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TextPSG Reproducibility Study

Semantic representation and grouping of objects are extremely critical in deciphering
image scenes. While traditional end‐to‐end models often employ a top down approach,
extracting and segmenting images from pixel annotations, this approach is costly and
tedious, leading to limited datasets that are hard to obtain. In contrast, more recent
models such as TextPSG aim to eliminate this problem by leveraging large, pre‐existing
datasets of image‐caption pairs in order to generate Panoptic Scene Graphs (PSGs), col‐
lecting no pre‐existing location priors, explicit links between visual and textual entities,
or concept sets. In this work, we aim to reproduce TextPSG’s claims in order to deter‐
mine (1) the ease of reproducibility and (2) perform ablation studies to discover themost
impactful parameters of the model[1].

1 Reproducibility

There are four principal components to TextPSG: The region grouper, entity grounder,
segment merger and label generator. The region grouper aims to group pixel regions
in the image into various segments. Each segment ideally represents a singular entity.
The image caption is pre‐processed into a text graph, which extracts the nouns/entities
in the caption. Each entity in the pre‐processed caption is then aligned with the image
embedding segments generated by the region grouper. To facilitate this alignment is
the role of the entity grounder, which projects the image segments and entity embed‐
dings into a shared feature space, then performing fine grained contrastive loss. The
alignment results then help the segment merger determine the segment similarity to
assign the final segmentations and the label generator extracts and predicts semantic
information. As no existing code base or pseudo‐code is provided for this paper, we
used our best judgement for details not explicitly given by the paper.

1.1 The Region Grouper
Following theTextPSG implementation, we employ apre‐trainedGroupViTmodel. GroupViT
first samples N non‐overlapping patches [2]. The model then undergoes 2 stages of
grouping. In the first stage, theN patches are grouped into 64 unique segments. In the
second stage, those 64 unique segments are further grouped into 8 unique segments. In
our test, we extract the 64 image segment embeddings from the first stage as an input
to our entity grounder.
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1.2 Text Embeddings
While image embeddings can be extracted directly from GroupViT, text embeddings
require preprocessing to extract the individual entities in the caption. Following the
TextPSG implementation, we employ two methods to generate a directed text graph,
with entities as nodes and relations as edges. We make use of OpenIE and the Stan‐
fordNLP library to generate two separate text graphs and then take their union to gener‐
ate one text graph. In total, k entities are generated from the text preprocessing. Fig 1.
provides a visualization of a text graph. After the preprocessing, an embedding vector
for each caption is generated via the pre‐trained text transformer in GroupViT, TfmT .
Coupled with the entities from the text graph, k sentences are generated by appending
the entity to the end of the caption. The k sentences are embedded by TfmT , creating
an output tensor of dimension k × s × 196, where s is the number of tokens in the em‐
bedding. Finally, these vectors are padded to dimension 20 × 20 × 196, generating the
final text embeddings.

Figure 1: Text graph for caption: A truck driving through a field with people flying kites.

1.3 The Entity Grounder
Following the TextPSG implementation, first an MLP is used to project the segment and
entity embeddings into a shared feature spaceF . As details on theMLP are not provided
in the paper, we used the GELU activation function. For the contrastive loss, we first
calculate the fine grained loss from the segment embeddings in the group xk to all the
text embeddings y across batchesB. This functions by taking the average of the filtered
maximum cosine‐similarity values (filtered by applying a filtering threshold θ) of the
text embeddings in one sample to every text embedding across samples in the batch.
This follows the equations

pki = max
1≤j≤E

cos[xk
i , yj ]

and
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pk =
1∑Hk

i=1 1pk
i >θ

Hk∑
i=1

(pki · 1pk
i >θ)

In the paper, the fine‐grained contrastive loss from Image to Text is calculated as:

Lk,I→T
fine = − 1

B

B∑
i=1

exp
(

pk,i→i

τ

)
∑B

j=1 exp
(

pk,i→j

τ

)
Conceptually, this is the negative mean of the exponentiation of the average maximum
cosine similarities of the segment embeddings in one sample compared the text em‐
beddings in all the samples, and decreasing this loss function entails maximizing the
similarity within one sample while minimizing similarity with unrelated samples, thus
serving as an alignment stage. The temperature tau is just explained as a learnable tem‐
perature. However, we found that this loss was not functioning as intended, returning
a near constant value and we found the problem to be the lack of the logarithm after the
division of the exponents which is presented in the fine grained contrastive loss imple‐
mentation in FILIP3, and so we added the logarithm in the summation giving us a loss
function:

