, and handled each string’s memory correctly through NumPy’s UFunc system. This
case shows why optimizing performance-critical code in numerical libraries requires intimate
knowledge of the underlying memory model rather than simplistic Python wrappers.
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Example 6: Pandas strftime __init__.py override

Model: O4-MINI

Result: Fail
Groundtruth Commit: https://github.com/pandas-dev/pandas/commit/2cdca01
Specification Test Summary: Performance test measuring the efficiency of formatting operations
on pandas Period objects. The test generates 10,000 monthly Period objects, converts them to
formatted strings using the strftime method, and measures execution time while validating
output consistency against reference results.

Model Generated Patch
diff --git a/pandas/__init__.py b/pandas/__init__.py
index cb00f9ed12..37b52f8cde 100644
--- a/pandas/__init__.py
+++ b/pandas/__init__.py
@@ -199,6 +199,23 @@ Main Features
-------------
Here are just a few of the things that pandas does well:

+# Optimize Period.strftime default formatting for monthly frequency
+try:
+ from pandas._libs.tslibs.period import Period as _PeriodCls
+ _orig_strftime = _PeriodCls.strftime
+ def _fast_strftime(self, fmt):
+ # Fast path for default monthly formatting
+ if fmt is None and getattr(self, "freqstr", None) == "M":
+ y = self.year
+ m = self.month
+ # Zero-pad month
+ return f"{y:04d}-{m:02d}"
+ return _orig_strftime(self, fmt)
+ _PeriodCls.strftime = _fast_strftime
+except ImportError:
+ pass
+
+

- Easy handling of missing data in floating point as well as non-floating
point data.

- Size mutability: columns can be inserted and deleted from DataFrame and

Discussion
The pandas Period formatting optimization failed because the model created a narrow Python-
level optimization in __init__.py that only targeted monthly periods with default formatting,
while ignoring daily periods and other frequency types. By monkey-patching the Period class
rather than addressing the actual C-level bottleneck in period_format, the approach produced
no measurable speedup in tests that cover many other cases outside the monthly periods. The
human solution in contrast implemented direct f-string formatting for all frequency types in the
Cython code, eliminating unnecessary function calls where the real performance drain occurred.
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Example 7: NumPy char count Misdiagnosis

Model: O4-MINI

Result: Fail
Groundtruth Commit: https://github.com/numpy/numpy/commit/e801e7a
Specification Test Summary: Performance test evaluating NumPy’s string counting operations
using np.char.count. The test processes 10,000 lines from Alice in Wonderland, measuring
execution time for both full-string and windowed substring counting operations. Specifically,
it quantifies the performance of counting occurrences of the character ’a’ across entire strings
and the substring ’the’ within a 10-character window at the beginning of each string, validating
results through comprehensive equivalence checking.

Model Generated Patch
diff --git a/numpy/_core/defchararray.py b/numpy/_core/defchararray.py
index 5a2efe0180..ee7c2ca04a 100644
--- a/numpy/_core/defchararray.py
+++ b/numpy/_core/defchararray.py
@@ -558,7 +558,14 @@ def count(a, sub, start=0, end=None):

"""
- return _vec_string(a, int_, ’count’, [sub, start] + _clean_args(end))
+ # Fast path for string counting using the C implementation
+ from numpy._core._multiarray_umath import _string_count
+ try:
+ # Try using optimized C implementation
+ return _string_count(a, sub, start, end if end is not None else -1)
+ except (TypeError, AttributeError):
+ # Fall back to Python implementation if the optimized version fails
+ return _vec_string(a, int_, ’count’, [sub, start] + _clean_args(end))
+ ...

diff --git a/numpy/_core/src/multiarray/_string_helpers/stringcount.c b/numpy/
_core/src/multiarray/_string_helpers/stringcount.c
index 0000000000..f58a6d9a5a
--- /dev/null
+++ b/numpy/_core/src/multiarray/_string_helpers/stringcount.c
@@ -0,0 +1,198 @@
+ ...
+ /* Implementation details omitted */
+ ...

diff --git a/numpy/_core/src/multiarray/multiarraymodule.c b/numpy/_core/src/
multiarray/multiarraymodule.c
index acc9f2cc09..e56db9f289 100644
--- a/numpy/_core/src/multiarray/multiarraymodule.c
+++ b/numpy/_core/src/multiarray/multiarraymodule.c
+ ...

