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Abstract: Depth estimation is a safety critical and energy sensitive method for
environment sensing. However, in real applications, the depth estimation may be
halted at any time, due to the random interruptions or low energy capacity of bat-
tery when using powerful sensors like 3D LiDAR. To address this problem, we
propose a depth estimation method that is robust to random halts and relies on
energy-saving 2D LiDAR and a monocular camera. To this end, we formulate the
depth estimation as an anytime problem and propose a new metric to evaluate its
robustness under random interruptions. Our final model has only 2M parameters
with a marginal accuracy loss compared to state-of-the-art baselines. Indeed, our
experiments on NYU Depth v2 dataset show that our model is capable of pro-
cessing 224 x224 resolution images and 2D point clouds with any computation
budget larger than 6.37ms (157 FPS) and 0.2J on an NVIDIA Jetson TX2 system.
Evaluations on KITTI dataset under supervised and self-supervised training show
similar results.
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1 Introduction

Depth estimation plays a critical role in various applications, such as autonomous driving, aug-
mented reality and virtual reality. While attempting to measure the distance from camera to obsta-
cles, existing approaches resort to depth sensors like LiDAR or structured-light sensors. The goal is
to reconstruct the depth in full resolution utilizing images, along with sparse depth measurements.

A variety of model architectures [1-12] have been proposed to effectively fuse the RGB images and
LiDAR point clouds (PC). However, most approaches cannot be directly deployed on small robot
platforms or mobile devices, say a mobile phone or AR glasses. This is due to multiple factors: First,
these methods are passive to the changes in the environment. In contrast, a dynamic behavior is a
must for a real robotic system. For example, when an obstacle appears suddenly, it is preferably to
sacrifice accuracy for a fast response to avoid crashing. Second, many methods rely on bulky, heavy
and high-end LiDAR systems that consume much power to generate dense and accurate PC [13-15].
On the contrary, depth sensors installed on edge devices may produce extremely sparse and non-
uniformly distributed depth patterns, e.g., a depth line produced by a cheap 2D LiDAR as shown
in Figure 1. The sparsity pattern generated by a 2D LiDAR is very regular such that the PC can be
represented with an 1D vector, while other types of PC in Figure 1(b) can only be represented with
high-dimensional arrays. Moreover, to boost performance, deeper and more complicated models
are adopted together with computation-intensive algorithms [5, 16]. This usually requires powerful
GPU clusters and those are not available in robotic systems based on edge devices.

In this work, we argue for a more realistic problem setting for edge computing, namely anytime
depth estimation with monocular camera and 2D LiDAR on small robots and mobile devices con-
sisting of resource-limited embedded devices. Consequently, in addition to the depth prediction ac-
curacy, we need to optimize for performance under a highly dynamic environment, limited sensing
and computational capabilities. In fact, all these constraints are very relevant in many common
robotic systems, e.g., the Pioneer and K5 Security Robot; they operate in dynamic environments,
yet come only equipped with 2D LiDAR and battery-powered embedded computers [2].

As our main contribution, we propose a new metric called anytime loss, and optimize an anytime
depth estimation model robust to random halts that requires only an energy-efficient 2D LiDAR and
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Figure 1: (a) Example workflow and timeline of our depth estimation model. As computation progresses,
increasingly accurate depth maps are generated (numbers in brackets denote RMSE). Inference can be halted
at any time (e.g., when a deadline is reached or a more urgent task needs to start) and the best estimation is
returned. (b) Point clouds (PC) with different sparsity structures and the output depth map.

a monocular camera. We design the network architecture as a two-stream encoder-decoder with an
error correction unit (ECU) placed in middle (Figure 2). We optimize the encoder by utilizing the
sparsity in 2D PC shown in Figure 1 yielding a light-weight encoder with marginal accuracy loss.
We optimize the decoder by introducing early-exit paths. Both methods are proved to be effective
theoretically and practically in improving model’s dynamic performance under random halts.

