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ABSTRACT

Conformal prediction provides a pivotal and flexible technique for uncertainty
quantification by constructing prediction sets with a predefined coverage rate.
Many online conformal prediction methods have been developed to address data
distribution shifts in fully adversarial environments, resulting in overly conservative
prediction sets. We propose Conformal Optimistic Prediction (COP), an online
conformal prediction algorithm incorporating underlying data pattern into the up-
date rule. Through estimated cumulative distribution function of non-conformity
scores, COP produces tighter prediction sets when predictable pattern exists, while
retaining valid coverage guarantees even when estimates are inaccurate. We estab-
lish a joint bound on coverage and regret, which further confirms the validity of our
approach. We also prove that COP achieves distribution-free, finite-sample cov-
erage under arbitrary learning rates and can converge when scores are i.i.d.. The
experimental results also show that COP can achieve valid coverage and construct
shorter prediction intervals than other baselines.

1 INTRODUCTION

Uncertainty quantification is essential for making reliable forecasts, as prediction errors could lead to
severe consequences, particularly in high-risk domains including epidemiology and finance. Despite
the availability of various methods for uncertainty quantification, such as confidence calibration (Guo
et al., 2017) and Bayesian networks (Fortunato et al., 2017), these approaches often fail to provide
provable coverage guarantees, which significantly restricts their applicability and reliability.

To address this limitation, Conformal Prediction (CP) (Vovk et al., 2005) stands out as a powerful
technique to construct prediction sets with model-agnostic and distribution-free properties. Under the
assumption of data exchangeability, it theoretically guarantees that the prediction sets contain the true
label with a specified probability. Consequently, CP has shown promising performance in multiple
domains, such as large language models (Gui et al., 2024), robotics (Lindemann et al., 2023), and
image classification (Angelopoulos et al., 2020).

Despite the success of CP for exchangeable data, it remains challenging to directly perform CP
in scenarios involving distribution shifts and temporal dependence that violate the exchangeability
assumption. To resolve this problem, significant efforts have been made to extend CP methods beyond
exchangeability (Barber et al., 2023; Xu & Xie, 2021; Tibshirani et al., 2019; Yang et al., 2024).

Recently, a large amount of research is emerging in Conformal Prediction for time series. Pioneered
by ACI (Gibbs & Candès, 2021), adversarial online learning methods were incorporated into the CP
framework to adapt to arbitrary online distribution shifts. To improve it, Conformal PID (Angelopou-
los et al., 2023b) incorporated PID control and ECI (Wu et al., 2025) leveraged error quantification
via smoothed quantile loss. To further determine the step size for dynamic environments, other
online learning techniques were used such as directly choosing decaying step size (Angelopoulos
et al., 2024), expert aggregation (Zaffran et al., 2022; Gibbs & Candès, 2024), and strongly adaptive
regret (Bhatnagar et al., 2023; Hajihashemi & Shen, 2024). However, they focus on fully adversarial
environments and adjust prediction sets simply based on the iterative steps, without considering the
underlying data patterns. Consequently, despite their well-established theoretical basis, they tend to
construct overly conservative prediction sets in practice.
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Instead of online learning methods, another line of work (Xu & Xie, 2021; 2023; Lee et al., 2024)
proposed methods to directly obtain prediction sets via estimated distribution function of non-
conformity scores, such as SPCI (Xu & Xie, 2023), which employed random forest as an estimator.
Their theoretical results require assumptions like model consistency and distributional smoothness,
and hence are not distribution-free. Other methods focus on assigning weights to historical scores.
HOP-CPT (Auer et al., 2023) utilized the Modern Hopfield Network and CT-SSF (Chen et al.,
2024a) leveraged the inductive bias in deep representation learning to dynamically adjust weights.
However, these approaches often lack theoretical results, such as finite-sample coverage, making
them potentially unreliable and suffer from overfitting issues.

In this work, we propose Conformal Optimistic Prediction (COP), an online CP algorithm that
incorporates underlying data pattern of the non-conformity scores into the update rule. The key
step is a refinement update based on the linear approximation of the expected quantile loss and
an estimated cumulative distribution function (CDF). COP maintains the well-grounded coverage
guarantees inherent to traditional methods, while taking advantage of the distribution information to
construct tighter prediction intervals. We also establish a connection to the online optimistic gradient
descent (Rakhlin & Sridharan, 2013; Zhao et al., 2024), with a scaled distribution-informed hint.
From this standpoint, we derive a joint bound on regret and coverage, which further confirms the
validity of our approach. Moreover, COP does not need to compute inverse of the estimated CDF as
Lee et al. (2024) and Wang et al. (2025) do, thereby reducing computational cost and unnecessary
numerical error. Our contributions can be summarized as follows:

• We propose a novel method for online CP, Conformal Optimistic Prediction (COP). Com-
pared to traditional methods, COP introduces a refinement step leveraging the estimated
distribution function, which allows for capturing potential predictable information of the
non-conformity scores and providing more efficient prediction sets.

• We also introduce another perspective on COP through the lens of optimistic online gradient
descent, which facilitates more comprehensive theoretical analysis. We further explore a
joint regret–coverage bound for COP that sheds some light on the theoretical motivation
behind our approach.

• We prove the distribution-free and finite-sample coverage of COP with general optimistic
terms under arbitrary learning rates. Moreover, we demonstrate the asymptotic consistency
of COP with i.i.d. scores and properly chosen learning rates.

• Our experimental results demonstrate the superior performance of COP in time series
datasets, including simulation data under distribution shift and real-world data in the finance,
energy, and climate domains. We show that COP maintains coverage at the target level and
obtains tighter prediction sets than other state-of-the-art methods.

2 BACKGROUND

2.1 PROBLEM SETUP

Given sequentially collected data {(Xt, Yt)}t≥1 ⊂ X × Y , at time t, our base model f̂t utilizes
previously observed data {(Xi, Yi)}i≤t−1 to produce point prediction Ŷt = f̂t(Xt) for the unob-
served label Yt. The goal of CP is to construct a prediction set Ĉt(Xt) based on Ŷt. Aligned with the
standard CP methods, consider a conformal score function St(·, ·) : X × Y → R , which measures
the discrepancy between the base model’s prediction f̂(Xt) and the true label Yt. For example, the
score function can be St(x, y) = |y − f̂t(x)|. Given St, CP constructs the set in the form of:

Ĉt(Xt) = {y ∈ Y : St(Xt, y) ≤ qt},

where qt is the threshold to be determined.

Given nominal miscoverage level α, note that if the data sequence {(Xi, Yi)}i≤t+1 are i.i.d. or
exchangeable, taking qt to be the ⌈(1 − α)(1 + t)⌉-th smallest elements among {St(Xt, Yt)}ti=1
yields a valid coverage guarantee by split conformal prediction

P{Yt+1 ∈ Ĉt+1(Xt+1)} ≥ 1− α.
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However, in an adversarial setting where exchangeability does not hold, such as time series data with
strong correlations, it is very difficult to achieve such a real-time coverage guarantee. Recent works
(Bhatnagar et al., 2023; Angelopoulos et al., 2023b; 2024; Podkopaev et al., 2024) have turned to
consider the following long-term coverage guarantee:

lim
T→∞

1

T

T∑
t=1

1{Yt /∈ Ĉt(Xt)} = α. (1)

Parallel to these works, our target lies in designing an online algorithm to dynamically choose the
threshold qt that can achieve the control in equation 1 without any distributional assumptions on data
{(Xt, Yt)}t≥1. Also, we want the size of our prediction sets to be as small as possible.

2.2 CONFORMAL PREDICTION FOR SEQUENTIAL DATA

Let st = S(Xt, Yt) be the non-conformity score at time t. When the label Yt is observed, online CP
considers updating q̂t with the following rule

q̂t+1 = q̂t + η(errt − α), (2)

where errt = 1{st > q̂t} = 1{Yt ̸∈ Ĉt(Xt)} is the miscoverage indicator and η is the learning rate.

The idea to set qt through online gradient descent with a fixed step size was first introduced in ACI
(Gibbs & Candès, 2021). Subsequent improvements include improving update rules by introducing
decaying stepsizes (Angelopoulos et al., 2024), PID control (Angelopoulos et al., 2023b), and error
quantification (Wu et al., 2025). Moreover, some methods borrow online learning techniques and
consider not only coverage guarantee, but also dynamic regret analysis (Gibbs & Candès, 2024;
Bhatnagar et al., 2023; Podkopaev et al., 2024). However, these methods only targeted at fully
adversarial environments and ignored the predictive part in the sequence. Another line of work aims
at learning the distribution of data with estimated distribution functions (Xu & Xie, 2023; Lee et al.,
2024) or capturing temporal structure through deep neural networks (Chen et al., 2024a; Auer et al.,
2023). However, both of them cannot provide provable coverage guarantees.

Most relate to us are the LQT algorithm proposed by Areces et al. (2025) and the Conformal PID
algorithm in Angelopoulos et al. (2023a). They consider both adversarial and predictable data.
However, the application of LQT relies heavily on linear autoregressive structures. For Conformal
PID, the selection of its scorecaster model is arbitrary and lacks principled guidance. An inaccurate
or excessively complex scorecaster may impair performance by introducing additional variance.

