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Abstract

Actor ensemble reinforcement learning methods have shown promising performance on dense-
reward continuous control tasks. However, they exhibit three primary limitations: (1) diversity
collapse when using a shared replay buffer, often necessitating carefully tuned regularization
terms; (2) computational overhead from maintaining multiple actors; and (3) computationally
inefficient policy gradients when using stochastic policies in ensembles due to high-variance
estimates, requiring approximations that may compromise performance. To address this third
limitation, we restrict the ensemble to deterministic policies and propose Actor Ensemble with
Adaptive Pruning (AEAP), a multi-actor deterministic policy gradient algorithm that tackles
the remaining limitations through a two-stage approach. First, to alleviate diversity collapse,
AEAP employs dual-randomized actor selection that decorrelates exploration and learning
by randomly choosing different actors for both environment interaction and policy update.
This approach also removes reliance on explicit regularization. Second, when convergence
to homogeneous policies still occurs over time, computational efficiency is further achieved
through adaptive dual-criterion pruning, which progressively removes underperforming or
redundant actors based on critic-estimated value and action-space similarity. Although
AEAP introduces four additional hyperparameters compared to TD3 (a baseline single-
actor deterministic policy gradient algorithm), we provide two domain-agnostic parameter
configurations that perform robustly across environments without requiring tuning. AEAP
achieves superior or competitive asymptotic performance compared to baselines across six
dense-reward MuJoCo tasks. On sparse-reward Fetch benchmarks, AEAP outperforms
deterministic policy gradient methods but falls short of baseline stochastic policy gradient
algorithms. When compared to fixed-size multi-actor baselines, AEAP reduces wall-clock
time without sacrificing performance, establishing it as an efficient and reliable actor ensemble
variant.

1 Introduction

Deep reinforcement learning (RL) has demonstrated significant potential across diverse continuous control
domains, such as video games (Mnih et al., 2015; Silver et al., 2017), robotic manipulation (Clegg et al.,
2018; Peng et al., 2018), and traffic optimization (Ault et al., 2020; Ault & Sharon, 2021). A large body of
reinforcement learning algorithms (Fujimoto et al., 2018; Haarnoja et al., 2018) rely on a single agent to
explore the environment via trial and error. However, single-actor exploration augmentation (Burda et al.,
2018a; Ostrovski et al., 2017) often stalls in narrow regions of high-dimensional action spaces, leading to poor
sample efficiency or even suboptimal convergence (Yang et al., 2022).

Actor ensemble (i.e., multiple actors or policies) methods have emerged as a promising direction for enhancing
exploration by maintaining a diverse set of actors (Peng et al., 2020; Ren et al., 2021). Despite their empirical
success, three critical limitations persist. First, shared replay buffers tend to accelerate diversity collapse,
where diversity refers to the entropy in action distributions across actors (Fujimoto et al., 2018). To alleviate
this, explicit regularization strategies such as entropy bonuses or divergence penalties can be employed
but prove difficult to tune (Sheikh et al., 2022; Masood & Doshi-Velez, 2019). Insufficient regularization
yields homogeneous policies whereas excessive regularization destabilizes learning (Zahavy et al., 2023).
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Second, computational overhead scales linearly with ensemble size (Chen et al., 2021). Third, when treating
stochastic ensemble policies as components of a probabilistic mixture, computing policy gradients becomes
computationally inefficient due to high-variance gradient estimates that grow with the number of mixture
components, requiring surrogate approximations that can compromise performance (Ren et al., 2021).
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Figure 1: Dual-randomized ex-
hibits similar new state explo-
ration rates as existing regular-
ized method on Walker2d.

Motivated by these challenges and by recent evidence highlighting the
benefits of deterministic policy gradients for training Gaussian-mixture
actors (Dey & Sharon, 2024), we propose Actor Ensemble with Adaptive
Pruning (AEAP), a multi-actor deterministic policy gradient algorithm.
AEAP comprises two key components: (i) dual-randomized actor selection
where one random actor interacts with the environment while another
random actor receives gradient updates; and (ii) a dual-pruning mechanism
based on both performance-estimated values and action-space distances.

We demonstrate that dual-randomized actor selection maintains diversity
by inducing high variance during exploration, without the need for explicit
regularization. To validate this mechanism, we systematically compare
four selection strategies in a 1-D bandit setting. After establishing the
benefits in this simplified setting, we extend our analysis to realistic high-
dimensional action spaces, and measure diversity through two metrics: (i)
Principal Component Analysis (PCA) (Jolliffe, 1986) decomposition of action outputs during training; and (ii)
new state exploration rate using RSNorm (Lee et al., 2025) to normalize and discretize states (i.e., tracking
newly encountered discretized states over time). We compare against TD3 (Fujimoto et al., 2018) and a
recent deterministic ensemble method Gaussian Mixture Deterministic Policy Gradient (GAMID) (Dey &
Sharon, 2024), which includes explicit diversity regularization. As illustrated in Figure 1, dual-randomized
selection maintains diversity at similar levels to existing regularized methods. (Further details are provided
in Section 4.2).
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Figure 2: (a) Performance improvement in existing ensemble meth-
ods (GAMID/PMOE) after integrating pruning on Walker2d. (b)
AEAP achieves high computational efficiency without sacrificing
performance on Walker2d.

Two observations motivate our following
dual-pruning strategy: (i) high variance
in updates inevitably produces unstable
actors, and persistent low-performing ac-
tors would impede learning convergence,
necessitating performance-based pruning,
and (ii) computational waste stems from
homogeneous policies or actor dominance,
requiring redundancy-based pruning. We
demonstrate that this pruning mechanism
readily combines with existing ensemble
methods (Figure 2.(a)) and independently
improves performance.