Exhaustive experiments on NYU Depth v2 and KITTI, under both supervised and self-supervised
training, show that our method outperforms most state-of-the-art baselines by taking the highly non-
uniform depth measurements into consideration with significantly smaller model sizes. Furthermore,
without resorting to any quantization and pruning, we show that our model can perform real-time
depth estimation on an NVIDIA Jetson TX?2 system operating with a computation budget larger than
6.37ms (157FPS) and an energy figure of only 0.2J.

2 Related Work
2.1 Depth Estimation with Camera and LiDAR

Eigen et al. [17] introduce convolution neural networks (CNNs) to the problem of depth estimation.
Sparse convolution was then proposed to address the variant sparsity of point clouds [14]. Jaritz
et al. [18] design an encoder-decoder network to accomplish both depth estimation and semantic
segmentation with only the last layer changed. However, these methods simply rely on network
architectures to address various structures of point clouds. The performance of a straightforward
network drops significantly when the sparsity of point clouds increases [1, 18]. Methods tailored for
different sparsity of point clouds are thus proposed. Based on sparsity level of point clouds, camera-
LiDAR methods can be divided into three categories: dense, uniformly sparse, and structurally
sparse, as illustrated in Figure 1(b). Our work focuses on the most challenging third setting, i.e.,
depth measurements are sparse and highly non-uniform.

Dense Point Clouds. For the dense point clouds in Figure 1(b), the surface normal can serve as
a good intermediate feature. More precisely, the density of point clouds ensures that every point
has enough data from its neighbourhood; this leads to an accurate estimation of the surface normal.
Zhang et al. [15] propose to first estimate the surface normal and then combine it with PC for RGB-
D depth completion. Qiu ef al. [13] extend this idea to the camera-LiDAR sensor setting. After the
surface normal is estimated, their method generates two depth estimation results with (image, PC)
and (surface normal, PC) taken as inputs, respectively. The final result is obtained by fusing the
two depth maps with an attention mechanism.

Uniformly Sparse Point Clouds. The uniformly sparse setting shown in Figure 1(b) refers to the
scenario where very few points are uniformly scattered across a projected plane. Jaritz et al. [18]
claim that naively applying CNNs to sparse data can easily fail since CNNs are sensitive to missing
data. To address the problem, they propose to use a NASNet encoder [19] to encode the image and
sparse depth plane separately. The encoder for the depth plane acts as a depth completion unit to
densify the sparse depth map without referring to information from the image plane. Ma et al. [1]
propose a single regression network to learn directly from raw RGB-D data, and explore the impact



of the number of depth samples on prediction accuracy. Chen et al. [5] propose a convolutional
spatial propagation network (CSPN) to learn the affinity matrix for depth prediction.

Structurally Sparse Point Clouds. The structurally sparse PC illustrated in Figure 1(b) is the most
challenging scenario where a few LiDAR points are structurally scattered across a line or a few
fixed locations. While this is commonly produced by depth sensors in low-cost devices, such as
2D LiDAR on floor-sweeping robots, little research targets this setting. For instance, [2] and [11]
propose to estimate a dense depth map with a 2D LiDAR by stacking the LiDAR points along the
gravity direction and then estimate the depth deviation from the generated surface to the actual object
surface. However, they rely on the assumption that the depth of an actual object surface is similar to
the generated surface, which does not often hold true in open spaces. Our proposed method provides
better ways of utilizing sparse 2D points rather than simply stacking them.

2.2 Depth Estimation with a Monocular Camera

In recent years, deep learning methods have been considered for depth estimation using a monocular
camera due to its low implementation cost. As the general trend has been to rely on deeper and
more complicated networks in order to achieve higher accuracy, the state-of-the-art depth estimation
algorithms do so at the cost of increased computational complexity. To achieve real-time inference
on an embedded system, Wofk ez al. [20] demonstrate FastDepth, a low-latency, high-throughput
monocular depth estimation method that can run on embedded systems. Nekrasov ez al. [12] propose
a method performing semantic segmentation and depth estimation jointly with a single model.

