
Under review as a conference paper at ICLR 2021

Flatness is a False Friend

Anonymous authors
Paper under double-blind review

Abstract

Hessian based measures of flatness, such as the trace, Frobenius and spectral
norms, have been argued, used and shown to relate to generalisation. In this
paper we demonstrate that, for feed-forward neural networks under the cross-
entropy loss, low-loss solutions with large neural network weights have small
Hessian based measures of flatness. This implies that solutions obtained
without L2 regularisation should be less sharp than those with despite
generalising worse. We show this to be true for logistic regression, multi-
layer perceptrons, simple convolutional, pre-activated and wide residual
networks on the MNIST and CIFAR-100 datasets. Furthermore, we show
that adaptive optimisation algorithms using iterate averaging, on the VGG-
16 network and CIFAR-100 dataset, achieve superior generalisation to SGD
but are 30× sharper. These theoretical and experimental results further
advocate the need to use flatness in conjunction with the weights scale to
measure generalisation (Neyshabur et al., 2017; Dziugaite and Roy, 2017).

1 Introduction

Deep Neural Networks (DNNs), with more parameters than data-points, trained with many
passes of the same data, still manage to perform exceptionally on test data. The reasons for
this remain laregly unsolved (Neyshabur et al., 2017). However, DNNs are not completely
immune to the classical problem of over-fitting. Zhang et al. (2016) show that DNNs can
perfectly fit random labels. Schedules with initially low or sharply decaying learning rates,
lead to identical training but much higher testing error (Berrada et al., 2018; Granziol et al.,
2020a; Jastrzebski et al., 2020). In Wilson et al. (2017) the authors argue that specific
adaptive gradient optimisers lead to solutions which don’t generalise. This has lead to a
significant development in partially adaptive algorithms (Chen and Gu, 2018; Keskar and
Socher, 2017). Given the importance of accurate predictions on unseen data, understanding
exactly what helps deep networks generalise has been a fundamental area of research. A key
concept which has taken a foothold in the community, allowing for the comparison of different
training loss minima using only the training data, is the concept of flatness. From both
a Bayesian and minimum description length framework, flatter minima should generalize
better than sharp minima (Hochreiter and Schmidhuber, 1997).

Sharpness is usually measured by properties of the second derivative of the loss„ the Hessian
H = ∇2L(w) (Keskar et al., 2016; Jastrzebski et al., 2017b; Chaudhari et al., 2016; Wu
et al., 2017; 2018), such as the spectral norm or trace. The assumption is that due to finite
numerical precision (Hochreiter and Schmidhuber, 1997) or from a Bayesian perspective
(MacKay, 2003), the test surface is shifted from the training surface. The difference between
train and test loss for a shift ∆w is given by

L(w∗ + ∆w)− L(w∗) ≈ ∆wTH∆w + ... ≈
P∑
i

λi|φTi ∆w|2 ≈ Tr(H)

P
||∆w||2 ≤ λ1||∆w||2

(1)
in which w∗ is the final training point and [λi,φi] are the eigenvalue/eigenvector pairs of
H ∈ RP×P . We have dropped the terms beyond second-order by assuming that the gradient
at training end is small. In general we have no a priori reason to assume that shift should
preferentially lie along any of the Hessian eigenvectors, hence by taking a maximum entropy
prior (MacKay, 2003; Jaynes, 1982) we expect strong high dimensional concentration results

1

Under review as a conference paper at ICLR 2021

(Vershynin, 2018) to hold, hence |φTi ∆ŵ|2 ≈ 1/P , where ŵ is simply the normalised version
of w. This justifies the trace as a measure of sharpness. In the worst case scenario the
shift is completely aligned with the eigenvector corresponding to the largest eigenvalue λ1,
i.e. ∆wTφ1 = 1. Hence the spectral norm λ1 of H serves as a local1 upper bound to the
loss change. The idea of a shift between the training and testing loss surface is prolific in
the literature and regularly related to generalisation (He et al., 2019; Izmailov et al., 2018;
Maddox et al., 2019). Alternative, yet closely related, measures of flatness are also used.
Keskar et al. (2016) define a sharp minimiser as one "with a significant number of large
positive eigenvalues", in fact as can be seen by the Rayleigh-Ritz theorem, the metric which
they propose, shown in Equation 2 is proportional to the largest eigenvalue.

φw,L(ε,A) :=
(maxy∈Cε L(w +Ay))− L(w)

1 + L(w)
≤ κ(ε)λ1 (2)

Cε is the constraint box as defined in (Keskar et al., 2016), where ε controls the box size.
As shown by Dinh et al. (2017), this definition of sharpness is approximately given by
λ1ε

2/2(1 + L(w)), proportional to the largest eigenvalue. This result can be explained
intuitively as within a small vicinity of w the largest change in loss is along the leading
eigenvector and is proportional to the largest eigenvalue. Wu et al. (2017) consider the
logarithm of the product of the top k eigenvalues as a proxy measure the volume of the
minimum (a truncated log determinant). In this paper we will exclusively consider the
Hessian trace, spectral and Frobenius norm as measures of sharpness.

