Under review as submission to TMLR

ExDBN: Learning Dynamic Bayesian Networks using Ex-
tended Mixed-Integer Programming Formulations

Anonymous authors
Paper under double-blind review

Abstract

Causal learning from data has received much attention recently. Bayesian networks can be
used to capture causal relationships. There, one recovers a weighted directed acyclic graph
in which random variables are represented by vertices, and the weights associated with each
edge represent the strengths of the causal relationships between them.

This concept is extended to capture dynamic effects by introducing a dependency on past
data, which may be captured by the structural equation model. This formalism is utilized
in the present contribution to propose a score-based learning algorithm. A mixed-integer
quadratic program is formulated and an algorithmic solution proposed, in which the pre-
generation of exponentially many acyclicity constraints is avoided by utilizing the so-called
branch-and-cut (“lazy constraint”) method.

Comparing the novel approach to the state-of-the-art, we show that the proposed approach
turns out to produce more accurate results when applied to small and medium-sized syn-
thetic instances containing up to 25 time series. Lastly, two interesting applications in
bioscience and finance, to which the method is directly applied, further stress the impor-
tance of developing highly accurate, globally convergent solvers that can handle instances
of modest size.

1 Introduction

Dynamic Bayesian Networks (DBNs) were conceived by [Dagum et al.| (1992) to unify and extend traditional
linear state-space models, linear and normal forecasting models (such as ARMA), and simple dependency
models (such as hidden Markov models) into a general probabilistic representation and inference mechanism
for arbitrary nonlinear and non-normal time-dependent domains. Murphy| (2002) made important contribu-
tions on the inference. The network may be used to compute posterior probabilities for different situations,
or the learned graph structure may be inspected, and dependencies of particular interest analyzed. This
explainability is a key benefit of DBN. To the present day, there are no scalable methods for learning DBNs.

There exist a number of methods for learning DBN. One can learn underlying continuous dynamics rep-
resented by stochastic differential equations (Bellot et al., |2021), or related dynamical systems (Murphy,
2002)). Another option is to assume a priori knowledge about time-lagged data and incorporate this knowl-
edge into the solver (Sun et all [2021). Furthermore, one deal with the general problem and propose local
methods (Pamlfil et al} |2020; |Gao et al.| [2022)), which can scale further at the cost of some loss of accuracy.
Under the assumptions of Markovianity and faithfulness, conditional independence-based methods, such as
PCMCI+ (Runge, 2020), can be applied. Note that many of the previous works also combine several of
these approaches to design solvers that are efficient and applicable to a wide range of applications. However,
it should be noted that many methods may not identify DAG representations of causal dependencies under
certain conditions (Kaiser & Sipos, 2022; Reisach et al., [2021). One of the possible causes is that many of
them only converge to a first-order stationary point for the corresponding non-convex optimization problem,
which is known (Daniely & Shalev-Shwartzl [2016) to be hard to solve.

In our contribution, we revisit the score-based learning of DBNs utilizing a directed acyclic graph (DAG)
structure augmented by additional time lagged dependencies (Murphyl [2002; Dean & Kanazawa), [1989;

Under review as submission to TMLR

Assaad et al., |2022)). We utilize mixed-integer programming to learn the underlying dynamic Bayesian
networks. While all of the previous methods focus mostly on scaling with adequate precision by utilizing a
variety of heuristics, we focus on leveraging quadratic mixed-integer programs to find near global optimum
solutions to a score-based DAG learning problem, which results in a high-quality reconstruction of the DAG.

Notice that the number of constraints needed enforce the structure of a directed acyclic graph (“cycle-
exclusion constraints”) is super-exponential in the number of time series on the input. This is sometimes
referred to as the curse of dimensionality. We tackle the curse of dimensionality by avoiding the pre-generation
of these cycle-exclusion constraints and subsequently adding these constraints only if needed. It is shown
that, only a small number of these constraints are actually needed to ensure the acyclicity of the directed
graph, which allows for a large speedup over the naive version of the algorithm that pre-generates all of the
constraints. Additionally, this technique allows the method to solve problems much larger compared to the
naive counterpart, since the memory consumption is greatly reduced. The formulation and its implementation
are easily reproducible, making it accessible to a wide range of potential practitioners.

Learning DBNs has been successfully applied to a variety of problems, many of which are related to applica-
tions in medicine (Zandona et al.l [2019; ivan Gerven et al., |2008; Michoel & Zhang, 2023} |Zhong et al., |2023)).
In addition to medical applications, dynamic Bayesian networks are widely used in econometrics (Hoover
& Demiralp, 2003b)) and financial risk modeling (Ballester et al., 2023|). The applications of DBN are not
limited to the ones mentioned and the curious reader may refer to (Kungurtsev et all 2024) for further
details. After we present our approach, we revisit these applications in Sections 1.4 and [£.5]

2 Problem Formulation

Before formulating the problem of score-based Bayesian network learning as a mixed-integer program, let
us describe the problem as a structural vector autoregressive model (Hoover & Demiralpl 2003a; Kilian)
2011). Let d € N be the number of variables in an autoregressive model. Let T" € N be the total number of
time periods and let X, be a set of endogenous variables at the given time ¢, where i € {1,2,...,d} and
te{1,2,...,T}. We assume that the variables interact with each other both simultaneously and with time
lags. These interactions can be captured by the following equation:

Xt = XtW—f—thlA] +Xt72A2 + "'+Xt7pAp+Zt7 (1)
where p € N is the autoregressive order, and
W eR™ A, e R 7, e RY i e {1,2,...,p}.

