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ABSTRACT

Recent advances in large reasoning models (LRMs) such as OpenAI’s o1 and
Deepseek-R1 have demonstrated that reinforcement learning (RL) with outcome-
based supervision can significantly enhance the reasoning abilities of language
models. However, these improvements have so far relied on massive model scales
and compute budgets, leaving open the question of whether RL-based scaling can
be made both effective and efficient at smaller scales. In this work, we introduce
DeepScaleR-1.5B, a 1.5B parameter model trained using reinforcement learning
via a novel iterative context lengthening strategy. Our method begins with shorter
context windows and progressively extends them throughout training, enabling
the model to first learn to reason efficiently before learning to reason longer.
This approach yields substantial performance gains with dramatically reduced
computational cost. DeepScaleR-1.5B achieves 43.3% Pass@1 on the AIME2024
math benchmark—a 14.3 percentage point improvement over its base model and
on par with OpenAI’s o1-preview—while requiring a fraction of the compute.
We provide a full training recipe, including dataset, code, hyperparameters, and
training methodology, demonstrating that small models can be effectively scaled
into strong math reasoners via RL.

1 INTRODUCTION

The release of OpenAI o1 [29] and Deepseek-R1 [12] marks a paradigm shift in improving the
reasoning capabilities of large language models. These models, also known as large reasoning models
(LRMs), achieve remarkable performance on challenging reasoning tasks such as competition-level
mathematics and coding—far surpassing the capabilities of traditional, non-reasoning models. Unlike
standard models, LRMs are explicitly trained to “think longer” by leveraging extended context
during inference to arrive at correct and well-reasoned conclusions. This enables them to outperform
conventional LLMs by a substantial margin.

Many approaches have been discussed and explored to encourage models to make more extensive
use of the context before committing to a final answer. Some early training-free approaches leverage
prompting techniques to ask the model to think step by step [20]. Later, many works perform
supervised fine-tuning on long CoT trajectories curated through either distillation [28, 23] or expert
written trajectories [52].

Beyond prompting and supervised finetuning, the recent release of Deepseek-R1 [12] demonstrates
that reinforcement learning (RL) with outcome-based rewards can be surprisingly effective in enhanc-
ing a model’s reasoning ability. Notably, Deepseek-R1 shows that by directly supervising solution
correctness, the model naturally learns to “think longer”—leveraging extended context before pro-
ducing an answer. As training progresses, the model’s average response length increases organically,
reflecting a growing tendency toward more deliberative reasoning.

While Deepseek-R1 lays out a high-level blueprint demonstrating the potential of RL training with
outcome supervision, it leaves critical details undisclosed, including the dataset, hyperparameters, and
scaling methodology. Moreover, training such a large model is prohibitively expensive—Deepseek-R1
is a 671B MoE model trained over 8,000 steps. This raises an important open question: can RL-based
reasoning improvements be scaled effectively to smaller models under realistic compute constraints?
Initial results from Deepseek-R1 [12] suggest that scaling down is not effective. When applied to the
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Figure 1: DeepScaleR’s Pass@1 accuracy on AIME2024 as training progresses. At step 1040 and
1520, the context length is extended to 16K and 24K.

32B Qwen model, performance on the AIME competition math dataset reached only 47%, compared
to the 79% achieved by R1, indicating diminishing returns at smaller scales.

In addition, even with smaller models, RL training remains computationally expensive. The primary
challenges in scaling RL for reasoning models are:

1. Long context lengths: Reasoning tasks often require extended contexts—up to 32K tokens—
unlike traditional workloads where outputs are typically only a few hundred tokens. This
dramatically slows response generation and introduces major performance bottlenecks.

2. Large batch sizes and prolonged training: To achieve significant performance improve-
ments (e.g., >10% Pass@1 on AIME), RL training demands thousands of gradient updates.
Stability in training typically requires large batch sizes (e.g., 1024 rollouts per batch),
making each training step extremely costly.

Given these factors, naively applying RL to train reasoning models at scale is impractical. For
instance, we estimate that training even a modest 1.5B parameter model over 2,000 steps with a 32K
context window requires approximately 17,500 A100 GPU hours or 21K USD in compute cost.

Thus, two key open questions remain: (1) How can we effectively scale RL training to improve
reasoning ability? and (2) How can we efficiently scale RL training to make it accessible under
practical computational budgets?

