

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTION-INFORMED ONLINE CONFORMAL PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Conformal prediction provides a pivotal and flexible technique for uncertainty quantification by constructing prediction sets with a predefined coverage rate. Many online conformal prediction methods have been developed to address data distribution shifts in fully adversarial environments, resulting in overly conservative prediction sets. We propose Conformal Optimistic Prediction (COP), an online conformal prediction algorithm incorporating underlying data pattern into the update rule. Through estimated cumulative distribution function of non-conformity scores, COP produces tighter prediction sets when predictable pattern exists, while retaining valid coverage guarantees even when estimates are inaccurate. We establish a joint bound on coverage and regret, which further confirms the validity of our approach. We also prove that COP achieves distribution-free, finite-sample coverage under arbitrary learning rates and can converge when scores are *i.i.d.*. The experimental results also show that COP can achieve valid coverage and construct shorter prediction intervals than other baselines.

1 INTRODUCTION

Uncertainty quantification is essential for making reliable forecasts, as prediction errors could lead to severe consequences, particularly in high-risk domains including epidemiology and finance. Despite the availability of various methods for uncertainty quantification, such as confidence calibration (Guo et al., 2017) and Bayesian networks (Fortunato et al., 2017), these approaches often fail to provide provable coverage guarantees, which significantly restricts their applicability and reliability.

To address this limitation, Conformal Prediction (CP) (Vovk et al., 2005) stands out as a powerful technique to construct prediction sets with model-agnostic and distribution-free properties. Under the assumption of data exchangeability, it theoretically guarantees that the prediction sets contain the true label with a specified probability. Consequently, CP has shown promising performance in multiple domains, such as large language models (Gui et al., 2024), robotics (Lindemann et al., 2023), and image classification (Angelopoulos et al., 2020).

Despite the success of CP for exchangeable data, it remains challenging to directly perform CP in scenarios involving distribution shifts and temporal dependence that violate the exchangeability assumption. To resolve this problem, significant efforts have been made to extend CP methods beyond exchangeability (Barber et al., 2023; Xu & Xie, 2021; Tibshirani et al., 2019; Yang et al., 2024).

Recently, a large amount of research is emerging in Conformal Prediction for time series. Pioneered by ACI (Gibbs & Candès, 2021), adversarial online learning methods were incorporated into the CP framework to adapt to arbitrary online distribution shifts. To improve it, Conformal PID (Angelopoulos et al., 2023b) incorporated PID control and ECI (Wu et al., 2025) leveraged error quantification via smoothed quantile loss. To further determine the step size for dynamic environments, other online learning techniques were used such as directly choosing decaying step size (Angelopoulos et al., 2024), expert aggregation (Zaffran et al., 2022; Gibbs & Candès, 2024), and strongly adaptive regret (Bhatnagar et al., 2023; Hajishememi & Shen, 2024). However, they focus on fully adversarial environments and adjust prediction sets simply based on the iterative steps, without considering the underlying data patterns. Consequently, despite their well-established theoretical basis, they tend to construct overly conservative prediction sets in practice.

Instead of online learning methods, another line of work (Xu & Xie, 2021; 2023; Lee et al., 2024) proposed methods to directly obtain prediction sets via estimated distribution function of non-conformity scores, such as SPCI (Xu & Xie, 2023), which employed random forest as an estimator. Their theoretical results require assumptions like model consistency and distributional smoothness, and hence are not distribution-free. Other methods focus on assigning weights to historical scores. HOP-CPT (Auer et al., 2023) utilized the Modern Hopfield Network and CT-SSF (Chen et al., 2024a) leveraged the inductive bias in deep representation learning to dynamically adjust weights. However, these approaches often lack theoretical results, such as finite-sample coverage, making them potentially unreliable and suffer from overfitting issues.

In this work, we propose *Conformal Optimistic Prediction (COP)*, an online CP algorithm that incorporates underlying data pattern of the non-conformity scores into the update rule. The key step is a refinement update based on the linear approximation of the expected quantile loss and an estimated cumulative distribution function (CDF). COP maintains the well-grounded coverage guarantees inherent to traditional methods, while taking advantage of the distribution information to construct tighter prediction intervals. We also establish a connection to the online optimistic gradient descent (Rakhlin & Sridharan, 2013; Zhao et al., 2024), with a scaled distribution-informed hint. From this standpoint, we derive a joint bound on regret and coverage, which further confirms the validity of our approach. Moreover, COP does not need to compute inverse of the estimated CDF as Lee et al. (2024) and Wang et al. (2025) do, thereby reducing computational cost and unnecessary numerical error. Our contributions can be summarized as follows:

- We propose a novel method for online CP, Conformal Optimistic Prediction (COP). Compared to traditional methods, COP introduces a refinement step leveraging the estimated distribution function, which allows for capturing potential predictable information of the non-conformity scores and providing more efficient prediction sets.
- We also introduce another perspective on COP through the lens of optimistic online gradient descent, which facilitates more comprehensive theoretical analysis. We further explore a joint regret–coverage bound for COP that sheds some light on the theoretical motivation behind our approach.
- We prove the distribution-free and finite-sample coverage of COP with general optimistic terms under arbitrary learning rates. Moreover, we demonstrate the asymptotic consistency of COP with i.i.d. scores and properly chosen learning rates.
- Our experimental results demonstrate the superior performance of COP in time series datasets, including simulation data under distribution shift and real-world data in the finance, energy, and climate domains. We show that COP maintains coverage at the target level and obtains tighter prediction sets than other state-of-the-art methods.

2 BACKGROUND

2.1 PROBLEM SETUP

Given sequentially collected data $\{(X_t, Y_t)\}_{t \geq 1} \subset \mathcal{X} \times \mathcal{Y}$, at time t , our base model \hat{f}_t utilizes previously observed data $\{(X_i, Y_i)\}_{i \leq t-1}$ to produce point prediction $\hat{Y}_t = \hat{f}_t(X_t)$ for the unobserved label Y_t . The goal of CP is to construct a prediction set $\hat{C}_t(X_t)$ based on \hat{Y}_t . Aligned with the standard CP methods, consider a conformal score function $S_t(\cdot, \cdot) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, which measures the discrepancy between the base model's prediction $\hat{f}(X_t)$ and the true label Y_t . For example, the score function can be $S_t(x, y) = |y - \hat{f}_t(x)|$. Given S_t , CP constructs the set in the form of:

$$\hat{C}_t(X_t) = \{y \in \mathcal{Y} : S_t(X_t, y) \leq q_t\},$$

where q_t is the threshold to be determined.

Given nominal miscoverage level α , note that if the data sequence $\{(X_i, Y_i)\}_{i \leq t+1}$ are i.i.d. or exchangeable, taking q_t to be the $\lceil(1 - \alpha)(1 + t)\rceil$ -th smallest elements among $\{S_t(X_t, Y_i)\}_{i=1}^t$ yields a valid coverage guarantee by split conformal prediction

$$\mathbb{P}\{Y_{t+1} \in \hat{C}_{t+1}(X_{t+1})\} \geq 1 - \alpha.$$

108 However, in an adversarial setting where exchangeability does not hold, such as time series data with
 109 strong correlations, it is very difficult to achieve such a real-time coverage guarantee. Recent works
 110 (Bhatnagar et al., 2023; Angelopoulos et al., 2023b; 2024; Podkopaev et al., 2024) have turned to
 111 consider the following long-term coverage guarantee:

$$112 \lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{Y_t \notin \hat{C}_t(X_t)\} = \alpha. \quad (1)$$

116 Parallel to these works, our target lies in designing an online algorithm to dynamically choose the
 117 threshold q_t that can achieve the control in equation 1 without any distributional assumptions on data
 118 $\{(X_t, Y_t)\}_{t \geq 1}$. Also, we want the size of our prediction sets to be as small as possible.

119 2.2 CONFORMAL PREDICTION FOR SEQUENTIAL DATA

121 Let $s_t = S(X_t, Y_t)$ be the non-conformity score at time t . When the label Y_t is observed, online CP
 122 considers updating \hat{q}_t with the following rule

$$123 \hat{q}_{t+1} = \hat{q}_t + \eta(\text{err}_t - \alpha), \quad (2)$$

125 where $\text{err}_t = \mathbb{1}\{s_t > \hat{q}_t\} = \mathbb{1}\{Y_t \notin \hat{C}_t(X_t)\}$ is the miscoverage indicator and η is the learning rate.

126 The idea to set q_t through online gradient descent with a fixed step size was first introduced in ACI
 127 (Gibbs & Candès, 2021). Subsequent improvements include improving update rules by introducing
 128 decaying stepsizes (Angelopoulos et al., 2024), PID control (Angelopoulos et al., 2023b), and error
 129 quantification (Wu et al., 2025). Moreover, some methods borrow online learning techniques and
 130 consider not only coverage guarantee, but also dynamic regret analysis (Gibbs & Candès, 2024;
 131 Bhatnagar et al., 2023; Podkopaev et al., 2024). However, these methods only targeted at fully
 132 adversarial environments and ignored the predictive part in the sequence. Another line of work aims
 133 at learning the distribution of data with estimated distribution functions (Xu & Xie, 2023; Lee et al.,
 134 2024) or capturing temporal structure through deep neural networks (Chen et al., 2024a; Auer et al.,
 135 2023). However, both of them cannot provide provable coverage guarantees.

136 Most relate to us are the LQT algorithm proposed by Areces et al. (2025) and the Conformal PID
 137 algorithm in Angelopoulos et al. (2023a). They consider both adversarial and predictable data.
 138 However, the application of LQT relies heavily on linear autoregressive structures. For Conformal
 139 PID, the selection of its scorecaster model is arbitrary and lacks principled guidance. An inaccurate
 140 or excessively complex scorecaster may impair performance by introducing additional variance.

142 2.3 OPTIMISTIC ONLINE GRADIENT DESCENT

144 Optimistic online gradient descent (OOGD) has been extensively studied and applied across various
 145 domains. It aims at adding prior knowledge about the sequence within the paradigm of online
 146 learning. Rakhlin & Sridharan (2013) proposed the general version of the Optimistic Mirror Descent
 147 algorithm, which was built upon the results in (Chiang et al., 2012). Recently, OOGD has been
 148 adopted in Riemannian online convex optimization (Wang et al., 2023; Roux et al., 2025), generative
 149 models (Daskalakis et al., 2017), reinforcement learning (Ito, 2021; Bubeck et al., 2019), etc. Other
 150 theoretical results of OOGD include problem-dependent regret bounds (Chen et al., 2024b; Zhao et al.,
 151 2024), saddle point problem (Daskalakis & Panageas, 2018; Mertikopoulos et al., 2018; Mokhtari
 152 et al., 2020) and other last iterate convergence properties (Gorbunov et al., 2022).

153 3 METHOD AND THEORY

155 3.1 CONFORMAL OPTIMISTIC PREDICTION

157 We begin by considering eq. (2) from the view of online gradient descent. Let $\ell_{1-\alpha}(q) = (\mathbb{1}\{q >
 158 0\} - \alpha)q$ denote the $(1 - \alpha)$ -th quantile loss, then eq. (2) can be viewed as online (sub)gradient
 159 descent (OGD) on the quantile loss $\ell_{1-\alpha}(s_t - q)$. For simplicity, we denote $\nabla_{\hat{q}_t} \ell_{1-\alpha}(s_t - \hat{q}_t)$ as
 160 $\nabla \ell_{1-\alpha}(s_t - \hat{q}_t)$, and rewrite eq. (2) as:

$$161 \hat{q}_{t+1} = \hat{q}_t + \eta(\text{err}_t - \alpha) = \hat{q}_t - \eta \nabla \ell_{1-\alpha}(s_t - \hat{q}_t). \quad (3)$$

162 One criticism of eq. (3) is that the good coverage is obtained due to reactively correcting past mistakes
 163 and through a cancellation of positive and negative errors. The radius q_t may exhibit significant
 164 fluctuations around the true value (Gibbs & Candès, 2021; Wu et al., 2025), leading to inefficient
 165 prediction intervals. An alternative way is to directly estimate the conditional quantiles or distribution
 166 function \hat{F}_t of the scores in an online fashion (Lee et al., 2024). Then q_t can directly take $\hat{F}_t^{-1}(1 - \alpha)$.
 167 However, the validity of these methods fully counts on the estimated quantiles or CDF, which may
 168 suffer from overfitting when addressing adversarial data.

169 To mitigate the limitations, we consider improving eq. (3) by taking advantage of the predictable
 170 information through an estimated distribution function. Let $\mathcal{S}_t = (s_1, \dots, s_t)$ and we denote the
 171 cumulative distribution function (CDF) of s_{t+1} conditional on \mathcal{S}_t as $F_{t+1}(\cdot | \mathcal{S}_t) = F_{t+1}(\cdot)$ for
 172 simplicity. **Note that, if we assume that the conditional distribution $s_t | \mathcal{S}_t$ is invariant over t , the target**
 173 **of conformal prediction can be viewed as finding the conditional $(1 - \alpha)$ -th quantile of $s_t | \mathcal{S}_t$. Hence,**
 174 **an intuitive way to improve the efficiency of OGD is to adopt the following refinement for \hat{q}_{t+1} :**

$$q_{t+1} = \arg \min_{\|\hat{q}_{t+1} - q\|_2^2 \leq \gamma} \mathbb{E}_{s_{t+1}} [\ell_{1-\alpha}(s_{t+1} - q) | \mathcal{S}_t].$$

177 Given that we output q_t at timestep t , the miscoverage indicator of interest turns into $err_t = \mathbb{1}\{s_t >$
 178 $q_t\}$, instead of $\mathbb{1}\{s_t > \hat{q}_t\}$ in eq. (3). Hence, eq. (3) is substituted with:

$$\hat{q}_{t+1} = \hat{q}_t + \eta (err_t - \alpha) = \hat{q}_t - \eta \nabla \ell_{1-\alpha}(s_t - q_t). \quad (4)$$

181 The refinement serves as a re-calibration step to adjust and optimize the conservative action that
 182 update eq. (4) makes, and utilizes the predictable information of non-conformity scores $\{s_t\}_{t \geq 1}$ to
 183 enhance the conditional performance.