Simultaneous interactions are called intra-slice and are represented by the matrix W and time-lagged in-
teractions are called inter-slice and are represented by the matrices A;, where i is the number of timesteps
(length) of the time lag. The vector Z; is an error term. We will not assume any particular distribution of
error terms.

We will assume that there is no cycle in intra-slice interactions. In other words, if we view W as an adjacency
matrix of a directed graph G, then G is a directed acyclic graph (DAG). The matrices A; could also be viewed
as adjacency matrices of directed graphs, but we do not make assumptions about these graphs. Note that
non-linear autoregressive models can also be formulated in an analogous way.

Our goal is to learn the matrices W, which corresponds to a DAG, and A; for i = 1,...,p. Assume that
we have n data samples of each of d random variables organized into a data matrix X € R"*¢. Then, the
following equation holds for the solution W, A;, i =1,...,p.

X =XW+Y1 A1 + -+ Y, 4, + Z, 2)

where Y; are time lagged version of X for i = 1,...,p and Z € R"*? is a matrix with error terms for all
samples.

To maximize the fit of the data over the model, we want to minimize the Frobenius norm of the error matrix
7. We formulate it as the following cost function:

Under review as submission to TMLR

JWo AL A) = X =XW=Yidi — =Y A4[5 + MW+ g(lAd+-+ 140, 3)

where ||-||» denotes Frobenious matrix norm and ||-|| denotes an arbitrary matrix norm and A,n > 0 are
sufficiently small regularization coefficients. The data fitting problem is as follows

W’E}?APJ(WAMHWAP)

W is acyclic, W € R¥*¢, (4)
Ay e R je{1,2,...,p}.

Remark 1 The identifiability of W and A; using[4] has been studied for Gaussian and non-Gaussian noise.
Regardless of noise, the identifiability of A is a consequence of the basic theory of autoregressive models
(Kilian), |2011]). The identifiability of W is a bit more involved and must be separated into the Gaussian
and non-Gaussian case. However, in either case, identifiability is possible under mild conditions (Hyvdrinen)
et al., |2010; |Peters & Biihlmann, 2012).

2.1 Brief Introduction To Mixed Integer Quadratic Programming

To better frame the content of Section we provide a short introduction to mixed-integer quadratic pro-
gramming. An optimization problem, is called a mixed-integer quadratically constrained quadratic program
(MIQCQP) if it is of the form

min 7 Qx +¢Tx, 5

zER™ (5)
st. 2T Qix + ¢l v < ay, (6)
Az < b, (7)

x; €ERfori¢ I (8)

r;, € Zforiel 9)

where Q,Q; € R™™ ", q.q; € R", A € R™*" q € R¥ b e R™, for some m,n,k,r € N. Expressionis often
called the objective, cost, or loss function, Inequality [6] represents the quadratic constraints, Inequality [7] are
the linear constraints, and index set I denotes the integral variables.

Mixed-integer quadratic programs have been shown to be in NP (Del Pia et al., [2014), which often leads to
an exhaustive demand for computational resources. The algorithms used to solve MIQP are typically branch-
and-bound or cutting plane (Dakin, [1965; [Bonami et al.; 2009 [Westerlund & Pettersson, 1995} |Krongvist
et all |2015). Both of these algorithmic treatments are often employed together, often with the addition of
a presolving step, the use of heuristics and parallelism. The aforementioned allows many modern solvers to
solve even large problems despite the NP hardness. Some of these solvers are open source (like SCIP and
GLPK) and others are commercial (GUROBI and CPLEX). The powerful infrastructure present in these
solvers can be made use of together with additional problem-specific modifications to deliver high-quality
solutions.

Due to the exhaustive nature of the algorithms mentioned in the previous paragraph, global convergence is
guaranteed (Belotti et al., |2013|). Furthermore, convergence to the global solution may be tracked and the
error estimated by computing the dual problem of . The dual of the problem is then used to computed
the so called MIP GAP as follows

|J (x*) — Jaual (y*)|

MIP GAP = ,
| (%)

(10)

where z* and y* are the current best solutions of the primal and dual problems respectively, and J and J*
are the cost functions of the primal and dual problems, respectively. The MIP GAP ensures that we can
assess the quality of the minimization during solution time and terminate the computation when the result
is good enough (small enough MIP GAP). Furthermore, if the gap reaches 0 at any point, we are sure that
the current solution is a global optimum.

Under review as submission to TMLR

2.2 Mixed Integer Quadratic Programming Formulation

Formulating the learning problem allows us to use a globally convergent algorithm. Key formulations for the
learning of directed acyclic graphs, a closely related problem, have been proposed by [Manzour et al.| (2021));
Xu et al|(2024); |Jaakkola et al. (2010).

First, we define the program variables. For i,7 = 1,...,d, we define the binary variable e;; whose value is
interpreted as follows: e;; equals 1 if and only if there is an oriented edge from node ¢ to node j both in the
intra-slice graph.