2.3 Self-Supervised Depth Estimation

Recent work on self-supervised depth estimation [21-23] shows great potential to effectively make
use of unlabeled data. Indeed, the self-supervised methods can achieve comparable or even better
performance than supervised ones. Our work focuses on the model itself and addresses to following
fundamental question: Can ones make the depth estimation model satisfy strict power/performance
constraints, yet be practical in real-world applications? In the experimental section, we show that
our model can indeed work very well with a state-of-the-art self-supervised training framework.

3 Problem Formulation

3.1 Depth Estimation with a Monocular Image and 2D Point Clouds (PC)

With an input RGB image and 2D PC, the depth estimation model needs to predict the depth for
every image pixel, while yielding a depth map with the same shape as the input image. Depth
prediction must finish before the model runs out of the computational resources, e.g. time and/or
energy. The PC generated by a 2D LiDAR consists of a set of points in a plane. We project the PC
points to the image plane, and then sequentially concatenate the depth value of these projected points
into an 1D vector C'. An image [ is a 3D array with two spatial dimensions. The output depth map
D is a 2D matrix with the same spatial shape of the image; each element in D is the predicted depth
for the corresponding pixel in the image, the computation budget B is a scalar indicating e.g. how
much time or energy is available to estimate the depth. In the end, we formulate our depth estimation
model as a function D = f(I,C, B).

3.2 Anytime Depth Estimation

In robotic systems, due to the dynamic nature of the real world application, the allowable compu-
tational budget (i.e., time and/or energy) B varies with time. We cannot know the computational
budget in advance and the model has no control over it; to simplify the problem formulation, we
assume that the available computational budget B € (0, B,,q.) is a random variable and, before
every inference, the exact budget b is sampled from it. Intuitively, the objective of an anytime algo-
rithm is to get a satisfactory output no matter how much computational budget is available. With the
loss function I(-), the overall objective of anytime algorithm is to minimize the anytime loss, i.e.,
the expected loss under the budget distribution: L(f) = Ej ¢ g[l(f(I,C, B))].

To make the anytime loss practical, we define the discrete budget anytime algorithm, i.e., if there
exists a partition P for (0, B,qy) such that VP, € PandVB;, By € P;, f(I,C,B;) = f(I,C, By),
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Figure 2: Proposed network architecture. First, two dedicated encoders map the input image I and point
clouds C' (PC) to hidden features F; and F¢ respectively. Then, one error correction unit (ECU) fuses feature
representations from these two modalities. Finally, a shared decoder upsamples the ECU output. At the design
stage, we sample from simulated computational budget distributions, e.g., time and energy distributions, halt
the inference when the model hits the budget and evaluate the performance with our proposed metric L(f). At
the deployment stage, we monitor the system and halt the inference when necessary. Example shown right is
annotated with elements for loss L( f) calculation: execution time, accuracy loss RMSE in brackets and length
of each interval of each budget partition.

we say the model f is a discrete budget anytime model. Here the |P;| is the length of the budget
interval that corresponds to the partition ¢. Since for any B € P; the output of f(I,C, B) is con-
stant, we can define a new function f;(I,C) = f(I,C,B). The model can be rewritten into:
fI,C,B) = le‘ :(I,C)Ip,(B), where Ip,(B) is the indicator function, i.e., Ip,(B) = 1 iff
B € P;, otherwise Ip, (B) = 0. We assume that the computational budget random variable B obeys
a uniform distribution U (0, B4 ), then the optimization objective can be rewritten as:

Bimas 1P|
L(f) = Er.opll(f(I1,C. B)) = / (S AT, C) Ip, (b)]Prob(B = b)} db
=1 (1)
1 |P|
BmMZz f:(I,0))| P

where |P;| is computed for each budget interval across partition P. Note that, all these budgets are
defined under the assumption that the system configuration is kept the same, i.e., the CPU clock
frequency is set to run at the maximum allowable frequency.

