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Abstract

Handling novelty remains a key challenge in visual recogni-
tion systems. Existing open-set recognition (OSR) methods
rely on the familiarity hypothesis, detecting novelty by the
absence of familiar features. We propose a novel attenuation
hypothesis: small weights learned during training attenuate
features and serve a dual role—differentiating known classes
while discarding information useful for distinguishing known
from unknown classes. To leverage this overlooked informa-
tion, we present COSTARR, a novel approach that combines
both the requirement of familiar features and the lack of
unfamiliar ones. We provide a probabilistic interpretation
of the COSTARR score, linking it to the likelihood of correct
classification and belonging in a known class. To determine
the individual contributions of the pre- and post-attenuated
Sfeatures to COSTARR’s performance, we conduct ablation
studies that show both pre-attenuated deep features and
the underutilized post-attenuated Hadamard product fea-
tures are essential for improving OSR. Also, we evaluate
COSTARR in a large-scale setting using ImageNet2012-1K
as known data and NINCO, iNaturalist, Openlmage-O, and
other datasets as unknowns, across multiple modern pre-
trained architectures (ViTs, ConvNeXts, and ResNet). The
experiments demonstrate that COSTARR generalizes effec-
tively across various architectures and significantly outper-
forms prior state-of-the-art methods by incorporating previ-
ously discarded attenuation information, advancing open-set
recognition capabilities.

1. Introduction

Dealing with unknown inputs in a recognition system is
an important and widely recognized problem, which can
be formalized as Open-Set Recognition (OSR) [35]. The
recently introduced familiarity hypothesis [9] frames existing
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Figure 1. OVERVIEW. (a) The Hadamard product H of the feature
vector F' and the weight vector W for class j is combined with the
per-class mean comparison fic; to compute the COSTARR simi-
larity score C;(x). This similarity is then scaled by the normalized
logit A, to produce the final COSTARR score S(z). See Sec. 3
for details. Our attenuation hypothesis motivates the need for both
components. (b) and (c) demonstrate that COSTARR outperforms
current state-of-the-art algorithms, including PostMax, in terms of
Open Set Classification Rate (OSCR), highlighting how our novel
approach effectively leverages consolidated information to advance
the state of the art.

DNN open-set systems as “detecting the absence of familiar
[deep] learned features rather than the presence of novelty”.
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Figure 2. INTUITION BEHIND THE ATTENUATION HYPOTHESIS. The logit for class j is computed as the dot product between its weight
vector W; and the input features F', but features associated with low weights are attenuated and thus ignored by this class’s projection.
The top color bar shows the weights (1¥) for ImageNet2012 class 389 from Hiera-H’s classification layer, sorted from low to high (left to
right); the white region indicates where weights approach zero. This sorting index is used to order all subsequent color bars. The second
bar displays the Hadamard product (H) for a known input z, and the third shows the same for an unknown input x,,, for which class 389
produced the max logit. Each column represents a single feature dimension, for 40 different images. The fourth and fifth bars represent
the feature vectors from the same 40 images and the most confident unknown samples from NINCO [3], respectively. The consistent
low-saturation regions in the weight and Hadamard bars demonstrate that many feature dimensions are attenuated before contributing to
classification, regardless of which features are present. Notably, while the feature vectors of NINCO samples are visually dissimilar to those
from the validation set, attenuation in the Hadamard and logit computations diminishes their effect. The average logit for the known samples
is 8.959, while for the unknowns it is 8.143-making them difficult to distinguish by logit alone. In contrast, the average COSTARR score for
samples from known class 389 is 0.647, compared to 0.369 for the unknowns, providing a clearer separation. (Figure best viewed in color.)