Similarly, we define binary variables for edges connecting nodes from inter-slices graphs to the nodes of
intra-slice graph. For 4,7 = 1,...,d and t = 1,...,p, where p is the autoregressive order. We define the
binary variable eﬁj whose value is interpreted as follows: eﬁj equals 1 if and only if there is an oriented edge

from node ¢ in the inter-slice graph, corresponding to time lag ¢, to the node j in the intra-slice graph.
With each of the above variable e;; and efj7 we associate a continuous variables w;; and a
which encodes the weight of the corresponding edge.

t

ij» respectively,

Using these variables, the scoring function of problem [4] becomes the following MIQP objective:

J(I/VvAla"'vAp):

3

—Z_i

=17

d p d ’
oo $i)
k=1

1 = t=1 k=1
+REG, (11)

where REG is the regularization part of the objective function. We use two different regularization functions
L0 and L2 defined as follows. Regularization L0 is defined as:

n n P n n
REG =AY > eij+n> > Y e (12)

i=1 j=1 s=1i=1 j=1
Regularization L2 is defined as:
n n P n n
REG =AY > (wiy)’+n) > > (ai))* (13)
i=1 j=1 s=1i=1 j=1

where A > 0 and 7 > 0 are regularization coefficients.

Next, we define the constraints of the optimization problem. In order to ensure that W encodes a directed
acyclic intra-slice graph. We add the following constraints (Dantzig et al.l [1954)) that ensure that W is
acyclic.

Let C denote the set of all directed cycles in the complete directed graph on d vertices without loops. Then
we add the following constraints:

Y e <|Cl—-1forallCecC (14)
(i,4)eC
Note that, the number of above constraints is exponential. We will discuss in the following section how to
deal with such number of constraints.

In order to relate the binary variables e;; and ef; with the weight variables w;; and af;, we introduce the

following constraints:

R

wij <cegj,

Wi Z—Ceij for all i,jE{l,Z,...,d},

Under review as submission to TMLR

aﬁj <cej; forall k,j€{1,2,...,d},

af; > —cej; forallte{1,2,...,p},

(16)

where ¢ > 0 is the maximal admissible magnitude of any weight. In our numerical experiments, we choose ¢
large enough to not affect the result of the learning.

3 Algorithmic Implementation Using Branch-and-Bound-and-Cut

One of our main contributions is the development of a branch-and-bound-and-cut algorithm to solve the
formulation mentioned above. Since the acyclic constraints [14] need to be imposed only for the edges of the
graph representing the intra-slice level, all of what follows is only applied to the intra-slice graph. While we
leverage the traditional branch-and-bound approach as described in (Achterberg, 2007, e.g.), we incorporate
cycle exclusion constraints [T4] using "lazy" constraints. These are only enforced once an integer-feasible
solution candidate is found. If a violation of a lazy constraint occurs, the constraint is added across all
nodes in the branch-and-bound tree. At the root node, only O (| E|) constraints [15| and [16] are initially used.
Cycle-exclusion constraints equation [14| are added later. Note that this method is not a heuristic and does
not lead to a possibly harmful reduction (or extension) of the solution space leading to omitting possible
solutions or returning solutions which are not DAGs. Furthermore, it is shown that the number of constraints
that are actually needed in a computation is many orders of magnitude less than the number of all possible
constraints.

Once a new mixed-integer feasible solution candidate is identified, detecting cycles becomes straightforward
using a depth-first search (DFS). If a cycle is detected, the corresponding lazy constraint [14]is added to the
problem. The DFS algorithm solves the problem of cycle detection in a worst-case quadratic runtime relative
to the number of vertices in the graph, which contrasts with algorithms that separate related inequalities
from a continuous relaxation (Borndorfer et all 2020; |Cook et all 2011)), such as the quadratic program in
our case. Three variants of adding lazy constraints for the problem were tested.

e Adding a lazy constraint only for the first cycle found.
o Adding a lazy constraint only for the shortest cycle found.

e Adding multiple lazy constraints for all cycles found in the current iteration in which an integer-
feasible solution candidate is available.

The third mentioned variant was found to consistently deliver the best results, despite (Achterberg, 2007,
Chapter 8.9). Therefore, it is applied in all the numerical tests that follow.

4 Numerical Experiments

In recent years, many solvers have been developed to facilitate the graphical learning of Bayesian networks
that represent causality (Pamfil et al., 2020; [Hyvarinen et al., [2010; Malinsky & Spirtes| [2018; |Gao et al.|
2022; [Dallakyan, 2023} [Lorch et al., 2021). Each of these solvers (including the one presented) faces the
curse of dimensionality, which somewhat restricts the applicability of each solver, and thus through testing
needs to be provided. It is impossible to test the proposed solution w.r.t. every solver developed. There is,
however, a significant branch of development that allows for direct comparison, and by transitivity of results,
the comparison with many previous solvers follows.

In 2020, Pamfil et al.|(2020) have developed a locally convergent method, called DYNOTEARS, that learns
causality as a Bayesian network that supersedes the solution methods previously developed (Hyvérinen et al.|
2010; [Malinsky & Spirtes|, |2018; |Zheng et al.l |2018). Further developments based on previous publications
include formulating the problem in the frequency domain or defining differentiable Bayesian structures (Dal-
lakyan, [2023; |Lorch et al.;|2021)). In the following, we provide a head-to-head comparison with DYNOTEARS
and thus by transitivity with the methods documented by |Hyvérinen et al.| (2010)); Malinsky & Spirtes| (2018)).