In this work, we answer both questions affirmatively. First, we show that RL scaling can be highly
effective even for a small 1.5B model. Our model, DeepScaleR-1.5B-Preview, achieves 43.3% on
AIME2024—an absolute improvement of 14.3% over the base model—and matches the performance
of OpenAI’s o1-preview through RL scaling alone. While Deepseek-R1’s results suggested that direct
RL scaling might be ineffective for smaller models, our work demonstrates that, with high-quality
data distillation over long reasoning trajectories, small distilled models can be effectively transformed
into strong reasoner using RL.

To address computational challenges and make RL training efficient, we propose iterative context
lengthening, a simple yet highly effective strategy that first encourages the model to think shorter
and more efficiently, before progressively “thinking longer” as the training evolves. Intuitively, our
techniques acts as a implicit curriculum that forces the model to solve easier problems first with
shorter, more efficient reasoning. Then, as training plaeteaus, we increase the context length to give
the model more thinking space to solve harder problems.

Concretely, we adopt a three-stage training process: starting with an 8K context window, and later
expanding to 16K and 24K contexts. During the initial 8K phase, the model’s average response
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length shrinks dramatically—from 16.3K tokens to 5.8K tokens on the AIME2024 dataset—while
still gaining 5% in accuracy. This indicates that the model learns to reason better and more efficiently
early on. As we gradually increase the context length to 16K and then 24K, the model continues to
improve by “thinking longer”, reaching 38% and 43% Pass@1 respectively, and ultimately matching
o1-preview’s competition math performance despite being much smaller in scale.

Furthermore, our training method dramatically improves computational efficiency. Our full training
run requires only 3,800 A100 GPU hours over 1,750 steps—a 2.6x× reduction compared to the
naive baseline of training 1,750 steps at 24K context directly. At inference time, our model achieves
50% majority-vote accuracy on AIME2024 using 14K fewer tokens per problem than the base model,
demonstrating significantly more efficient test-time scaling.

In this work, we contribute the following:

• We propose iterative context lengthening, a simple yet effective technique that progressively
extends the context length during RL training, enabling both more efficient training and
stronger test-time scaling performance.

• Using iterative context lengthening, we train DeepScaleR-1.5B, a model that achieves
significant performance gains in math reasoning through RL scaling, surpassing o1-preview
results with a model orders of magnitude smaller, and provide the full training recipe.

• We study the effect of different context length schedules, propose general principles for
selecting an optimal schedule, and empirically validate them through ablation experiments.

2 RELATED WORK.

LLM reasoning A substantial body of work has explored bootstrapping and enhancing the mathe-
matical and general reasoning capabilities of language models through prompting [48, 19, 60, 6, 51],
inference-time scaling [39, 4, 36], and training-based approaches [8, 11, 16, 25, 31, 59, 49, 28, 52, 23].
Wei et al.[48] introduced chain-of-thought (CoT) prompting, which encourages models to "think
step by step," revealing latent reasoning capabilities. Following the release of o1[29], a wave of
work [39, 4] has focused on inference-time scaling, where multiple solutions are sampled and ag-
gregated via majority voting or LLM-based verification. Beyond prompting and inference-time
strategies, numerous studies investigate training methods to directly instill reasoning skills into
models. For example, early works [43, 25] propose training a process reward model to guide solution
search in mathematical problem-solving. Zelikman et al.[54] introduce rejection fine-tuning with
self-generated rationales to bootstrap reasoning capabilities, inspiring several follow-up works that
refine and extend this training paradigm [16, 55]. Other approaches integrate Monte Carlo Tree
Search (MCTS) with process reward models for both training and inference [11, 59, 58, 49, 31],
demonstrating that joint optimization across search, verification, and learning can enhance model
reasoning performance.

Reinforcement learning for LLMs The most widely adopted application of reinforcement learning
in language models is Reinforcement Learning from Human Feedback (RLHF) [7, 30, 3, 62], which
involves training a reward model from human preference data and using it to guide the model
toward generating responses that are more aligned with human preferences. While RLHF originally
uses PPO [34], some recent work proposes alternative methods (e.g. RLOO [1], Remax [24],
Reinforce++ [18]) that removes the value model for more efficient RLHF training.