Motivation: There have been numerous positive empirical results relating sharpness and
generalisation. Keskar et al. (2016); Rangamani et al. (2019) consider how large batch
vs small batch stochastic gradient descent (SGD) alters the sharpness of solutions, with
smaller batches leading to convergence to flatter solutions, leading to better generalisation.
Jastrzebski et al. (2017a) look at the importance of the ratio learning rate and batch size
in terms of generalisation, finding that large ratios lead to flatter minima (as measured by
the spectral norm) and better generalisation. Yao et al. (2018) investigated flat regions
of weight space (small spectral norm) showing them to be more robust under adversarial
attack. Zhang et al. (2018) show that SGD concentrates in probability on flat minima.
Certain algorithmic design choices, such as Entropy-SGD (Chaudhari et al., 2016) and the
use of Polyak averaging (Izmailov et al., 2018) have been motivated by considerations of
flatness. However Dinh et al. (2017) show that by exploiting ReLUs (Rectified Linear Units)
positive homogeneity property f(αx) = αf(x), any flat minima can be mapped into a sharp
minimum, without altering the loss. As these measures can be arbitrarily distorted, this
implies they serve little value as generalisation measures. However such transformations alter
other properties, such as the weight norm. In practice the use of L2 regularisation, which
penalises weight norm, means that optimisers are unlikely to converge to such a solution.
It can even be shown that unregularised SGD converges to the minimum norm solution
for simple problems (Wilson et al., 2017), further limiting the practical relevance of such
reparameterisation arguments. The question which remains and warrants investigation, is are
Hessian based sharpness metrics at the end of training meaningful metrics for generalisation?
We demonstrate both theoretically and experimentally that the answer to this question is an
affirmative no.

Contributions: To the best of our knowledge, this is the first work which demonstrates
theoretically motivated empirical results contrary to purely flatness based generalisation
measures. For the fully connected feed-forward network with ReLU activation and cross
entropy loss, we demonstrate in the limit of 0 training loss, that the spectral norm and trace
of the Hessian also go to 0. The key insight is that in order for the loss to go to 0, the weight
vector components wc must tend to infinity. Conversely, this implies that methods which
reduce the weight magnitudes extensively used to aid generalisation (Bishop, 2006; Krogh
and Hertz, 1992), makes solutions sharper. We present the counter-intuitive result that
adding L2 regularisation increases both sharpness and generalisation, for Logistic Regression,
MLP, simple CNN, PreResNet-164 and WideResNet-28× 10 for the MNIST and CIFAR-100

1we use the word local here because the largest eigenvalue/eigenvector pair may change along
the path taken

2

Under review as a conference paper at ICLR 2021

datasets. We also present and discuss various amendments to the Hessian, which are robust
against the arguments presented here and those of Dinh et al. (2017).

Related work: Empirically negative results on flatness and its effect on generalisation have
been previously observed. Neyshabur et al. (2017) show that it captures generalisation for
large but not small networks. Golatkar et al. (2019) show that the maximum of the trace of the
Fisher information correlates better with generalisation than its final value. Jastrzebski et al.
(2018) show that it is possible to optimise faster and attain better generalisation performance
whilst finding a final sharper region. For small networks, those trained on random labels
(with no generalisation) are less sharp than those trained on the true labels. However this
does not rule out that for the same network trained on true labels, solutions which are
flatter generalise better. Instead the main focus has centered around the Hessians lack of
reparameterisation invariance (Neyshabur et al., 2017; Tsuzuku et al., 2019; Rangamani et al.,
2019). This has been a primary motivator for normalised definitions of flatness Tsuzuku et al.
(2019); Rangamani et al. (2019) often in a PAC-Bayesian framework. In Ballard et al. (2017);
Mehta et al. (2018), it was shown that adding the L2 regularization on weights including the
bias weights removed singular modes of the Hessian matrix for a feed-forward artificial neural
network with one hidden layer, with tanh activation function, employed to fit the XOR data.
In Mehta et al. (2018), with the help of an algebraic geometry interpretation of the loss
landscape of the deep linear networks, it was proven that a generalized L2 regularization
guaranteed to remove all singular solutions leaving the Hessian matrix strictly non-singular
at every critical point.

2 Gedanken Experiment: why the Hessian won’t do

For a simple illustration let us consider the deep linear model, with exponential loss. The
deep linear model is often employed as a theoretical tool for its analytical tractability
(Kawaguchi, 2016; Lu and Kawaguchi, 2017). In Section 3 we formalise the results to the
fully connected feed forward network with cross entropy loss. Intuitively we can think
of a feed forward network as a sum of deep linear networks and the cross entropy as an
approximation to the exponential loss. For 3 parameters and a single datum X, the loss is
given by L = exp (w1w2w3X). The Hessian, its trace and spectral norm H,Tr(H), λ1(H)
are given by

H =

 w2
2w

2
3 w1w2w

2
3 w2

2w1w3

w1w2w
2
3 w2

1w
2
3 w2

1w2w3

w2
2w1w3 w2

1w2w3 w2
1w

2
2

X exp (w1w2w3)X (3)

Tr(H) = λ1(H) = (w2
2w

2
3 + w2

2w
2
1 + w2

1w
2
3)X exp (w1w2w3X) (4)

Smaller losses imply flatter Hessians: Equation 4 shows that under this model the
trace and maximum eigenvalue are products of a polynomial function of the weights and an
exponential in the weights. As the optimiser drives the loss L→ 0 we expect the exponential
to dominate the polynomial2. This implies that methods to reduce the weight magnitude,
such as L2 regularisation, which has been extensively shown to aid generalisation (Krogh
and Hertz, 1992; Bishop, 2006) should increase Hessian measures of sharpness. We show
that this is the case experimentally in Section 4.

3 Theoretical Framework

In this Section we extend our intuition developed under the deep linear network with
exponential loss, to more realistic scenarios. Similar to the prior work of Choromanska et al.
(2015); Milne (2019), we consider a neural network with a dx dimensional input x. Our
network has H − 1 hidden layers and we refer to the output as the H’th layer and the input
as the 0’th layer. We denote the ReLU activation function as f(x) where f(x) = max(0, x).

