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Abstract

In causal representation learning, it is commonly
believed that in order to learn useful latent struc-
ture, we face a fundamental tension between ex-
pressivity and structure. In this paper we chal-
lenge this view by proposing a new approach to
training arbitrarily expressive generative models
that also learn disentangled latent structure that
enables multi-concept interventions and out-of-
distribution (OOD) composition. This is accom-
plished by adding a simple decoder-only module
to the head of an existing decoder block that can
be arbitrarily complex. The module learns to pro-
cess concept information by implicitly inverting
linear representations from an encoder. Inspired
by the notion of intervention in causal graphical
models, our module selectively modifies its archi-
tecture during training, allowing it to learn a com-
pact joint model over different contexts. We show
how adding this module leads to disentangled rep-
resentations that can be composed for OOD gener-
ation. To further validate our proposed approach,
we show how our module approximates an identifi-
able concept model by establishing an identifiabil-
ity result that extends existing work on identifying
structured representations in nonlinear models.

1 INTRODUCTION

Generative models have transformed information process-
ing and demonstrated remarkable capacities for creativity in
a variety of tasks ranging from vision to language to audio.
The success of these models has been largely driven by mod-
ular, differentiable architectures based on deep neural net-
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works that learn useful representations for downstream tasks.
Recent years have seen increased interest in understanding
and exploring the representations produced by these models
through evolving lines of work on structured representation
learning, identifiability and interpretability, disentanglement,
and causal generative models. This work is motivated in part
by the desire to produce performant generative models that
also capture meaningful, semantic latent spaces that enable
out-of-distribution generation under perturbations.

A key conceptual driver of this line of work is the trade-
off between flexibility and structure, or expressivity and
interpretability: It is widely believed that to learn struc-
tured, interpretable representations, model capacity must be
constrained, sacrificing flexibility and expressivity. As de-
scribed in Section 3, this intuition is supported by a growing
body of theoretical work on nonlinear ICA, disentangle-
ment, and causal representation learning, for example. On
the practical side, methods that have been developed to learn
structured latent spaces tend to be bespoke to specific data
types and models, and typically impose significant limita-
tions on the flexibility and expressivity of the underlying
models. Moreover, the most successful methods for learning
structured representations typically impose fixed, known
structure a priori, as opposed to learning this structure from
the data.

At the same time, there is a growing body of work that
suggests generative models already learn surprisingly struc-
tured latent spaces (see Section 3 for more discussion). This
in turn suggests that existing models are already “close”
to capturing the desired structure, and perhaps only small
modifications are needed. Since we already have performant
models that achieve state-of-the-art results in generation and
discrimination, do we need to re-invent the wheel to achieve
these goals? Our hypothesis is that we should be able to
leverage the expressiveness of these models to build new
models that learn latent structure from scratch. We empha-
size up front that our goal is not to explain or interpolate the
latent space of a pre-trained model, but rather to leverage
known architectures to train a new model end-to-end from
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Figure 1: Overview of our approach. Given a black-box encoder-decoder architecture (blue), we propose to append a context
module (red) to the head of the decoder. (left) Instead of passing the output of the encoder directly to the decoder (blue box +
blue arrow), the embeddings e are passed through the context module, consisting of three distinct layers. The output of this
module is then passed into the decoder. (right) The model learns to compose different concepts OOD, in this case object and
background color, neither of which appear together in the training data.

scratch.

In this paper, we adopt this perspective: We start with a
black-box encoder-decoder architecture, upon which we
make no assumptions, and then augment this model to learn
structured representations. The idea is that the black-box
is an architecture that is already known to perform well on
downstream tasks such as sampling and prediction, and so is
flexible enough to capture complex patterns in data. We then
introduce a modular, end-to-end differentiable architecture
for learning structured representations, augmenting the orig-
inal model with a simple decoder-only module that retains
its existing capabilities while enabling concept identification
and intervention as well as composing together multiple con-
cept interventions for out-of-distribution (OOD) generation.
The resulting latent structure is learned fully end-to-end,
with no fixed structure imposed a priori. The motivation
is to provide a framework for taking existing performant
architectures and to train a new model that performs just as
well, but with the added benefit of learning structured rep-
resentations without imposing specific prior knowledge or
structure a priori. These representations may be useful for
interpretability, downstream tasks, or other purposes. Since
the model, unlike previous approaches, imposes no latent
structure a priori, we theoretically validate the approach with
a novel identifiability result for structured representations
recovered by the model.