184 Let $\mathcal{L}_{t+1}(q) = \mathbb{E}_{s_{t+1}} [\ell_{1-\alpha}(s_{t+1} - q) | \mathcal{S}_t]$. Note that $\nabla_q \mathcal{L}_{t+1}(q) = F_{t+1}(q) - (1 - \alpha)$, the optimization
 185 above does not have a closed form solution. Similar issues also occur when using online mirror
 186 descent. We discuss this in Appendix A.1. As opposed to the above implicit update, we therefore
 187 turn to minimize the local approximation. **By convexity of \mathcal{L}_{t+1} :**

$$\mathcal{L}_{t+1}(q) \geq \mathcal{L}_{t+1}(\hat{q}_{t+1}) + (q - \hat{q}_{t+1})(F_{t+1}(\hat{q}_{t+1}) - (1 - \alpha))$$

190 Denote \hat{F}_{t+1} as the estimated CDF of $s_{t+1} | \mathcal{S}_t$. Replacing F_{t+1} with \hat{F}_{t+1} , the optimization above
 191 reduces to:

$$q_{t+1} = \arg \min_q \mathcal{L}_{t+1}(\hat{q}_{t+1}) + (q - \hat{q}_{t+1}) \left(\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha) \right),$$

$$\text{s.t. } \|\hat{q}_{t+1} - q\|_2^2 \leq \Lambda.$$

196 Equivalently, **for every $\Lambda > 0$, there exists some $\lambda_{t+1} > 0$,**

$$q_{t+1} = \hat{q}_{t+1} - \lambda_{t+1} \left(\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha) \right). \quad (5)$$

199 We remark that our refinement can also be implemented on another widely employed online CP
 200 method, adaptive conformal inference (ACI) (Gibbs & Candès, 2021), as detailed in Appendix A.2.
 201 There are many choices for \hat{F}_{t+1} , such as empirical cumulative distribution function (ECDF) and
 202 kernel-based estimation (Silverman, 1986). As a brief clarification on the benefit of our refinement,
 203 we present the proposition as follows.

204 **Proposition 1.** *Assume that $\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)$ and $F_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)$ have the same sign,*
 205 *and F_{t+1} is L -Lipschitz. With a suitably small $\lambda_{t+1} > 0$, we have:*

$$\mathbb{E} [\ell_{1-\alpha}(s_{t+1} - q_{t+1}) | \mathcal{S}_t] \leq \mathbb{E} [\ell_{1-\alpha}(s_{t+1} - \hat{q}_{t+1}) | \mathcal{S}_t],$$

208 i.e. the expected quantile loss of q_{t+1} is smaller than that of \hat{q}_{t+1} at timestep $t + 1$. This indicates
 209 that we can tolerate a certain deviation of \hat{F}_{t+1} from F_{t+1} . It suffices that their relative ordering with
 210 respect to $1 - \alpha$ coincides at certain points and our method is preferable in this regard. **We also add a**
 211 **small modification of eq. (5) in Appendix A.3 that avoids the "same-sign" assumption.** Moreover,
 212 even if the estimated distribution function \hat{F}_{t+1} is not accurate, we can still obtain the basic long-term
 213 coverage guarantee, as shown in Proposition 2.

214 Formally, we propose our method Conformal Optimistic Prediction (COP) in Algorithm 1. The
 215 naming reflects the “optimistic” belief that the estimated CDF \hat{F}_{t+1} reflects the behavior of the true

216 CDF F_{t+1} . We will further clarify the close connection between our method and online optimistic
 217 gradient descent (OOGD) in the next section.
 218

Algorithm 1 Conformal Optimistic Prediction with estimated CDF

221 **Require:** nominal miscoverage rate $\alpha \in (0, 1)$, base predictor \hat{f} , learning rate $\eta > 0, t =$
 222 $1, 2, \dots, T$, scale factor $\lambda_{t+1} \geq 0$, init. $\hat{q}_1 \in \mathbb{R}$
 223 1: **for** $t \geq 1$ **do**
 224 2: Observe input $X_t \in \mathcal{X}$
 225 3: Return prediction set $\hat{C}_t(X_t, q_t) = [\hat{f}_t(X_t) - q_t, \hat{f}_t(X_t) + q_t]$
 226 4: Observe true label $Y_t \in \mathcal{Y}$ and compute true radius $s_t = \inf\{s \in \mathbb{R} : Y_t \in \hat{C}_t(X_t, s)\}$
 227 5: Update the primary radius

$$\hat{q}_{t+1} = \hat{q}_t + \eta [\mathbb{1}(s_t > q_t) - \alpha]$$

228 6: Compute estimated cumulative distribution function \hat{F}_{t+1} for s_{t+1}
 229 7: Update the refined radius

$$q_{t+1} = \hat{q}_{t+1} - \lambda_{t+1} \left(\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha) \right)$$

230 8: **end for**

3.2 CONNECTION WITH OOGD

231 To begin, we note that eq. (4) and eq. (5) can be rewritten in the way of **OOGD** by:

$$\hat{q}_{t+1} = \arg \min_q \left\{ \eta \langle \nabla \ell_{1-\alpha}(s_t - q_t), q \rangle + \frac{1}{2} \|q - \hat{q}_t\|^2 \right\} \quad (6)$$

$$q_{t+1} = \arg \min_q \left\{ \eta \langle M_{t+1}, q \rangle + \frac{1}{2} \|q - \hat{q}_{t+1}\|^2 \right\}. \quad (7)$$

232 In the literature of OOGD, M_{t+1} is the optimistic term, aiming at guessing the next move and
 233 incorporating it into the objective (Rakhlin & Sridharan, 2013). While classical OOGD often takes
 234 M_{t+1} as the previous gradient, COP uses a distribution-informed hint:

$$M_{t+1} = (\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)) \cdot \lambda_{t+1}/\eta, \quad (8)$$

235 which captures potential distribution shift of the next score. Empirically, we take $\lambda_{t+1}/\eta \leq 1$ and
 236 denote it as the scale factor, indicating our confidence on the accuracy of \hat{F}_{t+1} . For instance, when
 237 the base model performs well, the scores s_t tend to be highly stochastic and difficult to predict,
 238 suggesting a smaller λ_{t+1} . Conversely, when \hat{F}_t is reliable, the scale factor can be set close to 1.
 239 Specifically, COP boils down to OGD if we simply set $\lambda_{t+1} = 0$.

240 Besides the coverage guarantee in Section 3.3, dynamic regret is often considered as an additional
 241 performance metric for online CP (Bhatnagar et al., 2023; Ramalingam et al., 2025). From the view
 242 of OOGD, we obtain a joint regret-coverage bound with constant learning rate in Theorem 1. The
 243 result for dynamic learning rates can be seen in Appendix B.2.

244 **Theorem 1.** Let $\ell_t(q) = \ell_{1-\alpha}(s_t - q)$. For arbitrary $\{u_t\}_{t \geq 1}$, $u_0 = 0$, we have:

$$\underbrace{\frac{1}{T} \sum_{t=1}^T [\ell_t(q_t) - \ell_t(u_t)]}_{\text{regret}} + \underbrace{\frac{\eta(1-2\alpha)}{4} \left(\frac{\sum_{t=1}^T \text{err}_t}{T} - \alpha \right)}_{\text{coverage}} \leq \frac{\eta}{T} \sum_{t=1}^T \|\alpha - \text{err}_t - M_t\|_2^2 + \underbrace{\sum_{t=1}^T \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_{t-1} - \hat{q}_t\|_2^2)}_{\text{environments}}.$$

245 The term $\sum_{t=1}^T \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_{t-1} - \hat{q}_t\|_2^2)$ reflects the non-stationarity of environments (Zhao
 246 et al., 2024). Although without distributional assumption, regret bounds and coverage bounds of

online CP do not imply each other (Angelopoulos et al., 2025), Theorem 1 shows that properly choosing M_t can simultaneously reduce the bound for both regret and coverage. Specifically, note that $\mathbb{E}\|\alpha - \text{err}_t - M_t\|_2^2|\mathcal{S}_{t-1} \approx \mathbb{E}\|\alpha - \mathbb{1}(s_t > \hat{q}_t) - M_t\|_2^2|\mathcal{S}_{t-1}$, a natural idea for sequentially choosing M_t would be taking it close to:

$$F(\hat{q}_t) - (1 - \alpha) = \arg \min_{M_t} \mathbb{E}\|\alpha - \mathbb{1}(s_t > \hat{q}_t) - M_t\|_2^2|\mathcal{S}_{t-1},$$

This coincides with the choice of our method with the scale factor taken as 1.

3.3 COVERAGE GUARANTEES

In this section, we present coverage guarantees of COP. For simplicity, we consider the refinement step eq. (5) in the way of OOGD:

$$q_{t+1} = \hat{q}_{t+1} - \eta_t M_{t+1}, \quad (9)$$

where M_{t+1} is the optimistic term, instead of the choice in Equation (8). All of the following results require M_{t+1} to be bounded, and this holds in our case since the scale factor $\lambda_{t+1}/\eta_t \leq 1$ and $M_t \in [\alpha - 1, \alpha]$ in Equation (8).

The detailed proofs can be found in Appendix B. We first show the long term coverage of COP with fixed learning rate η .

Proposition 2. *Assume that for each t , $s_t \in [0, B]$ and $M_t \in [-M, M]$, then for all $T \geq 1$, the prediction sets generated by COP with fixed learning rate η satisfies*

$$\left| \frac{1}{T} \sum_{t=1}^T \text{err}_t - \alpha \right| \leq \frac{B + (2 + 6M)\eta}{T\eta}. \quad (10)$$

Although we assume boundedness of scores s_t and optimistic terms M_t , running COP and achieving eq. (10) does not require knowing the upper bound B and M . The finite-sample result in Proposition 2 naturally implies the long-term coverage eq. (1), i.e. $\lim_{T \rightarrow \infty} \frac{\sum_{t=1}^T \text{err}_t}{T} = \alpha$.

Besides, we further develop coverage guarantee with dynamic learning rate η_t :

Theorem 2. *Assume that for each t , $s_t \in [0, B]$ and $M_t \in [-M, M]$, then for all $T \geq 1$, the prediction sets generated by COP with arbitrary learning rate η_t satisfies*

$$\left| \frac{1}{T} \sum_{t=1}^T \text{err}_t - \alpha \right| \leq \frac{B + (2 + 6M)\Omega_T}{T} \|\Delta_{1:T}\|_1,$$

where $\Delta_1 = \eta_1^{-1}$, $\Delta_t = \eta_t^{-1} - \eta_{t-1}^{-1}$ for all $t \geq 1$, and $\|\Delta_{1:T}\|_1 = \sum_{t=1}^T \Delta_t$, $\Omega_T = \max_{1 \leq r \leq T} \eta_r$.

Note that, $\|\Delta_{1:T}\|_1$ is closely related to the number of times we increase the step size. Specifically, $\|\Delta_{1:T}\|_1 \leq 2N_t/(\min_{t \leq T} \eta_t)$, where $N_T = \sum_{t=1}^T \mathbb{1}(\eta_{t+1} > \eta_t)$. Hence, the upper bound in Theorem 2 will converge to zero as long as $N_T/(\min_{t \leq T} \eta_t) = o(T)$. In particular, if we consider decaying η_t in Angelopoulos et al. (2024), then $\Omega_T = \eta_1$, $\|\Delta_{1:T}\|_1 = 1/\eta_T$, $\|\Delta_{1:T}\|_1/T \leq N_T/T\eta_T$. Setting $\eta_T = o(N_T/T)$ ensures the long-term coverage in eq. (1).

In the following part, we derive the asymptotic coverage property of COP under appropriately chosen learning rates. For this, we require that the scores are *i.i.d.*

Theorem 3. *Assume that the scores $s_t \stackrel{iid}{\sim} P$ and has a continuous distribution function F . The learning rates $\{\eta_t\}$ satisfy:*

$$\sum_{t=1}^{\infty} \eta_t = \infty, \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$

Let q^* be the $(1 - \alpha)$ -th quantile of P , satisfying: for $q > q^*$, $F(q) > 1 - \alpha$ and for $q < q^*$, $F(q) < 1 - \alpha$. Then $q_t \rightarrow q^*$, i.e. $\lim_{t \rightarrow \infty} P(Y_t \in C_t(X_t)) = 1 - \alpha$.

Choosing constant learning rates in eq. (3) will cause oscillations (Gibbs & Candès, 2024). Theorem 3 demonstrates that, under the *i.i.d.* assumptions and choosing learning rates satisfying the Robbins-Monro condition (Robbins & Monro, 1951), q_t exhibits a convergence behavior, even if we add bounded optimistic terms M_t in every update.

324

4 EXPERIMENTS

325

4.1 SETUP

328 **Datasets.** We evaluate [five](#) simulation datasets under changepoints, distribution drift (Barber et al.,
 329 [variance changepoint, heavy-tailed noise, and extreme distribution drift](#). Besides, we evaluate
 330 four real-world datasets: Amazon stock, Google stock (Nguyen, 2018), electricity demand (Harries
 331 et al., 1999) and temperature in Delhi (Vrao., 2017). In the subsequent sections, we will provide a
 332 detailed introduction to each of these datasets.

333 **Base predictors.** We evaluate three base predictors that have distinct levels of forecasting perfor-
 334 mance. The Prophet model, a Bayesian additive model, forecasts $\hat{Y}_t = g(t) + s(t) + h(t) + \epsilon_t$,
 335 capturing the overall trend, seasonality, holidays, and noise. The AR model forecasts $\hat{Y}_t =$
 336 $\phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + \epsilon_t$, with $p = 3$. The Theta model decomposes the series by adjusting the
 337 curvature with coefficients $\theta = 0$ (long-term trend) and $\theta = 2$ (short-term dynamics).