To evaluate the performance of the com-
bination, we provide comprehensive em-
pirical evaluations using two domain-agnostic parameter configurations: a conservative pruning approach
for stable training, and an aggressive pruning approach for efficient training. Wall-clock time measurements
confirm that AEAP achieves better computational efficiency than fixed-ensemble approaches without sac-
rificing performance (Figure 2.(b)). On dense-reward MuJoCo (Todorov et al., 2012) tasks, both settings
achieve competitive performance that matches or exceeds baseline algorithms. On sparse-reward Fetch
tasks, both outperform deterministic policy gradient baselines but underperform stochastic policy gradient
methods Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and SimBa (Lee et al., 2025), with aggressive
pruning demonstrating superior performance relative to conservative pruning. By integrating dual-randomized
actor selection with adaptive dual-criterion pruning, our work addresses the tension between exploration
benefits and computational efficiency, offering a practical, efficient, and reliable alternative to fixed-size actor
ensembles.
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2 Related Work

We review the most relevant actor ensemble methods herein, and relegate a detailed discussion of single-actor
exploration and critic ensembles to Appendix A. Actor ensemble methods can enhance exploration by
maintaining multiple policies, but face fundamental trade-offs between actor diversity and computational
efficiency. We categorize these approaches by their coordination mechanisms.

Distributed RL. A natural extension to enhance exploration is employing multiple actors concurrently.
Distributed RL frameworks maintain multiple homogeneous actors generating parallel trajectories, with a
central learner aggregating experiences for policy updates (Mnih et al., 2016; Espeholt et al., 2018; Horgan
et al., 2018). Kapturowski et al. (2019) augment this paradigm with recurrent networks and burn-in replay,
while Espeholt et al. (2020) centralise inference on GPUs for higher throughput. However, these approaches
demand substantial computational resources and introduce significant synchronization overhead between
learners and actors, they require access to an emulator, which is often impractical in real-world settings.

Shared Replay Buffer. A different approach maintains a shared replay buffer across actors, assuming
all actors contribute throughout training. These methods diverge in how they maintain actor diversity.
Value-based selection approaches guide actor specialization with heuristics. Previous work partitions the state
space and train specialized actors on subtasks (Ghosh et al., 2018) and aggregates outputs from multiple
policies to stabilize training (Barth-Maron et al., 2018; Chen & Peng, 2019; Januszewski et al., 2021; Li et al.,
2023). Zhang et al. (2018b) combine actor ensembles with tree search for refined action selection. Yet these
methods still suffer from diversity collapse as actors often converge when sharing experiences.

Explicit regularization methods add diversity-preserving terms to the objective. These include behavioral
penalties (Peng et al., 2020; Zahavy et al., 2023), pairwise KL divergence maximization (Sheikh et al., 2022),
and mixture entropy optimization (Baram et al., 2021; Ren et al., 2021; Peng et al., 2019). Gamid (Dey &
Sharon, 2024) extend this line by applying deterministic policy gradients to Gaussian mixtures, achieving
strong performance in continuous control tasks. However, these approaches remain sensitive to hyperparameter
tuning and can still exhibit single-actor dominance despite explicit diversity mechanisms. Our work extends
Gamid by introducing dual-randomized actor selection and adaptive pruning to eliminate redundant actors
while preserving exploration benefits.

Population-based RL. A mutation-based approach generates new actors by mutating high-performing ones,
inherently promoting diversity. This approach is exemplified by several works (Conti et al., 2018; Doncieux &
Mouret, 2013; Lehman & Stanley, 2011), but requires careful tuning of evolutionary parameters and often
suffers from sample inefficiency in continuous control tasks.

Pruning in RL. Works on pruning in RL primarily target network compression to enhance computational
efficiency and improve generalization (Song et al., 2019; Zhang et al., 2018a). Studies demonstrate that
magnitude-based and structured pruning can significantly compress deep RL networks while preserving or
enhancing performance (Livne & Cohen, 2020; Graesser et al., 2022; Obando-Ceron et al., 2024; Park et al.,
2024). Our method differs by disabling entire actor networks, addressing ensemble-level redundancy rather
than within-network sparsity.
Remark 1. We clarify that target network approaches (van Hasselt et al., 2015; Fujimoto et al., 2018),
while related, fundamentally differ from ensemble-based techniques. Target networks stabilize training by
decoupling rapidly changing networks from their bootstrapped targets, thus making updates more predictable
and reducing oscillations. In contrast, ensemble-based approaches explicitly promote diversity or exploration
through maintaining multiple distinct policies or critics.

3 Preliminaries

Deep Reinforcement Learning. The goal of reinforcement learning is to find a policy that maximizes
the expected cumulative discounted return over a long horizon for a given Markov Decision Process (MDP)
defined by the tuple (S,A,P, R, γ), where S is the state space, A is the action space. The transition dynamics
are captured by P : S ×A → ∆(S), where ∆(S) denotes the space of probability distributions over S. The
reward function is given by R : S ×A → R, and γ ∈ [0, 1) is the discount factor (Sutton & Barto, 1998).
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A policy can be either stochastic π : S → ∆(A), mapping states to distributions over actions, or de-
terministic µ : S → A, mapping states directly to actions. The action-value function under policy π is
defined as: Qπ(s, a) = Eτ∼π

[∑∞
t=0 γtR(st, at)

∣∣∣ s0 = s, a0 = a
]

where the expectation is over trajectories τ

generated by following policy π. The optimal action-value function, Q∗(s, a) = maxπ Qπ(s, a), satisfies the
Bellman optimality equation (Bellman, 1957): Q∗(s, a) = R(s, a) + γEs′∼P (·|s,a) [maxa′∈A Q∗(s′, a′)]. In a
vast body of value-based deep reinforcement learning, the Q-function is often approximated using neural
networks with parameters θ, denoted as Qθ (Mnih et al., 2015). The network is trained by minimizing
the temporal difference error over transitions (s, a, r, s′) sampled from a replay buffer D (Sutton, 1988):
L(θ) = E(s,a,r,s′)∼D

[
(r + γ maxa′∈A Qθ′(s′, a′)−Qθ(s, a))2

]
where θ′ denotes target network parameters

that are periodically updated to stabilize training.

Deterministic Policy Gradient. The Deterministic Policy Gradient (DPG) theorem (Silver et al., 2014)
provides a framework for optimizing deterministic policies µϕ : S → A. For a parameterized deterministic
policy µϕ with parameters ϕ, the objective is to maximize the expected return: J(ϕ) = Es∼ρµ [R0] =
Es∼ρµ [Qµ(s, µϕ(s))] where ρµ is the state distribution under policy µ. The deterministic policy gradient is
given by: ∇ϕJ(ϕ) = Es∼ρµ

[
∇aQµ(s, a)|a=µϕ(s)∇ϕµϕ(s)

]
.