Beyond RLHF, a growing body of work [57, 2, 32, 5, 61] explores applying reinforcement learning
to train LLMs for a range of decision-making tasks, including Android device control [2], web
navigation and interaction [32], and text-based games [5, 61]. In contrast to RLHF, which is typically
applied in a single-turn setting, these works operate in multi-turn environments, where standard policy
gradient methods such as PPO [34] and REINFORCE [40] often suffer from sample inefficiency. As
a result, many of these efforts explore off-policy or offline reinforcement learning methods [38, 32, 2]
to improve training stability and data efficiency.

A parallel line of research applies reinforcement learning to enhance mathematical reasoning in
LLMs [13, 37, 45, 35, 9, 21]. These methods typically leverage math datasets with verifiable rewards
and either introduce new RL algorithms—such as GRPO [37] and PRIME [9]—or propose new
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formulations for applying reinforcement learning in this domain [21]. Our work is along this line of
research, showing that iterative context lengthening can be effective at scaling RL for math reasoning.

3 TRAINING RECIPE

In this section, we describe the methodology used to train DeepScaleR. Section 3.1 details the
training setup, including the dataset, the reward function, and the reinforcement learning algorithm.
Section 3.2 introduces our iterative context lengthening technique and presents the training procedure
that enabled the model to reach o1-preview level performance on math reasoning tasks.

3.1 TRAINING SETUP

Dataset curation We curate our training data from high-quality competition math problems, in-
cluding AIME (1984–2023) [44], AMC (pre-2023), OMNI-MATH [10], and STILL3 [42]. To
ensure reliable supervision, we implement a three-stage preprocessing pipeline: (1) Answer ex-
traction — using gemini-1.5-pro-002 [41] to parse official AoPS solutions; (2) Duplicate
removal — applying retrieval-augmented generation with all-MiniLM-L6-v2 [46, 33] to elimi-
nate near-duplicates (>0.9 similarity) and prevent train–test contamination; (3) Filtering — excluding
problems ungradable by sympy [27] to avoid noisy rewards. The final dataset contains 40K unique
problem–answer pairs.

Reward function Following DeepSeek-R1, we use outcome-based rewards from ground-truth
solutions: 1 if the answer is correct and well-formatted (LaTeX + sympy checks), otherwise 0.

Training algorithm We adopt Group Relative Policy Optimization (GRPO) [37, 12]. For ques-
tion–answer pairs (q, a), GRPO samples G responses {oi} with rewards {ri} and optimizes:

JGRPO(θ) = E

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
− βDKL(πθ||πref)

)]
,

where

ri,t(θ) =
πθ(oi,t|qi, oi,<t)

πθold(oi,t|qi, oi,<t)
, Âi,t =

ri − mean({ri})
std({ri})

.

Base model We initialize from DeepSeek-R1-Distilled-Qwen-1.5B [12], distilled from
DeepSeek-R1 onto Qwen2.5-Math-1.5B [50], which improves math reasoning through ex-
tended reasoning tokens.

Training hyperparameters Hyperparameters are provided in Appendix A.1.

3.2 ITERATIVE CONTEXT LENGTHENING

A key challenge in scaling RL for reasoning tasks is selecting an appropriate context window. Unlike
standard RLHF, reasoning tasks often require very long outputs—for example, AIME solutions
can exceed 10,000 tokens—creating a bottleneck for on-policy algorithms like GRPO, which must
generate full trajectories before gradient updates. Autoregressive LLM generation with long contexts
slows trajectory sampling and overall training.

This creates a fundamental trade-off: longer contexts allow tackling harder problems but increase
computation, while shorter contexts improve efficiency but may limit reasoning. Iterative context
lengthening addresses this by initially encouraging the model to “think shorter” with a constrained
context window, then gradually increasing it to unlock longer-horizon reasoning. Our approach
begins with RL training using an 8K context for efficient, effective reasoning, then incrementally
expands to 16K and 24K to handle more challenging problems.

We next detail the training dynamics in each stage.
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Bootstrapping reasoning with an 8K context Before full-scale training, we did a diagnostic
evaluation of Deepseek-R1-Distilled-Qwen-1.5B on AIME2024. The results from Table 1
incorrect responses were over three times longer than correct ones (20,346 vs. 6,395 tokens). This
suggests that direct scaling at longer context might be inefficient, as these wrong responses are harder
for the model to solve.