338 **Baselines.** We compare with seven state-of-the-art methods: ACI (Gibbs & Candès, 2021), OGD,
 339 SF-OGD (Bhatnagar et al., 2023), decay-OGD (Angelopoulos et al., 2024), Conformal PID (An-
 340 gelopoulos et al., 2023b), ECI (Wu et al., 2025) and LQT(fixed) (Areces et al., 2025). Several
 341 follow-up works on ACI consider adaptively setting learning rates via the expert aggregation tech-
 342 nique (Gibbs & Candès, 2024; Bhatnagar et al., 2023). COP and the seven baselines are orthogonal
 343 to these works and can be naturally incorporated by serving as a single expert.

344 **General implements.** We choose the target coverage $1 - \alpha = 90\%$ and construct asymmetric
 345 prediction sets using two-side quantile scores under $\alpha/2$ respectively. For prediction sets, all
 346 baselines will output asymmetric sets $[\hat{Y}_t - q_t^l, \hat{Y}_t + q_t^u]$ with upper score q_t^u and lower score q_t^l under
 347 half of the coverage level $\alpha/2$ respectively.

348 **Hyperparameters.** The proposed COP has three hyperparameters, the base learning rate η , scale
 349 factor $\lambda = 0.5$ and the window length $w = 100$. Same as previous works, the adaptive learning
 350 rates $\eta_t = \eta \cdot (\max\{s_{t-w+1}, \dots, s_t\} - \min\{s_{t-w+1}, \dots, s_t\})$. For reproducibility, all baseline
 351 implementations leverage the open-source Python codes from Wu et al. (2025) or Areces et al. (2025).
 352 The hyperparameters of LQT need to be tuned via grid search. The operational ranges of η and more
 353 details about η_t for each methods can be found in Appendix D.

354 **Choices of estimated CDF.** By default, we set the estimated CDF as empirical CDF, which is
 355 $\hat{F}_{t+1}(\hat{q}_{t+1}) = \frac{1}{w} \sum_{i=t-w+1}^t \mathbb{1}\{s_i \leq \hat{q}_{t+1}\}$. In addition, we conduct experiments with estimated
 356 CDF based on the kernel density estimator in Appendix C.

357 **Evaluation metrics.** The coverage rate measures the proportion of time steps where the true
 358 observation Y_t falls within the prediction set $C_t(X_t, q_t)$. The width of the prediction set reflect the
 359 efficiency of CP, including the average width (reflecting overall performance) and the median width
 360 (robust to outliers and extreme intervals). A well-calibrated method should achieve coverage close to
 361 the predefined target level, while keeping the width as short as possible. [We also evaluate recovery](#)
 362 [time in Appendix F, statistical significance in Appendix I, and average time cost in Appendix J.](#) For
 363 visualization, we also provide the figures in Appendix K.

364 **Overview of experimental results.** We have conducted extensive experiments, including [five](#)
 365 simulation datasets in Section 4.2 and Appendix E, four real-world datasets in Section 4.3. We have
 366 also conducted some ablation studies, including the choice of estimated CDF in Appendix C and the
 367 scale factor in Appendix H. To evaluate the case that estimated CDF is inaccurate, we have conducted
 368 the inaccurate estimated CDF in Appendix G.

370

4.2 SIMULATION DATASET

371 We evaluated our method on two simulation datasets under changepoints and distribution drift setting,
 372 respectively. Both datasets $\{X_i, Y_i\}_{i=1}^n$ are generated according to a linear model $Y_t = X_t^T \beta_t + \epsilon_t$,
 373 $X_t \sim \mathcal{N}(0, I_4)$, $\epsilon_t \sim \mathcal{N}(0, 1)$, $n = 2000$.

374

- 375 • Changepoint setting: we set two changepoints: $\beta_t = \beta^{(0)} = (2, 1, 0, 0)^\top$ for $t = 1, \dots, 500$;
 376 $\beta_t = \beta^{(1)} = (0, -2, -1, 0)^\top$ for $t = 501, \dots, 1500$; and $\beta_t = \beta^{(2)} = (0, 0, 2, 1)^\top$ for
 377 $t = 1501, \dots, 2000$.

378 • Distribution drift setting: we set $\beta_1 = (2, 1, 0, 0)^\top$, $\beta_n = (0, 0, 2, 1)^\top$, and use linear
 379 interpolation to compute $\beta_t = \beta_1 + \frac{t-1}{n-1}(\beta_n - \beta_1)$.
 380

381 Table 1: The experimental results in the two simulation datasets with nominal level $\alpha = 10\%$.
 382

383 Dataset	384 Method	385 Prophet			386 AR			387 Theta		
		388 Coverage (%)	389 Average width	390 Median width	391 Coverage (%)	392 Average width	393 Median width	394 Coverage (%)	395 Average width	396 Median width
397 Changepoint	398 ACI	399 89.9	400 ∞	401 8.20	402 89.9	403 ∞	404 8.20	405 89.9	406 ∞	407 8.43
	408 OGD	409 90.0	410 8.49	411 8.50	412 89.9	413 8.39	414 8.40	415 89.9	416 8.73	417 8.70
	418 SF-OGD	419 90.0	420 12.48	421 11.56	422 90.0	423 12.58	424 11.69	425 89.9	426 12.70	427 11.88
	428 decay-OGD	429 90.0	430 8.30	431 8.22	432 90.0	433 8.26	434 8.21	435 90.0	436 8.57	437 8.60
	438 PID	439 89.7	440 11.02	441 9.64	442 89.9	443 10.83	444 9.35	445 89.7	446 11.23	447 9.78
	448 ECI	449 89.9	450 8.16	451 8.25	452 89.9	453 8.17	454 8.26	455 89.8	456 8.55	457 8.68
	458 LQT	459 89.8	460 8.49	461 8.31	462 89.6	463 8.54	464 8.29	465 89.8	466 9.29	467 8.75
	468 COP	469 89.8	470 8.29	471 8.44	472 89.7	473 8.18	474 8.25	475 89.8	476 8.45	477 8.53
478 Distribution Drift	479 ACI	480 89.9	481 ∞	482 6.69	483 89.8	484 ∞	485 6.56	486 89.9	487 ∞	488 6.79
	489 OGD	490 90.3	491 7.24	492 7.05	493 90.2	494 7.15	495 7.10	496 90.3	497 7.34	498 7.25
	499 SF-OGD	500 90.0	501 11.48	502 10.34	503 89.9	504 11.46	505 10.31	506 89.9	507 11.95	508 10.54
	509 decay-OGD	510 90.6	511 7.64	512 6.95	513 90.4	514 7.31	515 6.81	516 90.6	517 7.62	518 6.91
	519 PID	520 89.7	521 9.41	522 7.81	523 89.8	524 10.08	525 7.92	526 89.7	527 10.06	528 7.90
	529 ECI	530 90.0	531 7.27	532 6.98	533 90.0	534 7.06	535 6.98	536 90.2	537 7.55	538 7.18
	539 LQT	540 90.6	541 9.74	542 8.72	543 91.9	544 8.16	545 7.22	546 91.0	547 10.48	548 8.86
	549 COP	550 90.6	551 7.07	552 6.89	553 90.0	554 7.09	555 6.97	556 90.9	557 7.30	558 6.99

403 The quantitative results are shown in Table 1. ACI frequently produces infinitely wide prediction
 404 sets due to updating α_t . The overly conservative sets undermine the utility of prediction. OGD and
 405 SF-OGD partially balance coverage and width, but their performance is overly sensitive to learning
 406 rates. In contrast, decay-OGD performs better in terms of median width due to the stability of
 407 decaying learning rate in the later stages. Conformal PID borrows from PID control for adjustment
 408 and needs to train scorecasters. LQT is sensitive to hyperparameters and relies on grid search, which
 409 makes its performance unstable. ECI reacts quickly to distribution shifts through error-quantification,
 410 and hence achieves relatively tight sets. However, ECI may struggle in complex data environments
 411 since it cannot capture the underlying information of data.

412 As for COP, it maintains the coverage rate close to the nominal 90% level and tighter widths than other
 413 methods. COP achieves this by incorporating an optimistic term based on the estimated cumulative
 414 distribution function, which preserves the long-term coverage guarantee of traditional online CP
 415 while using predictable distribution information to adjust the width more precisely. The experimental
 416 results also show the generality to adapt to different base predictors across Prophet, AR, and Theta
 417 models.

418 4.3 REAL-WORLD DATASETS

419 Moreover, we evaluated our method on four real-world time series datasets across three critical
 420 domains. All datasets retain raw temporal ordering to preserve real-world sequential dependencies.

421

- 422 • Financial markets: daily opening prices of Amazon and Google from 2006 to 2014, capturing
 423 non-stationary trends, regime shifts like the 2008 crisis, and heteroskedastic volatility. The
 424 base predictors will forecast the daily opening price on a log scale.
- 425 • Energy systems: New South Wales electricity demand for half an hour from 1996 to 1998
 426 normalized to $[0, 1]$, featuring multiscale periodicity and demand surges).
- 427 • Climate science: daily Delhi temperatures from 2003 to 2017 reflecting seasonal cycles,
 428 long-term warming trends, and extreme weather anomalies.

429 The experimental results under the real-world dataset demonstrate the performance of each method in
 430 real-world scenarios. As can be seen from the data in Table 2, COP shows superior performance. ACI

432

433

Table 2: The experimental results in the four real-world datasets with nominal level $\alpha = 10\%$.

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Dataset	Method	Prophet			AR			Theta		
		Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
Amazon Stock	ACI	90.2	∞	46.97	89.8	∞	13.77	89.7	∞	12.31
	OGD	89.6	55.15	30.00	89.9	19.10	15.00	89.8	18.07	14.50
	SF-OGD	89.5	61.47	31.75	89.9	24.44	21.05	90.0	23.88	21.14
	decay-OGD	89.9	97.22	36.20	89.7	20.23	14.01	89.2	17.49	13.46
	PID	89.8	52.56	39.09	89.6	59.22	37.93	89.5	61.19	40.20
	ECI	90.1	47.00	34.84	89.5	17.12	12.73	89.7	17.46	12.49
	LQT	89.3	31.42	15.26	90.3	21.61	18.92	89.9	27.17	15.13
	COP	89.6	39.86	27.91	89.5	17.09	12.90	89.6	17.21	12.23
Google Stock	ACI	90.0	∞	66.83	89.8	∞	18.64	90.5	∞	32.78
	OGD	89.7	57.60	46.00	90.7	33.76	23.00	89.9	31.49	29.50
	SF-OGD	89.6	58.92	47.78	89.9	28.31	24.42	90	34.04	31.48
	decay-OGD	89.9	77.23	50.18	90.2	46.53	26.77	90.2	55.32	33.71
	PID	90.1	57.47	48.44	89.9	64.88	54.07	89.9	63.58	54.05
	ECI	89.9	56.06	46.96	89.7	19.95	17.19	89.6	30.92	29.53
	LQT	89.9	57.31	47.00	90.5	41.80	25.00	89.6	41.70	37.58
	COP	89.7	49.72	42.09	89.6	19.87	17.04	89.3	30.25	28.24
Electricity Demand	ACI	90.1	∞	0.443	90.1	∞	0.105	90.2	∞	0.055
	OGD	89.8	0.433	0.435	90.0	0.133	0.115	90.1	0.081	0.075
	SF-OGD	89.9	0.419	0.426	90.0	0.129	0.116	90.3	0.106	0.095
	decay-OGD	90.1	0.531	0.521	90.1	0.122	0.099	90.0	0.100	0.059
	PID	90.1	0.207	0.177	90.0	0.434	0.432	89.9	0.413	0.411
	ECI	90.0	0.384	0.382	90.0	0.117	0.098	89.9	0.071	0.055
	LQT	90.1	0.221	0.218	90.1	0.144	0.138	90.0	0.113	0.111
	COP	90.1	0.385	0.376	90.0	0.117	0.098	89.8	0.069	0.052
Temperature	ACI	91.0	∞	8.49	90.0	∞	6.06	90.2	∞	6.48
	OGD	90.4	7.54	7.60	90.1	6.82	6.10	90.0	6.36	6.30
	SF-OGD	90.0	7.17	7.08	90.1	6.37	5.91	90.1	6.75	6.43
	decay-OGD	90.1	8.84	8.35	90.0	6.36	5.67	89.9	6.56	6.18
	PID	90.1	7.65	7.65	89.7	8.92	8.86	89.7	8.77	8.79
	ECI	90.0	7.20	7.22	90.1	6.39	6.10	90.0	6.41	6.27
	LQT	90.2	8.57	7.30	90.3	6.78	6.00	90.1	7.51	7.08
	COP	90.1	7.05	7.07	89.9	5.85	5.58	90.0	6.27	6.18

generally maintains the coverage rate at nominal level, but its prediction intervals are often infinitely wide, which makes the results lack practical application value. The OGD series of methods achieve a more balanced trade-off between coverage and interval width, but they are highly sensitive to learning rate selection. Conformal PID trains scorecasters to compensate for the base predictor’s accuracy and often improve when the base predictor is less accurate. ECI produces tight prediction sets through error quantification while maintain the coverage rate. Overall, these results highlight the advantages and limitations of each method in real-world applications.

5 CONCLUSIONS

In this work, we introduce Conformal Optimistic Prediction (COP), a novel online CP algorithm that leverages estimated cumulative distribution functions of non-conformity scores. Viewing COP through optimistic online gradient descent enables a comprehensive theory, including a joint regret–coverage bound that clarifies its motivation. Theoretically, we also prove distribution-free, finite-sample coverage for general optimistic updates under arbitrary learning rates, and show asymptotic consistency with *i.i.d.* scores under suitable rates. Experiments on synthetic distribution shift

486 and real time-series data from finance, energy, and climate demonstrate that COP attains target
487 coverage while producing tighter prediction sets than state-of-the-art alternatives.
488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Anastasios N. Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets
543 for image classifiers using conformal prediction. *arXiv preprint arXiv:2009.14193*, 2020.