Under review as submission to TMLR

n=50 n=100 n=250 n=500 n=1000

ER-3-1-var

)
\

|

\

AHS - @due3sip Bulwwey [edndnas

\
\

10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Iy

d (number of nodes)
—— dynotears exdbn —— lingam

Figure 1: SHD for a test cases using ER-3-1, SF-3-1, ER-2-2 random ensembles, where the first number is the
edge-vertex ratio on intra graph, the second is the autoregressive order. The edge-vertex ratio of inter graph
is always 1. For the problem denoted by var suffix, the variance of Gaussian noise is randomly sampled from
uniform distribution on interval (0.6, 1.2) for each variable. For the other problems, the variance is set to 1.
The mean, standard deviation, and maximum over 10 algorithm runs is depicted. Each run is performed on
different randomly sampled dataset.

4.1 Synthetic Data

One of the evaluations of ExXDBN was performed on the synthetic data generated by the following process.
First, a random intra-slice directed acyclic graph (DAG) was generated using either the Erdés-Rény (ER)
model or the scale-free Barabdsi—Albert (SF) model. Then, the DAG weights were sampled uniformly from
the union of intervals [—2.0, —0.5] U [0.5, 2.0].

Next, the inter-slice graphs were generated using the ER model. For each inter-slice graph, weights were
sampled from the interval [—0.5q, —0.2a] U [0.2a, 0.5a], where o = 1/n*~1, > 1 is the decay parameter,
and t is the time lag of the slice. ¢ = 0 corresponds to the intra-slice, while ¢ € {1,...,p} represents the
inter-slices.

The data samples are then generated using the structural equation model equation and adding Gaussian
noise with either variance 1 or different variance for each variable sampled uniformly from a given interval.

4.2 Benchmark Setup and Quantities of Interest

Let Wirue denotes the adjacency matrix representing the intra-slice ground truth graph of a given problem
and let A ¢rue denotes the adjacency matrices of inter-slice ground truth graphs of time-lagged interactions.
In the case of synthetic data, Wirye and Ay trye are known, since they were used for data generation.

Let West and Ay et be the solution of the learning problem. We will evaluate their quality by comparing to
the ground truth and computing structural Hamming distance and Fj score.

Under review as submission to TMLR

n=50 n=100 n=250 n=500 n=1000
_ 1.0 4 4 | = , 1
g . o N _~ e e
o054 7 . : .
mMm
20N I S I U I I I S
1.0 1 b b e | e] E
- e —
® 051 1 1 1 1
o
0.0 | 1 1 1 1 o
— & b = b ”
1.0 1 { — | ————— | =———— 9
= ————— = (0]
— 7 T—
& 0.5 1 1 1 1
&
0.0 4 L 4 \; 4 F 4 ; 4 ;
1.0 1 1 1 1 —
. e :
‘\I‘ \ e ————
& os5{ T 1 1 1
o
004 1 1 1 1

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
d (number of nodes)

—— dynotears —— exdbn —— lingam

Figure 2: F1 score for test cases using ER-3-1, SF-3-1, ER-2-2 random ensembles.

We apply a small threshold € = 0.15 to Weg, and A; s We set all the elements that are smaller than e to
0. We do that in order to remove small rounding errors that would negatively affect computation of discrete
metrics such as structural Hamming distance.

Structural Hamming distance (SHD) is defined as follows:

SHD (Wtruea At,true; Westa At,est) =

P d
Z dlStz] Wtruea eqt Z Z IStlj At trueaAt est) (17)

4,j=1
where
0 ifCij7é0and Dij;«éO
0 ifC;;=0and D;; =0
dist;j (C,D) = Q| . 1= ANC (18)
3 1fC’ij7é0and Dj,-;é()
1 otherwise.

SHD is used as a score that describes the structural similarity of two DAGs in terms of edge placement and
is commonly used to assess the quality of solutions (Zheng et all, 2018; |[Pamfil et al., [2020). Besides SHD,

true positive

precision = (19)

true positive + false positive

true positive

recall = (20)

true positive + false negative’

are used (Andrews et all [2024) to evaluate the quality of structural recovery. It is important to note
that precision and recall isolate false positives and negatives, respectively, in contrast to SHD, where these
quantities are both accounted for simultaneously. The last metric that can be used to evaluate structural
similarity is the F} score and reads

2
Fl = . . 1 —1° (21)
precision™" + recall

Under review as submission to TMLR

Number of samples: 250

60 Variables
—_— 25
E 40 A
(7]
20 A

T T T T T T
0 1000 2000 3000 4000 5000
Time limit

Figure 3: Comparison of ExXDBN solution quality (SHD) versus running time on SF3-1 ensemble.

Note that all of the quantities evaluated in [I9] and 2I] are a result of summing up all of the differences over
both inter-slice and intra-slice matrices between the solution and the ground truth.