4 Architecture Design and Optimization

4.1 Motivation

The intuition behind our design closely aligns with our problem setting. Consider the discrete budget
anytime optimization objective L(f) proposed in the previous section. Here we propose two ways
to optimize the objective:

1. For each term I(f;(I, C))|P;], if we can minimize the budget required at each stage from | P;|
to || < |P;| by changing the model from f; to f:» while keeping I(fi(I,C)) ~ I(f;(I,C)), then it
is expected that [(f;(1,C))|P;| < I(f;(I,C))|P;| and then L(f) is optimized.

2. If we can split each term [(f; (1, C))| P;| into sub-terms I( f;; (I, C))| ;| with 37 | Pi | ~ | P
but[(f;; (1,C)) <U(fi(1,C)), then 3 I(fi; (I,C))|P;,;| < U(fi(I,C))|Fi|, and L(f) is optimized.

4.2 Model Optimization Based on U-Net

We adopt the U-Net [24] style network architecture, shown in Figure 2, where the model D =
f(I,C, B) can be partitioned into an encoding part: F' = f.,.(I,C,B) and a decoding part
D = f4ec(F,B), in which F is the hidden feature. The encoder and decoder are optimized as
discussed above. For the encoder f.,., we design a cross-modality encoder with <1.5M parameters
by exploiting the low dimensionality in 2D PC and alignment-based data fusion module. For the de-
coder fg4.., we generate coarse, but low-latency depth maps on-the-fly by introducing budget-aware
light-weight early-exit paths into the model. The details are discussed next.



Encoder Optimization: To design a cross-modality encoder, there are two problems to solve: How
to extract relevant features and how to fuse them? Most previous methods [1, 5, 13, 25, 26] design
feature encoders to map the image and PC to a shared feature space with two spatial dimensions; this
is because they work with dense or uniformly sparse PC, where both modalities provide information
of the global region, as shown in Figure 1(b). In such a case, the feature encoders for both modalities
are similar and data fusion is as simple as adding or concatenating features from the two modalities.
However, as Figure 1(b) shows, the case of 2D PC is different. Depth measurements in 2D PC only
correspond to a limited area of the entire image plane. In problem formulation section, we represent
the PC with an 1D vector. So instead of trying to extract a feature with two spatial dimensions
based on an 1D vector, we keep the PC feature low-dimensional with only one spatial dimension.
Moreover, because the image and PC features have different spatial dimensions now, conventional
fusing methodologies are not applicable here; so we also propose an alignment-based feature fusion
module to fuse the features from image and PC with different spatial dimensions.

As Figure 2 shows, features Fr and Fo are extracted with two dedicated encoders and fused with an
error-correction unit (ECU). Both encoders keep the same spatial dimension before and after encod-
ing, 2D for the image and 1D for the PC. The 1D feature extraction requires much less computation
than the 2D feature extraction, so the computation budget is saved and | ;| is reduced.

ECU fuses Fr and F- by aligning features at spatially corresponding locations. Points in PC are
aligned with the neighboring pixels in the image. We assume this is also true for features extracted
from the image and PC. As shown in Figure 3, the ECU extracts the neighboring image features
and compares it with the PC features. Based on this comparison, the ECU generates the error
compensation value and applies it to the image feature.

Decoder Optimization: With a vanilla decoder, before the decoder finishes computation, the best
depth map we can get is generated by the PC nearest interpolation. The high loss value together with
the large computational budget required by the entire network contributes greatly to the loss L( f).

To reduce the loss when the inference is halted half-way, we export the intermediate features from
different stages of the decoder and convert the feature maps to the depth maps with small CNNs. For
example, in Figure 2, path 2 extracts the intermediate feature generated by the first-stage decoder,
and converts the feature map to a depth map with an 1x1 convolution layer. Compared with the
interpolated depth map, path 2 returns a more accurate depth map; compared with the depth map
generated with entire decoder, path 2 requires a smaller computational budget. As the computation
progresses, depth maps generated with intermediate features become increasingly more accurate.
Here, by using early-exit paths, we introduce a new axis in the quality-speed trade-off space. Con-
sidering that the feasible positions for inserting an early-exit path is limited, in practice, we optimize
the decoder by manually inserting a few early-exit paths and evaluating on various datasets.