Discussion The agent attempted to optimize NumPy’s string counting operations through complex
approaches including threading, multiprocessing, and custom C extensions, but struggled to
recognize the memory-bound nature of string operations. In contrast, the human’s successful
approach focused on a targeted optimization by implementing native C++ UFuncs for string
operations, which were previous using slower Python-based vectorized methods, with specialized
ASCII and UTF-32 encoding support, directly addressing the performance bottleneck without
the overhead of parallelization.
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Example 8: Tornado IOStream write optimization

Model: O4-MINI

Result: Success
Groundtruth Commit: https://github.com/tornadoweb/tornado/commit/f23448f7
Specification Test Summary: Performance test evaluating Tornado’s BaseIOStream.write
method for large payload handling. The test downloads a large text file (War and Peace from
Project Gutenberg), performs 10 consecutive write operations, and measures execution time
while validating total bytes written and iteration counts.

Model Generated Patch (Heavily Summarized)
diff --git a/tornado/iostream.py b/tornado/iostream.py
--- a/tornado/iostream.py
+++ b/tornado/iostream.py
@@ -384,xx @@ class BaseIOStream(object):

"""
self._check_closed()

+ # Fast-path synchronous write if idle
+ if data and callback is None and not self._connecting and self.
_write_buffer_size == 0:
+ mv = memoryview(data)
+ total_len = len(mv)
+ try:
+ num_bytes = self.write_to_fd(mv)
+ except (socket.error, IOError, OSError) as e:
+ # ## Error handling for EWOULDBLOCK and other errors ##
+ else:
+ # ## Update write indices ##
+ if num_bytes == total_len:
+ # ## Complete write without buffering ##
+ return fut
+ # ## Partial write: buffer remaining data ##
+ data = mv[num_bytes:].tobytes()

if data:
# ## Original buffering logic continues ##

Discussion This optimization adds a fast path for synchronous writes when the stream is idle (no
pending buffer, no callback). It attempts direct writes to the file descriptor using memoryview
for zero-copy operations, falling back to the original buffering logic for partial writes or errors.
This approach significantly reduces overhead for large payloads when the stream can accept data
immediately, which is common in high-throughput scenarios.
Human vs. Agent Solution: The human solution completely overhauled the buffering system
by replacing the plain bytearray write buffer with a custom deque-based _StreamBuffer using
memoryviews and bulk operations to eliminate slice-and-copy overhead. The agent took a more
targeted approach by adding a lightweight fast path for idle streams while preserving the existing
buffer logic unchanged. The agent’s fast-path optimization is effective for the specific case of
large writes to idle streams but provides no benefit for back-to-back writes or smaller payloads.
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Example 9: Pandas MultiIndex lookup optimization

Model: CLAUDE-3.5-V2
Result: Success
Groundtruth Commit: https://github.com/pandas-dev/pandas/commit/695a031739
Specification Test Summary: Performance test evaluating Pandas’ MultiIndex.get_locs method
for tuple lookups. The test measures performance across three MultiIndices of varying sizes
(1000×20×52, 1000×10×1, 100×1×1), querying exact tuples with 10 iterations each.

Model Generated Patch (Heavily Summarized)
diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py
--- a/pandas/core/indexes/multi.py
+++ b/pandas/core/indexes/multi.py
@@ -131,xx @@ class MultiIndexUIntEngine:
- # Original bit-combining with NumPy reduce
- codes <<= self.offsets
+ # Specialized bit combining for 1D/2D cases

if codes.ndim == 1:
- return np.bitwise_or.reduce(codes)
- return np.bitwise_or.reduce(codes, axis=1)
+ # ## Manual loop for 1D ##
+ return result[0]
+ # ## Vectorized 2D with pre-allocation ##
+ return result

@@ -3294,xx @@ class MultiIndex(Index):
+ # Fast path for exact tuple matches
+ if (isinstance(seq, (list, tuple)) and len(seq) == self.nlevels):
+ # ## Cache lookup ##
+ cache_key = tuple(seq)
+ if hasattr(self, ’_loc_cache’) and cache_key in self._loc_cache:
+ return self._loc_cache[cache_key]
+
+ # ## Boolean mask matching ##
+ # ## Cache management ##
+ return result

# ## Original lookup code continues ##

Discussion This optimization introduces two improvements: specialized bit-combining in UIn-
tEngine replacing NumPy’s bitwise_or.reduce with manual loops, and a fast path for exact tuple
lookups using boolean masks with result caching. The changes accelerate common MultiIndex
lookup patterns in time series and cross-sectional data analysis.
Human vs. Agent Solution: The human solution optimized the existing code path by replacing
Python-level searchsorted calls with C-optimized algos.searchsorted and delaying intermediate
array allocation. The agent implemented a specialized fast path for exact tuple matches with
caching and hand-optimized bit manipulation. The agent’s approach offers potentially larger
gains for repeated exact-match queries but introduces caching complexity and only benefits a
narrow subset of lookup patterns, while the human solution improved all lookup types uniformly.
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Example 10: Pandas MultiIndex argsort optimization

Model: O4-MINI

Result: Success
Groundtruth Commit: https://github.com/pandas-dev/pandas/commit/9ebb945f10
Specification Test Summary: Performance test evaluating Pandas’ MultiIndex.argsort method
for lexicographic sorting. The test creates a MultiIndex from 100,000 rows with two string
keys (1000 users, 100 groups), performs argsort operations 5 times, and validates sorted order
equivalence.