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2019) implements DPG using deep neural
networks for approximating both the policy µϕ and critic Qθ. The critic is trained by minimizing the
temporal difference error: L(θ) = E(s,a,r,s′)∼D

[
(y −Qθ(s, a))2

]
, y = r + γQθ′(s′, µϕ′(s′)). Twin Delayed

Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) addresses overestimation bias in DDPG
through three modifications: (1) clipped Double Q-learning, using twin critics Qθ1 , Qθ2 where the minimum
is used for value estimation, (2) delayed policy updates where the actor is updated less frequently than
critics (typically every d iterations), and (3) target policy smoothing, adds clipped noise to target actions to
regularize the value function:

y = r + γ min
i=1,2

Qθ′
i
(s′, µϕ′(s′) + ε), ε ∼ clip(N (0, σ),−c, c)

θ′ ← αθ + (1− α)θ′, ϕ′ ← αϕ + (1− α)ϕ′

where α is the soft update rate. These modifications often lead to more stable learning and improved
performance in continuous control tasks.

Gaussian Mixture Policies. While standard policy gradient methods optimize a single Gaussian pol-
icy π(a|s) = N (a; µ(s), Σ). Gaussian mixture models (GMMs) (Alspach & Sorenson, 1972) offer richer
representational capacity through multiple components: π(a|s) =

∑N
i=1 wi(s)N (a; µi(s), Σi) where wi(s)

are state-dependent mixing weights satisfying
∑

i wi(s) = 1. However, computing exact policy gradients
for stochastic mixtures requires intractable marginalization over component assignments. Gamid (Dey &
Sharon, 2024) circumvents this by treating each component mean µi as a deterministic policy, enabling direct
application of deterministic policy gradients to GMMs.

4 Algorithm

In this section, we present Actor Ensemble with Adaptive Pruning (AEAP) and analyze its two key components:
dual-randomized actor selection and adaptive dual-criterion pruning.

4.1 AEAP

AEAP maintains a dynamic ensemble of active actors that evolves throughout training, as shown in Algorithm 1.
At each iteration, an actor is randomly selected from the active ensembles, perturbing its actions with the
Gaussian noise for environment interaction, and collecting transitions for the shared replay buffer. For policy
update, a different actor is randomly selected from the active ensembles and updated via deterministic policy
gradients. Every κ iterations, the pruning mechanism evaluates all actors against our dual criteria, eliminating
those that are either underperforming (low Q-values) or redundant (similar behaviors).
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Algorithm 1 AEAP: Actor Ensemble with Adaptive Actor Pruning
1: AEAP Hyperparameters: (1) Initial number of actors N ; (2) Distance pruning threshold ζ;
2: (3) Critic pruning ratio threshold ξ; (4) Pruning frequency κ
3: TD3 Hyperparameters: Exploration variance Σ; Target update rate τ ; Policy update frequency d
4: Initializations: Replay buffer D; Actor networks {ϕi}N

i=1;
5: Critic networks θ1, θ2 and targets θ′

1, θ′
2; Active actor set Sactive ← {1, . . . , N}

6: for t = 1 to T do ⇒ TD3-style Training with Stochastic Actor Selection
7: Select actor i ∼ Uniform(Sactive) and sample action a← πϕi

(s) + ε, ε ∼ N (0, Σ)
8: Execute a, observe s′, r, done, and store (s, a, r, s′, done) in D
9: Sample mini-batch B from D

10: Compute targets: j ∼ Uniform(Sactive), a′ ← πϕj
(s′)+clip(ε) , y ← r+γ(1−done) mini=1,2 Qθ′

i
(s′, a′)

11: Update all critics: θi ← arg minθi

1
|B|

∑
B(Qθi

(s, a)− y)2

12: if t % d == 0 then
13: Update actor randomly: ϕk ← arg maxϕk

1
|B|

∑
s∈B Qθ1(s, πϕk

(s)) k ∼ Uniform(Sactive)
14: Soft-update critic targets: θ′

i ← τθi + (1− τ)θ′
i

15: end if
16: if t % κ == 0 and |Sactive| > 1 then ⇒ AEAP Actor Pruning Mechanism
17: Compute pairwise distances: Dij = 1

|B|
∑

s∈B ∥πϕi(s)− πϕj (s)∥2 for all i ̸= j

18: Compute actor values: Qi = 1
|B|

∑
s∈B min Qtarg(s, πϕi

(s)) for all i ∈ Sactive

19: if ∃z ∈ Sactive such that Qz < ξ ·maxi Qi then ⇒ Performance pruning
20: Remove actor with the lowest Q-value
21: else if maxi,j∈Sactive,i̸=j Dij < ζ then⇒ Redundancy pruning
22: Remove actor with lower Q-value from the closest pair
23: end if
24: end if
25: end for

4.2 Exploration Benefits of Dual-Randomized Actor Selection
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Figure 3: (a) PCA of TD3 actions with
varying exploration variance on Hu-
manoid. (b) TD3 action distribution
heatmaps on Humanoid(first two di-
mensions).

Empirical studies (Ren et al., 2021; Dey & Sharon, 2024) and theo-
retical analyses (Calinon et al., 2012; Chan et al., 2022) demonstrate
that actor ensembles enhance exploration, particularly where the
state-action space remains largely unexplored by single-actor meth-
ods. Theoretical analyses examine exploration gains through entropy
measures and probability ratios, highlighting that certain regions
of the action space have substantially lower probabilities of being
sampled by a single Gaussian actor than by an ensemble modeled as
a Gaussian mixture. We further substantiate these insights through
intuitive visual analyses, centered on two primary observations:

Single-actor Exploration is Limited. Merely increasing the explo-
ration variance (σ) of a single actor, as commonly practiced in TD3,
is insufficient to guarantee robust exploration, particularly in high-
dimensional action spaces. We examine this exploration limitations
of TD3 using the Humanoid environment from MuJoCo (Todorov
et al., 2012), which features a challenging 17-dimensional action space.
Figure 3 shows Principal Component Analysis (PCA) (Jolliffe, 1986)
of actions generated by TD3 during the initial 50,000 training steps
with varying exploration variance σ ∈ {0.1, 0.5} and the distribution
heatmaps for the first two action dimensions. The explained variance
ratios reveal that TD3 concentrates exploration predominantly along
a few dimensions. While raising σ from 0.1 to 0.5 partially addresses
this limitation, the concentration effect persists, presumably due to
the action clipping that constrains noise augmented actions to valid bounds. Appendix B.2 provides additional
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Figure 4: (a) The background gray curve shows the bimodal reward landscape in 1-dimensional action space.
Colored dots represent actor positions at different training steps, with arrows indicating gradient-directed
movement (From −1 to 1). Methods with random updates (Dual-Random, Greedy+Random) update only
one actor per step, with dual-randomized selection exhibiting multimodal behavior. (b) Cumulative action
space visitation frequency over 3K steps.