2.3 OPTIMISTIC ONLINE GRADIENT DESCENT

Optimistic online gradient descent (OOGD) has been extensively studied and applied across various
domains. It aims at adding prior knowledge about the sequence within the paradigm of online
learning. Rakhlin & Sridharan (2013) proposed the general version of the Optimistic Mirror Descent
algorithm, which was bulit upon the results in (Chiang et al., 2012). Recently, OOGD has been
adopted in Riemannian online convex optimization (Wang et al., 2023; Roux et al., 2025), generative
models (Daskalakis et al., 2017), reinforcement learning (Ito, 2021; Bubeck et al., 2019), etc. Other
theoretical results of OOGD include problem-dependent regret bounds (Chen et al., 2024b; Zhao et al.,
2024), saddle point problem (Daskalakis & Panageas, 2018; Mertikopoulos et al., 2018; Mokhtari
et al., 2020) and other last iterate convergence properties (Gorbunov et al., 2022).

3 METHOD AND THEORY

3.1 CONFORMAL OPTIMISTIC PREDICTION

We begin by considering eq. (2) from the view of online graient descent. Let ℓ1−α(q) = (1{q >
0} − α)q denote the (1 − α)-th quantile loss, then eq. (2) can be viewed as online (sub)gradient
descent (OGD) on the quantile loss ℓ1−α(st − q). For simplicity, we denote ∇q̂tℓ1−α(st − q̂t) as
∇ℓ1−α(st − q̂t), and rewrite eq. (2) as:

q̂t+1 = q̂t + η(errt − α) = q̂t − η∇ℓ1−α(st − q̂t). (3)

3
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One critism of eq. (3) is that the good coverage is obtained due to reactively correcting past mistakes
and through a cancellation of positive and negative errors. The radius qt may exhibit significant
fluctuations around the true value (Gibbs & Candès, 2021; Wu et al., 2025), leading to inefficient
prediction intervals. An alternative way is to directly estimate the conditional quantiles or distribution
function F̂t of the scores in an online fashion (Lee et al., 2024). Then qt can directly take F̂−1

t (1−α).
However, the validity of these methods fully counts on the estimated quantiles or CDF, which may
suffer from overfitting when addressing adversarial data.

To mitigate the limitations, we consider improving eq. (3) by taking advantage of the predictable
information through an estimated distribution function. Let St = (s1, · · · , st) and we denote the
cumulative distribution function (CDF) of st+1 conditional on St as Ft+1(·|St) = Ft+1(·) for
simplicity. Note that, if we assume that the conditional distribution st|St is invariant over t, the target
of conformal prediction can be viewed as finding the conditional (1− α)-th quantile of st|St. Hence,
an intuitive way to improve the efficiency of OGD is to adopt the following refinement for q̂t+1:

qt+1 =arg min
∥q̂t+1−q∥2

2≤γ
Est+1

[ℓ1−α(st+1 − q)|St] .

Given that we output qt at timestep t, the miscoverage indicator of interest turns into errt = 1{st >
qt}, instead of 1{st > q̂t} in eq. (3). Hence, eq. (3) is substituted with:

q̂t+1 = q̂t + η(errt − α) = q̂t − η∇ℓ1−α(st − qt). (4)

The refinement serves as a re-calibration step to adjust and optimize the conservative action that
update eq. (4) makes, and utilizes the predictable information of non-conformity scores {st}t≥1 to
enhance the conditional performance.

Let Lt+1(q) = Est+1 [ℓ1−α(st+1 − q)|St]. Note that ∇qLt+1(q) = Ft+1(q)− (1−α), the optimiza-
tion above does not have a closed form solution. Similar issues also occur when using online mirror
descent. We discuss this in Appendix A.1. As opposed to the above implicit update, we therefore
turn to minimize the local approximation. By convexity of Lt+1:

Lt+1(q) ≥ Lt+1(q̂t+1) + (q − q̂t+1)(Ft+1(q̂t+1)− (1− α))

Denote F̂t+1 as the estimated CDF of st+1|St. Replacing Ft+1 with F̂t+1, the optimization above
reduces to:

qt+1 =argmin
q

Lt+1(q̂t+1) + (q − q̂t+1)
(
F̂t+1(q̂t+1)− (1− α)

)
,

s.t. ∥q̂t+1 − q∥22 ≤ Λ.

Equivalently, for every Λ > 0, there exists some λt+1 > 0,

qt+1 = q̂t+1 − λt+1

(
F̂t+1(q̂t+1)− (1− α)

)
. (5)

We remark that our refinement can also be implemented on another widely employed online CP
method, adaptive conformal inference (ACI) (Gibbs & Candès, 2021), as detailed in Appendix A.2.
There are many choices for F̂t+1, such as empirical cumulative distribution function (ECDF) and
kernel-based estimation (Silverman, 1986). As a brief clarification on the benefit of our refinement,
we present the proposition as follows.

Proposition 1. Assume that F̂t+1(q̂t+1)− (1− α) and Ft+1(q̂t+1)− (1− α) have the same sign,
and Ft+1 is L-Lipschitz. With a suitably small λt+1 > 0, we have:

E [ℓ1−α(st+1 − qt+1)|St] ≤ E [ℓ1−α(st+1 − q̂t+1)|St] ,

i.e. the expected quantile loss of qt+1 is smaller than that of q̂t+1 at timestep t+ 1. This indicates
that we can tolerate a certain deviation of F̂t+1 from Ft+1. It suffices that their relative ordering with
respect to 1− α coincides at certain points and our method is preferable in this regard. We also add a
small modification of eq. (5) in Appendix A.3 that avoids the "same-sign" assumption. Moreover,
even if the estimated distribution function F̂t+1 is not accurate, we can still obtain the basic long-term
coverage guarantee, as shown in Proposition 2.

Formally, we propose our method Conformal Optimistic Prediction (COP) in Algorithm 1. The
naming reflects the “optimistic” belief that the estimated CDF F̂t+1 reflects the behavior of the true

4
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CDF Ft+1. We will further clarify the close connection between our method and online optimistic
gradient descent (OOGD) in the next section.

Algorithm 1 Conformal Optimistic Prediction with estimated CDF

Require: nominal miscoverage rate α ∈ (0, 1), base predictor f̂ , learning rate η > 0, t =
1, 2, · · · , T , scale factor λt+1 ≥ 0, init. q̂1 ∈ R

1: for t ≥ 1 do
2: Observe input Xt ∈ X
3: Return prediction set Ĉt(Xt, qt) = [f̂t(Xt)− qt, f̂t(Xt) + qt]

4: Observe true label Yt ∈ Y and compute true radius st = inf{s ∈ R : Yt ∈ Ĉt(Xt, s)}
5: Update the primary radius

q̂t+1 = q̂t + η [1(st > qt)− α]

6: Compute estimated cumulative distribution function F̂t+1 for st+1

7: Update the refined radius

qt+1 = q̂t+1 − λt+1

(
F̂t+1(q̂t+1)− (1− α)

)
8: end for

3.2 CONNECTION WITH OOGD

To begin, we note that eq. (4) and eq. (5) can be rewritten in the way of OOGD by:

q̂t+1 = argmin
q

{
η ⟨∇ℓ1−α(st − qt), q⟩+

1

2
||q − q̂t||2

}
(6)

qt+1 = argmin
q

{
η ⟨Mt+1, q⟩+

1

2
||q − q̂t+1||2

}
. (7)

In the literature of OOGD, Mt+1 is the optimistic term, aiming at guessing the next move and
incorporating it into the objective (Rakhlin & Sridharan, 2013). While classical OOGD often takes
Mt+1 as the previous gradient, COP uses a distribution-informed hint:

Mt+1 = (F̂t+1(q̂t+1)− (1− α)) · λt+1/η, (8)

which captures potential distribution shift of the next score. Empirically, we take λt+1/η ≤ 1 and
denote it as the scale factor, indicating our confidence on the accuracy of F̂t+1. For instance, when
the base model performs well, the scores st tend to be highly stochastic and difficult to predict,
suggesting a smaller λt+1. Conversely, when F̂t is reliable, the scale factor can be set close to 1.
Specifically, COP boils down to OGD if we simply set λt+1 = 0.

Besides the coverage guarantee in Section 3.3, dynamic regret is often considered as an additional
performance metric for online CP (Bhatnagar et al., 2023; Ramalingam et al., 2025). From the view
of OOGD, we obtain a joint regret-coverage bound with constant learning rate in Theorem 1. The
result for dynamic learning rates can be seen in Appendix B.2.
Theorem 1. Let ℓt(q) = ℓ1−α(st − q). For arbitrary {ut}t≥1, u0 = 0, we have:

1

T

T∑
t=1

[ℓt(qt)− ℓt(ut)]︸ ︷︷ ︸
regret

+
η(1− 2α)

4

(∑T
t=1 errt
T

− α

)
︸ ︷︷ ︸

coverage

≤ η

T

T∑
t=1

∥α− errt −Mt∥22

+

T∑
t=1

1

2η

(
∥ut − q̂t∥22 − ∥ut−1 − q̂t∥22

)
︸ ︷︷ ︸

environments

.

The term
∑T
t=1

1
2η

(
∥ut − q̂t∥22 − ∥ut−1 − q̂t∥22

)
reflects the non-stationarity of environments (Zhao

et al., 2024). Although without distributional assumption, regret bounds and coverage bounds of
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online CP do not imply each other (Angelopoulos et al., 2025), Theorem 1 shows that properly
choosing Mt can simultaneously reduce the bound for both regret and coverage. Specifically, note
that E∥α − errt −Mt∥22|St−1 ≈ E∥α − 1(st > q̂t) −Mt∥22|St−1, a natural idea for sequentially
choosing Mt would be taking it close to:

Ft(q̂t)− (1− α) = argmin
Mt

E∥α− 1(st > q̂t)−Mt∥22|St−1,

This coincides with the choice of our method with the scale factor taken as 1.