Therefore, we initialize training with an 8K context, providing an implicit curriculum that encourages
concise reasoning on simpler problems and accelerates learning. While initial accuracy drops from
28.9% to 22.9%, training rewards steadily rise from 46% to 58%, and mean response length falls
from 5,500 to 3,500 tokens. After 1K steps, DeepScaleR gains 5 points over the base model and 11
points compared to direct 8K training, while average response length shrinks from 16.3K to 5.8K
tokens. This bootstrapping phase improves both performance and efficiency, making subsequent
extended-context training substantially more tractable.

Metric Base Model DeepScaleR-1.5B-8K Change
AIME Pass@1 (%) 28.9 33.9 5.0
Avg. tokens (correct) 6396.0 3661.2 −2734.8
Avg. tokens (incorrect) 20 346.3 6976.8 −13 369.5
Avg. tokens (overall) 16 335.6 5850.9 −10 484.7

Table 1: Comparison of base model and 8K-context fine-tuned model on AIME2024. Training under
constrained output length improves both efficiency and accuracy.

Transitioning to 16K contexts After 1,000 training steps at 8K, response lengths began increasing,
indicating the model was attempting longer reasoning. However, accuracy plateaued, rewards
fluctuated, and the response clipping ratio rose from 4.2% to 6.5%, signaling that the 8K window was
limiting further gains (See Figure 2 and 3).

Identifying this as a natural transition point, we checkpointed at step 1,040 and resumed training
with a 16K context. This two-stage approach is more efficient than starting at 16K, as the 8K
bootstrapping kept average response length at 3,500 instead of 10,000 tokens, reducing computation
2–3×. Following the switch, rewards, response length, and AIME accuracy steadily improved: after
500 steps, average response length rose to 5,500 tokens and Pass@1 accuracy reached 38

Figure 2: Response length goes back up after 1000 steps,
but training rewards eventually declines for our 8K run.

Figure 3: The response length clip ratio
rises after 1000 steps for the 8K context
run.

Final push with 24K contexts After an additional 500 steps at 16K context, performance once
again began to plateau. Training rewards stabilized at 62.5%, AIME accuracy hovered at 38%, and
output lengths began declining slightly. The maximum clipping ratio also rose to 2.0%, indicating
renewed constraints at the new context ceiling.
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To address this, we extended the context window one final time to 24K tokens, resuming training
from step 480 of the 16K run. The results were immediate: within 50 steps, the model surpassed 40%
accuracy, eventually reaching 43% by step 200 and surpassing o1-preview.

Training efficiency and cost Overall, our training run consists of 1,750 steps. The initial 8K phase
was trained on 8 A100 GPUs, while the 16K and 24K phases scaled up training to 32 A100 GPUs.
In total, the training took around 3,800 A100 hours, equivalent to roughly 5 days on 32 A100s and
$4500 in terms of compute cost.

3.3 PRINCIPLES FOR SELECTING THE CONTEXT WINDOW IN ITERATIVE LENGTHENING

While iterative context lengthening is an effective strategy for scaling reasoning models, it introduces
a new hyperparameter: the context window. This raises two natural questions for model training:
(1) what is the optimal initial context window, and (2) when should the window be expanded during
training? Given our observations from DeepScaleR, we propose the principles for selecting context
windows in iterative lengthening:

Principle 1: Start at steepest gains Model performance vs. context length often follows a concave
curve: rapid early gains plateau as context grows. We recommend starting fine-tuning near where
initial gains taper, letting the model leverage short- to medium-length contexts before expanding.
For example, on AIME2024 with DeepSeek-R1-Distill-1.5B, fixed-context Pass@1 scores
at 2K, 4K, 8K, 16K, and 32K tokens are 3%, 9%, 23%, 26%, and 29%, showing steep gains up
to 8K and diminishing returns afterward. This motivates a staged schedule of 8K → 16K → 24K.
Conversely, if gains rise sharply only near the maximum context, direct training at the target length
may be more effective than staged growth.

Principle 2: Expand when performance plateaus Performance saturation, often accompanied by
longer responses and higher clipping, indicates the model is constrained by context. Expanding the
window before this plateau allows the model to fully utilize its reasoning capacity.

General methodology Based on the above principles, iterative context lengthening can be imple-
mented as a three-stage process: 1) evaluate coverage (fraction of problems solved) across context
cutoffs; 2) identify the concave trend and select an initial window just beyond the steepest gains; 3)
when coverage plateaus while response lengths increase, expand the context using the best checkpoint
before the plateau. In Section 4.2, we present additional RL scaling experiments on the countdown
task that empirically validate these principles.