Lk,I→T
fine = − 1

B

B∑
i=1

log

 exp
(

pk,i→i

τ

)
∑B

j=1 exp
(

pk,i→j

τ

)


The fine‐grained contrastive loss from entity embeddings to segment embeddingsLT→I
fine

follows a similar set of operations

qki = max
1≤i≤Hk

cos[xk
i , yj ]

qk =
1∑E

j=1 1qkj >θ

E∑
j=1

(qkj · 1qkj >θ)

Lk,T→I
fine = − 1

B

B∑
i=1

log

 exp
(

qk,i→i

τ

)
∑B

j=1 exp
(

qk,i→j

τ

)


Thus, the total fine‐grained contrastive loss is the average of these two losses:

Lfine =
1

2
(Lk,I→T

fine + Lk,T→I
fine )
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Segment Merger — Following the implementation of the segment merger in TextPSG, we
use the entity grounder to supervise the learning of a group of similaritymatrices which
areused for a smaller stage segmentmerging. For every segment in group k, we compute
the pairwise cosine similarity between image segments which is then re‐scaled to [0, 1]
giving us a similarity matrix Simk ∈ [0, 1]Hk×Hk . The formula for the similarity matrix
ends up looking like Simk[i, j] =

1
2 (cos[x

k
i , x

k
j ]). Subsequently, as directed by the paper,

we use the pseudo labels to create a target similarity matrix where for every label for
every segment, we set the target similarity to 1 if the pseudo labels lki equals lkj and if
the similarity between segments and their pseudo labels is above the filtering threshold,
otherwise we set the value to 0. This looks like:

Simtarget
k [i, j] =

{
1, if lki = lkj & cos[xk

i , ylki ] > θ & cos[xk
j , ylkj ].θ,

0, otherwise

As TextPSG formulates, the similarity loss ends up looking like:

Lk
sim =

1

H2
k

||Simk − Simtarget
k ||2F

2 Results

2.1 Qualitative Results
We examine the qualitative results of the Entity Grounder below in Figure 2. Darker
patches are the image segments that the models believe are more closely aligned with
the noun/entity segments. Overall, our model managed to correctly identify some of
the image segments. We also observed that the model would sometimes pair the entity
embedding with the inverse of the object. The last column of the figure demonstrates
the cosine similarity between each image segment and the entity segment. A higher
cosine similarity indicates a stronger match.

. – 2023 4



Ablation Studies on ”TextPSG: Panoptic Scene Graph Generation from Textual Descriptions - ICCV 2023”

Figure 2: Examples of entity grounder outputs generated by our model. The heat map column
highlights the image segments the model believes corresponds to the entity/noun in the third
column. The final column outputs the cosine similarity between each image segment and the

entity segment.

Figure 3: Examples from alternate model architecture and run‐time showing inverted cosine
similarity masks.

2.2 Ablation Studies

Activation Function —We experimented with five activation functions: ReLU, GELU, SiLU,
Tanh, and Sigmoid. We found the ReLU resulted in catastrophic failure as it zeroed
out our input tensors due to a prevalence of negative numbers. We also saw the Tanh
and Sigmoid performed about the same, neither being particularly useful because it
projected the tensors into too small a space and resulted in a loss of fidelity. We found
that GELU, or SiLU, worked the best as it was a simple nonlinearity that did not project
negative values to zero and remained nearly linear for positive values.

RNN and MLP —We tested different frameworks for both the RNN and MLP. For the RNN,
we tested dimensionality reduction by (1) taking the weighted sum of each segment em‐
bedding, and (2) simply flattening each segment‐embedding pair. Both models perform
comparably; however, the weighted sumwas ultimately implemented tomatch with the
TextPSG implementation. We also implementedMLPmodels with 1, 4, and 6 hidden lay‐
ers. The model with 1 hidden layer had the best performance. We hypothesize that the
models with 4 and 6 hidden layers suffered from being too complex.
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