Our novel COSTARR approach (Fig. 1) stems from us asking classes. However, unknown inputs often exhibit unexpected
why do systems implicitly focus on only familiar features and activation patterns in these attenuated dimensions. By incor-
presents our novel attenuation hypothesis to explain it. porating both F' and H, our novel COSTARR score effec-
Let F'(z) represent the pre-attenuation deep features ex- tively captures these discrepancies. COSTARR is applicable
tracted from input z. Let W; be the weight vector for class to any pre-trained network containing a classification layer
j. The Hadamard product H; = F(x) ® W, represents and incurs minimal computational and storage overhead.
the pointwise multiplication that occurs in the classification The contributions of this paper are as follows:
layer and is a post-attenuated feature. These two sides of * A novel attenuation hypothesis explaining the necessary
the attenuation, pre- and post- attenuation vectors, form the roles of pre- and post-attenuated features in OSR systems.
foundation of our hypothesis detailed in Sec. 3. ¢ COSTARR: an efficient, state-of-the-art OSR post-

processing algorithm that combines pre-attenuation fea-
tures, Hadamard product-based post-attenuation features,
and logits for robust recognition. Code is publicly avail-
able.!

* Ablation studies confirm the necessity of both similarity
components proposed in the attenuation hypothesis.

* Sec 3.3 formalizes COSTARR and provides an interpreta-
tion of it as a probability estimate that an input is from a
known class and the selected class is correct.

* Experiments on ImageNet-1K across five leading archi-
tectures and multiple unknown datasets show statistically
significant improvements on several OSR metrics.

In OSR, there exists an inherent trade-off between ac-
curately classifying knowns and effectively rejecting un-
knowns, with each objective benefiting from either pre— or
post—attenuation representations. We empirically demon-
strate that by not ignoring either features, i.e., by incorporat-
ing both pre—attenuation and post—attenuation features into
our overall confidence measure, we improve a DNN'’s ability
to recognize known classes among unknown samples. Ab-
lations show that we need to consolidate information from
both sides of the attenuation to provide robust recognition.

We formally introduce the attenuation hypothesis in
Sec. 3.1, but we use Fig. 2 here to build intuition and help
readers visualize the underlying concept. The figure illus-

trates how weights and features contribute to the computation 2. Related Work
of the maximum classification logit. In many dimensions, Numerous works [1, 4, 5, 8, 11, 18, 19, 25-28, 36, 46, 48,
the corresponding weights attenuate the associated features, 50] have trained Deep Neural Networks (DNNSs) to miti-

resulting in a marginal contribution to the final logit. This
attenuation can allow an unknown input to have high confi-
dence for a known class. Due to the design of fully connected
layers, such dimensions are uninformative for the current
class but likely play important roles in distinguishing other "https://github.com/Vastlab/COSTARR

gate the problems posed by unknowns, however, they are
categorically different from ours. We focus exclusively on
improving open-set recognition (OSR) after the training pro-
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cess. Accordingly, we consider other work that focuses on
improving OSR for pre-trained networks.

2.1. Open-Set Post-processors

OpenMax [2], the foundational work for adapting DNNs to
open-set, sought to overcome the overconfidence of DNNs
trained with softmax activations. Using mean activation
vectors from the penultimate layer, OpenMax fit Weibull
distributions for each class using Extreme Value Theory
(EVT). At test time, OpenMax converted sample distance
from the top predicted classes to probabilities and, using
a softmax-like operation, revised these probabilities into a
vector summing to 1 with an explicit probability of unknown.
Another open-set DNN adaptation, the Extreme Value Ma-
chine (EVM) [32], fits Weibull models between crucial in-
class samples (extreme vectors) to negative samples from
other classes. Using the distance of a sample to extreme
vectors, the EVM generated probabilities of which class the
sample belongs to. By selecting extreme vectors, the work
aimed to minimize open space risk. Both were interesting
but experimentally they failed to produce algorithms much
better than just using a good close-set classifier [40].

Multiple works have proposed using either Maximum
Logit (MaxLogit) [16, 40] or Maximum Softmax Probability
(MSP) [15, 40] as a baseline for OSR. These methods are
intuitive and widely applicable, as they simply threshold on
existing network outputs. However, PostMax [7], the recent
state-of-the-art for large-scale OSR, demonstrated that there
is still much room for improvement.