To explore the implications of this modification, we run ex-
periments including OOD generation. An attractive feature
of our approach is that it makes running carefully controlled
experiments and ablations particularly simple: We can care-
fully control hyperparameters across different models, en-
suring that any differences in performance are attributable
to specifically controlled architectural modifications. As a
result, we contribute to a growing body of empirical work
on the OOD capabilities of generative models by introduc-
ing a new set of ablations that can be used to guide the

development of new methods.
Contributions Our main contributions can be summa-
rized as follows:

1. We introduce a simple module that can be attached to
the head of an existing decoder block to learn concept
representations by splitting each concept into a tensor
slice, where each slice represents an interventional
context in a reduced form structural equation model
(SEM). This module can be attached to the head of any
decoder block and trained end-to-end.

2. We conduct experiments on disentanglement and OOD
generation on several real datasets as well as controlled
simulations. To this end, we introduce a simple simu-
lated visual environment for testing disentanglement
and OOD generation. This allows us to carefully test
different ablations under controlled settings.

3. To illustrate the adaptivity of our module to different
architectures, we include experiments with several dif-
ferent VAE architectures including NVAE [71].

As a matter of independent interest, we prove an identifia-
bility result under concept interventions, and discuss how
the proposed architecture can be interpreted as an approxi-
mation to this model. Full technical proofs are omitted and
have been deferred to the full version of the paper.

2 PRELIMINARIES

Let x denote the observations, e.g., pixels in an image, and
z denote hidden variables, e.g. latent variables that are to be
inferred from the pixels. We are interested in training gener-
ative models with an encoder-decoder architecture, such as a
variational autoencoder (VAE). A typical generative model
consists of a decoder py(x |z) and an encoder ¢4(z|x).



After specifying a prior py(z), this defines a likelihood by

po(x) = JPG(X | z)po(z) dz. (1)

Both the decoder and encoder are specified by deep neu-
ral networks that will be trained end-to-end via standard
techniques [29, 58, 57]. These networks are often chosen
to capture implicit assumptions about the structure of the
latent space, such as hierarchical structure, graphical struc-
ture, equivariance, etc. In this work, we focus on VAEs since
they are often use to represent structured and semantic la-
tent spaces, which is our focus. Unlike traditional structured
VAEs, we do not impose a specific structure a priori.

Our starting point is the following incongruence: On the
one hand, it is well-established that the latent spaces of
VAEs are typically entangled and semantically misaligned,
fail to generalize OOD, and suffer from posterior collapse
(which has been tied to latent variable nonidentifiability, 75).
On the other hand, VAEs still learn highly structured latent
spaces that can be traversed and interpolated, are “nearly”
identifiable [80, 56], and represent abstract concepts linearly.
Thus, our hypothesis is that sufficiently flexible models do
capture meaningful structure internally, just not in a way that
is interpretable or meaningful in practice. So, to learn latent
structure, we build off the already performant embeddings
of a generative model.

Our set-up is the following: We are given a black-box VAE,
consisting of an encoder and a decoder, on which we make
no assumptions other than the encoder outputs a latent code
corresponding to x. In the notation of (1), this corresponds
to z, however, to distinguish the black-box embeddings from
our model, we will denote the black-box embeddings here-
after by e. Our plan is to work solely with the embeddings e
and learn how to extract linear concept representations from
e such that distinct concepts can be intervened upon and
composed together to create novel, OOD samples. Crucially,
we do not modify the black-box architecture in any way.
While this can be fine-tuned or trained end-to-end, it can
also be frozen in place while our module trains separately.

3 RELATED WORK

Structured generative models To provide structure such
as hierarchical, graphical, causal, and disentangled struc-
tures as well as other inductive biases in the latent space,
there has been a trend towards building structured genera-
tive models that directly impose this structure a priori. Early
work looked at incorporating fixed, known structure into
generative models, such as autoregressive, graphical, and
hierarchical structure [20, 26, 64, 77, 79, 15, 49]. This was
later translated into known causal structure [31]. When the
latent structure is unknown, several techniques have been
developed to learn useful (not necessarily causal) structure
from data [36, 24, 78, 30, 46]. More recently, based on

growing interest in disentangled [7] and/or causal [59] rep-
resentation learning, methods that learn causal structure
have been developed [45, 83, 5, 63, 27].