results across multiple seeds, even with high exploration noise (σ = 1.0), TD3 exhibits clustering near the
action space boundaries, limiting effective exploration in high-dimensional action spaces.
Remark 2. We provide additional similar analysis for the Hopper domain, a simpler environment with a 3-D
action space, in Appendix B.1. These results indicate that increasing exploration noise in lower-dimensional
settings can indeed broaden action coverage more effectively, highlighting the importance of dimensionality
considerations when designing exploration strategies.

Dual-randomized Actor Selection Maintains Diversity. Inspired by dropout techniques in Hiraoka et al.
(2022) that randomly deactivate Q-heads to prevent single critic dominance, we extend this randomization
concept to actor selection: we randomly choose one actor interacts with the environment and another random
one receives gradient updates. We evaluate four configurations by crossing two design choices: (1) how
actors are selected for environment interaction — either randomly or through performance-based greedy
selection, and (2) which actors receive policy updates — either a single randomly selected actor or all actors
simultaneously. This yields four variants allowing us to isolate the impact of randomization at each stage,
demonstrating that dual-randomized actor selection offers superior exploration advantages.

Using the continuous bandit problem from Huang et al. (2023), which features a deterministic re-
ward function with two modes in a 1-D action space. We employ four actors with identical network
architectures and orthogonal initializations. (Full experiment setting is reported in Appendix B.3).
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Figure 5: (b) PCA decom-
position on Humanoid. (b)
New state exploration on
Humanoid.

Figure 4.(a) tracks current actor positions and corresponding gradient dynamics
over time, revealing that configurations where all actors receive updates strongly
converge toward a single local optimum. Conversely, dual-randomized selection
exhibits multi-modal behavior capable of overcoming local optima.

We attribute this to two factors: (i) random actor selection promotes diverse
environment interactions, particularly early in training when the critic remains
immature, thereby providing richer for critic learning, similar to supervised
learning where balanced samples accelerate learning; and (ii) updating a single
random actor introduces delayed, high-variance learning dynamics, giving actors
that discover narrow high-reward regions a high probability of remaining there
and avoiding premature convergence. As illustrated in Figure 4.(b), dual-
randomized selection achieves the broadest action space coverage among all
strategies. Cumulative action selection probabilities in Appendix B.3 confirm
consistent patterns.

This capability can also extends to high-dimensional action spaces. We demon-
strate this using GAMID (Dey & Sharon, 2024), a multi-actor algorithm with
explicit divergence regularization. Figure 5.(a) compares PCA decomposition of
TD3, dual-randomized selection, and GAMID on Humanoid, showing the first
five principal components where dual-randomized exhibits the most uniform distribution across dimensions.
Figure 1.(b) demonstrates that diversified actions increase new state discovery, measured using Running
Statistics Normalization (RSNorm) from (Lee et al., 2025) to standardize and discretize observations for
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Table 1: Actor selection ratios and final mean performance(R) for Gamid under varying ε values. Actor
labels are assigned by selection frequency, with Actor 0 being the most frequently selected.

(a) Walker2d-v5

ε Actor 0 Actor 1 Actor 2 R
1/N 72.22% 15.82% 11.96% 4,213
1/(2N) 84.23% 7.15% 8.61% 4,337
1/(10N) 96.47% 2.23% 1.29% 4,581

(b) Humanoid-v5

Actor 0 Actor 1 Actor 2 Actor 3 R
64.18% 16.94% 11.33% 7.55% 4,938
78.26% 9.81% 7.42% 4.51% 5,016
93.84% 2.94% 1.96% 1.26% 5,219

tracking exploration rates (details in Appendix B.4). Dual-randomized exhibits similar new state exploration
rates as existing regularized method on Humanoid.

However, this high variance has a double-edged effect: while enabling escape from local optima, unstable
gradients may trap some actors in suboptimal regions between peaks, as shown in Figure 4.(b). This high
visitation frequency between peaks arises because immature critic functions could generate scattered gradients,
trapping actors in intermediate areas. We address this challenge in the following section.
Remark 3. While we do not establish formal theoretical justifications, our dual-randomized selection mechanism
partially align with existing theoretical frameworks. First, the exploration benefits from random actor selection
connect to Gal & Ghahramani (2016), which links dropout to approximate Bayesian inference. Analogously,
random selection maintains diversity by preventing deterministic co-adaptation among actors, effectively
preserving epistemic uncertainty throughout training. Second, the delayed, high-variance updates resulting
from randomly selecting actors for backpropagation relate to the analysis in Zinkevich et al. (2010), where
asynchronous gradient updates with inherent delays are shown to retain convergence properties while
facilitating escape from suboptimal local minima. However, existing theoretical analyses predominantly
address tabular or low-dimensional settings with formal convergence guarantees. Extending these guarantees
to high-dimensional continuous control with function approximation remains an important open problem,
and our work provides empirical evidence that motivates future theoretical investigation in this direction.

4.3 Actor Pruning: From Exploration to Exploitation

We address two central questions regarding actor pruning strategy: (1) why pruning actors is preferable to
retaining all actors throughout training, and (2) how actors should be pruned effectively.

Pruning is preferable. Two computational inefficiencies motivate pruning. First, as shown in Section 4.2,
unstable gradients produce underperforming actors that impede learning convergence. Second, even with
explicit regularization, training dynamics drift toward actor dominance where certain policies dominate
sampling, wasting computation on seldom-used actors.