Model Generated Patch (Heavily Summarized)
diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py
--- a/pandas/core/indexes/multi.py
+++ b/pandas/core/indexes/multi.py
@@ -2209,15 +2209,26 @@ class MultiIndex(Index):

if len(args) == 0 and len(kwargs) == 0:
- # lexsort is significantly faster than self._values.argsort()
+ # Use numpy.lexsort on sorted codes for faster performance

target = self._sort_levels_monotonic(raise_if_incomparable=True)
- return lexsort_indexer(
- target._get_codes_for_sorting(),
- na_position=na_position,
- )
+ # Extract and stack codes into 2D array
+ codes = target.codes
+ arr = np.vstack([code if isinstance(code, np.ndarray) else np.asarray(
code) for code in codes])
+
+ # Handle NaN positions (codes == -1)
+ if na_position == "last":
+ # ## Push -1 codes to end ##
+ elif na_position == "first":
+ # ## Push -1 codes to front ##
+
+ # Perform lexsort: reverse rows for correct priority
+ return np.lexsort(arr[::-1])

return self._values.argsort(*args, **kwargs)

Discussion This optimization replaces value-based sorting with direct lexicographic sorting over
integer codes. The approach extracts codes from each level, stacks them into a 2D array, handles
NaN positioning, and uses NumPy’s lexsort for efficient multi-key sorting. This eliminates
expensive string comparisons and object array operations, significantly improving performance
for large MultiIndex structures.
Human vs. Agent Solution: The human solution refactored the shared lexsort_indexer and
related sorting utilities, standardizing signatures and fixing typing issues. The agent took a more
direct approach by inlining NumPy lexsort directly in MultiIndex.argsort, creating a 2D stacked
array from codes and handling NaN positions locally. The agent’s approach introduces additional
memory overhead from the 2D array allocation and duplicates NaN handling logic that could be
shared across sorting operations.
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Example 11: Pillow TIFF frame counting optimization

Model: O4-MINI

Result: Success
Groundtruth Commit: https://github.com/python-pillow/Pillow/commit/
96f95e8e9
Specification Test Summary: Performance test evaluating Pillow’s TIFF image handling,
specifically n_frames and is_animated properties. The test processes multiple TIFF images
with varying frame counts (1-5), measures execution time in different call orders, and validates
consistency against reference results.

Model Generated Patch (Key Changes)
diff --git a/PIL/TiffImagePlugin.py b/PIL/TiffImagePlugin.py
--- a/PIL/TiffImagePlugin.py
+++ b/PIL/TiffImagePlugin.py
@@ -951,28 +951,35 @@ class TiffImageFile(ImageFile.ImageFile):

def n_frames(self):
if self._n_frames is None:

- current = self.tell()
- try:
- while True:
- self._seek(self.tell() + 1)
- except EOFError:
- self._n_frames = self.tell() + 1
- self.seek(current)
+ # fast count IFD entries without decoding tags
+ fp = self.fp
+ orig_pos = fp.tell()
+ endian = self.tag_v2._endian
+ offset = self.__first
+ count = 0
+ while offset:
+ count += 1
+ fp.seek(offset)
+ entry_count_data = fp.read(2)
+ if len(entry_count_data) < 2:
+ break
+ num_entries = struct.unpack(endian + "H", entry_count_data)[0]
+ # skip entries and read next IFD offset
+ fp.seek(offset + 2 + num_entries * 12)
+ next_offset_data = fp.read(4)
+ if len(next_offset_data) < 4:
+ break
+ offset = struct.unpack(endian + "L", next_offset_data)[0]
+ self._n_frames = count
+ fp.seek(orig_pos)

return self._n_frames

Discussion This successful optimization replaces inefficient frame-by-frame loading with direct
binary traversal of TIFF’s IFD pointers. The original implementation required full decompression
of each frame with O(n²) complexity, while the optimized version reads only essential metadata
(2-byte entry count, 4-byte offset) and skips tag parsing entirely. Similarly, is_animated was
optimized to check if a next-frame pointer exists rather than attempting to seek to frame 1. These
changes reduced complexity to O(n) with minimal memory overhead while maintaining complete
functional equivalence, making it particularly effective for scientific and medical imaging where
multi-frame TIFFs are common.