The current state of the art is PostMax [7] which uses EVT
and feature magnitudes to normalize logit “confidence”. Its
predictions are transformed into a probability space, sim-
ilar to SoftMax, except that there is only one probability
per sample rather than a probability for each class. While
their normalizing with feature magnitudes was effective, it
relies on the observation that unknowns have a higher feature
magnitude than knowns, which contradicts observations of
others [8, 40] and need not be true. In contrast, we make
no such reliance and compare the similarity between known
class centers and test samples to capture the information that
is generally ignored. We note that PostMax did not offer
a compelling reason for its improvement, just an observa-
tion that feature magnitudes were different between known
and unknowns. Based on our analysis we hypothesize that
PostMax’s improvement is because that, consistent with the
attenuation hypothesis, they exploit raw feature magnitudes
thus their normalization uses some of the ignored informa-
tion compared, albeit in a weak way.

2.2. Out-of-Distribution Post-processors

Distinct from OSR, Out-of-Distribution (OOD) only fo-
cuses on the detection of samples as in-distribution or
OOD. Various approaches have been proposed [10, 21—
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23,29, 30, 37, 38, 41, 44] and adopted similar large-scale
evaluations, departing from small-scale experimentation in
early OOD works [17, 20] which relied on expensive strate-
gies like reprocessing the inputs. Given the abundance of
methods, OpenOOD [45, 47] curated a large-scale bench-
mark to provide an accurate, standardized, and unified eval-
uation of OOD detection. We compare our method to oth-
ers using the large-scale ImageNet-1K benchmark. Specifi-
cally, following prior work [7], we select the best-performing
post-processors: SCALE [44] and NNGuide [29]. SCALE
rescales intermediate features, which affects the final out-
put confidence of a network. This is different from ReAct
[37], which pruned features outside of a given threshold.
NNGuide [29], drawing off the K-Nearest Neighbor (KNN)
ideology, retains a “bank set” of features from the training
set. Using the bank set and test-time samples, they form a
“guided” score, which reduces over-confidence on far-OOD
samples. Also, we include results provided by the very re-
cent COMBOOD [30], which combines nearest-neighbor
and Mahalanobis distances to form an OOD score. However,
due to difficulties integrating this recent algorithm with our
evaluations, we only compare with results from their publi-
cation, which did not utilize open-set metrics. Accordingly,
we present this comparison in the supplemental.

2.3. Metrics

In addition to introducing PostMax, Cruz et al. [7] proposed
the Operational Open-Set Accuracy (OOSA), as a new met-
ric for evaluating open-set recognition systems. The work
was motivated by giving an example of an engineer prepar-
ing to deploy an OSR system and the need to determine
the overall accuracy of methods before deployment. OOSA
highlights how proper training / validation / testing splits can
be used to model real-world settings. We chose to utilize
OOSA as our main evaluation measure as it allows for the
prediction of an operational threshold but also recognize
other common metrics in the literature and include them for
completeness: the Open-Set Classification Rate [8] curve (in
our secondary evaluation) and Area Under the Receiver Op-
erating Characteristic curve (in the supplemental material).

3. Approach

Improving algorithm performance is important, but address-
ing causality and explaining why is even more important
for science. Our approach had two main hypotheses: 1)
the novel attenuation hypothesis which leads us to combine
per-class models using the class mean of both pre- and post-
attenuation features, and 2) to maximize usage of training
information and provide a consistent probabilistic interpreta-
tion, we scaled it using normalized logits to provide the full
consolidated model. We discuss each of these elements.



3.1. Attenuation Hypothesis

For class j on input z, let Hadamard product H; = F(z) ®
W be the point-wise product of features F'(x) with weight
vector W;. The hypothesis states weights that attenuate se-
lect features in WW; are important for two competing reasons:
1. To maintain known class accuracy, features used in one
class often need to be ignored by others. For class j,
training yields many small weights that reduce the impact
on H; of some features used in classes k # j. Similarity
to the class H; mean can measure known class similarity.
For unknowns, large feature magnitudes can overwhelm
small weight attenuation, causing large logit or softmax
values leading to misclassification of unknowns as known.
Unknowns can be detected using measures that consider
feature magnitude without attenuating weights, e.g., using
feature vector F'(x) similarity to class j mean so that the
added information is not attenuated.