We demonstrate the second issue using GAMID, which selects actors for environment interaction via an
ε-greedy rule. Table 1 reports the empirical selection ratios and final mean performance for each actor
under three ε values in Walker2d-v5 and Humanoid-v5. Smaller ε yields better returns but also steeper
concentration of interaction counts on one actor. A plausible explanation is that, maintaining several actors
benefits exploration in the early phase when state–action visitation is sparse. However, as exploration
becomes less valuable relative to exploitation, higher ε enforces more random selections when the algorithm
should exploit the superior actor, and thus leads to worse performance. This observation confirms that
the computational overhead of maintaining all actors becomes increasingly unjustified, as remaining actors
contribute little beyond redundant updates, motivating our adaptive pruning approach. Figure 6.(a) shows
performance improvement in GAMID after integrating redundancy-based pruning.

Pruning Strategy. We introduce dual pruning based on performance-estimated values and action-space
distances to maintain exploration diversity while ensuring computational efficiency:

• Performance-Based Pruning: Actors whose mean Q-value falls below a predefined ratio of the best
performer are removed.

7



Under review as submission to TMLR

4200 4800
+PR

+R

+P

PMOE
Average Return ( )

4200 4800
+PR

+R

+P

GAMID
Average Return ( )

No Pruning Performance Pruning (+P) Redundancy Pruning (+R) Both Pruning (+PR)

1 0 1
0.0

0.5

1.0
Step# 10000

Dual-Random
+ Redundancy Pruned

Figure 6: (a) Integration of pruning strategies leads to performance improvements for both GAMID and
PMOE in Ant, with the highest gains achieved when both redundancy-based and performance-based criteria
are combined. (b) Comparison of cumulative action selection probabilities between dual-randomized actor
selection and its performance-based pruning extension.

• Redundancy-Based Pruning: When maximum pairwise action distance falls below a threshold, the
actor with lower Q-value is removed.

We detail hyperparameter choices for pruning and their rationale. The performance threshold ξ = 0.85
eliminates actors performing below 85% of the best performer, a value that empirically performs well across
environments while avoiding overly aggressive pruning. A potential concern is that overestimation bias might
incorrectly prune actors with better Q-value estimates. We address this in Appendix B.5 and find that
several mitigating factors make this situation rare in practice. To ensure adequate training before pruning
decisions, we use a pruning frequency of κ = 10, 000 steps. The distance pruning threshold is defined as:
ζ = c ·

√
dim(A) · amax, where A is the action space with a maximum action magnitude amax per dimension,

and c is a scaling constant. This directly reflects the maximal possible action-space distance.

We identify two particularly effective configurations:

1. Conservative setting: (N = 3, c = 1.0) Small initial ensemble coupled with a conservative
threshold (ζ = 1.0 ·

√
dim(A) · amax), typically retains one or two trained actors for stability.

2. Aggressive setting: (N = 7, c = 1.5) Large initial ensemble alongside a higher threshold (ζ =
1.5·

√
dim(A)·amax), rapidly pruning to single dominant policy after leveraging exploration capabilities.

This is particularly beneficial in sparse-reward environments.

We demonstrate the effectiveness of performance-based pruning using the previous bandit example. Figure 6.(b)
shows that starting from three actors, with a performance ratio threshold of 0.85 and pruning frequency
of 1, 000 steps. Actors are progressively removed when their average Q-value falls below 85% of the best
performer. This adaptive mechanism successfully guides the ensemble to the global optimum by removing
suboptimal actors while preserving the best.

Figure 6.(a) demonstrates that integrating either single or combined pruning mechanisms into GAMID
and another ensemble method Probabilistic Mixture-of-Experts SAC (PMOE)(Ren et al., 2021), yields
performance in the Ant environment, which has a higher-dimensional action space. Additional comparisons in
Humanoid and HalfCheetah are provided in Appendix B.6. Further ablation studies on AEAP, presented in
Section 5.2, also analyze the two pruning strategies in detail and confirm that both contribute to performance
improvements.
Remark 4. We briefly provide a heuristic justification for our preference of the maximum-distance criterion
over a mean-distance criterion. Mean pairwise distances are known to concentrate in high-dimensional spaces,
making them numerically indistinct and insensitive to meaningful behavioral differences, especially in cases
involving small variance (Beyer et al., 1999). Reinforcement learning typically employs small variance in
exploration, where subtle yet significant differences in actor behaviors are often undetectable by mean-based
metrics. Consequently, we adopt a criterion based purely on the geometric properties of the action space,
independent of variance, to more reliably identify genuine behavioral redundancy among actors.
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Figure 7: Performance-efficiency trade-off on MuJoCo continuous-control benchmarks (average episode return)
and sparse-reward Fetch domain (success rate). While AEAP does not achieve the highest performance on
every task, it consistently attains competitive performance across domains while requiring less wall-clock time
than the recent state-of-the-art SimBa and other fixed-size actor ensembles, making it an efficient alternative
when resources or training time are constrained. Wall-clock measurements represent mean runtime over seven
trials (1M steps each) on NVIDIA RTX 4090 GPU and Intel i9-13900K CPU.

5 Experiments

We aim to evaluate four aspects of AEAP: (1) performance competitiveness against established single-actor
and multi-actor baselines across dense and sparse reward environments, (2) computational efficiency gains
through adaptive pruning compared to fixed-size ensembles, (3) robustness of our proposed hyperparameter
configurations across diverse continuous control tasks, and (4) effectiveness of individual and combined
pruning strategies.

5.1 Baseline Comparisons and Computational Efficiency

Baselines. We evaluate AEAP against established baselines on continuous control benchmarks from
MuJoCo (Todorov et al., 2012) and Fetch (Plappert et al., 2018a) domains. Our comparisons include
single-actor methods TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018), for multi-actor ensembles,
we use Probabilistic Mixture-of-Experts SAC (PMOE) (Ren et al., 2021) and Gaussian Mixture Deterministic
Policy Gradient (GAMID-PG) (Dey & Sharon, 2024). For completeness, we also include the most recent
state-of-the-art deep RL architecture, SimBa (Lee et al., 2025), and observe that we achieve comparable
post-training performance on over half of the MuJoCo domains with lower running time.

Implementations. We adopt the aggressive setting mentioned in Section 4.1 by default, implementations
for TD3 and SAC utilize Stable-baselines3 (Raffin et al., 2021), whereas PMOE, GAMID-PG and SimBa
leverage author-provided code, adhering strictly to recommended hyperparameters from original literature
(detailed in Appendix C). Consistent with prior work (Ibarz et al., 2021), methods were augmented with
Hindsight Experience Replay (HER) (Andrychowicz et al., 2018) for sparse reward tasks within the Fetch
domains. All experiments are conducted over 7 random trials.