Causal representation learning Causal representation
learning [60], which involves learning causal structure in
the latent space, is a rapidly developing area that has pro-
duced fundamental results on theoretical aspects of iden-
tifiability [9, 63, 32, 46, 30, 10, 22, 1, 74, 47, 38, 40, 84,
72, 65, 81, 86, 37, 73, 8, 2, 67, 85]. Recent work has also
pushed in the direction of identifying concepts [33, 55, 19].
Our work draws inspiration from this line of work, which
articulates precise conditions under which latent structure
can be recovered in principle. By contrast, our focus is on
methodological aspects of exploiting learned causal invari-
ances in practice, although we do prove a new identifiability
result that may be of independent interest.

Linear representations Generative models are known to
represent concepts linearly in embedding space [e.g. 41,
60, 4]; see also [34, 4, 21, 3, 18, 62]. This phenomenon has
been well-documented over the past decade in both language
models [41, 52,4, 14, 68, 16, 11, 69, 50, 48, 35, 51, 23, 25]
and computer vision [53, 54, 6, 17, 28, 13, 76, 70]. Our
approach actively exploits this tendency by searching for
concept representations as linear projections of the embed-
dings learned by a black-box model.

OOD generalization A growing line of work studies the
OOD generalization capabilities of generative models, with
the general observation being that existing methods struggle
to generalize OOD [82, 42, 43, 44, 61]. It is worth noting
that most if not all of this work evaluates OOD general-
ization using reconstruction on held-out OOD samples, as
opposed to generation. For example, a traditional VAE may
be able to reconstruct held-out samples, but it is not pos-
sible to actively sample OOD. See Section 5.1 for more
discussion.

4 ARCHITECTURE

We start with a black-box encoder-decoder architecture and
assume there are d. concepts of interest, denoted by ¢ =
(c1,...,¢q,). Our objectives are two-fold:

1. To learn structure between concepts from black-box
embeddings e as linear projections Ce;

2. To compose concepts together in a single, transparent
model that captures how different concepts are related.

We seek to learn these concepts in an end-to-end, differen-
tiable manner.

A key intuition is that composition can be interpreted as
a type of intervention in the latent space. This is sensible
since interventions in a causal model are a type of nontriv-
ial distribution shift. Thus, the problem takes on a causal



flavor which we exploit to build our architecture. The diffi-
culty with this from the causal modeling perspective is that
encoding structural assignments and/or causal mechanisms
directly into a feed-forward neural network is tricky, because
edges between nodes within the same layer aren’t allowed in
a feed-forward network but are required for the usual DAG
representation of a causal model. To bypass this, we use the
reduced form of a causal model which has a clear represen-
tation as a bipartite directed graph, with arrows only from
exogenous to endogenous variables, making it conducive
to being embedded into a feedforward NN. The tradeoff is
that we do not learn a causal structure (i.e., a causal DAG),
however, this enables the model to perform interventions di-
rectly in the latent space and to exploit invariances between
interventional contexts.

4.1 OVERVIEW

Before outlining the architectural details, we provide a high-
level overview of the main idea. A traditional decoder trans-
forms the embeddings e into the observed variables x, and
the encoder operates in reverse by encoding x into e. Thus,

encoder decoder
X—e — X.

Consistent with existing empirical work [41, 66, 4], we
represent concepts as linear projections of the embeddings
e: Each concept c; can be approximated as c; =~ C)je. This
is modeled via a linear layer ¢ — e that implicitly inverts
this relationship in the decoder.

As a result, it makes sense to model the relationships be-
tween concepts with a linear SEM:

d

c; = E ag;Cr + €k, Qg € R.
k=1

By reducing this SEM, we deduce that

c=(c1,...,¢q,
c = Ape, where (c1 ¢ ) )
e=(e1,...,€q,)

We model this with a linear layer € — ¢, where the weights
in this layer correspond to the matrix Ag. This layer will be
used to encode the SEM between the concepts, which will
be used to implement causal interventions.

Remark 4.1. Due to the reduced form SEM above, our
approach does not and cannot model the structural causal
model encoded by the ay;. What is important is that the
reduced form ¢ = Ape still encodes causal invariances
and interventions, which is enough in our setting, without
directly estimating a causal graph.