2consider the function xn exp (−xm)→ 0 ∀n,m as x→∞

3

Under review as a conference paper at ICLR 2021

Let Wi be the matrix of weights between the (i− 1)’th and i’th layer. For a dy dimensional
output our q’th component of the output can be written as

z(xi;w)q = f(W T
Hf(W T

H−1....f(W1x))) =

dx∑
i=1

γ∑
j=1

xiAi,j

H∏
k=1

w
(k)
i,j (5)

where the indices i, j denote the sum over network inputs and paths respectively and γ is
the number of paths. Ai,j ∈ [0, 1] denotes whether the path is active or not and w(q)

i,j denotes
the the weight of the path segment which connects node i in layer q − 1 with node j in layer
q. layer i has ni nodes and γ =

∏H−1
q nq We formalise our intuition from Section 2 with the

following theorem:
Theorem 1. For any feed forward neural network with ReLU output activation functions
f(x) = max(0, x), coupled with a softmax output in the final layer and cross entropy loss,
in the limit that the training loss L(w)→ 0 the spectral norm λ1 of the empirical Hessian
H = ∇∇L(w) ∈ RP×P also tends to 0.

Proof. The cross-entropy loss `(h(xi;w),y) of a single sample xi is defined by:

`(h(xi;w),yi) = −
dy∑
c

(1− 1[h(xi;w)c 6= yc]) log h(xi;w)c (6)

Where dy is the number of classes and 1 is the indicator function which takes the value of 1
for the incorrect class and 0 for the correct class, z(xi;w) is the softmax input. The softmax
output z(xi;w)c for class c is given by

h(xi,w)c = σ(z)c =
exp z(xi;w)c∑dy
k=1 exp z(xi;w)k

=

(
1 +

dy∑
k 6=c

exp (z(xi;w)k − z(xi;w)c)

)−1
(7)

Hence combining Equations 6 and 7, the loss per sample can be written as

`(h(xi;w),yi) = log

(
1 +

dy∑
k 6=c(i)

exp (zk,c(i))

)
(8)

in which c(i) denotes the correct class for the data point xi and zk,c(i) = z(xi;w)k −
z(xi;w)c(i). Note that, for the per sample loss `(h(xi;w),yi) → 0, exp(zk,c(i)) → 0
∀k 6= c(i). Using the chain rule

∂2`(h(xi;w),yi)

∂wl∂wm
=

∑
k 6=c(i) exp(zk,c(i))[

∂2zk,c(i)
∂wl∂wm

+
∂zk,c(i)
∂wl

∂zk,c(i)
∂wm

]

1 +
∑
i 6=c exp(zk,c(i))

−
∑
k 6=c(i),u 6=c(i) exp(zk,c)

∂zk,c(i)
∂wl

exp(zu,c(i))
∂zu,c(i)
∂wm

(1 +
∑
k 6=c(i) exp(zk,c(i)))2

(9)

As shown in Milne (2019), the network is differentiable at the majority of points in weight
space. Specifically the zero set of non-zero real analytic functions (the network is piecewise
analytic in the weights) has Lebesgue measure zero. Hence all we need to show is that the
output derivatives tend to ∞ more slowly than the loss tends to 0. To do this we consider

∂m∏
m ∂w

m
µm,φm

dx∑
i=1

γ∑
j=1

xiAi,j

H∏
k=1

w
(k)
i,j =

dx∑
i=1

xiAi,j

γ/
∏
m nm∑

k 6=m

w
(k)
i,j (1− 1[wmµm,φm]) (10)

We are interested in the limit where the output for the correct class z(xi;w)c(i) → ∞.
Although any individual weight segment wki,j may be zero, this simply deactivates that path
segment and reduces the contributing sum. Hence we can absorb such zero weights into
the Ai,j and without loss of generality assume that the weights are bounded to a minimum

4

Under review as a conference paper at ICLR 2021

absolute value of |w(k)
i,j | ≥ ε > 0. Note from Equation 10 that only paths containing the

weight segment corresponding to the differentiated nodes contribute, hence the bracket on
the RHS of this equation is also upper bounded by 1. We can upper bound the norm of the
differentiated output∣∣∣∣ ∂m∏

m ∂w
m
µm,φm

dx∑
i=1

γ∑
j=1

xiAi,j

H∏
k=1

w
(k)
i,j

∣∣∣∣ ≤ |
∑dx
i=1

∑γ
j=1 xiAi,j

∏H
k=1 w

(k)
i,j |

εm
∏
m nm

(11)

Hence
∂mz(xi;w)q∏
m ∂w

m
µm,φm

exp (z(xi;w)q) ≤
|z(xi;w)q|
εm
∏
m nm

exp (z(xi;w)q) (12)

and hence in the limit `(h(xi;w),yi) → 0, all terms in Equation 9 have norms tending
to zero. Hence ∂2`(h(xi;w),yi)

∂wl∂wm
→ 0. Taking l = m and summing over m we have 0 trace

and using the Frobenius norm identity, i.e. taking the sum of squares over l,m we have∑P
i λ

2
i → 0 and hence λ1 → 0.