544 Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic.
545 Prediction-powered inference. *Science*, 382(6671):669–674, 2023a.

546 Anastasios N. Angelopoulos, Emmanuel Candes, and Ryan J Tibshirani. Conformal pid control for
547 time series prediction. *Advances in Neural Information Processing Systems*, 36, 2023b.

548 Anastasios N. Angelopoulos, Rina Barber, and Stephen Bates. Online conformal prediction with
549 decaying step sizes. In *Forty-first International Conference on Machine Learning*, 2024.

550 Anastasios N Angelopoulos, Michael I Jordan, and Ryan J Tibshirani. Gradient equilibrium in online
551 learning: Theory and applications. *arXiv preprint arXiv:2501.08330*, 2025.

552 Felipe Areces, Christopher Mohri, Tatsunori Hashimoto, and John Duchi. Online conformal prediction
553 via online optimization. In *Forty-second International Conference on Machine Learning*, 2025.

554 Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp Hochreiter. Conformal prediction for time
555 series with modern hopfield networks. *Advances in Neural Information Processing Systems*, 36:
556 56027–56074, 2023.

557 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
558 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.

559 Aadyot Bhatnagar, Huan Wang, Caiming Xiong, and Yu Bai. Improved online conformal prediction
560 via strongly adaptive online learning. In *International Conference on Machine Learning*, pp.
561 2337–2363. PMLR, 2023.

562 Sébastien Bubeck, Yuanzhi Li, Haipeng Luo, and Chen-Yu Wei. Improved path-length regret bounds
563 for bandits. In *Conference On Learning Theory*, pp. 508–528. PMLR, 2019.

564 Baiting Chen, Zhimei Ren, and Lu Cheng. Conformalized time series with semantic features.
565 *Advances in Neural Information Processing Systems*, 37:121449–121474, 2024a.

566 Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm
567 using bregman functions. *SIAM Journal on Optimization*, 3(3):538–543, 1993.

568 Sijia Chen, Yu-Jie Zhang, Wei-Wei Tu, Peng Zhao, and Lijun Zhang. Optimistic online mirror
569 descent for bridging stochastic and adversarial online convex optimization. *Journal of Machine
570 Learning Research*, 25(178):1–62, 2024b.

571 Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
572 Shenghuo Zhu. Online optimization with gradual variations. In *Conference on Learning Theory*,
573 pp. 6–1. JMLR Workshop and Conference Proceedings, 2012.

574 Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in
575 min-max optimization. *Advances in neural information processing systems*, 31, 2018.

576 Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
577 optimism. *arXiv preprint arXiv:1711.00141*, 2017.

578 Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent neural networks. *arXiv
579 preprint arXiv:1704.02798*, 2017.

580 Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift. *Advances
581 in Neural Information Processing Systems*, 34:1660–1672, 2021.

582 Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
583 distribution shifts. *Journal of Machine Learning Research*, 25(162):1–36, 2024.

584 Eduard Gorbunov, Adrien Taylor, and Gauthier Gidel. Last-iterate convergence of optimistic gradient
585 method for monotone variational inequalities. *Advances in neural information processing systems*,
586 35:21858–21870, 2022.

594 Yu Gui, Ying Jin, and Zhimei Ren. Conformal alignment: Knowing when to trust foundation models
 595 with guarantees. *arXiv preprint arXiv:2405.10301*, 2024.

596

597 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 598 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

599

600 Erfan Hajishemmi and Yanning Shen. Multi-model ensemble conformal prediction in dynamic
 601 environments. *arXiv preprint arXiv:2411.03678*, 2024.

602

603 Michael Harries, New South Wales, et al. Splice-2 comparative evaluation: Electricity pricing.
 604 *Artificial Intelligence Group, School of Computer Science and Engineering, The University of New
 605 South Wales, Sydney*, 2052, 1999.

606

607 Shinji Ito. Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret bounds.
 608 In *Conference on Learning Theory*, pp. 2552–2583. PMLR, 2021.

609

610 Jonghyeok Lee, Chen Xu, and Yao Xie. Kernel-based optimally weighted conformal prediction
 611 intervals. *arXiv preprint arXiv:2405.16828*, 2024.

612

613 Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dynamic
 614 environments using conformal prediction. *IEEE Robotics and Automation Letters*, 8(8):5116–5123,
 615 2023.

616

617 Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay Chandrasekhar,
 618 and Georgios Piliouras. Optimistic mirror descent in saddle-point problems: Going the extra
 619 (gradient) mile. *arXiv preprint arXiv:1807.02629*, 2018.

620

621 Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
 622 optimistic gradient methods for saddle point problems: Proximal point approach. In *International
 623 Conference on Artificial Intelligence and Statistics*, pp. 1497–1507. PMLR, 2020.

624

625 Cam Nguyen. S&P 500 stock data. *Kaggle*, 2018.

626

627 Francesco Orabona. A modern introduction to online learning. *arXiv preprint arXiv:1912.13213*,
 628 2019.

629

630 Aleksandr Podkopaev, Dong Xu, and Kuang-Chih Lee. Adaptive conformal inference by betting. In
 631 *International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning
 632 Research*, pp. 40886–40907. PMLR, 2024.

633

634 Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In *Conference
 635 on Learning Theory*, pp. 993–1019. PMLR, 2013.

636

637 Ramya Ramalingam, Shayan Kiyani, and Aaron Roth. The relationship between no-regret learning
 638 and online conformal prediction. In *Forty-second International Conference on Machine Learning*,
 639 2025.

640

641 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical
 642 statistics*, pp. 400–407, 1951.

643

644 Christophe Roux, David Martínez-Rubio, and Sebastian Pokutta. Implicit riemannian optimism with
 645 applications to min-max problems. *arXiv preprint arXiv:2501.18381*, 2025.

646

647 Bernard W Silverman. Density estimation for statistics and data analysis, 1986.

648

649 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candès, and Aaditya Ramdas. Conformal
 650 prediction under covariate shift. *Advances in Neural Information Processing Systems*, 32, 2019.

651

652 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
 653 Springer Science & Business Media, 2005.

654

655 Sumanth Vrao. Daily climate time series data. *Kaggle*, 2017.

656

657 Bowen Wang, Matteo Zecchin, and Osvaldo Simeone. Mirror online conformal prediction with
 658 intermittent feedback. *arXiv preprint arXiv:2503.10345*, 2025.

648 Xi Wang, Deming Yuan, Yiguang Hong, Zihao Hu, Lei Wang, and Guodong Shi. Riemannian
649 optimistic algorithms. *arXiv preprint arXiv:2308.16004*, 2023.
650

651 Junxi Wu, Dongjian Hu, Yajie Bao, Shu-tao Xia, and Changliang Zou. Error-quantified conformal
652 inference for time series. In *The Thirteenth International Conference on Learning Representations*,
653 2025.

654 Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In *International
655 Conference on Machine Learning*, pp. 11559–11569. PMLR, 2021.
656

657 Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In *International
658 Conference on Machine Learning*, pp. 38707–38727. PMLR, 2023.

659 Yachong Yang, Arun Kumar Kuchibhotla, and Eric Tchetgen Tchetgen. Doubly robust calibration of
660 prediction sets under covariate shift. *Journal of the Royal Statistical Society Series B: Statistical
661 Methodology*, pp. qkae009, 2024.

662 Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive
663 conformal predictions for time series. In *International Conference on Machine Learning*, pp.
664 25834–25866. PMLR, 2022.
665

666 Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity: Problem-
667 dependent dynamic regret for online convex optimization. *Journal of Machine Learning Research*,
668 25(98):1–52, 2024.

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A SOME DISCUSSIONS
703704 A.1 DISCUSSIONS ON ONLINE MIRROR DESCENT
705706 We remark that if we can obtain the estimated distribution function \hat{F}_t in an online fashion, a direct
707 way to combine it with eq. (3) is to leverage online mirror descent (Orabona, 2019; Wang et al.,
708 2025):

709
$$\nabla\psi_{t+1}(q_{t+1}) = \nabla\psi_t(q_t) + \eta_t(\text{err}_t - \alpha), \quad (11)$$

710

711 where $\text{err}_t = \mathbb{1}\{s_t > q_t\}$, $\psi_t(q) = \mathbb{E}_{s_t} [\ell_{1-\alpha}(s_t - q) | \mathcal{S}_{t-1}] + \sigma q^2/2$, and $\sigma > 0$ is a tuning
712 parameter. Equation (11) is equivalent to:

713
$$F_{t+1}(q_{t+1}) + \sigma q_{t+1} = F_t(q_t) + \sigma q_t + \eta_t(\text{err}_t - \alpha). \quad (12)$$

714

715 Further, if s_{t+1} has a probability density function (PDF) that is bounded away from zero almost
716 surely, we can directly use:

717
$$F_{t+1}(q_{t+1}) = F_t(q_t) + \eta_t(\text{err}_t - \alpha). \quad (13)$$

718

719 It suffices to use \hat{F} to substitute F above. However, both eq. (12) and eq. (13) do not have closed
720 form solutions for q_{t+1} , which makes the update difficult to compute.
721722 A.2 DISCUSSIONS ON ACI
723724 Adaptive Conformal Inference (ACI) (Gibbs & Candès, 2021) is another widely used online CP
725 update besides eq. (3). Let $\hat{Q}_t(\cdot)$ be the fitted quantiles of the non-conformity scores in calibration
726 set \mathcal{D}_{cal} :

727
$$\hat{Q}(p) := \inf \left\{ s : \left(\frac{1}{|\mathcal{D}_{\text{cal}}|} \sum_{(X_r, Y_r) \in \mathcal{D}_{\text{cal}}} \mathbb{1}_{\{S_r(X_r, Y_r) \leq s\}} \right) \geq p \right\}.$$

728
729

730 For prediction set $\hat{C}_t(\alpha) := \{y : S_t(X_t, y) \leq \hat{Q}_t(1 - \alpha)\}$, define:
731

732
$$\beta_t := \sup\{\beta : Y_t \in \hat{C}_t(\beta)\}.$$

733 Denote $\text{err}_t = \mathbb{1}(\hat{\alpha}_t > \beta_t)$, then ACI follows the iteration:
734

735
$$\begin{aligned} 1 - \hat{\alpha}_{t+1} &= 1 - \hat{\alpha}_t + \eta(\text{err}_t - \alpha) \\ 736 &= 1 - \hat{\alpha}_t - \eta \nabla \ell_{1-\alpha}(1 - \beta_t - (1 - \hat{\alpha}_t)). \end{aligned}$$

737 Note that $1 - \beta_t$ can be viewed as s_t in eq. (3), the similar refinement is as follows:
738

739
$$1 - \alpha_{t+1} = 1 - \hat{\alpha}_{t+1} - \lambda_{t+1} \left(\hat{F}_{t+1}(1 - \hat{\alpha}_{t+1}) - (1 - \alpha) \right),$$

740

741 i.e.

742
$$\alpha_{t+1} = \hat{\alpha}_{t+1} + \lambda_{t+1} \left(\hat{F}_{t+1}(1 - \hat{\alpha}_{t+1}) - (1 - \alpha) \right),$$

743

744 where \hat{F}_{t+1} is the estimated CDF of $(1 - \beta_{t+1})$. However, $\alpha_t < 0$ or $\alpha_t > 1$ can happen frequently
745 for some $\eta < 0$ and may output infinite or null prediction sets. Hence, we do not adopt this kind of
746 update.
747748 A.3 DISCUSSIONS ON THE "SAME-SIGN" ASSUMPTION
749750 In order to clarify the superiority of the refinement step, we introduce a "same-sign" assumption in
751 Proposition 1, which is unverifiable in real-world data. However, note that
752

753
$$[\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)] \cdot [F_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)] \geq 0$$

754 follows from
755

$$|\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)| \geq \sup_q |F_{t+1}(q) - \hat{F}_{t+1}(q)| \triangleq \epsilon_{t+1}.$$

756 Hence, an intuitive way to avoid the unverifiable assumption is to replace eq. (5) with:
 757

$$758 \quad q_{t+1} = \hat{q}_{t+1} - \lambda_{t+1} \mathbb{1}(|\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)| \geq \epsilon_{t+1}) (\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)). \quad (14)$$

759 For deployability, ϵ_{t+1} can be viewed as a hyperparameter that depends on the temporal properties of
 760 data and the accuracy of \hat{F}_{t+1} . Following the same proof of Proposition 1, we have
 761

$$762 \quad \mathbb{E} [\ell_{1-\alpha}(s_{t+1} - q_{t+1}) | \mathcal{S}_t] \leq \mathbb{E} [\ell_{1-\alpha}(s_{t+1} - \hat{q}_{t+1}) | \mathcal{S}_t],$$

763 as long as F_{t+1} is L -Lipschitz and $\lambda_{t+1} > 0$ is small.
 764

765 B PROOFS

766 B.1 PROOF OF PROPOSITION 1

769 **Proposition 1.** Assume that $\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)$ and $F_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)$ have the same sign,
 770 and F_{t+1} is L -Lipschitz. With a suitably small $\lambda > 0$, we have:
 771

$$772 \quad \mathbb{E} [\ell_{1-\alpha}(s_{t+1} - q_{t+1}) | \mathcal{S}_t] \leq \mathbb{E} [\ell_{1-\alpha}(s_{t+1} - \hat{q}_{t+1}) | \mathcal{S}_t],$$