Performance. The post-training performance are summarized in Table 2, with corresponding learning
curves illustrated in Appendix B.7. Figure 7 presents the results, where the x-axis represents computation
time and the y-axis denotes performance. Points in the upper-left corner indicate higher performance and
compute efficiency. On dense-reward Mujoco tasks, AEAP consistently attains competitive performance
across domains while requiring less wall-clock time than recent state-of-the-art methods such as SimBa and
other fixed-size actor ensembles or simpler baselines like SAC, even though it does not achieve the highest
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Table 2: Mean performance and the 1-standard deviation on continuous control benchmarks. The best and
second-best performing RL algorithms have been highlighted.

TD3 SAC GAMID PMOE SimBa AEAP(N=3) AEAP(N=7)

MuJoCo (v5)
HalfCheetah 10,097 ± 476 10,493 ± 79 10,285 ± 253 10,156 ± 312 12,732 ± 345 13,110 ± 285 11,121 ± 429
Hopper 3,499 ± 225 3,487 ± 11 3,367 ± 196 3,124 ± 189 3,486 ± 370 3,587 ± 365 3,649 ± 358
Walker2d 3,998 ± 236 4,514 ± 12 4,987 ± 348 4,378 ± 254 5,261 ± 485 5,057 ± 275 5,209 ± 467
Ant 4,630 ± 475 4,098 ± 213 4,436 ± 292 4,089 ± 387 5,288 ± 195 5,476 ± 205 5,632 ± 199
Humanoid 5,004 ± 429 5,389 ± 23 5,254 ± 467 4,923 ± 298 5,583 ± 328 5,375 ± 211 5,429 ± 125
Swimmer 243 ± 128 348 ± 2 265 ± 117 314 ± 87 349 ± 24 347 ± 9 351 ± 5

Fetch (v4)
Push 0.9 ± 0.35 0.99 ± 0.1 0.8 ± 0.4 - 0.99 ± 0.1 0.99 ± 0.11 0.99 ± 0.1
Slide 0.62 ± 0.15 0.78 ± 0.34 0.66 ± 0.19 - 0.91 ± 0.24 0.74 ± 0.26 0.85 ± 0.25
PickAndPlace 0.65 ± 0.18 0.99 ± 0.1 0.81 ± 0.27 - 0.99 ± 0.05 0.77 ± 0.13 0.78 ± 0.21

performance on every individual task. When resources or training time are constrained, AEAP offers a
compelling performance-efficiency trade-off for practitioners prioritizing faster experimentation or deployment
cycles. On sparse-reward Fetch tasks, AEAP substantially outperforms other deterministic methods while
approaching the performance of SAC and SAC-based SimBa. The underperformance on FetchPickAndPlace
likely stems from its multi-stage exploration challenge: SAC with entropy regularization keeps sampling
diverse actions long enough to discover that sequence, whereas the deterministic actors in AEAP narrow their
exploration once pruning begins, reducing the chance of stumbling onto the critical manipulation pattern.

Efficiency. Figure 7 demonstrates AEAP’s efficiency gains through adaptive pruning. Despite starting with
7 actors, AEAP achieves substantially shorter runtime compared to fixed-size actor ensembles such as Gamid
with competitive performance. This demonstrates the effectiveness of AEAP as a computationally efficient
and reliable alternative to conventional multi-actor reinforcement learning algorithms.

Robustness. We conduct additional experiments on Gym-v4 (Appendix B.7) to further validate the
robustness of our default hyperparameter choices. These additional experiments confirm the reliability and
effectiveness of our proposed configurations for AEAP under various experimental conditions.

5.2 Ablation Studies on Main Hyperparameters

Figure 8 presents ablation results on the sensitivity of initial actor count N ∈ {3, 5, 7} and the distance pruning
threshold coefficient c ∈ {0.5, 1.0, 1.5} using the Walker2d and Humanoid as representative intermediate and
high dimensional environments. The first row shows training curves and the second row tracks how the
number of actors evolves throughout training. For direct comparison with single-actor methods, we include a
black line indicating the mean performance of TD3. Several key observations are revealed:

• Small c = 0.5: Minimal pruning occurs (first column in 8a and 8b), with actor counts remaining
near initial values throughout training and training curves intertwine without clear differentiation.
This matches our expectations: without explicit regularization, randomly selecting among multiple
actors resembles running multiple independent TD3 instances. While actors show no performance
stratification, initial learning accelerates compared to standard TD3 before eventually converging to
baseline performance, consistent with our exploration analysis in Section 4.2.

• Moderate c = 1.0: Actor counts reduce to approximately half the initial ensemble size (second
column in 8a and 8b), with clear performance stratification emerging. Smaller ensembles (N = 3 or
N = 5) tend to yield superior performance than the larger one (N = 7) because the dual-randomized
update scheme gives each actor fewer gradient steps in larger ensembles, slightly hampering individual
learning. Nevertheless, even with reduced update frequency, pruned ensembles outperform both
unpruned ensembles and single-actor baselines, demonstrating the value of selective retention over
fixed-size approaches.
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Figure 8: Ablation studies on main hyperparameters. Top rows show training performance (average reward)
and bottom rows track ensemble size evolution (average number of actors) across different initial actor counts
N and distance thresholds ζ. With small ζ, minimal pruning occurs and performance remains close to TD3
baseline. Moderate ζ enables effective pruning with clear performance improvements, while aggressive ζ
rapidly reduces ensemble size, with larger initial ensembles achieving superior final performance.

• Large c = 1.5: Aggressive pruning rapidly converges to 1− 2 actors after initial exploration (third
column in 8a and 8b). Larger ensembles (e.g., N = 5 or N = 7) achieve superior final performance
by fully exploiting multi-actor exploration before consolidation, while smaller ensembles N = 3 suffer
from insufficient early diversity due to the premature aggressive pruning.

• Pruning dynamics: Larger ensembles consistently prune faster across all ζ values. Despite
orthogonal initialization, more actors naturally lead to greater action-space overlap, triggering
distance-based pruning more frequently.