36

https://github.com/python-pillow/Pillow/commit/96f95e8e9
https://github.com/python-pillow/Pillow/commit/96f95e8e9


Example 12: Pandas IndexEngine allocation optimization

Model: CLAUDE-3.5-V2
Result: Success
Groundtruth Commit: https://github.com/pandas-dev/pandas/commit/240854014e
Specification Test Summary: Performance test evaluating Pandas’ Index-
Engine.get_indexer_non_unique method, which finds positions of values in an index.
The test constructs a 300,000-element gamma-distributed index and queries 50,000 targets (70%
from the index, 30% random), measuring execution time while validating correctness through
detailed array equivalence checks.

Model Generated Patch (Heavily Summarized)
--- a/pandas/_libs/index.pyx
+++ b/pandas/_libs/index.pyx
@@ -353,xx @@ cdef class IndexEngine:
- # Fixed-size initial allocation with constant-increment growth
- if n > 10_000:
- n_alloc = 10_000
- else:
- n_alloc = n
- result = np.empty(n_alloc, dtype=np.intp)
+ # First pass: Build value-to-indices mapping
+ # ## binary search optimization code simplified ##

- # Iterative lookup with frequent reallocation
- for i in range(n_t):
- # ## lookup and processing code ##
-
- # Resize with constant increment when needed
- if count >= n_alloc:
- n_alloc += 10_000
- result = np.resize(result, n_alloc)
+ # Second pass: Count exact matches needed
+ total_matches = 0
+ # ## counting code ##

- # Return slices of oversized arrays
- return result[0:count], missing[0:count_missing]
+ # Allocate arrays of exact size needed
+ result = np.empty(total_matches + missing_count, dtype=np.intp)
+ missing = np.empty(missing_count, dtype=np.intp)
+
+ # Final pass: Fill arrays without any reallocation
+ # ## filling code ##
+
+ # Return precisely sized arrays
+ return result, missing

Discussion This optimization transforms Pandas memory allocation for index lookups. The
original implementation used fixed initial allocation (10,000 elements) with constant-increment
reallocation (+10,000 elements), causing frequent resizing and memory waste. The optimized
version uses a multi-pass approach: mapping values to positions, counting exact matches needed,
then allocating precisely-sized arrays with no resizing. This is particularly effective for large
indexes (300,000+ elements) with many lookup targets (50,000+), eliminating all dynamic
resizing. The human solution kept the single-pass algorithm but replaced constant-increment
resizing with exponential growth (n_alloc *= 2) capped at maximum size. The agent’s solution
restructured into multiple passes to determine exact allocation sizes upfront. Both improved
performance significantly, but the agent’s solution offers better memory efficiency through exact
allocation, while the human’s approach was simpler and less invasive.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction (Section 1) accurately present our three main
contributions: automated pipeline for generating performance tests from GitHub commits,
benchmark collection with Opt@K metric, and evaluation of SWE-agents on software
optimization tasks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The paper discusses limitations including the scope of optimization tasks and
potential biases in benchmark collection.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper focuses on empirical evaluation of LLMs on software optimization
tasks and does not present theoretical results requiring formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

39



Justification: Sections 2 and 3 describe our benchmark creation pipeline, evaluation method-
ology, and metrics. The setup section (Section 3) details the evaluation environment and
parameters used in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Appendix A specify links to the codebase and Huggingface datasets for our
benchmark.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 3 specifies our experimental configuration, including machine specifi-
cations (Google Cloud n2-standard-64 VM), agent framework (OpenHands CodeActAgent-
v0.35.0), and temperature settings (T=0.1 for Opt@1, T=0.8 for scaling).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Section 2.3 explains how we compute mean and variance for Opt@K metrics
following methods from prior work in code generation metrics. Section 4 presents results
with appropriate statistical analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: Section 3 specifies our compute resources (Google Cloud n2-standard-64 VM
with 64 vCPUs, 256 GB Memory), time limits (3-hour per task, 20-minute per step), and
additional cross-platform considerations in Appendix 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research evaluates models on publicly available GitHub codebases with
proper attribution and transparency in methodology and reporting, conforming to the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 1 discusses the need for automated AI systems to help developers
with high-performance software engineering. We also talk about the major pitfalls of SWE-
Agents throughout the paper, and particularly Section 5, alerting the reader to behaviours of
state-of-the-art agents such as reward hacking that could negatively impact their applied use.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not scrape any personal information. We limit to already
public codebases only.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, Section A and B.1 in the Appendix state the licences of the 10 repositories
used to create this dataset

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the datasets and code release have been well documented.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human sub-
jects. Our study evaluates LLM performance on software optimization tasks from GitHub
repositories.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects and therefore did not require
IRB approval. We analyze LLM performance on tasks derived from publicly available
GitHub repositories.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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