773 *Proof.* Let $\mathcal{L}(q) = \mathbb{E}_{s_{t+1}} \ell_{1-\alpha}(s_{t+1} - q)$. Note that the L -Lipschitzness of F_{t+1} implies that $\nabla \mathcal{L}(q)$
 774 is L -Lipschitz continuous. Hence:
 775

$$776 \quad \begin{aligned} \mathcal{L}(q_{t+1}) - \mathcal{L}(\hat{q}_{t+1}) &\leq \nabla \mathcal{L}(\hat{q}_{t+1})(q_{t+1} - \hat{q}_{t+1}) + \frac{L}{2} \|q_{t+1} - \hat{q}_{t+1}\|_2^2 \\ 777 &= -\lambda_{t+1} [\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)] \nabla g(\hat{q}_{t+1}) + \frac{L\lambda_{t+1}^2}{2} [\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)]^2 \\ 778 &= -\lambda_{t+1} [\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)]^2 \left[\frac{F(\hat{q}_{t+1}) - (1 - \alpha)}{\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)} - \frac{L\lambda_{t+1}}{2} \right] \end{aligned}$$

779 To satisfy $\mathbb{E} [\ell_{1-\alpha}(s_{t+1} - q_{t+1}) | \mathcal{S}_t] \leq \mathbb{E} [\ell_{1-\alpha}(s_{t+1} - \hat{q}_{t+1}) | \mathcal{S}_t]$, it suffices that λ_{t+1} satisfies:
 780

$$781 \quad \lambda_{t+1} < \frac{2(F_{t+1}(\hat{q}_{t+1}) - (1 - \alpha))}{L(\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha))},$$

782 which can be achieved since $\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)$ and $F_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)$ have the same sign.
 783

784 Denote $\epsilon_{t+1} = \sup_q |F_{t+1}(q) - \hat{F}_{t+1}(q)|, \delta_{t+1} = |\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha)| \leq 1 - \alpha$, then
 785

$$786 \quad \begin{aligned} \mathcal{L}(q_{t+1}) - \mathcal{L}(\hat{q}_{t+1}) &\leq \nabla \mathcal{L}(\hat{q}_{t+1})(q_{t+1} - \hat{q}_{t+1}) + \frac{L}{2} \|q_{t+1} - \hat{q}_{t+1}\|_2^2 \\ 787 &\leq \lambda_{t+1}(\delta_{t+1})(\delta_{t+1} + \epsilon_{t+1}) + \frac{L}{2} \lambda_{t+1} \delta_{t+1}^2 \\ 788 &< \lambda_{t+1}(1 + \epsilon_{t+1} + \frac{L}{2}). \end{aligned}$$

789 Hence, even if the same-sign assumption in Proposition 1 does not hold, the "instantaneous" performance
 790 of the refinement step is bounded by λ_{t+1} and ϵ_{t+1} . \square
 791

792 B.2 REGRET GUARANTEE WITH CONSTANT LEARNING RATES

793 **Theorem 1.** Let $\ell_t(q) = \ell_{1-\alpha}(s_t - q)$. For arbitrary $\{u_t\}_{t \geq 1}, u_0 = 0$, we have:
 794

$$795 \quad \underbrace{\frac{1}{T} \sum_{t=1}^T [\ell_t(q_t) - \ell_t(u_t)]}_{\text{regret}} + \underbrace{\frac{\eta(1-2\alpha)}{4} \left(\frac{\sum_{t=1}^T \text{err}_t}{T} - \alpha \right)}_{\text{coverage}} \leq \frac{\eta}{T} \sum_{t=1}^T \|\alpha - \text{err}_t - M_t\|_2^2$$

$$796 \quad + \underbrace{\sum_{t=1}^T \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_{t-1} - \hat{q}_t\|_2^2)}_{\text{environments}}.$$

810 *Proof.* We begin by presenting the Bregman Proximal Inequality (Chen & Teboulle, 1993):
811

812 **Lemma 1. (Bregman Proximal Inequality):** *Let \mathcal{X} be a convex set in a Banach space, and $f : \mathcal{X} \rightarrow \mathbb{R}$*
813 *be a closed proper convex function. Given a convex regularizer $\psi : \mathcal{X} \rightarrow \mathbb{R}$, denote its Bregman*
814 *divergence by $D_\psi(\cdot, \cdot)$. Then, q_t under the update:*

$$815 \quad q_t = \arg \min_{q \in \mathcal{X}} f(q) + D_\psi(q, q_{t-1})$$

817 *satisfies for any $u \in \mathbb{R}$,*

$$818 \quad f(q_t) - f(u) \leq D_\psi(u, q_{t-1}) - D_\psi(u, q_t) - D_\psi(q_t, q_{t-1}).$$

820 In our case, we take ψ to be $\psi(\mathbf{x}) = \|\mathbf{x}\|_2^2/2$, then $D_\psi(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2^2/2$. By convexity of ℓ_t , we
821 upper bound the instantaneous dynamic regret to sum of three terms:
822

$$823 \quad \ell_t(q_t) - \ell_t(u_t) \leq \langle \nabla \ell_t(q_t), q_t - u_t \rangle$$

$$824 \quad = \underbrace{\langle \nabla \ell_t(q_t) - M_t, q_t - \hat{q}_{t+1} \rangle}_{(a)} + \underbrace{\langle M_t, q_t - \hat{q}_{t+1} \rangle}_{(b)} + \underbrace{\langle \nabla \ell_t(q_t), \hat{q}_{t+1} - u_t \rangle}_{(c)}.$$

825 For term (a), note that

$$826 \quad q_t - \hat{q}_{t+1} = \hat{q}_t - \eta M_t - \hat{q}_{t+1} = \eta(\alpha - err_t - M_t),$$

827 hence

$$828 \quad (a) = \langle \nabla \ell_t(q_t) - M_t, q_t - \hat{q}_{t+1} \rangle = \eta \|\alpha - err_t - M_t\|_2^2.$$

829 For term (b) :

$$830 \quad (b) = \langle M_t, \hat{q}_t - \hat{q}_{t+1} \rangle = \frac{\eta}{2} (\|err_t - \alpha\|_2^2 - \|\alpha - err_t - M_t\|_2^2 - M_t^2)$$

$$831 \quad \leq \frac{\eta}{2} \|err_t - \alpha\|_2^2 - \frac{\eta}{4} \|\alpha - err_t - M_t + M_t\|_2^2$$

$$832 \quad = \frac{\eta}{4} \|err_t - \alpha\|_2^2.$$

833 For term (c), using Lemma 1, the update $\hat{q}_{t+1} = \arg \min_q \{\eta \langle \nabla \ell_t(q_t), q \rangle + \frac{1}{2} \|q - q_t\|^2\}$ implies:
834

$$835 \quad (c) = \langle \nabla \ell_t(q_t), \hat{q}_{t+1} - u_t \rangle \leq \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2 - \|q_t - \hat{q}_{t+1}\|_2^2)$$

$$836 \quad = \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2) - \frac{\eta}{2} \|err_t - \alpha\|_2^2$$

837 Combine the three upper bounds:
838

$$839 \quad \ell_t(q_t) - \ell_t(u_t) \leq \eta \|\alpha - err_t - M_t\|_2^2 - \frac{\eta}{4} \|err_t - \alpha\|_2^2 + \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2)$$

$$840 \quad \leq \eta \|\alpha - err_t - M_t\|_2^2 - \frac{\eta}{4} (1 - 2\alpha) (err_t - \alpha) - \frac{\eta}{4} (\alpha - \alpha^2)$$

$$841 \quad + \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2)$$

842 Summing over t from 1 to T , we have:
843

$$844 \quad \sum_{t=1}^T [\ell_t(q_t) - \ell_t(u_t)] + \frac{\eta}{4} \sum_{t=1}^T (1 - 2\alpha) (err_t - \alpha) + \frac{\eta T}{4} \sum_{t=1}^T (\alpha - \alpha^2)$$

$$845 \quad \leq \eta \sum_{t=1}^T \|\alpha - err_t - M_t\|_2^2 + \sum_{t=1}^T \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2)$$

$$846 \quad \leq \eta \sum_{t=1}^T \|\alpha - err_t - M_t\|_2^2 + \sum_{t=1}^T \frac{1}{2\eta} (\|u_t - \hat{q}_t\|_2^2 - \|u_{t-1} - \hat{q}_t\|_2^2). (u_0 = 0)$$

847 Dividing both sides by T and ignoring the constant $\frac{\eta}{4}(\alpha - \alpha^2)$ completes the proof. \square

864 B.3 REGRET GUARANTEE WITH ARBITRARY LEARNING RATES
865866 To ensure that the regret guarantees with arbitrary learning rates match the form of Theorem 1 and
867 are presented more transparently, we consider the original OOGD:

868
$$\hat{q}_{t+1} = \hat{q}_t + \eta_t (err_t - \alpha)$$

869
$$q_{t+1} = \hat{q}_{t+1} - \eta_{t+1} M_{t+1}.$$

870 Note that in our algorithm, the learning rate used for the second update is η_t instead of η_{t+1} . For
871 arbitrary learning rate $\{\eta_t\}_{t \geq 1}$, we have:

872
$$\begin{aligned} \frac{1}{T} \sum_{t=1}^T [\ell_t(q_t) - \ell_t(u_t)] + C_T \left[(1 - 2\alpha) \left(\frac{\sum_{t=1}^T err_t}{T} - \alpha \right) + \alpha - \alpha^2 \right]^2 \\ \leq \frac{1}{T} \sum_{t=1}^T \eta_t \|\alpha - err_t - M_t\|_2^2 + \sum_{t=1}^T \frac{1}{2\eta_t} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2), \end{aligned}$$

873 where C_T is the harmonic mean of the learning rates, i.e.
874

875
$$C_T = \frac{T}{\sum_{t=1}^T \frac{1}{\eta_t}}.$$

876 *Proof.* Similar to the proof of Theorem 1, we obtain:
877

878
$$\begin{aligned} \ell_t(q_t) - \ell_t(u_t) &\leq \langle \nabla \ell_t(q_t), q_t - u_t \rangle \\ &= \underbrace{\langle \nabla \ell_t(q_t) - M_t, q_t - \hat{q}_{t+1} \rangle}_{(a)} + \underbrace{\langle M_t, q_t - \hat{q}_{t+1} \rangle}_{(b)} + \underbrace{\langle \nabla \ell_t(q_t), \hat{q}_{t+1} - u_t \rangle}_{(c)}, \end{aligned}$$

879 and:
880

881 (a) = $\langle \nabla \ell_t(q_t) - M_t, q_t - \hat{q}_{t+1} \rangle = \eta_t \|\alpha - err_t - M_t\|_2^2.$

882 (b) $\leq \frac{\eta_t}{4} \|err_t - \alpha\|_2^2.$

883 (c) $\leq \frac{1}{2\eta_t} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2) - \frac{\eta_t}{2} \|err_t - \alpha\|_2^2$

884 Combine the three upper bounds:
885

886
$$\ell_t(q_t) - \ell_t(u_t) \leq \eta_t \|\alpha - err_t - M_t\|_2^2 - \frac{\eta_t}{4} \|err_t - \alpha\|_2^2 + \frac{1}{2\eta_t} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2)$$

887 Summing over t from 1 to T , we have:
888

889
$$\begin{aligned} \sum_{t=1}^T [\ell_t(q_t) - \ell_t(u_t)] &\leq \sum_{t=1}^T \eta_t \|\alpha - err_t - M_t\|_2^2 - \sum_{t=1}^T \eta_t (err_t - \alpha)^2 + \sum_{t=1}^T \frac{1}{2\eta_t} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2) \\ &\leq \sum_{t=1}^T \eta_t \|\alpha - err_t - M_t\|_2^2 - TC_T \left(\frac{\sum_{t=1}^T |err_t - \alpha|^2}{T} \right)^2 \\ &\quad + \sum_{t=1}^T \frac{1}{2\eta_t} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2) \quad (\text{Cauchy-Schwarz inequality}) \\ &= \sum_{t=1}^T \eta_t \|\alpha - err_t - M_t\|_2^2 - TC_T \left[(1 - 2\alpha) \left(\frac{\sum_{t=1}^T err_t}{T} - \alpha \right) + \alpha - \alpha^2 \right]^2 \\ &\quad + \sum_{t=1}^T \frac{1}{2\eta_t} (\|u_t - \hat{q}_t\|_2^2 - \|u_t - \hat{q}_{t+1}\|_2^2), \end{aligned}$$

890 which completes the proof. \square
891

918 B.4 PROOFS OF COVERAGE GUARANTEES
919920 Proposition 2 is simply a special case of Theorem 2, so we only prove the more general result of
921 Theorem 2. We first prove the lemma below that shows the boundedness of q_t . Lemma 2 is essential
922 in the proof of Theorem 2.923 **Lemma 2.** *Fix an initial threshold $q_1 \in [0, B]$. Then COP in equation 1 with arbitrary nonnegative
924 learning rate η_t satisfies that*
925

926
$$-\Omega_t(2M + 1) \leq q_t \leq B + \Omega_t(2M + 1) \quad \forall t \geq 1,$$

927

928 where $\Omega_0 = 0$, and $\Omega_t = \max_{1 \leq r \leq t} \eta_r$ for $t \geq 1$.
929930
931 *Proof.* We first prove the upper bound. Combine eq. (4) and eq. (5) we get:
932

933
$$q_t = q_{t-1} + \eta_{t-1}(\text{err}_{t-1} - \alpha) + \eta_{t-1}M_t - \eta_tM_{t+1}, \quad (15)$$

934

935 where M_t is the optimistic term defined in eq. (8). For any t , if $q_t < s_t$, we have $q_t < B <$
936 $B + \Omega_t(2M + 1)$. If $q_t > s_t$, denote l as the largest integer below t satisfying $q_l \leq s_l$, then $q_r > s_r$,
937 for $l < r \leq t$. Hence,

938
$$q_r = q_{r-1} - \eta_{r-1}\alpha + \eta_{r-1}M_r - \eta_rM_{r+1}, \quad l < r \leq t.$$