The Attenuation Hypothesis: A robust open-set recog-
nition system should integrate both the pre-attenuation fea-
tures (F') and the post-attenuation features (H ) to optimize
the dual objectives of maximizing known class accuracy
while minimizing false acceptance of unknown inputs.

We argue that this hypothesis applies to any network that
uses a linear classifier, regardless of the linearity of the in-
put or loss. We explicitly evaluate the hypothesis in Sec. 4
across five major networks, including convolutional-based
and transformer-based models. In addition, the hypothesis
also helps explain prior work. The “familiarity hypothesis,”
[9] suggests that traditional algorithms relying on logits or
softmax-based analysis tend to reject unknowns only when
they lack familiar features, but fail when encountering inputs
with unexpected ones. We contend this is precisely because
such methods rely solely on information in H. Other sys-
tems such as OpenMax [2], Extreme Value Machine (EVM)
[32], and many prototype-based few-shot open-set learning
methods, use only the deep features F', and therefore tend
to suffer in accuracy on known classes. To our knowledge
only the most recent approach—PostMax [7], which was the
state of the art for large-scale OSR- attempts to combine
information from both F' and H, albeit in a weak manner
and without a clear explanation.

The Attenuation Hypothesis is a key contribution of this
paper. While there may be better ways to leverage the in-
formation than our COSTARR approach, we are the first to
explain why robust OSR solutions must consider both pre—
and post—attenuation features.

Although not explicitly part of the hypothesis, we also
note that the deep network training learns the bias b as part
of the final classifier. This term likely contains useful infor-
mation that should be incorporated—e.g., through the use of
softmax or logits. Below, we show how to use logits and
provide ablations to analyze their importance.

To see this in action, consider the operation performed
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by the linear layer used to produce classification outputs in
a DNN. As illustrated in Fig. 2, when computing the logit
for a single class, the layer’s weights attenuate correspond-
ing features—weights approaching zero effectively suppress
those features when the Hadamard product is applied. The
resulting values are then summed to produce the logit, which
is subsequently scaled to generate the softmax score. This
works well for known inputs.

The supplement includes a frequency chart showing that
many feature dimensions are commonly attenuated to have
only a marginal effect. Analyzing class weights shows that
for every feature, there exists at least one class where it is
weighted highly and others where it is largely ignored.

When the Hadamard product values are summed, the at-
tenuated features contribute little to the resulting logit or
softmax score. Yet, the response of these features still en-
codes information about the sample, even if it is not directly
useful for the closed-set prediction of the given class—it may
be informative for other classes. Our hypothesis suggests
that this discarded information is in fact valuable for distin-
guishing known from unknown samples, as unknowns tend
to exhibit feature responses and Hadamard values that are
less consistent with class mean.

3.2. Per-class Models

Many models have used per-class information, but none
have incorporated both forms of per-class information that
we consider. While OpenMax and EVM utilize per-class
information—such as Mean Activation Vectors and Extreme
Vectors—the approaches are weakened by ignoring the addi-
tional per-class information in the classification weights.

Recall that PostMax [7] operates by computing the Eu-
clidean norm of feature vectors and dividing the maximum
logit by this norm. PostMax does not incorporate class-
centric information into its normalization factor; regardless
of the predicted class, the same Euclidean norm is applied.
While PostMax argues that the method works because un-
knowns tend to have larger magnitudes, we contend that this
observation is just an accidental side effect of the attenu-
ation hypothesis—and for some networks, this assumption
does not hold. For example, several papers have observed
unknowns with smaller magnitudes [8, 40], in which case
PostMax’s normalization would worsen performance. More-
over, examining figures such as Fig. 7f in [40] reveals that
some classes exhibit very different feature magnitude ranges—
some smaller than those of unknowns, others larger. There
appears to be no consistent pattern of unknowns having ei-
ther larger or smaller magnitudes, suggesting the need for a
per-class model instead.