4.3 Network Architecture

4.3.1 Light-weight Encoder: Backbone

We design two encoders that map input images and PC into their hidden feature spaces respec-
tively, as shown in Figure 2. While targeting low latency, we consider MobileNet v1 [27] as our
encoder of choice. To further reduce inference time and memory requirements, we remove the last
9 computation-heavy convolution layers of one standard MobileNet while keeping the down-scaling
factors unaffected, which reduces the parameter count and computation of our image encoder from
2.94M to 1.08M and from 0.582 GMAC:s to 0.305 GMAC:s, respectively. Our PC encoder is a fully
convolutional network with 1D convolutions. We evaluate the effectiveness of our design in Section
5. The most obvious benefit of our PC encoder design is that the 1D convolution costs very few
parameters and computations, with only 44k parameters and 0.966 GMACs.

4.3.2 Light-weight Encoder: Error Correction Unit (ECU)

We train a CNN to perform the feature alignment mentioned in the encoder optimization section.
Feature F from PC carries accurate information of a limited region. If we align the ambiguous
image feature F; with Fio, then a more accurate global depth feature can be expected. As Figure 3
shows, ECU contains two parts: alignment error extraction and alignment error compensation.

Alignment Error Extraction: The mismatch between the features F- and F7 is equivalent to
the mismatch between F and the spatially corresponding region in F;. The ECU extracts the
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4.3.3 Anytime Decoder with Early Exit Paths Figure 3: The Error Correction Unit (ECU) design.

We design our anytime decoder based on FastDepth [20]. The decoder is composed of five up-
sampling layers, where each up-sampling layer consists of a depth-wise convolution layer and an
interpolation layer. After some selected decoder layers, we insert early-exit paths to generate the
depth with intermediate decoder features. To make sure that the early-exit paths would not lead to a
large computation overhead, the early-exit paths in our decoder contain only one or two point-wise
convolution layers. Moreover, compared with FastDepth and considering that the feature from our
encoder has a better quality, we reduce the numbers of decoder channels; by doing so, the parameter
count of our decoder drops from 0.809M to 0.525M.

5 Experimental Results

5.1 Experimental Setup

Datasets. We set up datasets and accuracy evaluation metrics on NYU Depth v2 [28] and KITTI
Odometry [29] datasets following Ma et al. [1], except that for the KITTI Odometry dataset, we
only use left-view images. To simulate the PC generated by a 2D LiDAR, we sample a line of points
at the center of the ground truth depth map.

Implementation. The network is implemented in PyTorch and trained with 16-bit float point pre-
cision. For training, the batch size is set to 96 and the learning rate is initially set to 0.05 then it
decreases to 0.02 with a polynomial learning rate decay scheduler. The optimizer is SGD with an
1 x 10~ weight decay. Finally, the encoder MobileNet v1 is pretrained on ImageNet [30].

Deployment. We deploy our network on both Raspberry Pi 4 and NVIDIA Jetson TX2 with
TVM [31] and evaluate the speed and energy consumption under random halts. The power of Jetson
TX2 and Raspberry Pi 4 is measured on the power supplier with INA226 [32] under 50 Hz sample
rate. No additional network pruning or quantization is used in the deployment.

Baselines. Every open-sourced baseline is trained with its original training method. We only change
the input PC from dense or uniformly sparse PC to 2D PC. For methods compatible with TVM, in
order to mimic an anytime algorithm, we change the input image resolutions, fine-tune the model
for each resolution and run them in parallel. For a fair comparison, the parameter count and flops
reported for each resolution only consider the corresponding model, instead of all of these models.