939

940 Through iteration we obtain :
941

942
$$\begin{aligned} q_t &= q_l + \sum_{r=l}^{t-1} [(\text{err}_r - \alpha)\eta_r + (\eta_{r-1}M_r - \eta_rM_{r+1})] \\ 943 &= q_l + \eta_l - \sum_{r=l}^{t-1} \eta_r\alpha + (\eta_{l-1}M_l - \eta_tM_{t+1}) \\ 944 &\leq s_l + \eta_l + (\eta_{l-1}M_l - \eta_tM_{t+1}) \\ 945 &\leq B + \Omega_t(2M + 1). \end{aligned}$$

946

947 For the lower bound, if $q_t > s_t$, we have $q_t > 0 > -\Omega_t(2\lambda M + 1)$. If $q_t \leq s_t$, denote l as the largest
948 integer below t satisfying $q_l > s_l$, then $q_r \leq s_r$, for $l < r \leq t$. Hence,
949

950
$$\begin{aligned} q_t &= q_l + \sum_{r=l}^{t-1} [(\text{err}_r - \alpha)\eta_r + (\eta_{r-1}M_r - \eta_rM_{r+1})] \\ 951 &= q_l - \eta_l + \sum_{r=l}^{t-1} \eta_r(1 - \alpha) + (\eta_{l-1}M_l - \eta_tM_{t+1}) \\ 952 &> s_l - \eta_l + (\eta_{l-1}M_l - \eta_tM_{t+1}) \\ 953 &\geq -\Omega_t(2M + 1). \end{aligned}$$

954

955 \square
956957 **Theorem 2.** Assume that for each t , $s_t \in [0, B]$ and $M_t \in [-M, M]$, then for all $T \geq 1$, the
958 prediction sets generated by Algorithm 1 satisfies
959

960
$$\left| \frac{1}{T} \sum_{t=1}^T \text{err}_t - \alpha \right| \leq \frac{B + (2 + 6M)\Omega_T}{T} \|\Delta_{1:T}\|_1,$$

961

962 where $\|\Delta_{1:T}\|_1 = |\eta_1^{-1}| + \sum_{t=2}^T |\eta_t^{-1} - \eta_t^{-1}|$, $\Omega_T = \max_{1 \leq r \leq T} \eta_r$.
963

972
973*Proof.*

$$\begin{aligned}
974 \quad & \left| \frac{1}{T} \sum_{t=1}^T (\text{err}_t - \alpha) \right| = \left| \frac{1}{T} \sum_{t=1}^T \left(\sum_{r=1}^t \Delta_r \right) \cdot \eta_t (\text{err}_t - \alpha) \right| \\
975 \quad & = \left| \frac{1}{T} \sum_{r=1}^T \Delta_r \left(\sum_{t=r}^T \eta_t (\text{err}_t - \alpha) \right) \right| \\
976 \quad & = \left| \frac{1}{T} \sum_{r=1}^T \Delta_r (q_{T+1} - q_r + \eta_T M_{T+1} - \eta_r M_{r+1}) \right| \\
977 \quad & \leq \frac{1}{T} \left| \sum_{r=1}^T \Delta_r (q_{T+1} - q_r) \right| + \frac{1}{T} \left| \sum_{r=1}^T \Delta_r (\eta_T M_{T+1} - \eta_r M_{r+1}) \right| \\
978 \quad & \leq \frac{B + (2 + 4M)\Omega_T}{T} \|\Delta_{1:T}\|_1 + \frac{2M\Omega_T \|\Delta_{1:T}\|_1}{T} \\
979 \quad & = \frac{B + (2 + 6M)\Omega_T}{T} \|\Delta_{1:T}\|_1.
\end{aligned}$$

990 Specifically, if $\eta_t \equiv \eta$, we have

$$991 \quad \left| \frac{1}{T} \sum_{t=1}^T (\text{err}_t - \alpha) \right| \leq \frac{B + (2 + 6M)\eta}{T\eta}$$

□

995
996
997
998
999**Theorem 3.** Assume the scores $s_t \stackrel{\text{iid}}{\sim} P$ and has a continuous distribution function F . The learning rates $\{\eta_t\}$ satisfy:

$$1000 \quad \sum_{t=1}^{\infty} \eta_t = \infty, \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$

1002 Let q^* be the $(1 - \alpha)$ -th quantile of P , satisfying: for $q > q^*$, $F(q) > 1 - \alpha$ and for $q < q^*$, $F(q) < 1 - \alpha$. Then $q_t \rightarrow q^*$, i.e. $\lim_{t \rightarrow \infty} P(Y_t \in C_t(X_t)) = 1 - \alpha$.

1004

1005 *Proof.* Denote random variable $\epsilon_t = \text{err}_t - \mathbb{E}\text{err}_t = \text{err}_t - 1 + F(q_t)$, $S_t = \sum_{i=1}^t \eta_i \epsilon_i$, $A_t = \sum_{i=t}^{\infty} \eta_i \epsilon_i$, $\mathcal{F}_t = \sigma(s_1, \dots, s_t)$. We first prove $A_t \xrightarrow{\text{a.s.}} 0$.1008 Note that $\mathbb{E}(\eta_{t+1} \epsilon_{t+1} | \mathcal{F}_t) = 0$ and for $j > i$, $\mathbb{E}(\epsilon_i \epsilon_j) = \mathbb{E}[\mathbb{E}\epsilon_i \epsilon_j | \mathcal{F}_{j-1}] = \mathbb{E}[\epsilon_i (\mathbb{E}\epsilon_j | \mathcal{F}_{j-1})] = 0$. For each $t \geq 1$, $\mathbb{E}(S_{t+1} | \mathcal{F}_t) = S_t + \mathbb{E}(\eta_{t+1} \epsilon_{t+1} | \mathcal{F}_t) = S_t$. Hence, $\{S_t\}_{t \geq 1}$ is a martingale with respect to the filtration \mathcal{F}_t . Further,1011
1012
1013
1014

$$1012 \quad (\mathbb{E}|S_t|)^2 \leq \mathbb{E}|S_t|^2 = \sum_{i=1}^t \eta_i^2 \mathbb{E}\epsilon_i^2 \leq \sum_{i=1}^t \eta_i^2 < \infty.$$

1015 Applying Doob's first martingale convergence theorem, we obtain that $\{S_t\}_{t \geq 1}$ converges almost surely. Therefore, $A_t \xrightarrow{\text{a.s.}} 0$.

1017

1018 Next, let $g(x) = 1 - \alpha - F(x)$, $p_t = q_t + \eta_{t-1} M_t + A_t$. We have:

$$\begin{aligned}
1019 \quad p_{t+1} - p_t &= q_{t+1} - q_t + \eta_t M_{t+1} - \eta_{t-1} M_t + A_{t+1} - A_t \\
1020 \quad &= \eta_t (\text{err}_t - \alpha) - \eta_t (\text{err}_t - 1 + F(q_t)) \quad (\text{by 15}) \\
1021 \quad &= \eta_t (1 - \alpha - F(q_t)) \\
1022 \quad &= \eta_t g(p_t - A_t - \eta_{t-1} M_t).
\end{aligned}$$

1024
1025By Lemma 2, q_t is bounded, hence $\{p_t\}$ is bounded, a.s.. By Bolzano–Weierstrass theorem, it has a convergent subsequence $\{p_{u_t}\}$. We now prove $\lim_{u_t \rightarrow \infty} p_{u_t} = 0$ by contradiction.

1026 Suppose $\lim_{t \rightarrow \infty} p_{u_t} = q^* + 3\delta, \delta > 0$. The case of $\lim_{t \rightarrow \infty} p_{u_t} < 0$ follows by the same argument.
 1027 Since $A_t + \eta_{t-1} M_t \xrightarrow{\text{a.s.}} 0$, there exists $t_0 \in \mathbb{N}$ s.t. $\forall t \geq t_0, |A_t + \eta_{t-1} M_t| < \delta, \eta_t < \delta, p_{u_t} - q^* > 2\delta$. For $t > t_0$,
 1028

$$1030 \quad p_{u_t-1} = p_{u_t} - \eta_{u_t-1} g(p_{u_t-1} - A_{u_t-1} - \eta_{u_t-2} M_{u_t-1}) \geq p_{u_t} - \eta_{u_t-1} > q^* + \delta,$$

1031 hence
 1032

$$1033 \quad p_{u_t} = p_{u_t-1} + \eta_{u_t-1} g(p_{u_t-1} - A_{u_t-1} - \eta_{u_t-2} M_{u_t-1}) \\ 1034 \quad \leq p_{u_t-1} + \eta_{u_t-1} g(p_{u_t-1} - \delta) \leq p_{u_t-1} + \eta_{u_t-1} g(q^*) = p_{u_t-1}, \\ 1035$$

1036 i.e. $p_{u_t-1} \geq p_{u_t}$. By induction we can prove that for any $t > t_0, p_{u_t-1} \geq p_{u_{t-1}+1} \geq \dots \geq p_{u_t} > q^* + 2\delta$.
 1037

1038 Next, let $V(p) = (p - q^*)^2$, then for any $t > u_{t_0}$, we have:
 1039

$$1040 \quad V(p_{t+1}) - V(p_t) = (p_t + \eta_t g(p_t - A_t - \eta_{t-1} M_t) - q^*)^2 - (p_t - q^*)^2 \\ 1041 \quad = 2\eta_t(p_t - q^*)g(p_t - A_t - \eta_{t-1} M_t) + \eta_t^2[g(p_t - A_t - \eta_{t-1} M_t)]^2 \\ 1042 \quad \leq 2\eta_t \cdot 2\delta g(q^* + \delta) + \eta_t^2 \\ 1043 \quad = -4\eta_t \delta(F(q^* + \delta) - F(q^*)) + \eta_t^2. \quad (1)$$

1044 By assumption, $F(q^* + \delta) - F(q^*) > 0$. As $\sum_{t=u_{t_0}} \eta_t = \infty$ and $\sum_{t=u_{t_0}} \eta_t^2 < \infty$, summing
 1045 equation 1 from u_{t_0} to ∞ gives that $V_t \rightarrow -\infty$, contradicting the convergence of $\{p_{u_t}\}_{t \geq 1}$.
 1046

1047 Finally, we conclude that any convergent subsequence of $\{p_t\}_{t \geq 1}$ converges to q^* . Therefore,
 1048 $\lim_{t \rightarrow \infty} p_t = q^*$. Using $A_t \rightarrow 0$ and $\eta_{t-1} M_t \rightarrow 0, t \rightarrow \infty$ completes the proof. \square
 1049

1050 C IMPLEMENT OF COP WITH KERNEL-BASED CDF

1051 In this section, we compare the performance of using ECDF and Gaussian kernel density estimator
 1052 (KDE) for estimating the CDF in the COP framework \hat{F}_{t+1} . The KDE is implemented using a sliding
 1053 window approach to incorporate recent data points and adapt to distribution shifts. We set the scale
 1054 factor $\lambda = 0.5$, the length window $w = 100$, and the bandwidth h of Silverman's rule:
 1055

$$1056 \quad h = 0.9 \times \sigma \times w^{-0.2},$$

1057 where σ is the minimum of the standard deviation of the window data and the interquartile range
 1058 (IQR) divided by 1.34. Then the CDF value at q is estimated using the Gaussian kernel:
 1059

$$1060 \quad \hat{F}_{t+1}(\hat{q}_{t+1}) = \frac{1}{n} \sum_{i=t-w+1}^t \Phi\left(\frac{\hat{q}_{t+1} - s_i}{h}\right),$$

1061 where Φ is the cumulative distribution function of the standard normal distribution, s_i is the non-
 1062 conformity score at timestep t .
 1063

1064 We evaluate the performance of the choices of estimated CDF, including empirical CDF (denoted
 1065 ECDF) and kernel-based CDF (denoted Kernel), across six datasets: Changepoint, Distribution Drift,
 1066 Amazon Stock, Google Stock, Electricity Demand, and Temperature. The results are presented in
 1067 Table 3. We can see that even with simple ECDF, COP can achieve tight prediction sets and maintain
 1068 coverage rates close to the nominal level. The kernel-based CDF shows comparable performance in
 1069 some cases, but may require further tuning of parameters such as bandwidth for optimal results.
 1070

1071 D LEARNING RATE SELECTION IN THE EXPERIMENTS

1072 In our experiments, the default setting is to select four learning rates on all datasets and then pick
 1073 the one that yields the best performance. Considering the high sensitivity of LQT and OGD-based
 1074 methods to the learning rate, we carefully select more than four candidate learning rates for these
 1075 methods across various datasets. The following is the list of all learning rates used, which are
 1076

1080

1081 Table 3: The experimental results on the choices of estimated CDF with nominal level $\alpha = 10\%$.
1082

Dataset	Method	Prophet			AR			Theta		
		Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
Changepoint	ECDF	89.8	8.29	8.44	89.7	8.18	8.25	89.8	8.45	8.53
	Kernel	89.8	8.29	8.45	89.7	8.11	8.21	89.8	8.45	8.53
Distribution	ECDF	90.6	7.07	6.89	90.0	7.09	6.97	90.9	7.30	6.99
	Kernel	90.6	7.07	6.89	90.0	7.10	6.98	90.9	7.30	6.99
Drift	ECDF	89.6	39.86	27.91	89.5	17.09	12.90	89.6	17.21	12.23
	Kernel	89.6	40.32	27.98	89.4	17.23	12.95	89.6	17.35	12.56
Amazon	ECDF	89.7	49.72	42.09	89.6	19.87	17.04	89.3	30.25	28.24
	Kernel	89.7	50.85	42.33	89.6	19.92	16.94	89.3	30.36	28.40
Stock	ECDF	90.1	0.385	0.376	90.0	0.117	0.098	89.8	0.069	0.052
	Kernel	90.1	0.384	0.377	90.0	0.118	0.099	89.8	0.069	0.052
Google	ECDF	90.1	7.05	7.07	89.9	5.85	5.58	90.0	6.27	6.18
	Kernel	90.1	7.06	7.08	89.9	5.85	5.59	90.0	6.25	6.17