4.3 Synthetic Benchmark Results

In the following benchmark, the generation methods described in Section [I.1] are used to compare ExDBN
with DYNOTEARS (Pamfil et al., [2020) and lingam (Hyvarinen et al. 2010) under the assumption of
Gaussian noise. Even though the cost function is a maximum likelihood estimator (see Section [1]) for non-
Gaussian noise, we leave this evaluation for future publication. The scaling is studied for different numbers
of variables, samples, and graph generation methods with the relevant metrics; SHD, F1 score are recorded
in Figures [T and [2|

A statistical ensemble with 10 different seeds was used for each of the experiments, and the mean, standard
deviation, and worst possible case values are used in the plots. The solution time is capped for ExDBN at
7200 seconds, and the regularization applied in ExDBN needs to be scaled appropriately with the number
of samples, as it is assumed that the optimal choice of regularization constant is a decreasing function of the
number of samples. We use the aforementioned as a guide (in a nonstrict way) to find the right regularization
for a given sample size. This follows from the fact that the regularization is to be kept proportionally small
to the main objective expressed by equation Furthermore, it was found that changing the regularization
from L1 to L2 is beneficial for identification when the number of samples is large. Furthermore, if we do not
know the ground-truth graph. We can try to run the algorithm for multiple values of A and 7 and then use
the one that produces a better MIP GAP. For a smaller number of samples, L1 regularization works better.
For a larger number of samples, L2 yields good results and is usually faster.

As noted in (Reisach et al.,|2021)), the noise variances and data scale may be important for some algorithms to
perform well. We tested ExDBN on normalized data and noticed a significant performance drop. Therefore,
ExDBN is suitable for problems in which the data of the samples have a true scale.

The results of the tests can be divided into two categories by the variance of the noise applied. In the scenario
with non-equal variances, we can see EXDBN performing better than DYNOTEARS. See Figures [I] and [2]
In the scenario where all variances equal 1, the results are more even between ExDBN and DYNOTEARS.
Lingam performs substantially worse than both ExDBN and DYNOTEARS. This could be explained by the
fact that Lingam was optimized for non-Gaussian data.

Focusing on the 50-sample case, while somewhat taking into account the previous ones, too, we see that the
performance gap between the solvers increases in favor of ExXDBN as we increase the number of variables. In
the lower sample cases, one may also observe that ExXDBN outperforms DYNOTEARS for many graph sizes
in the mean and consistently outperforms DYNOTEARS in the worst possible case (min/max depending on
the metric).

Under review as submission to TMLR

Note that the global convergence of the method, which is rooted in the fundamentals of mixed-integer
quadratic programming, allows us to increase the computation time, which leads to improving the metrics
reported further. While some time-sensitive applications like short-term stock evaluation might not be able
to benefit from this, others like biomedical applications might benefit as a computation lasting several days,
in which the accuracy in measurably improved (by monitoring the duality gap) is desirable. See Figure [3[for
the comparison of running time versus solution quality.

4.4 Application in Biomedical Sciences

In biomedical sciences, there is a keen interest in learning dynamic Bayesian networks to estimate causal
effects (Tennant et all) 2020)) and identify confounding variables that require conditioning. A recent meta-
analysis (Tennant et al.,[2020)) of 234 articles on learning DAGs in biomedical sciences found that the averaged
DAG had 12 nodes (range: 3-28) and 29 arcs (range: 3-99). Interestingly, none of the DAGs were as sparse
as the commonly considered random ensembles; median saturation was 46%, that is, each of all possible arcs
appeared with probability 46% and does not converge to a global minimum of the problem.

As an example, we consider a recently proposed benchmark of [Rysavy et al.| (2024), where the Krebs cycle
is to be reconstructed from time series of reactant concentrations of varying lengths. There, DYNOTEARS
cannot reach the (Rysavy et all |2024)) F1 score of 0.5 even with a very long time series. In contrast, our
method can solve instances [4] to global optimality. Using ExDBN, however, the global minimization is
ensured given sufficient time and thus the maximum likelihood estimator is found. However, it should be
noted that depending on the number of samples and noise, it may be that even the maximum-likelihood
estimator is not sufficiently accurate. However, this does not reflect poorly on the method itself, but it is
rather a matter of the modification of data collection methods associated with the experiment. In a one-hour
time limit, ExXDBN can find a solution with the 38% duality gap.

4.5 Application in Finance

In financial services, there are also several important applications. The original DYNOTEARS paper consid-
ered a model of diversification of investments in stocks based on dynamic Bayesian networks. Independently,
Ballester et al.| (2023) consider systemic credit risk, which is one of the most important concerns within
the financial system, using dynamic Bayesian networks. They found that the transport and manufacturing
sectors transmit risk to many other sectors, while the energy sector and banking receive risk from most other
sectors. To a lesser extent, there is a risk transmission present between approximately 25% of the sectors
pairs, and these network relationships explain between 5 % and 40 % single systemic risks. Notice that these
instances are much denser than the commonly used random ensembles.

We elaborate on the example of Ballester et al.| (2023]), where 10 time series capture the spreads of 10
European credit default swaps (CDS). Considering the strict licensing terms of Refinitiv, the data from
Ballester et al.|(2023) are not available from the authors, but we have downloaded 16 time-series capturing
the spreads of 16 European CDS with RED6 codes 05ABBF, 06DABK, 0H99B7, 2H6677, 2H66B7, 48DGFE,
6A516F, 8A87TAG, 8B69AP, 8D8575, DD359M, EFAGGY, FF667M, FH49GG, GG6EBT, NN2A8G, from
January 1st, 2007, to September 25th, 2024. This amounts to more than 11 MB of time series data when
stored as comma-delimited values in plain text. Although the procedure for learning the dynamic Bayesian
network in [Ballester et al.| (2023) is rather heuristic, we can solve the mixed integer programming (MIP)
instance for the 16 European CDS in 30 minutes. In the heuristic of |[Ballester et al.| (2023), they first
perform unconditional independence tests on each set of two time series containing an original series and a
lagged time series, to reduce the subsequent number of unconditional independence tests performed. There
are 45 unconditional and conditional independence tests performed first, to suggest another 200 conditional
independence tests. We stress that the procedure of Ballester et al.[(2023)) does not come with any guarantees,
while our instance equation [11]is solved to global optimality. The run-time to global optimum of 30 minutes
(using L2 regularization) validates the scalability of mixed-integer programming solvers. For a solution of
auto-regressive order 2, see Figures [fa] b and