3.3 COVERAGE GUARANTEES

In this section, we present coverage guarantees of COP. For simplicity, we consider the refinement
step eq. (5) in the way of OOGD:

qt+1 = q̂t+1 − ηtMt+1, (9)

where Mt+1 is the optimistic term, instead of the choice in Equation (8). All of the following results
require Mt+1 to be bounded, and this holds in our case since the scale factor λt+1/ηt ≤ 1 and
Mt ∈ [α− 1, α] in Equation (8).

The detailed proofs can be found in Appendix B. We first show the long term coverage of COP with
fixed learning rate η.
Proposition 2. Assume that for each t, st ∈ [0, B] and Mt ∈ [−M,M ], then for all T ≥ 1, the
prediction sets generated by COP with fixed learning rate η satisfies∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣ ≤ B + (2 + 6M)η

Tη
. (10)

Although we assume boundedness of scores st and optimistic terms Mt, running COP and achieving
eq. (10) does not require knowing the upper boundB andM . The finite-sample result in Proposition 2
naturally implies the long-term coverage eq. (1), i.e. limT→∞

∑T
t=1 errt
T = α.

Besides, we further develop coverage guarantee with dynamic learning rate ηt:
Theorem 2. Assume that for each t, st ∈ [0, B] and Mt ∈ [−M,M ], then for all T ≥ 1, the
prediction sets generated by COP with arbitrary learning rate ηt satisfies∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣ ≤ B + (2 + 6M)ΩT
T

∥∆1:T ∥1,

where ∆1 = η−1
1 ,∆t = η−1

t − η−1
t for all t ≥ 1, and ∥∆1:T ∥1 =

∑T
t=1 ∆t,ΩT = max1≤r≤T ηr.

Note that, ∥∆1:T ∥1 is closely related to the number of times we increase the step size. Specifically,
∥∆1:T ∥1 ≤ 2Nt/(mint≤T ηt), where NT =

∑T
t=1 1(ηt+1 > ηt). Hence, the upper bound in

Theorem 2 will converge to zero as long as NT /(mint≤T ηt) = o(T ). In particular, if we consider de-
caying ηt in Angelopoulos et al. (2024), then ΩT = η1, ∥∆1:T ∥1 = 1/ηT , ∥∆1:T ∥1/T ≤ NT /TηT .
Setting ηT = o(NT /T ) ensures the long-term coverage in eq. (1).

In the following part, we derive the asymptotic coverage property of COP under appropriately chosen
learning rates. For this, we require that the scores are i.i.d..

Theorem 3. Assume that the scores st
iid∼ P and has a continuous distribution function F . The

learning rates {ηt} satisfy:
∞∑
t=1

ηt = ∞,

∞∑
t=1

η2t <∞.

Let q∗ be the (1− α)-th quantile of P , satisfying: for q > q∗, F (q) > 1− α and for q < q∗, F (q) <
1− α, Then qt → q∗, i.e. limt→∞ P (Yt ∈ Ct(Xt)) = 1− α.

Choosing constant learning rates in eq. (3) will cause oscillations (Gibbs & Candès, 2024). Theorem 3
demonstrates that, under the i.i.d. assmptions and choosing learning rates satisfying the Robbins-
Monro condition (Robbins & Monro, 1951), qt exhibits a convergence behavior, even if we add
bounded optimistic terms Mt in every update.
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4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate five simulation datasets under changepoints, distribution drift (Barber et al.,
2023), variance changepoint, heavy-tailed noise, and extreme distribution drift. Besides, we evaluate
four real-world datasets: Amazon stock, Google stock (Nguyen, 2018), electricity demand (Harries
et al., 1999) and temperature in Delhi (Vrao., 2017). In the subsequent sections, we will provide a
detailed introduction to each of these datasets.

Base predictors. We evaluate three base predictors that have distinct levels of forecasting perfor-
mance. The Prophet model, a Bayesian additive model, forecasts Ŷt = g(t) + s(t) + h(t) + ϵt,
capturing the overall trend, seasonality, holidays, and noise. The AR model forecasts Ŷt =
ϕ1Yt−1 + ...+ ϕpYt−p + ϵt, with p = 3. The Theta model decomposes the series by adjusting the
curvature with coefficients θ = 0 (long-term trend) and θ = 2 (short-term dynamics).

Baselines. We compare with seven state-of-the-art methods: ACI (Gibbs & Candès, 2021), OGD,
SF-OGD (Bhatnagar et al., 2023), decay-OGD (Angelopoulos et al., 2024), Conformal PID (An-
gelopoulos et al., 2023b), ECI (Wu et al., 2025) and LQT(fixed) (Areces et al., 2025). Several
follow-up works on ACI consider adaptively setting learning rates via the expert aggregation tech-
nique (Gibbs & Candès, 2024; Bhatnagar et al., 2023). COP and the seven baselines are orthogonal
to these works and can be naturally incorporated by serving as a single expert.

General implements. We choose the target coverage 1 − α = 90% and construct asymmetric
prediction sets using two-side quantile scores under α/2 respectively. For prediction sets, all
baselines will output asymmetric sets [Ŷt − qlt, Ŷt + qut ] with upper score qut and lower score qlt under
half of the coverage level α/2 respectively.

Hyperparameters. The proposed COP has three hyperparameters, the base learning rate η, scale
factor λ = 0.5 and the window length w = 100. Same as previous works, the adaptive learning
rates ηt = η · (max{st−w+1, . . . , st} − min{st−w+1, . . . , st}). For reproducibility, all baseline
implementations leverage the open-source Python codes from Wu et al. (2025) or Areces et al. (2025).
The hyperparameters of LQT need to be tuned via grid search. The operational ranges of η and more
details about ηt for each methods can be found in Appendix D.

Choices of estimated CDF. By default, we set the estimated CDF as empirical CDF, which is
F̂t+1(q̂t+1) = 1

w

∑t
i=t−w+1 1{si ≤ q̂t+1}. In addition, we conduct experiments with estimated

CDF based on the kernel density estimator in Appendix C.

Evaluation metrics. The coverage rate measures the proportion of time steps where the true
observation Yt falls within the prediction set Ct(Xt, qt). The width of the prediction set reflect the
efficiency of CP, including the average width (reflecting overall performance) and the median width
(robust to outliers and extreme intervals). A well-calibrated method should achieve coverage close to
the predefined target level, while keeping the width as short as possible. We also evaluate recovery
time in Appendix F, statistical significance in Appendix I, and average time cost in Appendix J. For
visualization, we also provide the figures in Appendix K.

Overview of experimental results. We have conducted extensive experiments, including five
simulation datasets in Section 4.2 and Appendix E, four real-world datasets in Section 4.3. We have
also conducted some ablation studies, including the choice of estimated CDF in Appendix C and the
scale factor in Appendix H. To evaluate the case that estimated CDF is inaccurate, we have conducted
the inaccurate estimated CDF in Appendix G.

4.2 SIMULATION DATASET

We evaluated our method on two simulation datasets under changepoints and distribution drift setting,
respectively. Both datasets {Xi, Yi}ni=1 are generated according to a linear model Yt = XT

t βt + ϵt,
Xt ∼ N (0, I4), ϵt ∼ N (0, 1), n = 2000.

• Changepoint setting: we set two changepoints: βt = β(0) = (2, 1, 0, 0)⊤ for t = 1, . . . , 500;
βt = β(1) = (0,−2,−1, 0)⊤ for t = 501, . . . , 1500; and βt = β(2) = (0, 0, 2, 1)⊤ for
t = 1501, . . . , 2000.
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• Distribution drift setting: we set β1 = (2, 1, 0, 0)⊤, βn = (0, 0, 2, 1)⊤, and use linear
interpolation to compute βt = β1 +

t−1
n−1 (βn − β1).

Table 1: The experimental results in the two simulation datasets with nominal level α = 10%.

Dataset Method
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Changepoint

ACI 89.9 ∞ 8.20 89.9 ∞ 8.20 89.9 ∞ 8.43
OGD 90.0 8.49 8.50 89.9 8.39 8.40 89.9 8.73 8.70

SF-OGD 90.0 12.48 11.56 90.0 12.58 11.69 89.9 12.70 11.88
decay-OGD 90.0 8.30 8.22 90.0 8.26 8.21 90.0 8.57 8.60

PID 89.7 11.02 9.64 89.9 10.83 9.35 89.7 11.23 9.78
ECI 89.9 8.16 8.25 89.9 8.17 8.26 89.8 8.55 8.68
LQT 89.8 8.49 8.31 89.6 8.54 8.29 89.8 9.29 8.75
COP 89.8 8.29 8.44 89.7 8.18 8.25 89.8 8.45 8.53

Distribution
Drift

ACI 89.9 ∞ 6.69 89.8 ∞ 6.56 89.9 ∞ 6.79
OGD 90.3 7.24 7.05 90.2 7.15 7.10 90.3 7.34 7.25

SF-OGD 90.0 11.48 10.34 89.9 11.46 10.31 89.9 11.95 10.54
decay-OGD 90.6 7.64 6.95 90.4 7.31 6.81 90.6 7.62 6.91

PID 89.7 9.41 7.81 89.8 10.08 7.92 89.7 10.06 7.90
ECI 90.0 7.27 6.98 90.0 7.06 6.98 90.2 7.55 7.18
LQT 90.6 9.74 8.72 91.9 8.16 7.22 91.0 10.48 8.86
COP 90.6 7.07 6.89 90.0 7.09 6.97 90.9 7.30 6.99

The quantitative results are shown in Table 1. ACI frequently produces infinitely wide prediction
sets due to updating αt. The overly conservative sets undermine the utility of prediction. OGD and
SF-OGD partially balance coverage and width, but their performance is overly sensitive to learning
rates. In contrast, decay-OGD performs better in terms of median width due to the stability of
decaying learning rate in the later stages. Conformal PID borrows from PID control for adjustment
and needs to train scorecasters. LQT is sensitive to hyperparameters and relies on grid search, which
makes its performance unstable. ECI reacts quickly to distribution shifts through error-quantification,
and hence achieves relatively tight sets. However, ECI may struggle in complex data environments
since it cannot capture the underlying information of data.