3.3. Formalizing COSTARR

Given the attenuation hypothesis, we aim to define a simi-
larity measure based on the combination of the attenuation-



related quantities, H and F'. Let N be some pretrained
network that produced deep features F'(x) on input 2 and
l;(z) be the logit for class j. Let K be the set of known
classes and Q(z) be the oracle operator that returns the cor-
rect class or —1 for an unknown class index, and A(z) be
the class with maximum logit from the classifier. Let T be
training data for model building, with T’; the subset correctly
classified as class j — ideally we would use separate data
from the network training but for the pretrained networks
herein we use the ImageNet training data and use the val
set for knowns for testing. We define a globalized normal-
ized logit (GNL) function to normalize our logits using a
global min-max normalization based on training to ensure
all normalized logits are in the [0,1] range:

| —

ltmam -

ltmin

GNL(l) = max(0, min(1, ) (1

ltmin
where ltmin, ltmag are the minimum and maximum logits
overall classes for correctly classified inputs x € T, A(z) =
Q(x). Note we avoid per-instance normalization or the use
of softmax since there is important information in the relative
scale of logits, e.g. smaller versions of object will often have
smaller logits. At inference time we let

Am(x) = max GNL(l;(z)) )

J
be the maximum overall all classes GNL of the logit on input
x, and note since this is a global linear transform, it does
not change which class is maximum, so A(z) = m is the
associated class index.

We formalize COSTARR scoring through the following
steps. First, our concatenated attenuation-related vector is:

Cj(z) ) A3)

where H; = F(x) ©® W; is the Hadamard product, i.e., a
pointwise product of weight vector W} and feature vector
F(z) for class j on input . Let fic; be the pre-computed
mean of C;(z)Vx € T;. Given the co-staring role of both F’
and H in this we define our COSTARR similarity C;(z) for
class j and consolidated COSTARR score S(z) as

Ci(X) - fic; >

i) =05+ {1+ et e

S(x) = Am(2)Crn (2)
where the 0.5 in Eq. 4 rescales the similarity into [0,1]. In
processing, we select the class m = A(z) with maximum
GNL logit \,,, and then use the precomputed mean for the
consolidated attenuation-related vector of class m to com-
pute the similarity. Thus we interpret the COSTARR simi-
larity as an approximation of P(x € K|A(z) = m), i.e. the
conditional probability the input is from a known class given
we observed the input is from class m. If we assume that

= Concat(F(z), H;

“
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our GNL normalized max logit estimates the probability for
that class, which is a good approximation of the correct class
for known inputs, i.e. A, (x) &~ P(A(x) = m), then we can
interpret the COSTARR score as

S() = P(A() = m) - P((x € K)|(A() =m))  (6)
~ Pz € K) N (Az) = m))
— P(A(z) = m) A = )
= P((x € K) N (A(x) = m)) ®)
~ P((x € K) N (Q) = m)) ©)

where Eq. 7 follows from 6 from the definition of condi-
tional probability and 9 uses the assumption that on known
inputs our classifier is sufficiently accurate. Thus the novel
COSTARR score is an approximation of the probability that
an input is both known and of the correct class. Hence, it
can be thresholded to separate correctly classified knowns
from unknown or misclassified ones.

Since we condition our algorithm-and the associated
probabilities—on the max logit class, a limitation of this
approach is that the probability approximation can fail on
inputs from known classes when the pretrained network mis-
classifies them; that is, when z € K and A(z) # Q(x). In
such cases, the mean of the incorrect class is used, resulting
in a lower COSTARR score. Consequently, the model is
more likely to declare the input as unknown. From an op-
erational perspective, this “limitation”—rejecting incorrectly
classified known inputs—may actually be beneficial, as such
misclassifications are likely to cause downstream errors.

This analysis also explains why we multiply by the nor-
malized logit: in Eq. 7, it cancels out the denominator that
arises in the expansion of the conditional probability. With-
out this term, variations in per-class accuracy (i.e., errors
in P(A(z) = m))) or poor calibration would directly affect
the similarity score. By canceling this out, we ensure that
the sorted order of scores remains reliable for thresholding,
even if the scores themselves are not well calibrated.