In principle, since the exogenous variables & are indepen-
dent, we could treat € as the input latent space to the gen-
erative model. Doing this, however, incurs two costs: 1) To

conform to standard practice, € would have to follow an
isotropic Gaussian prior, and 2) It enforces artificial con-
straints on the latent dimension dim(e). For this reason,
we use a second expressive layer z — € that gradually
transforms z ~ A(0, I) into e. This allows for dim(z) to
be larger and more expressive than d. (in practice, we set
dim(z) to be a multiple of dim(e)), and for € to be poten-
tially non-Gaussian.

The final decoder architecture can be decomposed, at a high-
level, as follows:

Z—rE—>C—e—X. 3)

Implementation details for each of these layers can be found
in the next section.

4.2 DETAILS

Our goal is to augment the decoder of a generative model
(without modifying the internals of the existing decoder) in
such a way to identify d. latent concepts from a black-box
decoder. Moreover, we seek to accomplish this without sac-
rificing expressivity: The input layer to the decoder as well
as the output layer of the encoder should both be arbitrary.
This not only allows for arbitrary flexibility in both the latent
dimension as well as the structure of the black-box encoder-
decoder and its latent space (for example, a hierarchical or
U-net architecture), but also makes implementation signifi-
cantly simpler: The learning of latent concepts is completely
abstracted away from the encoding step.

To accomplish this, we assume given a black-box encoder-
decoder pair, denoted by enc(x) and dec(z), respectively.
We modify the decoder by appending a context module to
the head of the decoder. This context module is divided into
three layers: A representation layer, an intervention layer,
and an expressive layer.

1. The first representation layer, as the name suggests,
learns to represent concepts by implicitly inverting
their linear representations c; = C';e from the embed-
dings of the encoder. This is a linear layer between
c—e.

2. The intervention layer embeds these concept represen-
tations into an overall reduced form SEM as suggested
by (2). Each concept corresponds to its own context
where it has been intervened upon. A key part of this
layer is how it can be used to learn and enforce in-
terventional semantics through this shared SEM. This
layer corresponds to the second layer € — c in (3).

3. The expressive layer is used to reduce the (potentially
very large) input latent dimension of independent Gaus-
sian inputs down to a smaller space of non-Gaussian
exogenous noise variables for the intervention layer,
corresponding to the first layer z — € in (3). This is im-
plemented as independent, deep MLPs that gradually



reduce the dimension in each layer: If it is desirable
to preserve Gaussianity for the exogenous variables,
linear activations can be used in place of nonlinear
activations (e.g., ReLU).

Because the intervention layer is modeled after an SEM, it
is straightforward to perform latent concept interventions
using the calculus of interventions in an SEM.

Remark 4.2. Crucially, no part of this SEM is fixed or
known—everything is trained end-to-end. In particular, we
do not assume a known causal DAG or even a known causal
order. This stands in contrast to previous work on causal
generative models such as Causal GAN [31] and CausalVAE
[83].

Concept interventions For simplicity, assume here that
the concepts are each one-dimensional with dim(c;) =
dim(e;) = 1; generalization to multi-dimensional concepts
is more or less straightforward and explained below. The
structural coefficients a; € R capture direct causal ef-
fects between concepts, with a; # 0 indicating the pres-
ence of an edge c; — c;. An intervention on the jth con-
cept requires deleting all these incoming edges; i.e., setting
o.; = 0, updating the outgoing edges from €, as well as
replacing €; with a new 63», which results from updating the
incoming edges to €; in the preceding layer. Thus, during
training, when we intervene on c;, we zero out the row «.;
while replacing the column «;. with a new column j3;. that
is trained specifically for this interventional setting. The
result is d. 4 1 intervention-specific layers: A for the ob-
servational setting, and Ay, ..., Ag_ for each interventional
setting. This is captured as a three-way tensor where each
slice of this tensor captures a different interventional con-
text that corresponds to intervening on different concepts.
At inference time, to generate interventional samples, we
simply swap out the A, for A;. Moreover, multi-target in-
terventions can be sampled by zero-ing out multiple rows
and substituting multiple 3;.’s and €;’s.

Multi-dimensional concepts In the causal model de-
scribed above, we assumed dim(c;) = dim(e;) = 1 for
simplicity. Everything carries through if we allow additional
flexibility with dim(c;) > 1 and dim(e;) > 1, poten-
tially even with dim(c;) # dim(e;). In practice, we im-
plement this via two width parameters w. = dim(e;) and
w, = dim(c;). The design choice of enforcing uniform di-
mensionality is not necessary, but is made here since in our
experiments there did not seem to be substantial advantages
to choosing nonuniform widths.