As for COP, it maintains the coverage rate close to the nominal 90% level and tighter widths than other
methods. COP achieves this by incorporating an optimistic term based on the estimated cumulative
distribution function, which preserves the long-term coverage guarantee of traditional online CP
while using predictable distribution information to adjust the width more precisely. The experimental
results also show the generality to adapt to different base predictors across Prophet, AR, and Theta
models.

4.3 REAL-WORLD DATASETS

Moreover, we evaluated our method on four real-world time series datasets across three critical
domains. All datasets retain raw temporal ordering to preserve real-world sequential dependencies.

• Financial markets: daily opening prices of Amazon and Google from 2006 to 2014, capturing
non-stationary trends, regime shifts like the 2008 crisis, and heteroskedastic volatility. The
base predictors will forecast the daily opening price on a log scale.

• Energy systems: New South Wales electricity demand for half an hour from 1996 to1998
normalized to [0, 1], featuring multiscale periodicity and demand surges).

• Climate science: daily Delhi temperatures from 2003 to 2017 reflecting seasonal cycles,
long-term warming trends, and extreme weather anomalies.

The experimental results under the real-world dataset demonstrate the performance of each method in
real-world scenarios. As can be seen from the data in Table 2, COP shows superior performance. ACI

8
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Table 2: The experimental results in the four real-world datasets with nominal level α = 10%.

Dataset Method
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Amazon
Stock

ACI 90.2 ∞ 46.97 89.8 ∞ 13.77 89.7 ∞ 12.31
OGD 89.6 55.15 30.00 89.9 19.10 15.00 89.8 18.07 14.50

SF-OGD 89.5 61.47 31.75 89.9 24.44 21.05 90.0 23.88 21.14
decay-OGD 89.9 97.22 36.20 89.7 20.23 14.01 89.2 17.49 13.46

PID 89.8 52.56 39.09 89.6 59.22 37.93 89.5 61.19 40.20
ECI 90.1 47.00 34.84 89.5 17.12 12.73 89.7 17.46 12.49
LQT 89.3 31.42 15.26 90.3 21.61 18.92 89.9 27.17 15.13
COP 89.6 39.86 27.91 89.5 17.09 12.90 89.6 17.21 12.23

Google
Stock

ACI 90.0 ∞ 66.83 89.8 ∞ 18.64 90.5 ∞ 32.78
OGD 89.7 57.60 46.00 90.7 33.76 23.00 89.9 31.49 29.50

SF-OGD 89.6 58.92 47.78 89.9 28.31 24.42 90 34.04 31.48
decay-OGD 89.9 77.23 50.18 90.2 46.53 26.77 90.2 55.32 33.71

PID 90.1 57.47 48.44 89.9 64.88 54.07 89.9 63.58 54.05
ECI 89.9 56.06 46.96 89.7 19.95 17.19 89.6 30.92 29.53
LQT 89.9 57.31 47.00 90.5 41.80 25.00 89.6 41.70 37.58
COP 89.7 49.72 42.09 89.6 19.87 17.04 89.3 30.25 28.24

Electricity
Demand

ACI 90.1 ∞ 0.443 90.1 ∞ 0.105 90.2 ∞ 0.055
OGD 89.8 0.433 0.435 90.0 0.133 0.115 90.1 0.081 0.075

SF-OGD 89.9 0.419 0.426 90.0 0.129 0.116 90.3 0.106 0.095
decay-OGD 90.1 0.531 0.521 90.1 0.122 0.099 90.0 0.100 0.059

PID 90.1 0.207 0.177 90.0 0.434 0.432 89.9 0.413 0.411
ECI 90.0 0.384 0.382 90.0 0.117 0.098 89.9 0.071 0.055
LQT 90.1 0.221 0.218 90.1 0.144 0.138 90.0 0.113 0.111
COP 90.1 0.385 0.376 90.0 0.117 0.098 89.8 0.069 0.052

Temperature

ACI 91.0 ∞ 8.49 90.0 ∞ 6.06 90.2 ∞ 6.48
OGD 90.4 7.54 7.60 90.1 6.82 6.10 90.0 6.36 6.30

SF-OGD 90.0 7.17 7.08 90.1 6.37 5.91 90.1 6.75 6.43
decay-OGD 90.1 8.84 8.35 90.0 6.36 5.67 89.9 6.56 6.18

PID 90.1 7.65 7.65 89.7 8.92 8.86 89.7 8.77 8.79
ECI 90.0 7.20 7.22 90.1 6.39 6.10 90.0 6.41 6.27
LQT 90.2 8.57 7.30 90.3 6.78 6.00 90.1 7.51 7.08
COP 90.1 7.05 7.07 89.9 5.85 5.58 90.0 6.27 6.18

generally maintains the coverage rate at nominal level, but its prediction intervals are often infinitely
wide, which makes the results lack practical application value. The OGD series of methods achieve a
more balanced trade-off between coverage and interval width, but they are highly sensitive to learning
rate selection. Conformal PID trains scorecasters to compensate for the base predictor’s accuracy and
often improve when the base predictor is less accurate. ECI produces tight prediction sets through
error quantification while maintain the coverage rate. Overall, these results highlight the advantages
and limitations of each method in real-world applications.

5 CONCLUSIONS

In this work, we introduce Conformal Optimistic Prediction (COP), a novel online CP algorithm
that leverages estimated cumulative distribution functions of non-conformity scores. Viewing COP
through optimistic online gradient descent enables a comprehensive theory, including a joint re-
gret–coverage bound that clarifies its motivation. Theoretically, we also prove distribution-free,
finite-sample coverage for general optimistic updates under arbitrary learning rates, and show asymp-
totic consistency with i.i.d. scores under suitable rates. Experiments on synthetic distribution shift
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and real time-series data from finance, energy, and climate demonstrate that COP attains target
coverage while producing tighter prediction sets than state-of-the-art alternatives.
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A SOME DISCUSSIONS

A.1 DISCUSSIONS ON ONLINE MIRROR DESCENT

We remark that if we can obtain the estimated distribution function F̂t in an online fashion, a direct
way to combine it with eq. (3) is to leverage online mirror descent (Orabona, 2019; Wang et al.,
2025):

∇ψt+1(qt+1) = ∇ψt(qt) + ηt(errt − α), (11)

where errt = 1{st > qt}, ψt(q) = Est [ℓ1−α(st − q)|St−1] + σq2/2, and σ > 0 is a tuning
parameter. Equation (11) is equivalent to:

Ft+1(qt+1) + σqt+1 = Ft(qt) + σqt + ηt(errt − α). (12)

Further, if st+1 has a probability density function (PDF) that is bounded away from zero almost
surely, we can directly use:

Ft+1(qt+1) = Ft(qt) + ηt(errt − α). (13)

It suffices to use F̂ to substitute F above. However, both eq. (12) and eq. (13) do not have closed
form solutions for qt+1, which makes the update difficult to compute.

A.2 DISCUSSIONS ON ACI

Adaptive Conformal Inference (ACI) (Gibbs & Candès, 2021) is another widely used online CP
update besides eq. (3). Let Q̂t(·) be the fitted quantiles of the non-conformity scores in calibration
set Dcal:

Q̂(p) := inf

s :
 1

|Dcal|
∑

(Xr,Yr)∈Dcal

1{Sr(Xr,Yr)≤s}

 ≥ p

 .

For prediction set Ĉt(α) := {y : St(Xt, y) ≤ Q̂t(1− α)}, define:

βt := sup{β : Yt ∈ Ĉt(β)}.

Denote errt = 1(α̂t > βt), then ACI follows the iteration:

1− α̂t+1 = 1− α̂t + η(errt − α)

= 1− α̂t − η∇ℓ1−α(1− βt − (1− α̂t)).

Note that 1− βt can be viewed as st in eq. (3), the similar refinement is as follows:

1− αt+1 = 1− α̂t+1 − λt+1

(
F̂t+1(1− α̂t+1)− (1− α)

)
,

i.e.

αt+1 = α̂t+1 + λt+1

(
F̂t+1(1− α̂t+1)− (1− α)

)
,

where F̂t+1 is the estimated CDF of (1− βt+1). However, αt < 0 or αt > 1 can happen frequently
for some η < 0 and may output infinite or null prediction sets. Hence, we do not adopt this kind of
update.