Remark. By writing the loss in terms of the activation σ at the output of the final layer
f(w), i.e L(w) = σ(f(w)). The Hessian may be expressed using the chain rule as

H(w)jk =
1

N

N∑
n=1

(dy∑
c=0

dy∑
l=0

∂2σ(f(w))

∂fl(w)∂fc(w)

∂fl(w)

∂wj

∂fc(w)

∂wc
+

dy∑
c=0

∂σ(f(w))

∂wj

∂2fc(w)

∂wj∂wk

)
(13)

Where, for the cross-entropy loss and softmax output at exactly 0 loss, ∂fl(w)
∂wj

= 0 and
∂2σ(f(w))

∂fl(w)∂fc(w) = 0. However, in practice, since the weights are finite, we never have 0 loss.
Hence, unlike our proof which shows that the Hessian is given by a product of a polynomial
and exponential in the weights which we expect to go to 0 in the limit of large weights and
low loss, this simple result does yield information prior to the loss being exactly 0.

4 Weight Decay and Sharpness

Section 3 more formally demonstrates what was already hypothesised in Section 2. Larger
weights, required to drive the loss to very low values, are expected to give small Hessian
based measures of sharpness, despite potentially wildly over-fitting the data and generalising
poorly. To show that this is relevant in practice we evaluate the effect of weight norm
reducing techniques, such as L2 regularisation on spectral sharpness. L2 is regularly used
to help generalisation, having been showed to reduce the effect of static noise on the target
(Krogh and Hertz, 1992).

Experimental Setup: We use the deep visualisation suite (Granziol et al., 2019) package
to visualise the spectrum of the Hessian and calculate the largest eigenvalues. We train all
networks using SGD with momentum ρ = 0.9 and varying levels of L2 regularisation γ

2 ||w||
2,

γ ∈ [0, 0.0001, 0.0005]. For further experimental details, such as the learning rate schedule
(we a linear decay schedule with a terminal learning rate of 0.01 the initial) employed
and the finer details of the spectral visualisation method see Appendix A. Since adding L2
regularisation naturally adds γ to each eigenvalue, as H →H + γI, in our results we do not
calculate the Hessian on the regularised loss. For simplicity we focus on the spectral norm,
but include results on the Frobenius norm and trace in the Appendix. Furthermore since for
certain simple architectures the inclusion of L2 regularisation also increases optimisation
performance, wherever this is the case we will relate Hessian based measures of sharpness to
the generalisation gap. For which we just report the difference in validation and training
accuracy. For more modern networks using batch normalisation (Ioffe and Szegedy, 2015),
L2 regularisation reduces convergence speed but negligibly alters optimisation performance,
so we can relate measures of sharpness to the validation performance directly3.

3since we are substracting essentially the same amount

5

Under review as a conference paper at ICLR 2021

Logistic Regression on MNIST: The simplest Neural Network model, corresponding
to a 0 hidden layer feed forward neural network, is the Softmax Regressor 4. By the diagonal
dominance theorem (Cover and Thomas, 2012) the Hessian of the Softmax Regressor is
positive semi-definite, so the loss surface is convex. For a convex objective all local minima
are global, hence we do not have the complication of different minima. We run this model on
the MNIST dataset (LeCun, 1998), splitting the training set into 45, 000 training and 5, 000
validation samples. The total parameter count is 7850. We run for 1000 (we specifically use
an abnormally large number of epochs to make sure that convergence is not an issue) epochs
with learning rate 0.01. The validation accuracy increases incrementally with increased
weight decay [93.48, 94, 94.08]. We plot the spectra of the final solution in Figure 1. We note
here that for increasing weight decay coefficient, which corresponds to higher performing
testing solutions, the spectral norm increases, from λ1 = [12.26, 14.17, 15.84]. This shows that
greater Hessian based measures of sharpness, occur for solutions with improved generalisation.

0.00 12.2610
10

10
7

10
4

10
1

(a) Acc = 93.48 λ = 0

0.00 14.1710
10

10
7

10
4

10
1

(b) Acc = 94 λ = 10−4

0.00 15.8410
10

10
7

10
4

10
1

(c) Acc = 94.08 λ = 5× 10−4

Figure 1: Hessian spectrum for Softmax regression after 1000 epochs of SGD on the MNIST
dataset, for various L2 regularisation coefficients λ

MLP: We now consider a single hidden layer MLP on the MNIST dataset, with a hidden
layer of 100 units, parameter count 9960, trained for 50 epochs with an identical schedule and
a learning rate of 0.01. We similarly find that the addition of weight decay both increases
the generalisation accuracy (from 94.4 → 96.46 → 96.7 as we increase the regularisation
coefficient γ from 0 → 0.0001 → 0.0005). Similar to the Softmax example, this also
increases the spectral norm as shown in Figure 2. The training accuracy increases slightly
with the introduction of regularisation, but decreases over the unregularised network when
the regularisation is increased to 0.0005. The generalisation gap for the various levels of
regularisation is [0.48%, 0.51%, 0.04%], where the smallest generalisation gap corresponds to
the largest spectral norm.

0.01 14.3710 7
10 5
10 3

10 1

(a) Acc = 94.4, γ = 0

0.01 14.9910 7
10 5
10 3

10 1

(b) Acc = 96.46, γ = 10−4

0.02 17.7610 7
10 5
10 3

10 1

(c) Acc = 96.7, γ = 5× 10−4

Figure 2: Hessian spectrum for MLP after 50 epochs of SGD on the MNIST dataset, for
various L2 regularisation coefficients γ

CNN: We consider a 9 layer simple convolutional neural network on the CIFAR-100 dataset
(Dangel et al., 2019), with parameter count 1, 387, 108 and a learning rate of α = 0.01 for
300 epochs. We also observe that adding weight decay increases the spectral norm, as
shown in Figure 3. For this network, training is also improved by the addition of a little L2
regularisation, but performance decreases for over regularisation, i.e. as the weight decay
parameter increases from [0, 10−4, 5×10−4] the training performance is [86.3%, 87.9%, 86.0%].
In this particular example the training accuracy is quite low, but there is still a generalisation
gap [32.4%, 32.5%, 31.1%]. Furthermore the generalisation gap is smaller for the network
with the largest spectral norm, seen by comparing Figures 3c to Figures 3a and 3b.