Similar trends are observed across additional domains, as detailed in Appendix B.8. While Figure 8 shows
that extreme values of c can lead to either insufficient pruning (maintaining computational overhead) or
premature convergence (losing exploration benefits), it is important to note that the heightened sensitivity
observed in our ablation studies results from deliberately testing boundary conditions with exaggerated
pruning thresholds rather than reflecting realistic deployment scenarios. We provide hyperparameter selection
guidelines below that are designed to be domain-agnostic and robust, demonstrating consistency across
domains.

Hyperparameter selection guidelines. Hyperparameter selection can be distilled into two scenarios:
(1) adopt the conservative setting when sustained behavioural diversity is valuable, as in non-stationary,
multi-objective, or risk-sensitive domains where multiple distinct policies hedge against regime shifts; and (2)
choose the aggressive setting when the aim is to produce one high-performing policy quickly, as in benchmark
control suites or fixed industrial tasks, leveraging broad early exploration followed by rapid, compute-efficient
convergence.

5.3 Ablation Studies on Pruning Mechanisms

We ablate the two pruning mechanisms independently using the aggressive configuration (N = 7, ζ =
1.5 ·

√
dim(A) · amax) across three environments of increasing action dimensionality: Hopper (3-D), Walker2d

(6-D), Humanoid (17-D). Figure 9 reveals that combined pruning achieves the highest performance and most
efficient actor reduction, validating that both mechanisms are essential and complementary. Distance-based
pruning is triggered more frequently than performance-based pruning across all environments, indicating that
action-space similarity is more common than performance differences during training.
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Figure 9: Ablation studies on pruning mechanisms, showing that combined pruning achieves the highest
performance.

6 Conclusion

This paper presents Actor Ensemble with Adaptive Pruning (AEAP), a novel approach that addresses
the fundamental tension between exploration diversity and computational efficiency in ensemble-based
reinforcement learning. Our key contributions include: (1) demonstrating that dual-randomized actor
selection naturally maintains behavioral diversity without explicit regularization terms, (2) developing an
adaptive dual-criterion pruning mechanism that evaluates actors based on both critic-estimated performance
and action-space similarity, enabling the ensemble to harness early diversity for exploration while progressively
eliminating redundant or underperforming actors for computational efficiency, and (3) showing that AEAP
achieves lower computational overhead compared to fixed-size ensembles like Gamid (Dey & Sharon, 2024) and
PMOE (Ren et al., 2021) while maintaining superior performance, particularly in sparse-reward environments
where exploration is crucial.

By automatically adjusting ensemble size based on the learning phase, maintaining diversity during exploration
and consolidating during exploitation, AEAP provides a practical framework for deploying ensemble methods
without the computational burden of maintaining redundant actors throughout training.
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A Additional Related Work

Exploration in Single-Agent RL. Exploration allows agents to visit under-explored regions of the
environment by deviating from optimal policies. Many approaches induce exploration by introducing
stochasticity, either by adding noise directly to the output actions (Fujimoto et al., 2018; Mnih et al., 2015;
Lillicrap et al., 2019) or to the policy parameters (Plappert et al., 2018b; Fortunato et al., 2019). Other
strategies explicitly optimize for exploration, such as maximizing action entropy (Haarnoja et al., 2017; 2018)
or maintaining visitation maps that motivate visits to infrequently encountered states (Tang et al., 2017;
Ostrovski et al., 2017). Intrinsic rewards (Burda et al., 2018b; Stadie et al., 2015) and curiosity-driven
objectives (Burda et al., 2018a; Pathak et al., 2017) have also been utilized. However, these methods
fundamentally rely on modifying or augmenting the agent’s current policy, thus inherently limiting exploration
scope based on previously learned behaviors.

Critic Ensembles in RL. Another prominent line of research maintains multiple critic networks (value
functions) to guide exploration more effectively. Osband et al. (2016) trains multiple Q-heads to approximate
Thompson sampling and Anschel et al. (2017) reduces variance by averaging historical predictions. Osband
et al. (2018) injects fixed bias to preserve long-term uncertainty, Lan et al. (2020) mitigates overestimation
via conservative ensemble targets. Lee et al. (2021) adds an uncertainty bonus to the ensemble for improved
exploration. Chen et al. (2021) extends these ideas to continuous control by updating a ten-critic ensemble
with random subsampling, achieving state-of-the-art sample efficiency.

B Additional Experimental Results

This section provides comprehensive experimental results to support the findings presented in the main text.

B.1 Exploration Effectiveness in Low-Dimensional Environments for TD3

(a) Humanoid-v5 environment (17-D action space)
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(b) Hopper-v5 environment (3-D action space)

Figure 10: Action distribution heatmaps showing coverage across the first two action dimensions for TD3
with varying exploration noise levels.

Figure 10.(b) presents action distribution heatmaps for TD3 in the Hopper environment. Unlike the high-
dimensional Humanoid environment, increasing exploration noise in Hopper demonstrably improves action

17
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Figure 11: PCA analysis in Humanoid-v5 environment across different random seeds.

coverage across the visualized dimensions. This observation corroborates the dimensionality-dependent nature
of exploration effectiveness in single-actor methods.

B.2 Exploration Effectiveness in High-Dimensional Environments for TD3

We provide additional empirical evidence supporting our claim from Section 4.2 that increasing exploration
variance in single-actor methods is insufficient for robust exploration in high-dimensional action spaces.

Figures 11 presents PCA projections of TD3’s 17-dimensional action outputs in the Humanoid environment
across another two random seeds, with exploration noise σ ∈ {0.1, 0.5, 1.0}. These results demonstrate the
consistency of TD3’s limited exploration patterns across different initializations, complementing the analysis
presented in Figure 3 of the main text.
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B.3 1-D Continuous Bandit Experimental Setup

The environment features a 1-dimensional action space a ∈ [−1, 1] with a deterministic bimodal reward
function. The reward landscape contains a narrow global optimum at a = −0.7 (reward = 1.0) and a wide local
optimum at a = 0.3 (reward = 0.5), as illustrated in Figure 12. This design creates an exploration-exploitation
trade-off where the global peak is challenging to discover due to its narrow width, while the local peak is
easily found but yields suboptimal rewards.

In the all-actor update configuration, all actors in the ensemble receive gradient updates simultaneously using
the same batch of experiences, contrasting with the single-actor update where only one randomly chosen
actor is updated per step. Updates occur at every timestep with a batch size of 32.