A.3 DISCUSSIONS ON THE "SAME-SIGN" ASSUMPTION

In order to clarify the superiority of the refinement step, we introduce a "same-sign" assumption in
Proposition 1, which is unverifiable in real-world data. However, note that

[F̂t+1(q̂t+1)− (1− α)] · [Ft+1(q̂t+1)− (1− α)] ≥ 0

follows from
|F̂t+1(q̂t+1)− (1− α)| ≥ sup

q
|Ft+1(q)− F̂t+1(q)| ≜ ϵt+1.
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Hence, an intuitive way to avoid the unverifiable assumption is to replace eq. (5) with:

qt+1 = q̂t+1 − λt+11(|F̂t+1(q̂t+1)− (1− α)| ≥ ϵt+1)
(
F̂t+1(q̂t+1)− (1− α)

)
. (14)

For deployability, ϵt+1 can be viewed as a hyperparameter that depends on the temporal properties of
data and the accuracy of F̂t+1. Following the same proof of Proposition 1, we have

E [ℓ1−α(st+1 − qt+1)|St] ≤ E [ℓ1−α(st+1 − q̂t+1)|St] ,
as long as Ft+1 is L-Lipschitz and λt+1 > 0 is small.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. Assume that F̂t+1(q̂t+1)− (1− α) and Ft+1(q̂t+1)− (1− α) have the same sign,
and Ft+1 is L-Lipschitz. With a suitably small λ > 0, we have:

E [ℓ1−α(st+1 − qt+1)|St] ≤ E [ℓ1−α(st+1 − q̂t+1)|St] ,

Proof. Let L(q) = Est+1 l1−α(st+1 − q). Note that the L-Lipschitzness of Ft+1 implies that ∇L(q)
is L-Lipschitz continuous. Hence:

L(qt+1)− L(q̂t+1) ≤ ∇L(q̂t+1)(qt+1 − q̂t+1) +
L

2
∥qt+1 − q̂t+1∥22

= −λt+1

[
F̂t+1(q̂t+1)− (1− α)

]
∇g(q̂t+1) +

Lλ2t+1

2

[
F̂t+1(q̂t+1)− (1− α)

]2
= −λt+1

[
F̂t+1(q̂t+1)− (1− α)

]2 [ F (q̂t+1)− (1− α)

F̂t+1(q̂t+1)− (1− α)
− Lλt+1

2

]
To satisfy E [ℓ1−α(st+1 − qt+1)|St] ≤ E [ℓ1−α(st+1 − q̂t+1)|St], it suffices that λt+1 satisfies:

λt+1 <
2(Ft+1(q̂t+1)− (1− α))

L(F̂t+1(q̂t+1)− (1− α))
,

which can be achieved since F̂t+1(q̂t+1)− (1− α) and Ft+1(q̂t+1)− (1− α) have the same sign.

Denote ϵt+1 = supq |Ft+1(q)− F̂t+1(q)|,δt+1 = |F̂t+1(q̂t+1)− (1− α)| ≤ 1− α, then

L(qt+1)− L(q̂t+1) ≤ ∇L(q̂t+1)(qt+1 − q̂t+1) +
L

2
∥qt+1 − q̂t+1∥22

≤ λt+1(δt+1)(δt+1 + ϵt+1) +
L

2
λt+1δ

2
t+1

< λt+1(1 + ϵt+1 +
L

2
).

Hence, even if the same-sign assumption in Proposition 1 does not hold, the "instantaneous" perfor-
mance of the refinement step is bounded by λt+1 and ϵt+1.

B.2 REGRET GUARANTEE WITH CONSTANT LEARNING RATES

Theorem 1. Let ℓt(q) = ℓ1−α(st − q). For arbitrary {ut}t≥1, u0 = 0, we have:

1

T

T∑
t=1

[ℓt(qt)− ℓt(ut)]︸ ︷︷ ︸
regret

+
η(1− 2α)

4

(∑T
t=1 errt
T

− α

)
︸ ︷︷ ︸

coverage

≤ η

T

T∑
t=1

∥α− errt −Mt∥22

+

T∑
t=1

1

2η

(
∥ut − q̂t∥22 − ∥ut−1 − q̂t∥22

)
︸ ︷︷ ︸

environments

.
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Proof. We begin by presenting the Bregman Proximal Inequality (Chen & Teboulle, 1993):

Lemma 1. (Bregman Proximal Inequality): Let X be a convex set in a Banach space, and f : X → R
be a closed proper convex function. Given a convex regularizer ψ : X → R, denote its Bregman
divergence by Dψ(·, ·). Then, qt under the update:

qt = argmin
q∈X

f(q) +Dψ(q, qt−1)

satisfies for any u ∈ R,

f(qt)− f(u) ≤ Dψ(u, qt−1)−Dψ(u, qt)−Dψ(qt, qt−1).

In our case, we take ψ to be ψ(x) = ∥x∥22/2, then Dψ(x,y) = ∥x− y∥22/2. By convexity of ℓt, we
upper bound the instantaneous dynamic regret to sum of three terms:

ℓt(qt)− ℓt(ut) ≤ ⟨∇ℓt(qt), qt − ut⟩
= ⟨∇ℓt(qt)−Mt, qt − q̂t+1⟩︸ ︷︷ ︸

(a)

+ ⟨Mt, qt − q̂t+1⟩︸ ︷︷ ︸
(b)

+ ⟨∇ℓt(qt), q̂t+1 − ut⟩︸ ︷︷ ︸
(c)

.

For term (a), note that

qt − q̂t+1 = q̂t − ηMt − q̂t+1 = η(α− errt −Mt),

hence
(a) = ⟨∇ℓt(qt)−Mt, qt − q̂t+1⟩ = η∥α− errt −Mt∥22.

For term (b) :

(b) = ⟨Mt, q̂t − q̂t+1⟩ =
η

2
(∥errt − α∥22 − ∥α− errt −Mt∥22 −M2

t )

≤ η

2
∥errt − α∥22 −

η

4
∥α− errt −Mt +Mt∥22

=
η

4
∥errt − α∥22.

For term (c), using Lemma 1, the update q̂t+1 = argminq
{
η ⟨∇ℓt(qt), q⟩+ 1

2 ||q − qt||2
}

implies:

(c) = ⟨∇ℓt(qt), q̂t+1 − ut⟩ ≤
1

2η

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22 − ∥qt − q̂t+1∥22

)
=

1

2η

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
− η

2
∥errt − α∥22

Combine the three upper bounds:

ℓt(qt)− ℓt(ut) ≤ η∥α− errt −Mt∥22 −
η

4
∥errt − α∥22 +

1

2η

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
≤ η∥α− errt −Mt∥22 −

η

4
(1− 2α)(errt − α)− η

4
(α− α2)

+
1

2η

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
Summing over t from 1 to T , we have:

T∑
t=1

[ℓt(qt)− ℓt(ut)] +
η

4

T∑
t=1

(1− 2α)(errt − α) +
ηT

4

T∑
t=1

(α− α2)

≤ η

T∑
t=1

∥α− errt −Mt∥22 +
T∑
t=1

1

2η

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
≤ η

T∑
t=1

∥α− errt −Mt∥22 +
T∑
t=1

1

2η

(
∥ut − q̂t∥22 − ∥ut−1 − q̂t∥22

)
. (u0 = 0)

Dividing both sides by T and ignoring the constant η4 (α− α2) completes the proof.
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B.3 REGRET GUARANTEE WITH ARBITRARY LEARNING RATES

To ensure that the regret guarantees with arbitrary learning rates match the form of Theorem 1 and
are presented more transparently, we consider the original OOGD:

q̂t+1 = q̂t + ηt(errt − α)

qt+1 = q̂t+1 − ηt+1Mt+1.

Note that in our algorithm, the learning rate used for the second update is ηt instead of ηt+1. For
arbitray learning rate {ηt}t≥1, we have:

1

T

T∑
t=1

[ℓt(qt)− ℓt(ut)] + CT

[
(1− 2α)

(∑T
t=1 errt
T

− α

)
+ α− α2

]2

≤ 1

T

T∑
t=1

ηt∥α− errt −Mt∥22 +
T∑
t=1

1

2ηt

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
,

where CT is the harmonic mean of the learning rates, i.e.

CT =
T∑T
t=1

1
ηt

.

Proof. Similar to the proof of Theorem 1, we obtain:

ℓt(qt)− ℓt(ut) ≤ ⟨∇ℓt(qt), qt − ut⟩
= ⟨∇ℓt(qt)−Mt, qt − q̂t+1⟩︸ ︷︷ ︸

(a)

+ ⟨Mt, qt − q̂t+1⟩︸ ︷︷ ︸
(b)

+ ⟨∇ℓt(qt), q̂t+1 − ut⟩︸ ︷︷ ︸
(c)

,

and:
(a) = ⟨∇ℓt(qt)−Mt, qt − q̂t+1⟩ = ηt∥α− errt −Mt∥22.

(b) ≤ ηt
4
∥errt − α∥22.

(c) ≤ 1

2ηt

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
− ηt

2
∥errt − α∥22

Combine the three upper bounds:

ℓt(qt)− ℓt(ut) ≤ ηt∥α− errt −Mt∥22 −
ηt
4
∥errt − α∥22 +

1

2ηt

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
Summing over t from 1 to T , we have:

T∑
t=1

[ℓt(qt)− ℓt(ut)] ≤
T∑
t=1

ηt∥α− errt −Mt∥22 −
T∑
t=1

ηt(errt − α)2 +

T∑
t=1

1

2ηt

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
≤

T∑
t=1

ηt∥α− errt −Mt∥22 − TCT

(∑T
t=1 |errt − α|2

T

)2

+

T∑
t=1

1

2ηt

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
(Cauchy-Schwarz inequality)

=

T∑
t=1

ηt∥α− errt −Mt∥22 − TCT

[
(1− 2α)

(∑T
t=1 errt
T

− α

)
+ α− α2

]2

+

T∑
t=1

1

2ηt

(
∥ut − q̂t∥22 − ∥ut − q̂t+1∥22

)
,

which completes the proof.
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B.4 PROOFS OF COVERAGE GUARANTEES

Proposition 2 is simply a special case of Theorem 2, so we only prove the more general result of
Theorem 2. We first prove the lemma below that shows the boundedness of qt. Lemma 2 is essential
in the proof of Theorem 2.