Under review as submission to TMLR

O0H99B7 0H99B7
2H66B7 2H66B7 10
8AB7AG 1.0 8AB7AG
05ABBF 05ABBF
GG6EBT GG6EBT
05 0.5
8B6IAP 8B6IAP
06DABK 06DABK
DD359M DD359M
0.0 0.0
FF667M FF667M
EFAGGO EFAGGY
48DGFE 48DGFE
-0.5 -05
8D8575 8D8575 :
NN2ASG NN2ASG
6A516F —1.0 6A516F
FH49GG FH49GG -1.0
2H6677 2H6677

~ o~ [T A o w in w ~ ~ o~ L - o X o w un w ~
58532225835 83868 2853852238858 2¢8¢8
35588883 L28z3zF37 5538888303823z 3
(a) Intra-slice graph (b) Lag 1 inter-slice graph

0H99B7 0.0008

2H66B7

8A87AG 0.0006

05ABBF

GG6EBT 0.0004

8B6IAP

06DABK 0.0002

DD359M 0.0000

FF667M

EFAGG9 0.0002

48DGFE

8D8575 00004

NN2ASG

6A516F —0.0006

FH49GG

2H6677 ~0.0008

0H99B7
2H66B7
8AB7AG
05ABBF
GG6EBT
8B69AP
06DABK
DD359M
FF667M
EFAGG9
48DGFE
8D8575
NN2A8G
6A516F
FH49GG
2H6677

(c) Lag 2 inter-slice graph

Figure 4: Heatmaps of the adjacency matrices of the learned intra-slice and inter-slice graphs for the CDS
dataset

5 Conclusion

Dynamic Bayesian networks have wide-ranging applications, including those in biomedical sciences and
computational finance, as illustrated above. Unfortunately, their use has been somewhat limited by the lack
of well-performing methods to learn them. Our method, ExDBN, provides the best possible estimate of the
DBN, in the sense of minimizing empirical risk . Significantly, our method does not suffer much from the
curse of dimensionality, even for real-world dense instances, which are typically challenging for other solvers.
This is demonstrated most clearly in the case of systemic risk transmission detailed in Section [£:5] in which
the global minimum is found in 30 minutes. Additionally, the use of the guarantees on the distance to the
global minimum (so-called MIP gap, available ahead of the convergence to the global minimum) provides
a significant tool for fine-tuning the parameters of the solver in the case of real-world application, where
the ground truth is not available. Combined with global convergence guarantees of the maximum likelihood
estimator, this provides a robust method with state-of-the-art performance.

10

Under review as submission to TMLR

References

Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitaet Berlin, 2007.

Bryan Andrews, Joseph Ramsey, Ruben sanchez romero, Jazmin Camchong, and Erich Kummerfeld. Fast
scalable and accurate discovery of dags using the best order score search and grow-shrink trees. Advances
in neural information processing systems, 36:63945-63956, 05 2024.

Charles Assaad, Emilie Devijver, and Eric Gaussier. Survey and evaluation of causal discovery methods for
time series. Journal of Artificial Intelligence Research, 73:767-819, 02 2022. doi: 10.1613/jair.1.13428.

Laura Ballester, Jestia Lépez, and Jose M. Pavia. European systemic credit risk transmission using bayesian
networks. Research in International Business and Finance, 65:101914, 2023. ISSN 0275-5319. doi: https:
//doi.org/10.1016/j.ribaf.2023.101914. URL https://www.sciencedirect.com/science/article/pii/
S0275531923000405.

Alexis Bellot, Kim Branson, and Mihaela van der Schaar. Neural graphical modelling in continuous-time:
consistency guarantees and algorithms. In International Conference on Learning Representations, 2021.
URL https://api.semanticscholar.org/CorpusID:246485884.

Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh Mahajan.
Mixed-integer nonlinear optimization. Acta Numerica, 22:1-131, 2013. doi: 10.1017/S0962492913000032.

Pierre Bonami, Mustafa Kiling, and Jeff Linderoth. Algorithms and Software for Convexr Mizred Integer
Nonlinear Programs, volume 154. 10 2009. ISBN 978-1-4614-1926-6. doi: 10.1007/978-1-4614-1927-3_1.

Ralf Borndorfer, Heide Hoppmann, Marika Karbstein, and Niels Lindner. Separation of cycle inequalities in
periodic timetabling. Discrete Optimization, 35:100552, 2020.

William J Cook, David L Applegate, Robert E Bixby, and Vasek Chvatal. The traveling salesman problem:
a computational study. Princeton university press, 2011.

Paul Dagum, Adam Galper, and Eric Horvitz. Dynamic network models for forecasting. In Uncertainty in
artificial intelligence, pp. 41-48. Elsevier, 1992.