1 0 1
0.0

0.5

1.0
 Reward

Figure 12: 1-D Continuous Bandit environment

Figure 13 tracks cumulative action selection probabilities over time for three actors, revealing distinct
convergence patterns.
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Figure 13: Cumulative action selection probabilities under four actor-management schemes with three actors.
Random-Single maintains diversity but also trapped between optimal peaks.

B.4 Running Statistics Normalization (RSNorm)

We adopt this normalization technique from (Lee et al., 2025), which demonstrates its superior performance
compared to alternative normalization methods. RSNorm standardizes input observations by tracking the
running mean and variance of each input dimension during training, preventing features with disproportionately
large values from dominating the learning process.
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Given an input observation ot ∈ Rdo at timestep t, we update the running observation mean µt ∈ Rdo and
variance σ2

t ∈ Rdo as follows:

µt = µt−1 + 1
t
δt, σ2

t = t− 1
t

(
σ2

t−1 + 1
t
δ2

t

)
(1)

where δt = ot − µt−1 and do denotes the dimension of the observation.

Once µt and σ2
t are computed, each input observation ot is normalized as:

õt = RSNorm(ot) = ot − µt√
σ2

t + ε
(2)

where õt ∈ Rdo is the normalized output, and ε is a small constant for numerical stability.

In our case, after applying RSNorm, we use np.digitize to discretize the state space. For Walker2d,
we discretize the 17-dimensional observation space into 10 bins, and for Humanoid, we discretize the
347-dimensional observation space into 50 bins.

B.5 Overestimation Bias in Pruning Decisions

A potential concern with performance-based pruning is whether overestimation bias in Q-networks could lead
to incorrect pruning decisions, where actors with better value estimates are mistakenly removed due to critic
inaccuracies.

We do not observe this situation in experiments, probably due to several mitigating factors. First, we inherit
double Q-learning mechanism, which addresses overestimation bias by taking the minimum of two critic
estimates. Second, we use average Q-values over entire batches, which naturally smooths out extreme outliers

— only actors that consistently underperform get identified for pruning. Third, during the initial freeze period
where both actors and critics have high variance, no pruning occurs. After this period, our pruning frequency
is every 10,000 steps, which is conservative and allows critics to mature.

A particularly influential parameter may be batch size, as smaller batches introduce higher variance in Q-value
estimation, potentially causing the pruning issues mentioned above. The following table shows experiments
across different batch sizes yield similar performance across several domains (5 runs):

Environment Batch Size
256 512 1024

Walker2d-v5 5,209±467 5,181±287 5,173±94
Humanoid-v5 5,429±125 5,552±198 5,341±186
Ant-v5 5,632±199 5,462±191 5,648±103

Table 3: Performance consistency across batch sizes (5 runs)

B.6 Integration of Pruning Strategies with GAMID and PMOE

Figure 14 shows that integrating pruning strategies improves performance for both GAMID and PMOE in
HalfCheetah and Humanoid. The largest gains occur when both redundancy-based and performance-based
criteria are combined.

B.7 Learning Curves of AEAP on Gym-v4 and Gym-v5

Figure 16 demonstrates the performance of AEAP on MuJoCo-v5 environments under the aggresive parameter
configuration: N = 7 actors with distance threshold ζ = 1.5 ·

√
dim(A) · amax.

Figure 16 demonstrates the performance of AEAP on MuJoCo-v4 environments under the conservative
parameter configuration: N = 3 actors with distance threshold ζ = 1.0 ·

√
dim(A) · amax. The results confirm
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Figure 14: Integration of pruning strategies with GAMID and PMOE on different Mujoco tasks.

that AEAP consistently outperforms or matches baseline methods across different Gym environment versions,
establishing the robustness of our approach to environmental variations.

B.8 Additional Ablation Studies on Main Hyperparameters

Following standard practice in (Haarnoja et al., 2018), we provide comprehensive sensitivity analyses across
all MuJoCo environments. Figures 17 through 19 extend the hyperparameter analysis from Section 5.2,
presenting detailed ablation studies on initial actor count N and distance pruning threshold c for each
environment. These results validate the robustness of our proposed configurations and confirm the parameter
selection guidelines across diverse continuous control tasks.

C Hyperparameters And Compute

We used the tuned hyperparameter values for SAC and TD3, that have been provided in RL Baselines3 Zoo
which is built on top of Raffin et al. (2021). For Gamid-PG, we used hyperparameters recommended in Dey
& Sharon (2024). For SimBa, we used recommended hyperparameters from Lee et al. (2025) with minor
adjustments.

All reported experiments were distributed between 3 machines; (1) a machine with 64 32-core AMD Ryzen
Threadripper PRO 5975WX CPUs, each clocked at 4.3 GHz with 250 GB RAM with 2 NVIDIA GeForce RTX
3090 24 GB GPUs (2) a machine with an Intel(R) Core(TM) i9-13900K CPU with 24 cores (8 performance +
16 efficiency cores), base clock at 3.0 GHz (boost up to 5.8 GHz) with 32 GB RAM and an NVIDIA GeForce
RTX 4090 24 GB GPU.
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Figure 15: Training performance on MuJoCo-v5 environments. Shaded regions represent standard deviation
across 7 independent trials. Curves are smoothed using a 100-step moving window for clarity.
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Figure 16: Training performance on MuJoCo-v4 environments. Shaded regions represent standard deviation
across 7 independent trials. Curves are smoothed using a 100-step moving window for clarity.
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Figure 17: Hyperparameter ablation results for Hopper-v5 environment.
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Figure 18: Hyperparameter ablation results for Ant-v5 environment.
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Figure 19: Hyperparameter ablation results for HalfCheetah-v5 environment.

Table 4: SimBa hyperparameters.

Hyperparameter Value
Critic block type SimBa Residual
Critic num blocks 2
Critic hidden dim 512
Critic learning rate 1e-4
Target critic momentum (τ) 5e-3 → 1e-3
Actor block type SimBa Residual
Actor num blocks 1
Actor hidden dim 128
Actor learning rate 1e-4 → 3e-4
Initial temperature (α0) 1e-2
Temperature learning rate 1e-4
Target entropy (H∗) |A|/2
Batch size 256
Optimizer AdamW
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2 → 1

Clipped Double Q HumanoidBench: True
Other Envs: False
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