While we define a particular similarity above, the atten-
uation hypothesis does not specify exactly how to compute
similarity between the related terms. Although a global
monotonic transformation of A(z) does not affect sorted or-
der, per-instance normalization or changes to the similarity
function can change it, which impacts open-set performance.
In our ablations, we demonstrate the importance of con-
sidering both the attenuated H and the original features F/,
validating the attenuation hypothesis. We do not claim that
9 is the optimal combination. We expect “optimal” will de-
pend on the network and the data used, as both impact F" and
H and the accuracy of logits on which we condition. Practi-
tioners applying this approach may want to explore alternate
combinations, normalizations, or optimizations, particularly
after fine-tuning models for their specific tasks. Nonetheless,
a key contribution of this paper is the attenuation hypothesis



itself. Those aiming to optimize performance should ensure
both F' and H are incorporated into their methods.

4. Experiments

The theory behind COSTARR was presented above, but
experimental validation is critical to show the underlying
assumptions hold in the real world. To effectively evaluate
our OSR performance in a large-scale setting, we adapt
the protocol recently established by Cruz et al. [7], with
their provided code. Their protocol consists of large-scale
datasets and modern architectures and allows the prediction
of an operational threshold closely resembling a real-world
system. Additionally, we conduct ablations to understand
the performance impact of our approach and its components.

4.1. Details

4.1.1. Datasets

We utilize the large-scale ImageNet2012 [33] as our known
class training and test sets. For OOSA threshold prediction,
we employ ImageNetV?2 [31] as our known validation set.

Bitterwolf et al. [3] recently showed that the 21K-P Open-
Set splits [40] commonly used for OOD/unknowns evalua-
tion contain over 40% overlap with ImageNet-1K, raising
concerns about in-distribution contamination. Using such
splits to estimate operational thresholds or evaluate perfor-
mance can be misleading—we elaborate on this in the sup-
plemental with supporting examples. To avoid this issue,
we follow the protocol by Cruz et al. [7], but replace their
unknowns surrogate with 10K images from Openlmage-O,
which has no significant overlap. For completeness, we also
report results on 21K-P splits in the supplement to match
PostMax’s evaluation.

At test time, we use 10K images from the plant classes in
iNaturalist (iNat) [39] and the remaining 7.6K images from
Openlmage-O (Open-O) [41] as unknowns. We also include
the NINCO [3] (5.8K images) and Textures (Text) [6] (5.1K
images) datasets as unknowns. Bitterwolf et al. [3] reported
significant contamination in several commonly used datasets,
including Places [49] (59.5%) and Textures [6] (20.0%).
Using contaminated datasets for OSR is problematic, as
high confidence on mislabeled unknowns can compromise
evaluation; properly labeled unknowns typically yield better
performance. In the supplemental, we provide examples
where contaminated samples closely resemble ImageNet-1K
training classes. While Textures and Openlmage-O each
have 20% overlap, we include them to increase dataset
diversity, with further analysis provided in the supplemental.
However, we caution against over-interpreting results on
these contaminated datasets.

4.1.2. Architectures

By utilizing ImageNet2012 [33], we can select well-studied
pre-trained architectures for our evaluation. We evaluate per-
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formance on the traditional ResNet-50 [13] and two recent
state-of-the-art architectures pre-trained on ImageNet2012
only: ConvNeXtV2-H [42] and Hiera-H [34]. We also
use a Vision Transformer trained with masked-auto-encoder
VIiT/MAE[ 14] and the original ConvNeXt [24]. For each
network, we extract features from the penultimate layer and
the added special code to extract the Hadamard product.

4.1.3. Metrics

Our main results utilize the recent Operational Open-Set
Accuracy (OOSA) [7], using code obtained from the authors.
OOSA evaluates algorithm performance using the predicted
threshold from validation. Additionally, we also utilize the
traditional OSR metric, the Open-Set Classification Rate
(OSCR) [8] as area under the curve in tables here and plots in
the supplemental. In the supplemental, we also include Area
Under the Receiver Operator Curve (AUROC), commonly
used in the OOD literature but stress that AUROC should
be interpreted with caution as it is generally incoherent for
comparisons of algorithms [12].