1102

1103 determined through this systematic selection process to ensure fair and effective comparison.
1104

1105
$$\text{ACI} : \eta = \{0.1, 0, 0.05, 0.01, 0.005\},$$

1106
$$\text{OGD} : \eta = \{10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005\},$$

1107
$$\text{SF-OGD} : \eta = \{1000, 500, 100, 50, 10, 5, 1, 0.5, 0.1, 0.05\},$$

1108
$$\text{decay-OGD} : \eta = \{2000, 1000, 200, 100, 20, 10, 2, 1, 0.2, 0.1\},$$

1109
$$\text{Conformal PID} : \eta = \{1, 0.5, 0.1, 0.05\},$$

1110
$$\text{ECI} : \eta = \{1, 0.5, 0.1, 0.05\},$$

1111
$$\text{LQT} : \eta = \{10, 5, 1, 0.5, 0.1, 0.05, 0.01\},$$

1112
$$\text{COP} : \eta = \{1, 0.5, 0.1, 0.05\}$$

1113

1114 For ACI and OGD, they do not use adaptive learning rates. For SF-OGD:
1115

1116
$$\eta_t = \eta \cdot \frac{\nabla \ell^{(t)}(q_t)}{\sqrt{\sum_{i=1}^t \|\nabla \ell^{(i)}(q_i)\|_2^2}},$$

1117

1118

1119 where $\ell^{(t)}(q_t)$ is quantile loss and q_t is the predicted radius at time t . For decay-OGD:
1120

1121
$$\eta_t = \eta \cdot t^{-\frac{1}{2}-\epsilon},$$

1122

1123

1124 where the hyperparameter $\epsilon = 0.1$ follows Angelopoulos et al. (2024). For conformal PID, ECI and
1125 COP:
1126

1127
$$\eta_t = \eta \cdot (\max\{s_{t-w+1}, \dots, s_t\} - \min\{s_{t-w+1}, \dots, s_t\}),$$

1128

1129 where s_t is the non-conformity score at time t and the window length $w = 100$ follows Angelopoulos
1130 et al. (2023b).
1131

1132

1133

E MORE EXPERIMENTAL RESULTS IN SIMULATION DATASETS

1134

1135 We also evaluated our method in three other simulation datasets under variance changepoint, heavy-
1136 tailed noise, and extreme distribution drift setting, respectively. Both datasets $\{X_i, Y_i\}_{i=1}^n$ are
1137 generated according to a linear model $Y_t = X_t^T \beta_t + \epsilon_t$, $X_t \sim \mathcal{N}(0, I_4)$, $\epsilon_t \sim \mathcal{N}(0, \sigma_t)$, $n = 2000$.
1138

- Variance changepoint setting: we set fixed $\beta = (2, 1, 0.5, -0.5)^\top$ and two variance changepoints: $\sigma_t = 1$ for $t = 1, \dots, 500$; $\sigma_t = 3$ for $t = 501, \dots, 1500$; and $\sigma_t = 0.5$ for $t = 1501, \dots, 2000$.
- Heteroskedastic and heavy-tailed noise setting: we set fixed $\beta = (2, 1, 0.5, -0.5)^\top$ and the noise ϵ_t is $t(2)$, with standard deviation $1 + 2|X_t^\top \beta|^3 / \mathbb{E}(|X^\top \beta|^3)$.
- Extreme distribution drift setting: we set $\beta_1 = (20, 10, 1, 1)^\top$, $\beta_n = (1, 1, 20, 10)^\top$, and use linear interpolation to compute $\beta_t = \beta_1 + \frac{t-1}{n-1}(\beta_n - \beta_1)$.

Table 4: The experimental results in the three other simulation datasets with nominal level $\alpha = 10\%$. Note that, since PID, ECI and LQT methods completely fail on the Extreme Drift dataset, we did not include them in the table.

Dataset	Method	Prophet			AR			Theta		
		Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
Variance Changepoint	ACI	91.0	∞	11.06	91.0	∞	10.74	91.0	∞	10.90
	OGD	90.1	10.57	10.65	90.0	10.43	10.25	90.0	10.44	10.07
	SF-OGD	90.0	14.75	14.06	90.0	14.80	14.18	90.0	14.47	13.82
	decay-OGD	90.2	10.71	11.21	89.9	10.41	11.00	90.2	10.76	11.12
	PID	89.7	13.17	11.81	89.7	13.07	11.77	89.7	13.26	11.99
	ECI	89.9	10.66	10.39	89.8	10.35	9.75	89.9	10.60	10.04
	LQT	90.6	12.10	11.77	88.7	10.84	10.97	89.8	11.64	11.38
	COP	89.9	10.78	10.79	89.8	10.37	9.87	89.9	10.66	10.10
Heavy-tailed	ACI	90.3	∞	10.03	90.2	∞	10.01	90.3	∞	9.82
	OGD	90.0	9.94	9.95	90.0	9.91	9.95	90.2	10.18	10.25
	SF-OGD	90.0	15.22	14.05	90.0	15.10	13.93	90.0	15.43	13.91
	decay-OGD	90.3	9.97	10.01	89.9	9.69	9.77	90.8	10.10	9.94
	PID	89.7	13.60	11.47	89.6	13.14	11.36	89.6	13.12	11.19
	ECI	89.9	10.54	10.49	90.0	10.34	10.27	90.0	10.55	10.36
	LQT	92.0	13.21	12.32	89.4	10.13	10.09	92.8	15.79	13.74
	COP	89.8	9.56	9.79	89.9	10.38	10.27	90.4	9.87	10.03
Extreme Drift	ACI	90.4	∞	79.01	89.7	∞	61.85	90.3	∞	70.06
	OGD	91.1	275.87	280.00	89.9	64.03	62.00	91.3	213.10	212.00
	SF-OGD	92.0	423.68	445.98	89.9	68.23	63.62	92.4	376.03	388.03
	decay-OGD	89.7	265.81	274.93	90.0	64.50	60.32	91.6	246.51	248.24
	COP	91.1	275.82	279.84	89.9	64.10	62.18	91.3	213.54	211.91

The results are shown in Table 4. We observe that COP consistently maintains the coverage rate close to the nominal level of 90% in all scenarios while producing competitive interval widths. Notably, in the Variance Changepoint and Heavy-tailed settings, COP achieves average widths comparable to or tighter than OGD and ECI, without the instability seen in ACI (which yields infinite widths). In the Extreme Drift setting, traditional methods like PID, ECI, and LQT failed to construct valid prediction sets due to the severity of the shift, and are thus excluded from the table. In contrast, COP successfully adapts to the extreme drift, maintaining valid coverage similar to OGD but with slightly tighter intervals in the Theta base predictor case. These results further validate the robustness of COP in handling complex distributional shifts.

F POST-SHIFT COVERAGE RECOVERY TIME

To quantify the responsiveness of COP and competing baselines after an abrupt distribution shift, we define post-shift recovery time based on the stability of short-horizon empirical coverage. Let t_c denote the changepoint index. For each method, we compute a sliding-window coverage rate

$$cvgr(t) = \frac{1}{w_r} \sum_{i=t-w_r+1}^t \mathbb{1}\{s_i < q_i\},$$

1188 where $w_r = 20$ is the coverage-estimation window (independent of any internal calibration window).
 1189 Recovery is declared at the earliest time $t_r > t_c$ such that

1190 $1 - \alpha - 1/w_r \leq cvgr(t) \leq 1 - \alpha + 1/w_r$ for k consecutive indices $t = t_r, \dots, t_{r+k-1}$,
 1191 with nominal coverage $1 - \alpha = 0.9$ and $k = 10$. This criterion requires the local empirical coverage
 1192 to remain around the target level for multiple consecutive checks, preventing spurious early detections
 1193 due to stochastic noise.

1195
 1196 Table 5: Post-shift coverage recovery time (in steps) in the Changepoint datasets.

Method	Prophet		AR		Theta	
	Recovery Time 1	Recovery Time 2	Recovery Time 1	Recovery Time 2	Recovery Time 1	Recovery Time 2
ACI	35	73	50	0	35	66
OGD	12	0	40	0	40	0
SF-OGD	12	0	12	0	12	0
decay-OGD	6	73	153	73	60	73
PID	40	0	12	0	40	0
ECI	12	8	40	0	40	0
LQT	156	73	60	73	60	73
COP	12	0	40	0	40	0

G ROBUSTNESS OF INACCURATE ESTIMATED CDF

1213 To evaluate the robustness of COP in adversarial environments where the estimated CDF may be
 1214 inaccurate, we performed an additional experiment in which the ECDF is corrupted by randomized
 1215 noise. Specifically, at each time step, we construct a noisy ECDF by

$$\hat{F}_{noisy} = \gamma \hat{F} + (1 - \gamma) \epsilon,$$

1216 where \hat{F} is the ECDF, $\epsilon \sim U(0, 1)$ denotes a uniform random noise, and $\gamma \in \{1, 0.9, 0.5, 0.1, 0\}$
 1217 controls the level of the corruption. The case $\gamma = 1$ corresponds to the true ECDF, while $\gamma = 0$
 1218 represents a purely adversarial environment in which the estimated CDF contains no information
 1219 about the data distribution. We apply this noise independently at each time step and use \hat{F}_{noisy} in
 1220 place of \hat{F} in the COP update rule.

1223
 1224 Table 6: The experimental results under different noise level γ in the two real-world datasets with
 1225 nominal level $\alpha = 10\%$.

Dataset	γ	Prophet			AR			Theta		
		Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
Amazon Stock	1.0	89.6	39.86	27.91	89.5	17.09	12.90	89.6	17.21	12.23
	0.9	89.6	38.95	27.85	89.3	17.14	12.71	89.6	17.45	13.12
	0.5	89.7	42.24	29.56	89.4	17.24	13.08	89.6	17.20	12.76
	0.1	90.1	46.93	30.89	89.2	17.45	12.44	89.6	17.60	12.73
	0.0	90.0	62.65	53.09	89.7	22.07	18.26	89.5	30.76	28.56
Google Stock	1.0	89.7	49.72	42.09	89.6	19.87	17.04	89.3	30.25	28.24
	0.9	89.8	49.99	42.06	89.6	19.81	16.92	89.4	30.43	27.79
	0.5	90.0	54.57	46.08	89.6	19.84	17.33	89.4	29.82	27.27
	0.1	90.0	61.25	51.91	89.6	19.98	17.23	89.5	30.68	28.18
	0.0	90.8	86.26	55.43	90.0	30.04	20.32	89.9	30.24	20.76

1240
 1241 Table 6 shows the results for Amazon and Google stock datasets across different noisy levels γ . The
 coverage rate remains stable across all values of γ . Even when the CDF is fully replaced by uniform

noise ($\gamma = 0$), the coverage rate varies by at most 0.5%. In contrast, the average and median interval widths exhibit a relatively monotonic trend: as γ decreases and the CDF becomes less informative, COP widens its intervals adaptively for validity. This behavior demonstrates that COP can flexibly utilize the CDF information to tighten intervals when the CDF is accurate but to revert to conservative intervals when the CDF is adversarial.

Overall, these results indicate that COP retains near-nominal coverage even when the CDF is corrupted or completely uninformative, thereby confirming its robustness under adversarial noisy CDF.

H SENSITIVITY ANALYSIS OF THE SCALE FACTOR

In this section, we will analyze the sensitivity of the scale factor λ . As defined in the update rule

$$q_{t+1} = \hat{q}_{t+1} - \lambda \left(\hat{F}_{t+1}(\hat{q}_{t+1}) - (1 - \alpha) \right),$$

this parameter governs the magnitude of the refinement step derived from the estimated CDF. We evaluated the performance in the Amazon Stock and Google Stock datasets for three distinct values: $\lambda \in \{0.1, 0.5, 1.0\}$.

Table 7: The experimental results under different scale factor λ in the two real-world datasets with nominal level $\alpha = 10\%$.

Dataset	λ	Prophet			AR			Theta		
		Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
Amazon Stock	1.0	89.4	40.31	28.96	89.0	16.97	12.88	89.5	17.01	12.2
	0.5	89.6	39.86	27.91	89.5	17.09	12.9	89.6	17.21	12.23
	0.1	89.7	40.98	29.06	89.3	16.90	12.62	89.6	17.26	12.66
Google Stock	1.0	89.7	52.20	42.83	89.3	19.93	16.98	89.3	30.49	28.56
	0.5	89.7	49.72	42.09	89.6	19.87	17.04	89.3	30.25	28.24
	0.1	89.8	52.47	43.72	89.6	19.85	17.34	89.6	30.66	28.26

The results are shown in Table 7. Overall, COP demonstrates high robustness to variations in the scale factor. Across all base predictors (Prophet, AR, and Theta), the coverage rates remain stable and consistently close to the target, regardless of the specific λ chosen. Regarding efficiency, the setting of $\lambda = 0.5$ generally yields the most favorable trade-off, achieving tighter average and median widths compared to the more conservative $\lambda = 0.1$. While $\lambda = 1.0$ also produces competitive widths, it occasionally results in slightly lower coverage rates (e.g., AR on Amazon Stock). These empirical findings justify our default hyperparameter selection of $\lambda = 0.5$ used in the main experiments.

I STATISTICAL SIGNIFICANCE ANALYSIS

We regenerated the Changepoint and Distribution Drift datasets using ten different random seeds. For each method and each base model (Prophet, AR, Theta), we evaluated the coverage rate, the average interval width, and the median width on every dataset and then reported the mean and standard deviation across the ten generated datasets.

As shown in Table 8 and Table 9, the variability across multiple data generation seeds is small: coverage rate varies by less than 0.5%, and interval width variations vary slightly. This indicates that performance differences between methods are not attributable to any single random dataset. In both experimental settings, COP consistently achieves coverage rates close to the target level while yielding tight interval widths.