4multi-class equivalent of Logistic Regression

6

Under review as a conference paper at ICLR 2021

3.58 49.0110 8
10 6
10 4
10 2
100

(a) V al = 53.9, γ = 0

3.36 65.6710 8
10 6
10 4
10 2
100

(b) V al = 55.4, γ = 10−4

4.5 127.310 8
10 6
10 4
10 2
100

(c) V al = 54.8, γ = 5× 10−4

Figure 3: Hessian spectrum for CNN after 300 epochs of SGD on the CIFAR-100 dataset,
for various L2 regularisation coefficients γ

PreResNet-164 We use a pre-activated residual network on the CIFAR-100 dataset with
parameter count 1, 726, 388. Our training performance decreases with increased level of
regularisation [0, 10−4, 5×10−4] from [99.987%, 99.985%, 99.87%] but our testing performance
increases significantly [72.78%, 75.56%, 76.76%]. The generalisation gap decreases as we
increase the regularisation, yet the Hessian spectral norm continues to increase.

0.490 0.510 1.520 2.52510
8

10
6

10
4

10
2

10
0

(a) V al = 73.12, γ = 0

4.42 11.4910 8
10 6
10 4
10 2
100

(b) V al = 75.96, γ = 1e−4

7.57 2.63 12.83 23.0410
8

10
6

10
4

10
2

10
0

(c) V al = 77.36, γ = 5e−4

Figure 4: Hessian spectrum for PreResNet-164 after 300 epochs of SGD on the CIFAR-100
dataset, for various L2 regularisation coefficients γ

WideResNet-28× 10: We use a wide residual network on the CIFAR-100 dataset, with
parameter count 36, 546, 980, we observe the training accuracy remains roughly constant
[99.984%, 99.984%, 99.982%] as we increase the regularisation from [0, 10−4, 5× 10−4] . We
are now in the regime where the optimisation benefit of regularisation is negligible, but
the generalisation benefit is significant. As shown in Figure 5, the Hessian spectral norm
continues to increase with the increased regularisation coefficient γ. The validation set
accuracies are [75.2%, 79.5%, 80.6%] and again we see the spectral norm increases as the
generalisation gap decreases.

0.220 0.410 1.050 1.69310
8

10
6

10
4

10
2

10
0

(a) V al = 75.2, λ = 0

15.38 39.1310 9
10 7
10 5
10 3
10 1

(b) V al = 79.50, λ = 1e−4

18.85 0.77 20.39 40.0010
8

10
6

10
4

10
2

10
0

(c) V al = 80.6, λ = 5e−4

Figure 5: Hessian spectrum for WideResNet28×10 after 300 epochs of SGD on the CIFAR-100
dataset, for various L2 regularisation coefficients γ, Batch Norm Train mode

Note on relationship between learning rate and spectral norm: Under a stability
analysis Wu et al. (2018); Lewkowycz et al. (2020) argue that gradient descent must find
λ1 ≤ 2/α, whereas SGD satisfies a more restrictive condition, i.e the minima must be even
flatter due to the condition of non-uniformity, specifically λ1 ≤ 1 +

√
1− α2λ1(Var(H)).

Where λ1(Var(H)) is simply the largest eigenvalue of the variance of the Hessian. Although
the authors Wu et al. (2018) remark that this bound is tight in deep learning experiments.
We note for our ResNet experiments, with initial learning rate α = 0.1, as we increase the
weight decay, even the GD bound of 20 is over-reached. Whilst potentially the learning rate
decrease in training by a factor of 100, brings the optimiser to a new region within the loss
surface, the new bound of 2000 is certainly not tight.

7

Under review as a conference paper at ICLR 2021

5 Sharpness and Adaptive optimisation

Given that all high performing solutions use some form of weight regularisation, we consider
whether sharpness can be a useful indicator in the wild for the same neural network trained
on the same dataset, but with alternative optimisers and schedules. Since out of the box
adaptive gradient methods perform more poorly on the validation/test sets than SGD Wilson
et al. (2017), we compare the sharpness of solutions of the Adam optimiser when combined
with decoupled weight decay (Loshchilov and Hutter, 2018) and iterate averaging (Granziol
et al., 2020b), which has been shown to generalise better than SGD. We use the VGG-16 with
batch-normalisation on the CIFAR-10/100 datasets. We use a decoupled weight decay of
0.35/0.25 and a learning rate of α = 0.0005. For SGD we use a weight decay γ of 3/5× 10−4

and a learning rate of α = 0.1. We plot the validation accuracy curve for CIFAR-100 in
Figure 6c, whilst we see that Adam clearly generalises better than SGD. As shown in Figures
6a and 6b, the spectral norm of the better performing Adam solutions is almost 40× larger
than the SGD solution, the Frobenius norm of Adam is 0.02 as opposed to 0.0001 for SGD.
Both solutions give similar training performance, with Adam 99.81 and SGD 99.64. For
CIFAR-10 although the generalisation gap is smaller, we see a similar picture, as shown in
Figure 7. To investigate the fragility of other commonly employed metrics for this practical
scenario, the Frobenius norm of the Adam solution is 1.55× 10−3 as opposed to 1.43× 10−5.
Furthermore we note from Figures 6c and 7c that not only are these solutions sharper, but
they also have higher norms.