Lemma 2. Fix an initial threshold q1 ∈ [0, B]. Then COP in equation 1 with arbitrary nonnegative
learning rate ηt satisfies that

−Ωt(2M + 1) ≤ qt ≤ B +Ωt(2M + 1) ∀t ≥ 1,

where Ω0 = 0, and Ωt = max1≤r≤t ηr for t ≥ 1.

Proof. We first prove the upper bound. Combine eq. (4) and eq. (5) we get:

qt = qt−1 + ηt−1(errt−1 − α) + ηt−1Mt − ηtMt+1, (15)

where Mt is the optimistic term defined in eq. (8). For any t, if qt < st, we have qt < B <
B +Ωt(2M + 1). If qt > st, denote l as the largest integer below t satisfying ql ≤ sl, then qr > sr,
for l < r ≤ t. Hence,

qr = qr−1 − ηr−1α+ ηr−1Mr − ηrMr+1, l < r ≤ t.

Through iteration we obtain :

qt = ql +

t−1∑
r=l

[(errl − α)ηr + (ηr−1Mr − ηrMr+1)]

= ql + ηl −
t−1∑
r=l

ηrα+ (ηl−1Ml − ηtMt+1)

≤ sl + ηl + (ηl−1Ml − ηtMt+1)

≤ B +Ωt(2M + 1).

For the lower bound, if qt > st, we have qt > 0 > −Ωt(2λM +1). If qt ≤ st, denote l as the largest
integer below t satisfying ql > sl, then qr ≤ sr, for l < r ≤ t. Hence,

qt = ql +

t−1∑
r=l

[(errl − α)ηr + (ηr−1Mr − ηrMr+1)]

= ql − ηl +

t−1∑
r=l

ηr(1− α) + (ηl−1Ml − ηtMt+1)

> sl − ηl + (ηl−1Ml − ηtMt+1)

≥ −Ωt(2M + 1).

Theorem 2. Assume that for each t, st ∈ [0, B] and Mt ∈ [−M,M ], then for all T ≥ 1, the
prediction sets generated by Algorithm 1 satisfies∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣ ≤ B + (2 + 6M)ΩT
T

∥∆1:T ∥1,

where ∥∆1:T ∥1 = |η−1
1 |+

∑T
t=2 |η

−1
t − η−1

t |,ΩT = max1≤r≤T ηr.
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Proof. ∣∣∣∣ 1T
T∑
t=1

(errt − α)

∣∣∣∣ =
∣∣∣∣∣ 1T

T∑
t=1

(
t∑

r=1

∆r

)
· ηt (errt − α)

∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑
r=1

∆r

(
T∑
t=r

ηt (errt − α)

)∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑
r=1

∆r (qT+1 − qr + ηTMT+1 − ηrMr+1)

∣∣∣∣∣
≤ 1

T

∣∣∣∣∣
T∑
r=1

∆r(qT+1 − qr)

∣∣∣∣∣+ 1

T

∣∣∣∣∣
T∑
r=1

∆r(ηTMT+1 − ηrMr+1)

∣∣∣∣∣
≤ B + (2 + 4M)ΩT

T
∥∆1:T ∥1 +

2MΩT ∥∆1:T ∥1
T

=
B + (2 + 6M)ΩT

T
∥∆1:T ∥1.

Specifically, if ηt ≡ η, we have∣∣∣∣ 1T
T∑
t=1

(errt − α)

∣∣∣∣ ≤ B + (2 + 6M)η

Tη

Theorem 3. Assume the scores st
iid∼ P and has a continuous distribution function F . The learning

rates {ηt} satisfy:
∞∑
t=1

ηt = ∞,

∞∑
t=1

η2t <∞.

Let q∗ be the (1− α)-th quantile of P , satisfying: for q > q∗, F (q) > 1− α and for q < q∗, F (q) <
1− α, Then qt → q∗, i.e. limt→∞ P (Yt ∈ Ct(Xt)) = 1− α.

Proof. Denote random variable ϵt = errt − Eerrt = errt − 1 + F (qt), St =
∑t
i=1 ηiϵi, At =∑∞

i=t ηiϵi,Ft = σ(s1, · · · , st). We first prove At
a.s.−−→ 0.

Note that E(ηt+1ϵt+1|Ft) = 0 and for j > i, E(ϵiϵj) = E [Eϵiϵj |Fj−1)] = E [ϵi(Eϵj |Fj−1)] = 0.
For each t ≥ 1, E(St+1|Ft) = St + E(ηt+1ϵt+1|Ft) = St. Hence, {St}t≥1 is a martingale with
respect to the filtration Ft. Further,

(E|St|)2 ≤ E|St|2 =

t∑
i=1

η2i Eϵ2i ≤
t∑
i=1

η2i <∞.

Applying Doob’s first martingale convergence theorem, we obtain that {St}t≥1 converges almost
surely. Therefore, At

a.s.−−→ 0.

Next, let g(x) = 1− α− F (x), pt = qt + ηt−1Mt +At. We have:

pt+1 − pt = qt+1 − qt + ηtMt+1 − ηt−1Mt +At+1 −At

= ηt(errt − α)− ηt(errt − 1 + F (qt)) (by 15)
= ηt(1− α− F (qt))

= ηtg(pt −At − ηt−1Mt).

By Lemma 2, qt is bounded, hence {pt} is bounded, a.s.. By Bolzano–Weierstrass theorem, it has a
convergent subsequence {put}. We now prove limut→∞ put = 0 by contradiction.
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Suppose limt→∞ put
= q∗ + 3δ, δ > 0. The case of limt→∞ put

< 0 follows by the same argument.
SinceAt+ηt−1Mt

a.s.−−→ 0, there exists t0 ∈ N s.t. ∀t ≥ t0, |At+ηt−1Mt| < δ, ηt < δ, put −q∗ >
2δ. For t > t0,

put−1 = put
− ηut−1g(put−1 −Aut−1 − ηut−2Mut−1) ≥ put

− ηut−1 > q∗ + δ,

hence

put = put−1 + ηut−1g(put−1 −Aut−1 − ηut−2Mut−1)

≤ put−1 + ηut−1g(put−1 − δ) ≤ put−1 + ηut−1g(q
∗) = put−1,

i.e. put−1 ≥ put
. By induction we can prove that for any t > t0, put−1

≥ put−1+1 ≥ · · · ≥ put
>

q∗ + 2δ.

Next, let V (p) = (p− q∗)2, then for any t > ut0 , we have:

V (pt+1)− V (pt) = (pt + ηtg(pt −At − ηt−1Mt)− q∗)2 − (pt − q∗)2

= 2ηt(pt − q∗)g(pt −At − ηt−1Mt) + η2t [g(pt −At − ηt−1Mt)]
2

≤ 2ηt · 2δg(q∗ + δ) + η2t

= −4ηtδ(F (q
∗ + δ)− F (q∗)) + η2t . (1)

By assumption, F (q∗ + δ) − F (q∗) > 0. As
∑
t=ut0

ηt = ∞ and
∑
t=ut0

η2t < ∞, summing
equation 1 from ut0 to ∞ gives that Vt → −∞, contradicting the convergence of {put

}t≥1.

Finally, we conclude that any convergent subsequence of {pt}t≥1 converges to q∗. Therefore,
limt→∞ pt = q∗. Using At → 0 and ηt−1Mt → 0, t→ ∞ completes the proof.

C IMPLEMENT OF COP WITH KERNEL-BASED CDF

In this section, we compare the performance of using ECDF and Gaussian kernel density estimator
(KDE) for estimating the CDF in the COP framework F̂t+1. The KDE is implemented using a sliding
window approach to incorporate recent data points and adapt to distribution shifts. We set the scale
factor λ = 0.5, the length window w = 100, and the bandwidth h of Silverman’s rule:

h = 0.9× σ × w−0.2,

where σ is the minimum of the standard deviation of the window data and the interquartile range
(IQR) divided by 1.34. Then the CDF value at q is estimated using the Gaussian kernel:

F̂t+1(q̂t+1) =
1

n

t∑
i=t−w+1

Φ(
q̂t+1 − si

h
),

where Φ is the cumulative distribution function of the standard normal distribution, si is the non-
conformity score at timestep t.

We evaluate the performance of the choices of estimated CDF, including empirical CDF (denoted
ECDF) and kernel-based CDF (denoted Kernel), across six datasets: Changepoint, Distribution Drift,
Amazon Stock, Google Stock, Electricity Demand, and Temperature. The results are presented in
Table 3. We can see that even with simple ECDF, COP can achieve tight prediction sets and maintain
coverage rates close to the nominal level. The kernel-based CDF shows comparable performance in
some cases, but may require further tuning of parameters such as bandwidth for optimal results.

D LEARNING RATE SELECTION IN THE EXPERIMENTS

In our experiments, the default setting is to select four learning rates on all datasets and then pick
the one that yields the best performance. Considering the high sensitivity of LQT and OGD-based
methods to the learning rate, we carefully select more than four candidate learning rates for these
methods across various datasets. The following is the list of all learning rates used, which are
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Table 3: The experimental results on the choices of estimated CDF with nominal level α = 10%.