4.2. Results

We compared COSTARR with recent approaches: Post-
Max [7] - current state-of-the-art for OSR, Maximum Logit
(MaxLogit) [16, 40], and Maximum Softmax Probability
(MSP) [15, 40]. Additionally, we include recent state-of-the-
art OOD methods (as determined by the OpenOOD Bench-
mark leaderboard [45, 47]): SCALE [44] and NNGuide
[29]. Since COMBOOQOD [30] is not yet integrated within
OpenOOD, we cannot reproduce its results; however, we
include results from their paper in the supplemental.

As shown in Tab. 1, COSTARR outperforms other meth-
ods on OOSA, a powerful metric used to measure the de-
ployment characteristics of Open-Set algorithms. Notably,
NINCO [3], a purpose-built OOD dataset designed to avoid
contamination with ImageNet2012, provides a powerful
point of comparison at which COSTARR excels. To ensure
the results are not just random effects, dataset-dependent,
architecture-specific, or validation tuning results, we com-
puted Wilcoxon signed rank test, as implemented in scipy,
with Bonferroni correction across Post-Max’s five different
splits of the validation data with each architecture and algo-
rithm — see supplemental for more details. Note this is differ-
ent than the t-tests used in [7], because the data is reused in
ways that likely violate the independence needed for t-tests.
All statistical claims in the paper use this test process. Since
OOSA computes thresholds directly, there are NO free/tuned
parameters in these experiments. The result of the statistical
testing is that COSTARR is statistically significantly better
(p < 1075) on each architecture separately, as well as very
significantly (p < 10~9) across all architectures combined.
Additionally, while Places [49], 21K-P Easy/Hard [40], and
SUN [43] have significant ImageNet2012 contamination,
COSTARR still performs significantly (p < 10~ 3)) better



Table 1. OPERATIONAL OPEN-SET ACCURACY. The mean OOSA
(1) of all methods. To predict an operational threshold, we vali-
date the methods using ImageNetV2 [31] (10K images) as knowns
and Openlmage-O [41] (10K images) as unknowns. Then, each
method’s threshold is deployed and tested on five ILSVRC2012 val
[33] splits (each containing 10K images) and specified unknowns.
OSR is performed on extractions from various pre-trained architec-
tures. COSTARR, our novel algorithm, has the best scores (bold)
for each respective architecture and unknowns dataset.

than all methods except PostMax, but was never statistically
worse. We include those datasets in the supplemental, with a
discussion about data contamination and statistical testing.

Using AUOSCR as a secondary metric, Tab. 2 shows
COSTARR outperforms all methods; again, the differences
are statistically significant. In the supplemental we include
AUROC tables where again COSTARR is statistically sig-
nificantly better overall (p < 1073).
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Table 2. AREA UNDER OPEN SET CLASSIFICATION RATE
CURVE. The AUOSCR (1) of all methods. To compute, we tested
methods using ILSVRC2012 val [33] (50K images) as knowns
and specified unknowns. The best scores for each respective archi-
tecture and unknowns dataset are in bold.

4.3. Ablations

We ran an ablation study to examine the key elements of our
attenuation hypothesis and to analyze which components of
COSTARR contribute to the observed performance gains.
All ablations use AUOSCR as the evaluation metric, as it is
not sensitive to threshold selection.

The hypothesis states that both pre— and post—attenuation
features should be used. Also, it suggests that the final
logits, including the learned bias, likely contain valuable
information necessary for the probabilistic interpretation to
function properly.