1.43 10.1110 8
10 6
10 4
10 2
100

(a) V al = 73.5, SGD

62.2 387.810 8
10 6
10 4
10 2
100

(b) V al = 75.8, Aadam

0 50 100 150 200 250
0.2
0.4
0.6
0.8
1.0

Va
l E

rro
r Gadam

SGD
0.250
0.275

50

75

100

125

L2
 n

or
m

(c) Test Error & L2 norm

Figure 6: Hessian spectrum for VGG-16BN after 300 epochs of SGD on the CIFAR-100
dataset, for various optimisation algorithms [SGD, Adam], batch norm train mode

0.258 3.29610 8
10 6
10 4
10 2
100

(a) V al = 94.3, SGD

6.28 58.5910 8
10 6
10 4
10 2
100

(b) V al = 95.1, Adam

0 50 100 150 200 250
0.00
0.25
0.50
0.75
1.00

Va
l E

rro
r Gadam

SGD
0.05
0.06

40

60

80

100

L2
 n

or
m

(c) Test Error & L2 norm

Figure 7: Hessian spectrum for VGG-16BN after 300 epochs of SGD on the CIFAR-10
dataset, for various optimisation algorithms [SGD, Adam], batch norm train mode

6 Conclusion

In this paper we show that the Hessian can be written as the product of a polynomial and
exponential in the weights, which in the limit of large weights, which overfit, give rise to flat
minima despite poor generalisation. We show that adding L2 regularisation, significantly
increases the spectral norm whilst improving generalisation. We also show that certain
heuristics used to improve adaptive optimisation generalisation, give high weight norm sharp
solutions, which generalise better than the corresponding flatter lower norm SGD solutions.
This shows that whilst intuitive, pure Hessian based flatness measures are not relevant for
generalisation. Solutions found in practical schedules which generalise significantly better
can be much sharper.

8

Under review as a conference paper at ICLR 2021

References
Andrew J Ballard, Ritankar Das, Stefano Martiniani, Dhagash Mehta, Levent Sagun, Jacob D

Stevenson, and David J Wales. Energy landscapes for machine learning. Physical Chemistry
Chemical Physics, 19(20):12585–12603, 2017.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Deep Frank-Wolfe for neural
network optimization. arXiv preprint arXiv:1811.07591, 2018.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Tony Cai, Jianqing Fan, and Tiefeng Jiang. Distributions of angles in random packing on
spheres. The Journal of Machine Learning Research, 14(1):1837–1864, 2013.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

Jinghui Chen and Quanquan Gu. Closing the generalization gap of adaptive gradient methods
in training deep neural networks. arXiv preprint arXiv:1806.06763, 2018.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pages
192–204, 2015.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,
2012.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. Backpack: Packing more into backprop.
arXiv preprint arXiv:1912.10985, 2019.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1019–1028. JMLR. org, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data.
arXiv preprint arXiv:1703.11008, 2017.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net
optimization via Hessian eigenvalue density. arXiv preprint arXiv:1901.10159, 2019.

Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing
deep networks: Weight decay and data augmentation affect early learning dynamics, matter
little near convergence. In Advances in Neural Information Processing Systems, pages
10678–10688, 2019.

Gene H Golub and Gérard Meurant. Matrices, moments and quadrature. Pitman Research
Notes in Mathematics Series, pages 105–105, 1994.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press, 2012.

Diego Granziol, Xingchen Wan, Timur Garipov, Dmitry Vetrov, and Stephen Roberts. MLRG
deep curvature. arXiv preprint arXiv:1912.09656, 2019.

Diego Granziol, Timur Garipov, Dmitry Vetrov, Stefan Zohren, Stephen Roberts, and
Andrew Gordon Wilson. Towards understanding the true loss surface of deep neural
networks using random matrix theory and iterative spectral methods, 2020a. URL
https://openreview.net/forum?id=H1gza2NtwH.

Diego Granziol, Xingchen Wan, and Stephen Roberts. Iterate averaging helps: An alternative
perspective in deep learning. arXiv preprint arXiv:2003.01247, 2020b.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local
minima. arXiv preprint arXiv:1902.00744, 2019.

9

https://openreview.net/forum?id=H1gza2NtwH

Under review as a conference paper at ICLR 2021

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42,
1997.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Communications in Statistics-Simulation and Computation,
19(2):433–450, 1990.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Stanisław Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017a.

Stanisław Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in SGD. arXiv preprint
arXiv:1711.04623, 2017b.

Stanisław Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and
Amos Storkey. On the relation between the sharpest directions of DNN loss and the SGD
step length. 2018.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor,
Kyunghyun Cho, and Krzysztof Geras. The break-even point on the optimization trajec-
tories of deep neural networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=r1g87C4KwB.

Edwin T Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE,
70(9):939–952, 1982.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural informa-
tion processing systems, pages 586–594, 2016.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching
from Adam to SGD. arXiv preprint arXiv:1712.07628, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In
Advances in neural information processing systems, pages 950–957, 1992.

Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.
The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 2018.

Haihao Lu and Kenji Kawaguchi. Depth creates no bad local minima. arXiv preprint
arXiv:1702.08580, 2017.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for Bayesian uncertainty in deep learning. In Advances in
Neural Information Processing Systems, pages 13132–13143, 2019.

10

https://openreview.net/forum?id=r1g87C4KwB

Under review as a conference paper at ICLR 2021

Dhagash Mehta, Xiaojun Zhao, Edgar A Bernal, and David J Wales. Loss surface of xor
artificial neural networks. Physical Review E, 97(5):052307, 2018.