R. J. Dakin. A tree-search algorithm for mixed integer programming problems. Comput. J., 8:250-255, 1965.
URL https://api.semanticscholar.org/CorpusID:62138114.

Aramayis Dallakyan. On learning time series summary dags: A frequency domain approach. 2023. URL
https://api.semanticscholar.org/CorpusID: 258179448,

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning dnf’s. In Conference
on Learning Theory, pp. 815-830. PMLR, 2016.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem. Journal
of the Operations Research Society of America, 2(4):393-410, 1954. doi: 10.1287/opre.2.4.393. URL
https://doi.org/10.1287/opre.2.4.393

Thomas L. Dean and Keiji Kanazawa. A model for reasoning about persistence and causation. Computational
Intelligence, 5, 1989. URL https://api.semanticscholar.org/CorpusID:57798167.

Alberto Del Pia, Santanu Dey, and Marco Molinaro. Mixed-integer quadratic programming is in np. Math-
ematical Programming, 162, 07 2014. doi: 10.1007/s10107-016-1036-0.

Tian Gao, Debarun Bhattacharjya, Elliot Nelson, Miaoyuan Liu, and Yue Yu. Idyno: Learnmalinskying
nonparametric dags from interventional dynamic data. In International Conference on Machine Learning,
2022. URL https://api.semanticscholar.org/CorpusID:250340690.

Kevin Hoover and Selva Demiralp. Searching for the causal structure of a vector autoregression. SSRN
Electronic Journal, 04 2003a. doi: 10.2139/ssrn.388840.

11

https://www.sciencedirect.com/science/article/pii/S0275531923000405
https://www.sciencedirect.com/science/article/pii/S0275531923000405
https://api.semanticscholar.org/CorpusID:246485884
https://api.semanticscholar.org/CorpusID:62138114
https://api.semanticscholar.org/CorpusID:258179448
https://doi.org/10.1287/opre.2.4.393
https://api.semanticscholar.org/CorpusID:57798167
https://api.semanticscholar.org/CorpusID:250340690

Under review as submission to TMLR

Kevin D. Hoover and Selva Demiralp. Searching for the causal structure of a vector autoregression. Macroe-
conomics eJournal, 2003b. URL https://api.semanticscholar.org/CorpusID:16111786.

Aapo Hyvérinen, Kun Zhang, Shohei Shimizu, and Patrik O. Hoyer. Estimation of a structural vector
autoregression model using non-gaussianity. Journal of Machine Learning Research, 11(56):1709-1731,
2010. URL http://jmlr.org/papers/vil/hyvarinenlOa.htmll

Aapo Hyvérinen, Kun Zhang, Shohei Shimizu, and Patrik Hoyer. Estimation of a structural vector autore-
gression model using non-gaussianity. Journal of Machine Learning Research, 11:1709-1731, 07 2010.

Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila. Learning Bayesian Network Structure
using LP Relaxations. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pp. 358-365. JMLR Workshop and Conference Proceedings, March 2010.

Marcus Kaiser and Maksim Sipos. Unsuitability of notears for causal graph discovery when dealing with
dimensional quantities. Neural Processing Letters, 54:1-9, 06 2022. doi: 10.1007/s11063-021-10694-5.

Lutz Kilian. Structural Vector Autoregressions. CEPR Discussion Papers 8515, C.E.P.R. Discussion Papers,
August 2011. URL https://ideas.repec.org/p/cpr/ceprdp/8515.html.

Jan Kronqvist, Andreas Lundell, and Tapio Westerlund. The extended supporting hyperplane algorithm
for convex mixed-integer nonlinear programming. Journal of Global Optimization, 64, 06 2015. doi:
10.1007/s10898-015-0322-3.

Vyacheslav Kungurtsev, Fadwa Idlahcen, Petr Rysavy, Pavel Rytir, and Ales Wodecki. Learning dynamic
bayesian networks from data: Foundations, first principles and numerical comparisons, 2024. URL https:
//arxiv.org/abs/2406.17585.

Lars Lorch, Jonas Rothfuss, Bernhard Scholkopf, and Andreas Krause. Dibs: Differentiable bayesian
structure learning. ArXiv, abs/2105.11839, 2021. URL https://api.semanticscholar.org/CorpusID:
235187432.

Daniel Malinsky and Peter Spirtes. Causal structure learning from multivariate time series in settings with
unmeasured confounding. In Thuc Duy Le, Kun Zhang, Emre Kiciman, Aapo Hyvérinen, and Lin Liu
(eds.), Proceedings of 2018 ACM SIGKDD Workshop on Causal Disocvery, volume 92 of Proceedings of
Machine Learning Research, pp. 23-47. PMLR, 20 Aug 2018. URL https://proceedings.mlr.press/
v92/malinskyl18a.htmll

Hasan Manzour, Simge Kiigiikkyavuz, Hao-Hsiang Wu, and Ali Shojaie. Integer programming for learning
directed acyclic graphs from continuous data. INFORMS Journal on Optimization, 3(1):46-73, 2021.

Tom Michoel and Jitao David Zhang. Causal inference in drug discovery and development. Drug Discovery
Today, 28(10):103737, 2023. ISSN 1359-6446. doi: https://doi.org/10.1016/j.drudis.2023.103737. URL
https://www.sciencedirect.com/science/article/pii/S1359644623002532.