With these modifications, ay; becomes a w, X w, matrix;
instead of substituting rows and columns above, we now
substitute slices in the obvious way. The three-way tensor
Aisnow (de + 1) X wed, X w,d.-dimensional.

Identifiability An appealing aspect of this architecture is
that under certain assumptions, it can be viewed as an ap-
proximation to an identifiable model over disentangled con-
cepts. Formally, we assume given observations x, concepts
¢, and a collection of embeddings e such that x = f(e).
Additionally assume a noisy version of the linear represen-
tation hypothesis, i.e., c; = Cje 4 ¢; with ; ~ N (0, ;).
Then we have the following identifiability result:

Theorem 4.1 (Identifiability of linear representations). As-
sume that the rows of each C; are chosen from a linearly
independent set and f is injective and differentiable. Then,
given single-node interventions on each concept c;, we can
identify the representations C; and the latent concept distri-
bution p(c).

We do not claim to identify a causal graph, only the latent
distribution p(c) over the concepts and its functional struc-
ture C'; within the data-generating process. As opposed to
solving a causal representation learning problem, the causal
semantics used in this paper are simply being ported into
the generative modeling framework to give solutions to the
problem of learning latent distribution structure in a com-
pletely unsupervised fashion. Theorem 4.1 shows that the
set problems where there exists a structured latent distribu-
tion to be identified is nonempty. Moreover, the structure of
these identifiable distributions exactly fits our model archi-
tecture, meaning that set of problems in which the proposed
method will approximate a fully disentangled latent space
is nonempty. In other words, there exist data-modeling prob-
lems that are solvable by the novel approach introduced
in this paper. The technical difficulty in the proof of The-
orem 4.1 is analyzing the behavior of interventions in this
model; since our main focus is on methodological aspects
and the technical details are fairly involved, these details are
deferred to the full version of the paper.

4.3 SUMMARY OF ARCHITECTURE

The context module thus proposed offers the following ap-
pealing desiderata in practice:

1. There is no coupling between the embedding dimen-
sion dim(e) and the number of concepts, or the com-
plexity of the SEM. In particular, this architecture al-
lows for arbitrary black-box encoder-decoder archi-
tectures to be used to learn embeddings, from which a
causal model is then trained on top of. This can be
trained end-to-end, fine-tuned after pre-training, or
even frozen, allowing for substantial computational
savings. In our experiments, we illustrate this both
standard convolutional networks as well as NVAE [71],
which is a deep hierarchical VAE with millions of pa-
rameters.

2. The intervention layer is a genuine causal model that
provides rigourous causal semantics that allow for sam-



pling from arbitrary concept interventions, including
interventions that have not been seen during training.
But note that we do not claim to learn the structural
coefficients, only the reduced model which is sufficient
for concept interventions and sampling.

3. The architecture is based on an approximation to an
identifiable concept model (Theorem 4.1), which pro-
vides formal justification for the intervention layer as
well as reproducibility assurances.

4. The context module is itself arbitrarily flexible, mean-
ing that there is no risk of information loss in repre-
senting concepts with the embeddings e. Of course,
information loss is possible if we compress this layer
too much (e.g., by choosing d., k, w,, or w,. too small),
but this is a design choice and not a constraint of the
architecture itself.

As a consequence, the only tradeoff between representa-
tional capacity and causal semantics is design-based: The
architecture itself imposes no such constraints. The causal
model can be arbitrarily flexible and chosen independent of
the black-box encoder-decoder pair, which is also allowed
to be arbitrarily flexible.

S EMPIRICAL RESULTS

We divide the presentation here into two main parts: small
models on (semi-)synthetic datasets (Section 5.1) versus
larger models on more challenging datasets (Section 5.2).
We emphasize the key findings here but include the complete
results and experimental details in the full version of the

paper.

5.1 SMALL MODELS ON (SEMI-)SYNTHETIC
DATA

To systematically investigate the interplay between architec-
tural design, learned representations, and OOD performance,
we begin with small-scale experiments with controlled en-
vironments. This setting enables rapid iteration, compre-
hensive ablation studies, and access to ground-truth metrics
unavailable in complex real-world data. We evaluate models
on two benchmarks:

e MNIST: We use Morpho-MNIST [12] to allow for
different interventional contexts, such as making digits
thicker or thinner.