Gérard Meurant and Zdeněk Strakoš. The Lanczos and conjugate gradient algorithms in
finite precision arithmetic. Acta Numerica, 15:471–542, 2006.

Tristan Milne. Piecewise strong convexity of neural networks. In Advances in Neural
Information Processing Systems, pages 12973–12983, 2019.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems,
pages 5947–5956, 2017.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training
and sample size. arXiv preprint arXiv:1811.07062, 2018.

Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 6(1):
147–160, 1994.

Akshay Rangamani, Nam H Nguyen, Abhishek Kumar, Dzung Phan, Sang H Chin, and
Trac D Tran. A scale invariant flatness measure for deep network minima. arXiv preprint
arXiv:1902.02434, 2019.

Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size for implicit
matrix trace estimators. Foundations of Computational Mathematics, 15(5):1187–1212,
2015.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring
scale invariant definition of flat minima for neural networks using pac-bayesian analysis.
arXiv preprint arXiv:1901.04653, 2019.

Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pages 4148–4158, 2017.

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning:
Perspective of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

Lei Wu, Chao Ma, and E Weinan. How sgd selects the global minima in over-parameterized
learning: A dynamical stability perspective. In Advances in Neural Information Processing
Systems, pages 8279–8288, 2018.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based
analysis of large batch training and robustness to adversaries. In Advances in Neural
Information Processing Systems, pages 4949–4959, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530,
2016.

Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Brando Miranda, Noah Golowich, and
Tomaso Poggio. Theory of deep learning iib: Optimization properties of sgd. arXiv
preprint arXiv:1801.02254, 2018.

11

Under review as a conference paper at ICLR 2021

A Experiment Details

A.1 Image Classification Experiments

Hyper parameter Tuning For SGD and Gadam, we set the momentum parameter to
be 0.9 whereas for Adam, we set (β1, β2) = (0.9, 0.999) and ε = 10−8, their default values.
For SGD, we use a grid searched initial learning rates in the range of [0.01, 0.03, 0.1] for all
experiments with a fixed weight decay; for Adam and all its variants, we use grid searched
initial learning rate range of [10−4, 3× 10−3, 10−3]. After the best learning rate has been
identified, we conduct a further search on the weight decay, which we find often leads to a
trade off between the convergence speed and final performance. For CIFAR experiments,
we search in the range of [10−4, 10−3] whereas for ImageNet experiments, we search in the
range of [10−6, 10−5]. For decoupled weight decay, we search the same range for the weight
decay scaled by initial learning rate.

A.2 Experimental Details

For all experiments with SGD, we use the following learning rate schedule for the learning
rate at the t-th epoch, similar to Izmailov et al. (2018):

αt =


α0, if t

T ≤ 0.5

α0[1− (1−r)(tT −0.5)
0.4] if 0.5 < t

T ≤ 0.9

α0r, otherwise
(14)

where α0 is the initial learning rate. In the motivating logistic regression experiments on
MNIST, we used T = 50. T = 300 is the total number of epochs budgeted for all CIFAR
experiments. We set r = 0p01 for all experiments. For experiments with iterate averaging,
we use the following learning rate schedule instead:

αt =


α0, if t

Tavg
≤ 0.5

α0[1−
(1−αavgα0

)(tT −0.5)
0.4] if 0.5 < t

Tavg
≤ 0.9

αavg, otherwise

(15)

where αavg refers to the (constant) learning rate after iterate averaging activation, and in
this paper we set αavg = 1

2α0. Tavg is the epoch after which iterate averaging is activated,
and the methods to determine Tavg was described in the main text. This schedule allows
us to adjust learning rate smoothly in the epochs leading up to iterate averaging activation
through a similar linear decay mechanism in the experiments without iterate averaging, as
described above.

B Lanczos algorithm

In order to empirically analyse properties of modern neural network spectra with tens of
millions of parameters N = O(107), we use the Lanczos algorithm (Meurant and Strakoš,
2006), provided for deep learning by Granziol et al. (2019). It requires Hessian vector
products, for which we use the Pearlmutter trick (Pearlmutter, 1994) with computational
cost O(NP), where N is the dataset size and P is the number of parameters. Hence
for m steps the total computational complexity including re-orthogonalisation is O(NPm)
and memory cost of O(Pm). In order to obtain accurate spectral density estimates we
re-orthogonalise at every step (Meurant and Strakoš, 2006). We exploit the relationship
between the Lanczos method and Gaussian quadrature, using random vectors to allow us to
learn a discrete approximation of the spectral density. A quadrature rule is a relation of the
form, ∫ b

a

f(λ)dµ(λ) =

M∑
j=1

ρjf(tj) +R[f] (16)

for a function f , such that its Riemann-Stieltjes integral and all the moments exist on the
measure dµ(λ), on the interval [a, b] and where R[f] denotes the unknown remainder. The

12

Under review as a conference paper at ICLR 2021

nodes tj of the Gauss quadrature rule are given by the Ritz values and the weights (or mass)
ρj by the squares of the first elements of the normalised eigenvectors of the Lanczos tri-
diagonal matrix (Golub and Meurant, 1994). The main properties of the Lanczos algorithm
are summarized in the theorems 2,3
Theorem 2. Let HN×N be a symmetric matrix with eigenvalues λ1 ≥ .. ≥ λn and corre-
sponding orthonormal eigenvectors z1, ..zn. If θ1 ≥ .. ≥ θm are the eigenvalues of the matrix
Tm obtained after m Lanczos steps and q1, ...qk the corresponding Ritz eigenvectors then