Kevin Patrick Murphy. Dynamic bayesian networks: representation, inference and learning. PhD thesis,
University of California, Berkeley, 2002.

Roxana Pamlfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Paul Beaumont, Konstantinos
Georgatzis, and Bryon Aragam. Dynotears: Structure learning from time-series data. In International
Conference on Artificial Intelligence and Statistics, 2020. URL https://api.semanticscholar.org/
CorpusID:211010514.

Jonas Peters and Peter Bithlmann. Identifiability of gaussian structural equation models with equal error
variances. Biometrika, 101, 05 2012. doi: 10.1093/biomet/ast043.

Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! causal discovery
benchmarks may be easy to game. 11 2021. doi: 10.48550/arXiv.2102.13647.

12

https://api.semanticscholar.org/CorpusID:16111786
http://jmlr.org/papers/v11/hyvarinen10a.html
https://ideas.repec.org/p/cpr/ceprdp/8515.html
https://arxiv.org/abs/2406.17585
https://arxiv.org/abs/2406.17585
https://api.semanticscholar.org/CorpusID:235187432
https://api.semanticscholar.org/CorpusID:235187432
https://proceedings.mlr.press/v92/malinsky18a.html
https://proceedings.mlr.press/v92/malinsky18a.html
https://www.sciencedirect.com/science/article/pii/S1359644623002532
https://api.semanticscholar.org/CorpusID:211010514
https://api.semanticscholar.org/CorpusID:211010514

Under review as submission to TMLR

Jakob Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time
series datasets, 03 2020.

Petr Rysavy, Xiaoyu He, and Jakub Marecek. Causal learning in biomedical applications: A benchmark,
2024. URL https://arxiv.org/abs/2406.15189.

Xiangyu Sun, Guiliang Liu, Pascal Poupart, and Oliver Schulte. Nts-notears: Learning nonparametric
temporal dags with time-series data and prior knowledge. ArXiv, abs/2109.04286, 2021. URL https:
//api.semanticscholar.org/CorpusID: 237454655,

Peter W G Tennant, Eleanor J Murray, Kellyn F Arnold, Laurie Berrie, Matthew P Fox, Sarah C Gadd,
Wendy J Harrison, Claire Keeble, Lynsie R Ranker, Johannes Textor, Georgia D Tomova, Mark S
Gilthorpe, and George T H Ellison. Use of directed acyclic graphs (DAGs) to identify confounders in
applied health research: review and recommendations. International Journal of Epidemiology, 50(2):620—
632, 12 2020. ISSN 0300-5771. doi: 10.1093/ije/dyaa213. URL https://doi.org/10.1093/ije/dyaa213!

Marcel A.J. van Gerven, Babs G. Taal, and Peter J.F. Lucas. Dynamic bayesian networks as prognostic mod-
els for clinical patient management. Journal of Biomedical Informatics, 41(4):515-529, 2008. ISSN 1532-
0464. doi: https://doi.org/10.1016/j.jbi.2008.01.006. URL https://www.sciencedirect.com/science/
article/pii/S1532046408000154.

Tapio Westerlund and Frank Pettersson. An extended cutting plane method for solving convex minlp
problems. Computers Chemical Engineering, 19:131-136, 1995. ISSN 0098-1354. doi: https://doi.
org/10.1016/0098-1354(95)87027-X. URL https://www.sciencedirect.com/science/article/pii/
009813549587027X. European Symposium on Computer Aided Process Engineering-5.

Tong Xu, Armeen Taeb, Simge Kiiciikyavuz, and Ali Shojaie. Integer programming for learning directed
acyclic graphs from non-identifiable gaussian models. arXiv preprint arXiv:2404.12592, 2024.

Alessandro Zandona, Rosario Vasta, Adriano Chi6, and Barbara Di Camillo. A dynamic bayesian network
model for the simulation of amyotrophic lateral sclerosis progression. BMC Bioinformatics, 20, 04 2019.
doi: 10.1186/s12859-019-2692-x.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

Q. Zhong, Y. Cheng, Z. Li, D. Wang, C. Rao, Y. Jiang, L. Li, Z. Wang, P. Liu, Y. Zhao, P. Li, J. Suo,
Q. Dai, and K. He. Ultra-efficient causal learning for dynamic csa-aki detection using minimal variables.
In medRziv, 2023. URL https://api.semanticscholar.org/CorpusID:265657431.

13

https://arxiv.org/abs/2406.15189
https://api.semanticscholar.org/CorpusID:237454655
https://api.semanticscholar.org/CorpusID:237454655
https://doi.org/10.1093/ije/dyaa213
https://www.sciencedirect.com/science/article/pii/S1532046408000154
https://www.sciencedirect.com/science/article/pii/S1532046408000154
https://www.sciencedirect.com/science/article/pii/009813549587027X
https://www.sciencedirect.com/science/article/pii/009813549587027X
https://api.semanticscholar.org/CorpusID:265657431

	Introduction
	Problem Formulation
	Brief Introduction To Mixed Integer Quadratic Programming
	Mixed Integer Quadratic Programming Formulation

	Algorithmic Implementation Using Branch-and-Bound-and-Cut
	Numerical Experiments
	Synthetic Data
	Benchmark Setup and Quantities of Interest
	Synthetic Benchmark Results
	Application in Biomedical Sciences
	Application in Finance

	Conclusion