Dataset Method
Prophet AR Theta

Coverage

( %)

Average

width

Median

width

Coverage

( %)

Average

width

Median

width

Coverage

( %)

Average

width

Median

width

Changepoint
ECDF 89.8 8.29 8.44 89.7 8.18 8.25 89.8 8.45 8.53

Kernel 89.8 8.29 8.45 89.7 8.11 8.21 89.8 8.45 8.53

Distribution

Drift

ECDF 90.6 7.07 6.89 90.0 7.09 6.97 90.9 7.30 6.99

Kernel 90.6 7.07 6.89 90.0 7.10 6.98 90.9 7.30 6.99

Amazon

Stock

ECDF 89.6 39.86 27.91 89.5 17.09 12.90 89.6 17.21 12.23

Kernel 89.6 40.32 27.98 89.4 17.23 12.95 89.6 17.35 12.56

Google

Stock

ECDF 89.7 49.72 42.09 89.6 19.87 17.04 89.3 30.25 28.24

Kernel 89.7 50.85 42.33 89.6 19.92 16.94 89.3 30.36 28.40

Electricity

Demand

ECDF 90.1 0.385 0.376 90.0 0.117 0.098 89.8 0.069 0.052

Kernel 90.1 0.384 0.377 90.0 0.118 0.099 89.8 0.069 0.052

Temperature
ECDF 90.1 7.05 7.07 89.9 5.85 5.58 90.0 6.27 6.18

Kernel 90.1 7.06 7.08 89.9 5.85 5.59 90.0 6.25 6.17

determined through this systematic selection process to ensure fair and effective comparison.
ACI : η = {0.1, 0, 05, 0.01, 0.005},

OGD : η = {10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005},
SF-OGD : η = {1000, 500, 100, 50, 10, 5, 1, 0.5, 0.1, 0.05},

decay-OGD : η = {2000, 1000, 200, 100, 20, 10, 2, 1, 0.2, 0.1},
Conformal PID : η = {1, 0.5, 0.1, 0.05},

ECI : η = {1, 0.5, 0.1, 0.05},
LQT : η = {10, 5, 1, 0.5, 0.1, 0.05, 0.01},
COP : η = {1, 0.5, 0.1, 0.05}

For ACI and OGD, they do not use adaptive learning rates. For SF-OGD:

ηt = η · ∇ℓ(t)(qt)√∑t
i=1 ∥∇ℓ(i)(qi)∥22

,

where ℓ(t)(qt) is quantile loss and qt is the predicted radius at time t. For decay-OGD:

ηt = η · t− 1
2−ϵ,

where the hyperparameter ϵ = 0.1 follows Angelopoulos et al. (2024). For conformal PID, ECI and
COP:

ηt = η · (max{st−w+1, · · · , st} −min{st−w+1, · · · , st}),
where st is the non-conformity score at time t and the window length w = 100 follows Angelopoulos
et al. (2023b).

E MORE EXPERIMENTAL RESULTS IN SIMULATION DATASETS

We also evaluated our method in three other simulation datasets under variance changepoint, heavy-
tailed noise, and extreme distribution drift setting, respectively. Both datasets {Xi, Yi}ni=1 are
generated according to a linear model Yt = XT

t βt + ϵt, Xt ∼ N (0, I4), ϵt ∼ N (0, σt), n = 2000.
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• Variance changepoint setting: we set fixed β = (2, 1, 0.5,−0.5)⊤ and two variance change-
points: σt = 1 for t = 1, . . . , 500; σt = 3 for t = 501, . . . , 1500; and σt = 0.5 for
t = 1501, . . . , 2000.

• Heteroskedastic and heavy-tailed noise setting: we set fixed β = (2, 1, 0.5,−0.5)⊤ and the
noise ϵt is t(2), with standard deviation 1 + 2|XT

t β|3/E(|XTβ|3).
• Extreme distribution drift setting: we set β1 = (20, 10, 1, 1)⊤, βn = (1, 1, 20, 10)⊤, and

use linear interpolation to compute βt = β1 +
t−1
n−1 (βn − β1).

Table 4: The experimental results in the three other simulation datasets with nominal level α = 10%.
Note that, since PID, ECI and LQT methods completely fail on the Extreme Drift dataset, we did not
include them in the table.

Dataset Method
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Variance
Changepoint

ACI 91.0 ∞ 11.06 91.0 ∞ 10.74 91.0 ∞ 10.90
OGD 90.1 10.57 10.65 90.0 10.43 10.25 90.0 10.44 10.07

SF-OGD 90.0 14.75 14.06 90.0 14.80 14.18 90.0 14.47 13.82
decay-OGD 90.2 10.71 11.21 89.9 10.41 11.00 90.2 10.76 11.12

PID 89.7 13.17 11.81 89.7 13.07 11.77 89.7 13.26 11.99
ECI 89.9 10.66 10.39 89.8 10.35 9.75 89.9 10.60 10.04
LQT 90.6 12.10 11.77 88.7 10.84 10.97 89.8 11.64 11.38
COP 89.9 10.78 10.79 89.8 10.37 9.87 89.9 10.66 10.10

Heavy-tailed

ACI 90.3 ∞ 10.03 90.2 ∞ 10.01 90.3 ∞ 9.82
OGD 90.0 9.94 9.95 90.0 9.91 9.95 90.2 10.18 10.25

SF-OGD 90.0 15.22 14.05 90.0 15.10 13.93 90.0 15.43 13.91
decay-OGD 90.3 9.97 10.01 89.9 9.69 9.77 90.8 10.10 9.94

PID 89.7 13.60 11.47 89.6 13.14 11.36 89.6 13.12 11.19
ECI 89.9 10.54 10.49 90.0 10.34 10.27 90.0 10.55 10.36
LQT 92.0 13.21 12.32 89.4 10.13 10.09 92.8 15.79 13.74
COP 89.8 9.56 9.79 89.9 10.38 10.27 90.4 9.87 10.03

Extreme
Drfit

ACI 90.4 ∞ 79.01 89.7 ∞ 61.85 90.3 ∞ 70.06
OGD 91.1 275.87 280.00 89.9 64.03 62.00 91.3 213.10 212.00

SF-OGD 92.0 423.68 445.98 89.9 68.23 63.62 92.4 376.03 388.03
decay-OGD 89.7 265.81 274.93 90.0 64.50 60.32 91.6 246.51 248.24

COP 91.1 275.82 279.84 89.9 64.10 62.18 91.3 213.54 211.91

The results are shown in Table 4. We observe that COP consistently maintains the coverage rate close
to the nominal level of 90% in all scenarios while producing competitive interval widths. Notably,
in the Variance Changepoint and Heavy-tailed settings, COP achieves average widths comparable
to or tighter than OGD and ECI, without the instability seen in ACI (which yields infinite widths).
In the Extreme Drift setting, traditional methods like PID, ECI, and LQT failed to construct valid
prediction sets due to the severity of the shift, and are thus excluded from the table. In contrast, COP
successfully adapts to the extreme drift, maintaining valid coverage similar to OGD but with slightly
tighter intervals in the Theta base predictor case. These results further validate the robustness of COP
in handling complex distributional shifts.

F POST-SHIFT COVERAGE RECOVERY TIME

To quantify the responsiveness of COP and competing baselines after an abrupt distribution shift,
we define post-shift recovery time based on the stability of short-horizon empirical coverage. Let tc
denote the changepoint index. For each method, we compute a sliding-window coverage rate

cvgr(t) =
1

wr

t∑
i=t−wr+1

1{si < qi},
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where wr = 20 is the coverage-estimation window (independent of any internal calibration window).
Recovery is declared at the earliest time tr > tc such that

1− α− 1/wr ≤ cvgr(t) ≤ 1− α+ 1/wr for k consecutive indices t = tr, . . . , tr+k−1,

with nominal coverage 1− α = 0.9 and k = 10. This criterion requires the local empirical coverage
to remain around the target level for multiple consecutive checks, preventing spurious early detections
due to stochastic noise.

Table 5: Post-shift coverage recovery time (in steps) in the Changepoint datasets.

Method
Prophet AR Theta

Recovery
Time 1

Recovery
Time 2

Recovery
Time 1

Recovery
Time 2

Recovery
Time 1

Recovery
Time 2

ACI 35 73 50 0 35 66
OGD 12 0 40 0 40 0

SF-OGD 12 0 12 0 12 0
decay-OGD 6 73 153 73 60 73

PID 40 0 12 0 40 0
ECI 12 8 40 0 40 0
LQT 156 73 60 73 60 73
COP 12 0 40 0 40 0

G ROBUSTNESS OF INACCURATE ESTIMATED CDF

To evaluate the robustness of COP in adversarial environments where the estimated CDF may be
inaccurate, we performed an additional experiment in which the ECDF is corrupted by randomized
noise. Specifically, at each time step, we construct a noisy ECDF by

F̂noisy = γF̂ + (1− γ)ϵ,

where F̂ is the ECDF, ϵ ∼ U(0, 1) denotes a uniform random noise, and γ ∈ {1, 0.9, 0.5, 0.1, 0}
controls the level of the corruption. The case γ = 1 corresponds to the true ECDF, while γ = 0
represents a purely adversarial environment in which the estimated CDF contains no information
about the data distribution. We apply this noise independently at each time step and use F̂noisy in
place of F̂ in the COP update rule.

Table 6: The experimental results under different noise level γ in the two real-world datasets with
nominal level α = 10%.