4 EVALUATION

Evaluation setup We evaluate our model on various competition-level mathematics benchmarks,
including AIME 2024 [44], AMC 2023, MATH-500 [15], Minerva Math [22], and Olympiad-
Bench [14]. Since datasets such as AIME has high variance, for each question, we sample 16 times
following the recommended setup by Deepseek-R1 (temperature=0.6, topp=0.95) and report the
average Pass@1 accuracy over the 16 trials.

We compare DeepScaleR with the base DeepSeek model and recent academic works exploring RL for
math reasoning, including rStar [11], SimpleRL [56], PRIME [9], and STILL-3 [42]. We show our
evaluation results in Table 2 and underline the model whose scores we evaluate and verify ourselves.

As shown in Table 2, DeepScaleR significantly outperforms the base model across all benchmarks,
achieving a 14.4% absolute gain on AIME2024 and an 8.1% overall improvement. Additionally,
DeepScaleR surpasses recent works such as rSTAR, PRIME, and SimpleRL, which are finetuned
from a larger 7B models.

4.1 ABLATION STUDY

Iterative Context Lengthening (8K → 16K → 24K) vs. Direct RL Scaling (24K) To evaluate the
effectiveness of our iterative context lengthening strategy, we conduct an ablation study comparing
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Model AIME 2024 MATH 500 AMC 2023 Minerva Math OlympiadBench Avg.
Qwen-2.5-Math-7B-Instruct 13.3 79.8 50.6 34.6 40.7 43.8
rStar-Math-7B 26.7 78.4 47.5 - 47.1 -
Eurus-2-7B-PRIME 26.7 79.2 57.8 38.6 42.1 48.9
Qwen2.5-7B-SimpleRL 26.7 82.4 62.5 39.7 43.3 50.9
DeepSeek-R1-Distill-Qwen-1.5B 28.8 82.8 62.9 26.5 43.3 48.9
Still-3-1.5B-Preview 32.5 84.4 66.7 29.0 45.4 51.6
DeepScaleR-1.5B-Preview 43.1 87.8 73.6 30.2 50.0 57.0
O1-Preview 40.0 81.4 - - - -

Table 2: Pass@1 accuracy across competition-level math benchmarks. DeepScaleR outperforms both
the base model and recent RL-enhanced methods.

our staged training approach (8K → 16K → 24K) against direct reinforcement learning (RL) scaling
with a 24K context window. For the direct scaling baseline, we replicate the training configuration
used in DeepScaleR’s final 24K-stage run.

The direct 24K model is trained for 440 steps on 16 A100 GPUs, with each step taking approximately
1,300 seconds, amounting to a total training cost of roughly 2,400 A100 GPU-hours. To provide a
fair comparison, we plot both training curves using GPU hours as the x-axis.
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Figure 4: Comparison of DeepScaleR’s iterative context lengthening (8K → 16K → 24K) versus
direct RL scaling at 24K. Left: AIME accuracy vs. GPU hours. Right: Average training rewards vs.
GPU hours.

As shown in Figure 4, the direct 24K scaling baseline exhibits unstable performance and does not
yield significant improvement over time. In contrast, iterative context lengthening—while starting
from a lower initial AIME accuracy due to truncation—demonstrates steady progress throughout
training and surpasses the direct scaling baseline after approximately 500 GPU hours. These findings
support our hypothesis that naively scaling to long contexts in RL training is suboptimal, and that a
staged curriculum enables more stable and effective learning.

Test-Time Scaling of DeepScaleR Test-time scaling refers to techniques that improve model
performance on downstream tasks by allocating additional compute during inference. A widely
adopted method is self-consistency [47], which generates multiple solutions and selects the final
answer via majority voting.

Figure 5 presents a side-by-side comparison of test-time scaling between DeepScaleR and the original
base model, Deepseek-R1-Distill-1.5B. For each of the 30 problems in the AIME2024
dataset, we generate 64 solutions per model and evaluate majority voting accuracy by repeatedly
sampling subsets of responses from this pool. We run 300 sampling trials and report the mean
accuracy and standard deviation as a function of the number of sampled solutions (left) and total
number of generated tokens (right).