5.2 Results on NYU Depth V2 Dataset

Table 1 presents the quantitative evaluation results in terms of accuracy, model size and inference
speed. Figure 4 visualizes the depth maps predicted by each path in our model. Results from
different paths are generated in only one run with the same model. For a fair comparison in terms
of image resolution, we also evaluate our method with 224 x 320 images. As shown in Table 1, no
significant difference in accuracy is found.

Compared with most methods in Table 1, our method achieves a comparable or even better precision
with an order of magnitude smaller model size. For instance, using only 6.4 ms and 0.3 GFlops,
pathl returns a depth map with better quality than EncDecNet [8]. As the computation progresses,
depth maps with a better accuracy are predicted. The latest depth map generated by path 4 (at
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Figure 4: Anytime predictions on NYU Depth v2. The depth maps are generated step-by-step in one run with
the same model. The first prediction at 0.0ms is generated with nearest interpolation, if the neural network is
halted before making any prediction. Predictions from 6.4ms to 12ms generate more details in the depth map
as computation progresses. For more examples, please refer to the Section S.1 of our Supplementary Material.

Table 1: Comparison with prior work in terms of accuracy, latency and network size on the NYU Depth v2
dataset. Latency is measured on the NVIDIA TX2 system. For d1, the higher, the better; for other variables,
the lower, the better. “Param” is short for parameters count (in millions). “NA” means the method is not
open-sourced or not supported by TVM. Our experiment with a different input size is presented in the last row.

Method Input size Latency] RMSE] Rel] o0t Param GFlops
FastDepth [20] 224 x224 17.1ms 0.583 16.4% 0.767 4.016 0.867
Parse [2] 256x320 NA 0.442 10.4% 0.878 NA NA
S2D [1] 228%x304  554.7ms 0.426 10.0% 0.885 28.39 8.910
EncDecNet [8] 228x304 NA 0.635 15.5% 0.775 0.484 1.276
CSPN [5] 228x304 NA 0.379 7.91% 0916 218.122 261.746
Path0  224x224 0.0ms 0.9871 27.90% 0.6605 0.000 0.000
Pathl 224x224 6.4ms 0.4651 11.52% 0.8598 1.489 0.319
Ours Path2  224x224 8.0ms 0.4225 10.01% 0.8871 1.983 0.423
Path3  224x224 9.8ms 0.4184 9.80%  0.8906 2.006 0.496
Path4  224x224 12.2ms 0.4156 9.80% 0.8909 2.014 0.594
Ours Path4 224x320 16.42ms  0.4191 9.84% 0.891 2.014 0.848

12.2ms) has a lower RMSE than all baseline method except CSPN. But considering the two orders
of magnitude difference in computation counts, our solution is more suitable for edge devices.
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Figure 5: NYU Depth v2 results with different computational budgets. Every drop on the curve corresponds
to an optimized prediction made by the model; the area under the curve equals the anytime loss L( f) according
to Equation 1. Path O generates a backup depth map with the highest RMSE (0.9871) by interpolation, if the
neural network is halted before making any prediction, while results on other paths are predicted by neural
networks. Predictions requiring more computational budgets than the maximum budget B, are considered
to be ineffective predictions. For instance, for S2D with maximum 0.5J energy budget, only paths 0-2 are
effective since paths 3-4 require 0.954] and 6.244] respectively (exceeding the maximum energy budget 0.5J).
For more detailed experiment results, please refer to the Section S.3 in our Supplementary Materials.

Anytime Evaluation. We evaluate the dynamic performance of our model with random computa-
tion budgets caused by random interruptions. Evaluations are based on our anytime loss proposed
in Equation 1, expected accuracy loss under random available computational budgets. RMSE is
used as the accuracy evaluation function /(+) in Equation 1. Two computation budgets, i.e., time and
energy, are considered in our experiments. Experimental results are listed in Table 2 and illustrated
in Figure 5. Since other baseline methods contain custom operators not compatible with TVM, we
only evaluate our method against FastDepth [20] and S2D [1].