* guad: A novel semi-synthetic visual environment with
disentangled latents (color, shape, size, orientation) and
explicit OOD compositionality challenges (e.g., gen-
erating unseen combinations of background quadrant
colors and central object attributes).

obs quadl
quad2_quad3

EdE"ENE

Figure 2: Example images obtained from the quad dataset.
(top) Each subfigure corresponds to a different context, indi-
cated by the title (obs = observational; the others indicate
a single-node intervention). (bottom) Each subfigure corre-
sponds to a different double-concept intervention context,
indicated by the title. Double-concept interventions were
not included in the training data, allowing for genuinely
OOD evaluation.

quad2 quad3 quada size
' ‘ I 1

quad2_quadd, quad2_size quadl_quad2 quadl_quad3 quadl_quadd quadl_size

MNIST On MNIST, we see (Table 1) results of our mod-
ule across different ablations. The first column (Context
module) is our module incorporated into a lightweight con-
volutional VAE. Ablation 1 is an analogously lightweight
standard implementation of 3-VAE trained only on the ob-
servational context. Ablation 2 is 5-VAE trained on the full
pooled dataset. Ablation 3 is similar to the context module,
except that it ignores the contexts and pools everything into
a single context (like Ablation 2). These results indicate
that the cost of the structured representation learned by the
context module is only a slight degradation in the numerical
metrics.

Controlled simulations on quad While evaluations on
unsimulated data are the gold standard for evaluating mod-
els, simulated environments are valuable for conducting
controlled experiments under given conditions. To provide a
controllable, synthetic test bed for evaluating composition in
a visual environment, we developed a simple semi-synthetic
benchmark, visualized in Figure 2. quad is a visual envi-
ronment defined by 8 concepts:

quadl: The color of the first quadrant;
quad?2: The color of the second quadrant;
quad3: The color of the third quadrant;
quad4: The color of the fourth quadrant;
size: The size of the center object;

AR S

orientation: The orientation (angle) of the center
object;
object: The color of the center object;

% =

. shape: The shape of the center object (circle, square,
pill, triangle).

With the exception of shape, which is discrete, the remain-
ing concepts take values in [0, 1].

Table 2 shows numerical results comparing our module (in-
corporated into a lightweight convolutional VAE) to Abla-
tion 2 from above (analogously lightweight 3-VAE trained



Table 1: Ablation on MNIST (200 epochs)

Metric / Evaluation Context module Ablation 1 Ablation 2 Ablation 3
Validation Metrics
Validation ELBO (bpd) | 0.2945 (0.0091)  0.1832 (0.0007) 0.2362 (0.0053) 0.2886 (0.0103)

Reconstruction Loss (bpd) |  0.2649 (0.0093)

0.1469 (0.0008)

0.1998 (0.0050) 0.2575 (0.0111)

Reconstructed Distribution Evaluation

MMD (obs) | 0.0092 (0.0027)

0.0000 (0.0000)

0.0028 (0.0022) 0.0124 (0.0032)

MMD (ivn) | 0.0939 (0.0331)

0.0303 (0.0107)

0.0430 (0.0145)  0.0536 (0.0154)

Generated Distribution Evaluation

MMD (obs) | 0.0099 (0.0011)
MMD (ivn) | 0.0298 (0.0069)

0.0017 (0.0007)
0.0142 (0.0038)

0.0097 (0.0030)
0.0183 (0.0034)

0.0098 (0.0019)
0.0188 (0.0034)

Table 2: Ablation on Quad

Metric / Evaluation Context module Ablation 2

Generated Sample Evaluation

MMD (obs) | 0.0099 (0.0058)  0.0187 (0.0063)
MMD (ivn) | 0.0149 (0.0032)  0.0275 (0.0038)
MMD (o0od) | 0.0273 (0.0021)  0.0297 (0.0019)

on the full pooled dataset) for sample generation across
the observational and interventional data (same distribution
seen during training) along with OOD data. The quad data
allows evaluating the sampled OOD distribution (which our
module composes from seen contexts) with a ground truth
OOD distribution (unseen during training).