Dataset γ
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Amazon
Stock

1.0 89.6 39.86 27.91 89.5 17.09 12.90 89.6 17.21 12.23
0.9 89.6 38.95 27.85 89.3 17.14 12.71 89.6 17.45 13.12
0.5 89.7 42.24 29.56 89.4 17.24 13.08 89.6 17.20 12.76
0.1 90.1 46.93 30.89 89.2 17.45 12.44 89.6 17.60 12.73
0.0 90.0 62.65 53.09 89.7 22.07 18.26 89.5 30.76 28.56

Google
Stock

1.0 89.7 49.72 42.09 89.6 19.87 17.04 89.3 30.25 28.24
0.9 89.8 49.99 42.06 89.6 19.81 16.92 89.4 30.43 27.79
0.5 90.0 54.57 46.08 89.6 19.84 17.33 89.4 29.82 27.27
0.1 90.0 61.25 51.91 89.6 19.98 17.23 89.5 30.68 28.18
0.0 90.8 86.26 55.43 90.0 30.04 20.32 89.9 30.24 20.76

Table 6 shows the results for Amazon and Google stock datasets across different noisy levels γ. The
coverage rate remains stable across all values of γ. Even when the CDF is fully replaced by uniform
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noise (γ = 0), the coverage rate varies by at most 0.5%. In contrast, the average and median interval
widths exhibit a relatively monotonic trend: as γ decreases and the CDF becomes less informative,
COP widens its intervals adaptively for validity. This behavior demonstrates that COP can flexibly
utilize the CDF information to tighten intervals when the CDF is accurate but to revert to conservative
intervals when the CDF is adversarial.

Overall, these results indicate that COP retains near-nominal coverage even when the CDF is corrupted
or completely uninformative, thereby confirming its robustness under adversarial noisy CDF.

H SENSITIVITY ANALYSIS OF THE SCALE FACTOR

In this section, we will analyze the sensitivity of the scale factor λ. As defined in the update rule

qt+1 = q̂t+1 − λ
(
F̂t+1(q̂t+1)− (1− α)

)
,

this parameter governs the magnitude of the refinement step derived from the estimated CDF. We
evaluated the performance in the Amazon Stock and Google Stock datasets for three distinct values:
λ ∈ {0.1, 0.5, 1.0}.

Table 7: The experimental results under different scale factor λ in the two real-world datasets with
nominal level α = 10%.

Dataset λ
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Amazon
Stock

1.0 89.4 40.31 28.96 89.0 16.97 12.88 89.5 17.01 12.2
0.5 89.6 39.86 27.91 89.5 17.09 12.9 89.6 17.21 12.23
0.1 89.7 40.98 29.06 89.3 16.90 12.62 89.6 17.26 12.66

Google
Stock

1.0 89.7 52.20 42.83 89.3 19.93 16.98 89.3 30.49 28.56
0.5 89.7 49.72 42.09 89.6 19.87 17.04 89.3 30.25 28.24
0.1 89.8 52.47 43.72 89.6 19.85 17.34 89.6 30.66 28.26

The results are shown in Table 7. Overall, COP demonstrates high robustness to variations in the
scale factor. Across all base predictors (Prophet, AR, and Theta), the coverage rates remain stable
and consistently close to the target, regardless of the specific λ chosen. Regarding efficiency, the
setting of λ = 0.5 generally yields the most favorable trade-off, achieving tighter average and median
widths compared to the more conservative λ = 0.1. While λ = 1.0 also produces competitive widths,
it occasionally results in slightly lower coverage rates (e.g., AR on Amazon Stock). These empirical
findings justify our default hyperparameter selection of λ = 0.5 used in the main experiments.

I STATISTICAL SIGNIFICANCE ANALYSIS

We regenerated the Changepoint and Distribution Drift datasets using ten different random seeds. For
each method and each base model (Prophet, AR, Theta), we evaluated the coverage rate, the average
interval width, and the median width on every dataset and then reported the mean and standard
deviation across the ten generated datasets.

As shown in Table 8 and Table 9, the variability across multiple data generation seeds is small:
coverage rate varies by less than 0.5%, and interval width variations vary slightly. This indicates
that performance differences between methods are not attributable to any single random dataset. In
both experimental settings, COP consistently achieves coverage rates close to the target level while
yielding tight interval widths.

Moreover, we conducted paired t-tests to reflect the statistical significance of shorter width of COP.
All of the baselines above show p-values less than 0.05 (e.g., OGD has p-value=0.014, SF-OGD has
p-value=0.0002, and ECI’s p-value=0.03). These results confirm that the observed differences in
width between our methods and the COP baseline are statistically significant.
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Table 8: The experimental results in the Changepoint datasets with nominal level α = 10%. Values
represent the mean ± standard deviation of coverage Rate, average width, and median width across
ten independent runs using different random seeds.

Method
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

ACI 90.0±0.01 ∞ 8.27±0.04 90.0±0.01 ∞ 8.15±0.04 90.0±0.01 ∞ 8.33±0.05
OGD 90.1±0.02 8.63±0.09 8.62±0.10 90.0±0.02 8.46±0.10 8.48±0.12 90.1±0.03 8.68±0.12 8.64±0.13

SF-OGD 90.0±0.01 12.65±0.12 11.59±0.12 90.0±0.01 12.66±0.15 11.63±0.15 90.0±0.01 12.68±0.25 11.71±0.28
decay-OGD 90.6±0.10 8.52±0.20 8.34±0.15 90.1±0.09 8.17±0.22 8.11±0.17 90.5±0.30 8.43±0.30 8.29±0.20

PID 89.7±0.01 11.06±0.15 9.36±0.18 89.7±0.09 10.86±0.10 9.18±0.13 89.7±0.02 10.99±0.20 9.32±0.25
ECI 89.9±0.01 8.32±0.17 8.34±0.19 89.9±0.09 8.22±0.23 8.26±0.22 89.9±0.02 8.38±0.17 8.43±0.19
LQT 90.4±0.30 10.72±1.20 9.70±1.00 90.0±0.30 10.23±1.00 9.40±0.90 90.2±0.50 10.49±0.90 9.70±0.95
COP 89.8±0.15 8.29±0.15 8.35±0.15 89.4±0.50 8.12±0.20 8.23±0.20 89.8±0.30 8.35±0.15 8.38±0.18

Table 9: The experimental results in the Distribution Drift datasets with nominal level α = 10%.
Values represent the mean ± standard deviation of coverage Rate, average width, and median width
across ten independent runs using different random seeds.

Method
Prophet AR Theta

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

Coverage
( %)

Average
width

Median
width

ACI 89.8±0.02 ∞ 6.61±0.03 89.7±0.03 ∞ 6.53±0.02 89.8±0.02 ∞ 6.64±0.02
OGD 90.2±0.01 7.04±0.03 6.91±0.03 90.1±0.02 6.89±0.04 6.84±0.03 90.2±0.01 7.08±0.04 6.98±0.05

SF-OGD 90.0±0.00 11.50±0.01 10.35±0.02 90.0±0.00 11.44±0.06 10.28±0.03 90.0±0.00 11.50±0.08 10.28±0.05
decay-OGD 90.4±0.12 7.38±0.10 6.76±0.03 90.0±0.04 6.94±0.06 6.60±0.03 90.2±0.08 7.24±0.05 6.74±0.02

PID 89.7±0.00 9.59±0.06 7.79±0.02 89.6±0.01 9.67±0.10 7.75±0.02 89.7±0.00 9.70±0.05 7.86±0.01
ECI 90.0±0.00 7.01±0.05 6.84±0.03 89.9±0.03 6.83±0.04 6.81±0.04 90.1±0.03 7.10±0.08 6.93±0.04
LQT 90.7±0.05 9.47±0.07 8.53±0.03 90.5±0.59 8.56±0.07 8.00±0.20 90.5±0.59 9.50±0.33 8.55±0.04
COP 90.5±0.11 6.77±0.08 6.70±0.04 89.9±0.03 6.67±0.18 6.67±0.10 90.5±0.14 7.12±0.16 6.87±0.05

Overall, these repeated-data experiments confirm that our findings are not sensitive to the choice
of a single random seed. The overall patterns reported in the main text remain the same across
independently generated datasets.

J COMPUTATIONAL COMPLEXITY ANALYSIS

To compare the practical efficiency of the baselines and COP, we measured the average computation
time for each method. All timings were obtained using a single CPU core (Intel(R) Xeon(R) Platinum
8269CY CPU @ 2.50GHz) on the same machine, with each method running for 3020 steps. As
shown in Table 10, the reported value represents the mean per-step time cost.

Table 10: Average time cost per update step.

Method ACI OGD SF-OGD decay-OGD PID ECI LQT COP

Time Cost (ms) 0.043 0.001 0.012 0.001 0.013 0.007 0.010 0.011

The simplest gradient-based methods (OGD and decay-OGD) are the fastest, requiring only 0.001 ms
per step. Methods that consider all past data, such as SF-OGD and PID, incur higher overhead (around
0.012 – 0.013 ms). Methods that consider the past data in a certain window, such as ECI, LQT, and
COP fall in a similar range (0.007 – 0.011 ms). Overall, the differences between methods remain
small in absolute terms, and all methods run easily in real time for typical streaming applications.
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K VISUALIZATION OF COVERAGE AND INTERVAL

Figure 1 shows the corresponding rolling-window coverage for each method. The coverage trajectories
show how frequently each approach stays close to the target level and how often it experiences
deviations. The worse methods tend to display larger swings in coverage, including occasional
periods of undercoverage. In contrast, COP and several ECI variants maintain a more stable coverage
across the entire time period, even during intervals with sharp changes in the underlying series.

In Figure 2, we plot the interval widths for all methods, together with zoomed-in panels that highlight
periods of rapid market movement. These plots show clear differences in how each method responds
to changes in volatility. Some approaches, such as PID or ECI-based variants, exhibit sharp jumps or
sudden drops in interval width when the underlying series becomes more volatile. Others, including
ECI-based methods and COP, adjust their intervals more gradually and maintain a smoother trajectory.

Figure 1: Comparison results of coverage rate on Amazon stock dataset with Prophet model. The
coverage is averaged over a rolling window of 50 points.
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Figure 2: Comparison results of prediction sets on Amazon stock dataset with Prophet model.
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