Moreover, we conducted paired t-tests to reflect the statistical significance of shorter width of COP. All of the baselines above show p -values less than 0.05 (e.g., OGD has p -value=0.014, SF-OGD has p -value=0.0002, and ECI's p -value=0.03). These results confirm that the observed differences in width between our methods and the COP baseline are statistically significant.

1296

1297
1298
1299
Table 8: The experimental results in the Changepoint datasets with nominal level $\alpha = 10\%$. Values
represent the mean \pm standard deviation of coverage Rate, average width, and median width across
ten independent runs using different random seeds.

Method	Prophet			AR			Theta		
	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
ACI	90.0 \pm 0.01	∞	8.27 \pm 0.04	90.0 \pm 0.01	∞	8.15 \pm 0.04	90.0 \pm 0.01	∞	8.33 \pm 0.05
OGD	90.1 \pm 0.02	8.63 \pm 0.09	8.62 \pm 0.10	90.0 \pm 0.02	8.46 \pm 0.10	8.48 \pm 0.12	90.1 \pm 0.03	8.68 \pm 0.12	8.64 \pm 0.13
SF-OGD	90.0 \pm 0.01	12.65 \pm 0.12	11.59 \pm 0.12	90.0 \pm 0.01	12.66 \pm 0.15	11.63 \pm 0.15	90.0 \pm 0.01	12.68 \pm 0.25	11.71 \pm 0.28
decay-OGD	90.6 \pm 0.10	8.52 \pm 0.20	8.34 \pm 0.15	90.1 \pm 0.09	8.17 \pm 0.22	8.11 \pm 0.17	90.5 \pm 0.30	8.43 \pm 0.30	8.29 \pm 0.20
PID	89.7 \pm 0.01	11.06 \pm 0.15	9.36 \pm 0.18	89.7 \pm 0.09	10.86 \pm 0.10	9.18 \pm 0.13	89.7 \pm 0.02	10.99 \pm 0.20	9.32 \pm 0.25
ECI	89.9 \pm 0.01	8.32 \pm 0.17	8.34 \pm 0.19	89.9 \pm 0.09	8.22 \pm 0.23	8.26 \pm 0.22	89.9 \pm 0.02	8.38 \pm 0.17	8.43 \pm 0.19
LQT	90.4 \pm 0.30	10.72 \pm 1.20	9.70 \pm 1.00	90.0 \pm 0.30	10.23 \pm 1.00	9.40 \pm 0.90	90.2 \pm 0.50	10.49 \pm 0.90	9.70 \pm 0.95
COP	89.8 \pm 0.15	8.29 \pm 0.15	8.35 \pm 0.15	89.4 \pm 0.50	8.12 \pm 0.20	8.23 \pm 0.20	89.8 \pm 0.30	8.35 \pm 0.15	8.38 \pm 0.18

1310

1311

1312
1313
1314
Table 9: The experimental results in the Distribution Drift datasets with nominal level $\alpha = 10\%$.
Values represent the mean \pm standard deviation of coverage Rate, average width, and median width
across ten independent runs using different random seeds.

Method	Prophet			AR			Theta		
	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width	Coverage (%)	Average width	Median width
ACI	89.8 \pm 0.02	∞	6.61 \pm 0.03	89.7 \pm 0.03	∞	6.53 \pm 0.02	89.8 \pm 0.02	∞	6.64 \pm 0.02
OGD	90.2 \pm 0.01	7.04 \pm 0.03	6.91 \pm 0.03	90.1 \pm 0.02	6.89 \pm 0.04	6.84 \pm 0.03	90.2 \pm 0.01	7.08 \pm 0.04	6.98 \pm 0.05
SF-OGD	90.0 \pm 0.00	11.50 \pm 0.01	10.35 \pm 0.02	90.0 \pm 0.00	11.44 \pm 0.06	10.28 \pm 0.03	90.0 \pm 0.00	11.50 \pm 0.08	10.28 \pm 0.05
decay-OGD	90.4 \pm 0.12	7.38 \pm 0.10	6.76 \pm 0.03	90.0 \pm 0.04	6.94 \pm 0.06	6.60 \pm 0.03	90.2 \pm 0.08	7.24 \pm 0.05	6.74 \pm 0.02
PID	89.7 \pm 0.00	9.59 \pm 0.06	7.79 \pm 0.02	89.6 \pm 0.01	9.67 \pm 0.10	7.75 \pm 0.02	89.7 \pm 0.00	9.70 \pm 0.05	7.86 \pm 0.01
ECI	90.0 \pm 0.00	7.01 \pm 0.05	6.84 \pm 0.03	89.9 \pm 0.03	6.83 \pm 0.04	6.81 \pm 0.04	90.1 \pm 0.03	7.10 \pm 0.08	6.93 \pm 0.04
LQT	90.7 \pm 0.05	9.47 \pm 0.07	8.53 \pm 0.03	90.5 \pm 0.59	8.56 \pm 0.07	8.00 \pm 0.20	90.5 \pm 0.59	9.50 \pm 0.33	8.55 \pm 0.04
COP	90.5 \pm 0.11	6.77 \pm 0.08	6.70 \pm 0.04	89.9 \pm 0.03	6.67 \pm 0.18	6.67 \pm 0.10	90.5 \pm 0.14	7.12 \pm 0.16	6.87 \pm 0.05

1326

1327

1328
1329
1330
Overall, these repeated-data experiments confirm that our findings are not sensitive to the choice
of a single random seed. The overall patterns reported in the main text remain the same across
independently generated datasets.

1331

1332

J COMPUTATIONAL COMPLEXITY ANALYSIS

13331334
1335
1336
1337
To compare the practical efficiency of the baselines and COP, we measured the average computation
time for each method. All timings were obtained using a single CPU core (Intel(R) Xeon(R) Platinum
8269CY CPU @ 2.50GHz) on the same machine, with each method running for 3020 steps. As
shown in Table 10, the reported value represents the mean per-step time cost.

1338

1339

1340
Table 10: Average time cost per update step.

Method	ACI	OGD	SF-OGD	decay-OGD	PID	ECI	LQT	COP
Time Cost (ms)	0.043	0.001	0.012	0.001	0.013	0.007	0.010	0.011

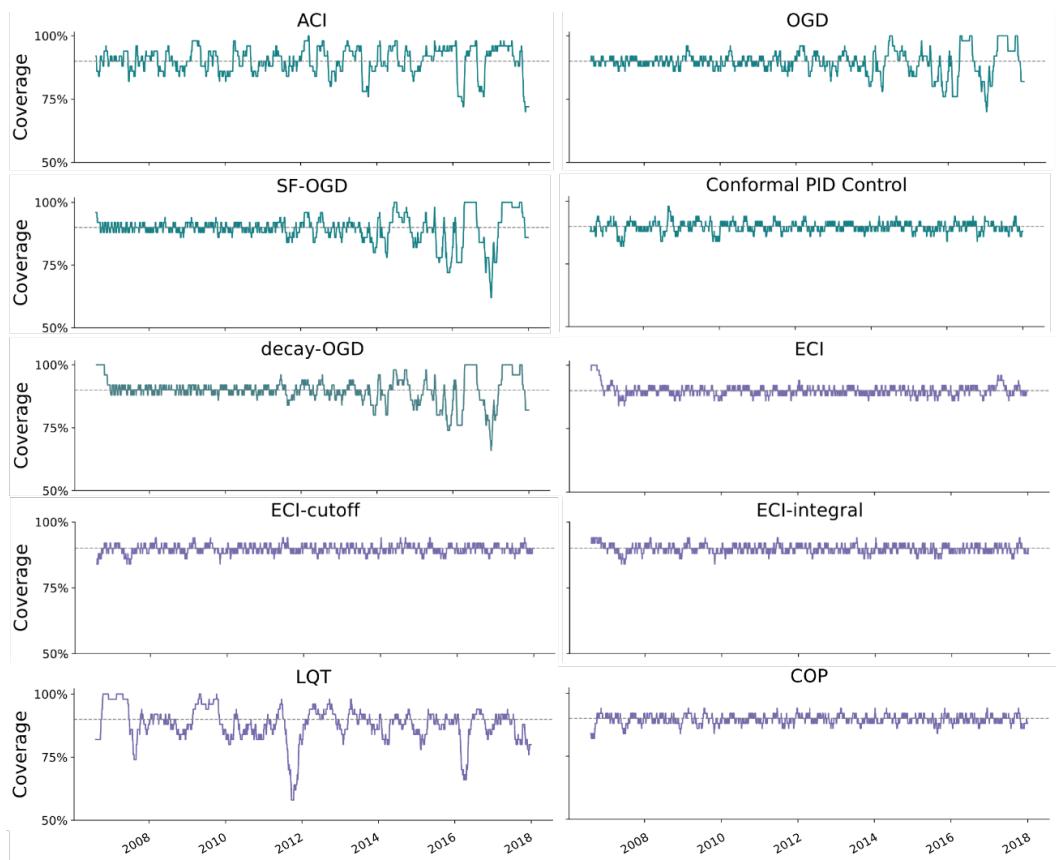
1345

1346
1347
1348
1349
The simplest gradient-based methods (OGD and decay-OGD) are the fastest, requiring only 0.001 ms
per step. Methods that consider all past data, such as SF-OGD and PID, incur higher overhead (around
0.012 – 0.013 ms). Methods that consider the past data in a certain window, such as ECI, LQT, and
COP fall in a similar range (0.007 – 0.011 ms). Overall, the differences between methods remain
small in absolute terms, and all methods run easily in real time for typical streaming applications.

1350 K VISUALIZATION OF COVERAGE AND INTERVAL

1352 Figure 1 shows the corresponding rolling-window coverage for each method. The coverage trajectories
 1353 show how frequently each approach stays close to the target level and how often it experiences
 1354 deviations. The worse methods tend to display larger swings in coverage, including occasional
 1355 periods of undercoverage. In contrast, COP and several ECI variants maintain a more stable coverage
 1356 across the entire time period, even during intervals with sharp changes in the underlying series.

1357 In Figure 2, we plot the interval widths for all methods, together with zoomed-in panels that highlight
 1358 periods of rapid market movement. These plots show clear differences in how each method responds
 1359 to changes in volatility. Some approaches, such as PID or ECI-based variants, exhibit sharp jumps or
 1360 sudden drops in interval width when the underlying series becomes more volatile. Others, including
 1361 ECI-based methods and COP, adjust their intervals more gradually and maintain a smoother trajectory.



1391 Figure 1: Comparison results of coverage rate on Amazon stock dataset with Prophet model. The
 1392 coverage is averaged over a rolling window of 50 points.

1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

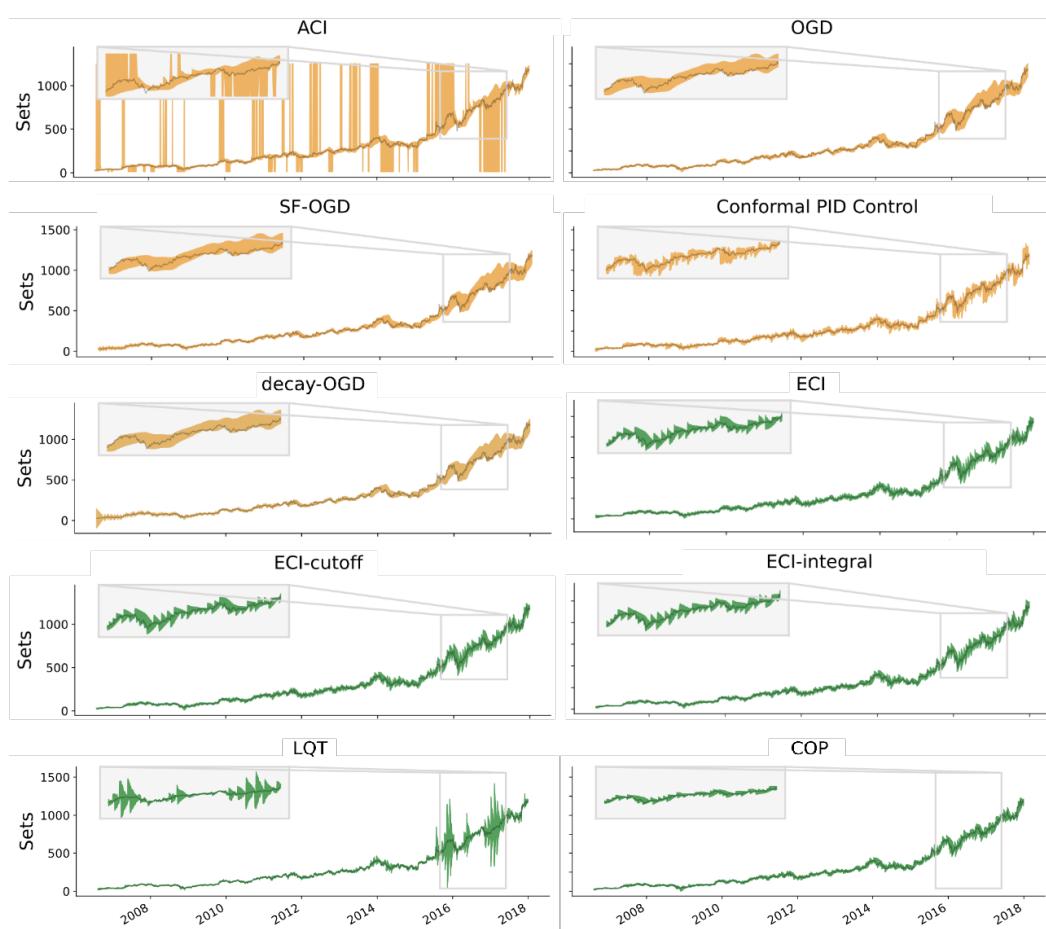


Figure 2: Comparison results of prediction sets on Amazon stock dataset with Prophet model.