Our method outperforms all the baseline methods on NVIDIA Jetson TX2 system, but fails on
Raspberry Pi 4 when the maximum budget becomes too small to make a fair comparison. Figure 5
provides the intuition behind these results since every drop on the curve corresponds to an optimized
prediction and the area under the curve equals the anytime loss L(f), according to Equation 1.

Table 2: Anytime loss evaluated with time and energy computational budgets. L+@33ms stands for loss L( f)
with maximum 33ms as budget. E stands for Energy, “NEE” for No Early-Exit. Bold shows the best results.

Method Device | Lr@100ms Lr@50ms Lr@33ms | Lg@0.5] Lg@0.25]
FastDepth [20] X2 0.601 0.624 0.648 0.738 0.898
S2D [1] X2 0.604 0.740 0.869 0.763 0.987
Ours-NEE X2 0.484 0.554 0.626 0.773 0.891
Ours X2 0.453 0.490 0.529 0.654 0.891
FastDepth [20] Rpid 0.803 0.906 0.979 0.726 0.809
Ours Rpi4 0.755 0.987 0.987 0.582 0.746

Our first observation is that for most halts, our model returns a depth map with a better quality, i.e.,
as shown in Figure 5, the curve of our model is always below others; this is achieved by exploiting
the sparsity structure in 2D PC and designing low-dimensional encoders. Second, if we remove all
the early exit paths in our method, there is a significant increase in the anytime loss, especially when
the maximum budget is small (“Ours-NEE” in Table 2). Since for any halt happening before our
model makes any prediction, we can only resort to the interpolation based backup path, path 0 which
nearly doubles RMSE compared even with the worst result generated by neural networks. Taking
experiments on TX?2 as an example, by inserting early-exit paths, we reduce the budget required for
predicting the first depth map from 12.21ms to 6.37ms, so for nearly half of the halts happening
before we finish the entire inference, a better depth map is returned.

5.3 Results on KITTI Odometry Dataset

Table 3 compares the performance of our approach with prior work on the KITTI Odometry dataset.
We evaluate our model under both supervised and self-supervised training, where self-supervised
training is based on MonoDepth2 [21]. Our method achieves a comparable accuracy in terms of
relative error and 07 score, with orders of magnitude fewer parameters and computations. For more
detailed results, see Section S.2 in the Supplementary Materials.

Table 3: Results on KITTI Odometry dataset. First five rows correspond to “Supervised”, while last two
correspond to “Self-supervised”. To save space, we only show the result of Path 4. Bold shows the best results.
“Param” is short for parameters count (in millions). “NA” means the method is not supported by TVM.

Method Inputsize  Latencyl RMSE| Rell 61T Param  GFlops
S2D [1] 228%x912  374.7ms 4272 10.0% 0.902 11.49 8.593
EncDecNet [8] 228x912 NA 5.462 11.6% 0.839 0.484 4.000
CSPN [5] 228x912 NA 3.661 6.81% 0.735 218.1 261.7
PENet [16] 352x1216 NA 2.694 114% 0942 1319 405.3
Ours Path4 224x896  40.45ms 4.183 8.06% 0.891 2.014 2.375
MonoDepth2 [21]  192x640  77.26ms 3.259 8.16% 0926 15.24 8.051
Ours Path4 192x640  25.85ms 3.608 8.13% 0.943 2.014 1.518

6 Conclusion

In this paper, we have presented a novel anytime depth estimation method on mobile devices, which
is robust to random halts and works with power-saving but sensing-capability-limited 2D LiDAR
and monocular camera. We formulated our problem as an anytime depth estimation problem and
proposed a new metric to comprehensively evaluate its robustness under dynamic interruptions.
Based on our proposed metric, we have designed and optimized our model by exploiting the sparsity
structure in 2D PC and introducing early-exit paths. Experiments on the NYU Depth v2 and KITTI
datasets on edge devices show that, with only 2M parameters, our model has a comparable accuracy
and better robustness to random halts comparing with state-of-the-art baseline methods.
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