OOD generation vs. reconstruction There is a crucial
difference between OOD reconstruction and OOD genera-
tion. By OOD generation, we mean the ability to condition-
ally generate and combine novel interventions. For example,
during training the model may have only seen small, red
objects along with big, blue objects. At test time, we wish
to generate OOD samples of big, red objects or small, blue
objects.

The crucial difference is that a model may be capable of
OOD reconstruction, but not OOD generation. For example,
we can always attempt to reconstruct an OOD sample and
evaluate its reconstruction error. This is a common metric
that has been used in previous work to evaluate the OOD
capabilities of generative models [e.g. 82, 42, 43, 61]. But
unless the model learns specific latent concepts correspond-
ing to size or colour, then we have no control over the size
or colour of random samples from the model. We can al-
ways condition on the representations learned by the model,
but these representations will not be disentangled or inter-
pretable.

Thus, OOD generation not only evaluates the ability of a
model to compose learned concepts in new ways, but also
implicitly evaluates the ability of a model to identify and
capture underlying concepts of interest. For this reason, we
argue that OOD generation is a more appropriate evaluation
metric.

While the numerical results on synthetic data above indicate
better performance on OOD generation using our module, a
more intuitive visual evaluation on real data is provided in
Section 5.2, Figure 4.

5.2 LARGE MODELS ON REAL DATA

We now evaluate performance when our module is incorpo-
rated into a complex black-box model (NVAE of Vahdat and
Kautz [71]) on more challenging datasets, again including
MNIST but now also 3DIdent [87] and CelebA [39]. Since
CelebA does not have interventional data, we use this as an
important ablation to test how well our module performs
when used with conditional data (i.e. by conditioning on
attributes in CelebA).

Table 3: Comparison of models (BPD = bits per dimension)

Dataset Type Black-box BPD
MNIST  Observational NVAE 0.144
MNIST Interventional NVAE 0.149
3DIdent Observational NVAE 0.673
3DIdent Interventional NVAE 0.754
CelebA  Observational NVAE 2.08

CelebA Conditional NVAE 2.13

Table 3 summarizes the results of these training runs, where
“observational” means that the standard NVAE (i.e. without
a context module) is trained on the entire datasets, whereas
“interventional” means that the context module was used.
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Figure 3: Example generated OOD images from a simple,
lightweight VAE on the quad benchmark. This shows a
proof-of-concept that the concept module successfully com-
poses concepts using even simple architectures. For perfor-
mant architectures, see the NVAE results in Figure 4.

We observe competitive reconstruction, with only slight
degradation when the context module is attached to the
NVAE decoder.

More importantly, Figure 4 demonstrates the generation
capabilities enabled by our module. Each row corresponds to
actual generated samples from the trained model in different
contexts:

1. The first row shows generated observational samples;

2. The second and third row contain generated single-
node interventions;

3. The final row shows generated samples where two
distinct concepts are composed together.

For MNIST and 3DIdent, the final row of compositional
generations is genuinely OOD in that the training data does
not contain any examples where both concepts have been

Figure 4: Additional examples of concept composition in
MNIST (left), 3DIdent (middle), and CelebA (right). In
MNIST and 3DIdent, the samples are OOD: The training
data did not contain any examples with these concepts com-
posed together. The CelebA results are an ablation to under-
stand the effect of conditioning vs intervention, and so there
is some leakage between concepts, where the interventional
datasets (MNIST, CelebA) show no leakage. (Due to space
constraints, a larger version of this figure can be found in
Figure 5 in the appendix.)

intervened upon. CelebA is trained using conditional as
opposed to interventional samples as an ablation on the
sensitivity to non-interventional data. Although there is a
slight drop in OOD perceptual accuracy on CelebA, this is
to be expected since the model was trained on conditional
data as opposed to interventions. Finally, observe the last
row of Figure 4, which demonstrates the OOD generation
capability enabled by our module: these contexts did not
appear in the training data but our module is able to sensibly
generate them by composing and generalizing from the
concepts it learned according to different data contexts.
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Figure 5: Full size version of Figure 4; caption reproduced here: Additional examples of concept composition in MNIST
(left), 3DIdent (middle), and CelebA (right). In MNIST and 3DIdent, the samples are OOD: The training data did not
contain any examples with these concepts composed together. The CelebA results are an ablation to understand the effect of
conditioning vs intervention, and so there is some leakage between concepts, where the interventional datasets (MNIST,
CelebA) show no leakage.
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