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn) tan2(θ1)

(ck−1(1 + 2ρ1))2

λn ≤ θk ≤ λm +
(λ1 − λn) tan2(θ1)

(ck−1(1 + 2ρ1))2

(17)

where ck is the chebyshev polyomial of order k

Proof: see (Golub and Van Loan, 2012).
Theorem 3. The eigenvalues of Tk are the nodes tj of the Gauss quadrature rule, the weights
wj are the squares of the first elements of the normalised eigenvectors of Tk

Proof: See (Golub and Meurant, 1994). The first term on the RHS of equation 16 using
Theorem 3 can be seen as a discrete approximation to the spectral density matching the first
m moments vTHmv (Golub and Meurant, 1994; Golub and Van Loan, 2012), where v is the
initial seed vector. Using the expectation of quadratic forms, for zero mean, unit variance
random vectors, using the linearity of trace and expectation

EvTr(vTHmv) = TrEv(vvTHm) = Tr(Hm) =

N∑
i=1

λi = N

∫
λ∈D

λdµ(λ) (18)

The error between the expectation over the set of all zero mean, unit variance vectors v and
the monte carlo sum used in practice can be bounded (Hutchinson, 1990; Roosta-Khorasani
and Ascher, 2015). However in the high dimensional regime N →∞, we expect the squared
overlap of each random vector with an eigenvector of H, |vTφi|2 ≈ 1

N ∀i, with high probability.
This result can be seen by computing the moments of the overlap between Rademacher
vectors, containing elements P (vj = ±1) = 0.5. Further analytical results for Gaussian
vectors have been obtained (Cai et al., 2013).

C Mathematical Preliminaries

For an input/output pair [x ∈ Rdx ,y ∈ Rdy] and a given model h(·; ·) : Rdx × RP → Rdy .
Without loss of generality, we consider the family of models functions parameterized by the
weight vector w, i.e., H := {h(·;w) : w ∈ RP }, with a given loss `(h(x;w),y) : Rdy ×Rdy →
R.

The empirical risk (often denote the loss in deep learning), its gradient and Hessian are given
by

Remp(w) =
1

N

N∑
i=1

`(h(xi;w),yi), gemp(w) = ∇Remp, Hemp(w) = ∇2Remp (19)

The Hessian describes the curvature at that point in weight space w and hence the risk
surface can be studied through the Hessian. By the spectral theorem, we can rewrite
Hemp(w) =

∑P
i=1 λiφiφ

T
i in terms of its eigenvalue, eigenvector pairs [λi,φi]. In order to

characterise Hemp(w) by a single value, authors typically consider the spectral norm, which
is given by the largest eigenvalue of Hemp(w) or the normalised trace, which gives the mean
eigenvalue. The Hessian contains P 2 elements, so cannot be stored or eigendecomposed for
all but the simplest of models. Stochastic Lanczos Quadrature can be used Meurant and
Strakoš (2006), with computational complexity O(P) to give tight bounds on the extremal
eigenvalues and good estimations of Tr(H) and Tr(H2), along with a moment matched

13

Under review as a conference paper at ICLR 2021

approximation of the spectrum. We use the Deep Learning implementation provided by
Granziol et al. (2019). DNNs are typically trained using stochastic gradient descent with
momentum, where we iteratively update the weights

zk+1 ← ρzk +∇R(wk)

wk+1 ← wk − αzk+1
(20)

Where ρ is the momentum. The gradient is usually taken on a randomly selected sub-sample
of size B � N . An epoch is defined as a full training pass of the data, so comprises ≈ N/B
iterations. Often L2 regularisation (also termed weight decay) is added to the loss, which
corresponds to Remp(w)→ Remp(w) + µ/2||w||2.

How does batch normalisation affect curvature? During training both the mean
and variance of the batch normalisation layers are adapted to the specific batch, whereas
at evaluation they are fixed (to their exponentially moving average). This is done so that
the transforms can function even if the prediction set is only 1 sample5. Previous works
investigating neural network Hessians (Papyan, 2018; Ghorbani et al., 2019) do not consider
this free parameter in batch-normalisation and its effect on the spectrum. From a sharpness
and generalisation perspective, we would consider that it is the model that is making
predictions that we should evaluate. Changing batch normalisation to the evaluation mode,
we find that a somewhat different curvature profile, as shown in Figure 8. In this case the
sharpness of the regularised solution in terms of the spectral norm is nearly 1000 times
larger than that of the regularised, better generalising solution. The Frobenius norm, for the
regularised solution is 4.9× 10−5 as opposed to 9.8× 10−12, so O(107) larger.

0.00013 0.0269410
9

10
7

10
5

10
3

10
1

(a) V al = 75.2, λ = 0

0.86 21.2010
9

10
7

10
5

10
3

10
1

(b) V al = 80.6, λ = 5e−4

0 50 100 150 200 250

0.25

0.50

0.75

1.00
V

al
 E

rr
or

 =0.0005
 =0.0

0.20

0.25

50

100

150

200

L2
 n

or
m

(c) Test Error & L2 norm

Figure 8: Hessian spectrum for WideResNet28×10 after 300 epochs of SGD on the CIFAR-100
dataset, for various L2 regularisation coefficients λ, batch norm evaluation mode

5a 1 sample set has no variance

14

	Introduction
	Gedanken Experiment: why the Hessian won't do
	Theoretical Framework
	Weight Decay and Sharpness
	Sharpness and Adaptive optimisation
	Conclusion
	Experiment Details
	Image Classification Experiments
	Experimental Details

	Lanczos algorithm
	Mathematical Preliminaries