We build an ablation version using only COSTARR Sim-
ilarity (Eq. 4), employing either the Hadamard product H
or deep features F' alone, and excluding the Logit. Treat-
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3 NoLogit 0.855  0.809 0.850 0.836
= CO-SM 0.851 0.807 0.843 0.831
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Table 3. ABLATION STUDY. AUOSCR scores from our ablation
studies; the best scores are in bold. Hadamard refers to a version
of COSTARR that uses only the Hadamard product features (H)
without concatenation, i.e. post-attenuation for similarity and selec-
tion. Features uses only pre-attenuation features (F') for similarity
and selection. NoLogit shows performance when using the con-
catenated F' and H similarity, with the class selected based on the
maximum similarity. For comparison, we also include PostMax,
the prior state of the art. We evaluate across three networks (as
used in supplemental Fig. 3: ResNet-50 [13], ConvNeXtV2-H [42],
and Hiera-H [34]. In all cases, the ablations perform worse than
COSTARR, providing empirical evidence that incorporating fea-
tures typically ignored (discarded or marginalized by the Hadamard
product) improves known/unknown differentiation. The compari-
son of softmax (CO-SM) vs. logits (COSTARR) further confirms
that normalization using logits yields superior performance.

ing the resulting vector as a type of prototype, we select
the class with the maximum similarity. Although there are
some architecture and dataset-specific variations, both of
these variants perform statistically significantly worse than
COSTARR overall (p < .05).

We also include an ablation with CO-SM, which uses
softmax instead of logits for scaling — this does not can-
cel out in the probabilistic interpretation. Another ablation
demonstrates that even when combining both pre— and post—
attenuation features (F' and H), the logits still provide ad-
ditional value. To test this, we introduce a variant called
NoLogit, which uses the full COSTARR similarity from
Eq. 4 to both select the winning class and reject unknowns.
This variant performs slightly better than using either feature
alone, but remains weaker than the overall COSTARR.

We were initially surprised by the much lower perfor-
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mance and greater variability of the ablation version using
softmax instead of logit (CO-SM). For some networks and
datasets, it outperformed the NoLogit ablation, while for oth-
ers, it performed worse. Although both max logit and max
softmax select the same class, the difference likely arises
from softmax’s per-instance normalization, which affects
the score and the probabilistic interpretation in Eq.9. Since
CO-SM never outperformed COSTARR with logits, we did
not explore it further.

From Tab. 3, COSTARR consistently outperforms the ab-
lation variants. These provide strong evidence in support of
our attenuation hypothesis and indicate that each component
of COSTARR contributes meaningfully to its performance.
Additional discussion is provided in the supplemental, par-
ticularly regarding COSTARR’s performance.

5. Discussion and Conclusion

Exploring our novel attenuation hypothesis, we analyzed
deep features and classification layer weights, finding that
multiple networks rely on classification weights that attenu-
ate general features and why that attenuation is problematic
for OSR. From our analysis of networks (see also Fig. 3 in
supplement), we showed that each feature has low weight for
some classes and high for others, supporting our hypothesis.

We exploited our attenuation hypothesis in our proposed
OSR algorithm, COSTARR, which introduces only a con-
stant to test-time complexity. Our main results on operational
open-set accuracy (Tab. 1) demonstrate that COSTARR out-
performs prior approaches, including the recent PostMax [7].
These results are practically better, statistically significant,
and achieved at almost no added computational cost. Ad-
ditionally, results with a secondary OSR evaluation metric,
AUOSCR (Tab. 2), show statistically significant performance
gains over prior approaches. The ablations (Tab. 3) validated
that COSTARR’s performance derives from three compo-
nents: the use of both pre— and post-attenuated features as
well as a small increase from using logits. Through this anal-
ysis, we found direct evidence supporting the attenuation
hypothesis as well as the benefit of using logits and per-class
models for OSR. While the ablations show the effective-
ness of each component varies across networks and datasets,
COSTARR achieves unprecedented performance across all
networks by consolidating all three sources of information.
We leave the exploration of these insights on non-pretrained
networks for future work.

Through this exploration, we have advanced the under-
standing of the weak performance of different open-set classi-
fiers because they discard information useful to either known
or unknown samples. COSTARR takes the first steps toward
consolidating pre-attenuation and post-attenuation informa-
tion to improve robust recognition.
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