The results show that DeepScaleR consistently outperforms the base model as the number of samples
increases, achieving a Maj@64 accuracy of 65% compared to 57.7%. Notably, our iterative context
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Figure 5: Test-time scaling comparison between DeepScaleR and
Deepseek-R1-1.5B-Distill. Left: Mean majority voting accuracy (with standard
deviation) as a function of the number of sampled responses. Right: Mean majority voting accuracy
(with standard deviation) as a function of the total number of generated tokens. DeepScaleR
consistently outperforms the baseline while requiring much fewer tokens to reach comparable
accuracy.

Max Tokens Coverage (%) Truncated (%)

0 0.0 100.0
512 10.9 91.0

1024 45.5 53.1
2048 61.9 34.2
3072 66.8 28.8
4096 69.3 25.4
5632 71.1 19.8
7680 71.8 2.9
8192 71.8 0.0

Figure 6: Coverage and truncation for Qwen3-
0.6B on CountDown under different cutoffs.

0 2,000 4,000 6,000 8,000
0

50

100

Max Tokens

Pe
rc

en
ta

ge
(%

)
Coverage and Truncation vs. Context Length

Coverage Truncated

Figure 7: Coverage and truncation for Qwen3-0.6B
on CountDown as a function of maximum context
length.

lengthening technique leads to significantly more concise reasoning, which greatly improves the
efficiency of test-time scaling. As shown in the right panel of Figure 5, DeepScaleR reaches 50%
majority voting accuracy using 4.2M fewer tokens (equivalent to a savings of 14K tokens per problem),
demonstrating a substantial reduction in inference cost.

4.2 CONTEXT LENGTH SCHEDULING ON THE COUNTDOWN TASK

To investigate the effect of different context length schedules and validate our principles for selecting
the context window, we conduct a set of additional RL scaling experiments on the COUNTDOWN task
using QWEN3-0.6B as the base model.

Coverage analysis. Before running experiments, we first examine the behavior of the base model
under different context cutoffs. Figure 7 and Table 6 report coverage (fraction of problems solved
within the cutoff) and truncation (fraction of solutions clipped). We observe a concave growth curve:
coverage rises rapidly for the first 1K tokens (0% to 45.5%), then slows beyond 2K. Meanwhile,
accuracy drops substantially at higher cutoffs (e.g., only 25 out of 225 problems are solved between
4K–8K), suggesting these longer problems remain unsolved.

This implies that directly scaling at 8K is inefficient, as substantial compute is wasted on truncated
or incorrect long solutions that do not contribute to the gradient under GRPO. Our scheduling
principles therefore suggest initializing within the 1K–2K range, where coverage gains are steepest
but diminishing returns have not yet set in.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Schedule Start Acc. (%) Final Acc. (%) Avg. Len Steps

512 → 4K → 8K 10.9 67.3 → 79.6 → 82.5 1760 350 → 50 → 50
1K → 4K → 8K 45.5 70.2 → 82.7 → 85.4 2061 225 → 50 → 25
2K → 4K → 8K 61.9 74.2 → 80.7 → 84.9 3045 150 → 50 → 25
4K → 8K 69.3 75.1 → 81.9 3054 75 → 50
8K (direct) 71.8 81.1 3022 100

Table 3: Countdown task results under different ICL schedules. Accuracies are reported at each stage
of training.

Effects of Different Iterative schedules We evaluate five iterative context lengthening (ICL)
schedules—(1) 512 → 4K → 8K, (2) 1K → 4K → 8K, (3) 2K → 4K → 8K, (4) 4K → 8K, and
(5) direct 8K—using the same dataset and RL configuration, with context switches triggered from
the best checkpoint before reward plateaus. Results are presented in Table 3. Across all setups,
iterative scheduling consistently outperforms direct scaling. Runs 2 and 3, which start in the 1K–2K
range, achieve the highest final accuracy (85.4% and 84.9%, respectively), validating our scheduling
principles; Run 2 (1K → 4K → 8K) further provides the best trade-off, reaching top accuracy with
shorter outputs. In contrast, Run 1 (512 start) begins too low, requiring significantly more steps to
recover; Run 4 (4K start) skips the steep-gain region, leading to weaker outcomes (81.9%); and direct
8K training (Run 5) is the least efficient, plateauing at 81.1% despite longer responses.

These results empirically validate our two heuristics—selecting the initial context near the steepest
coverage gain and expanding when learning plateaus—showing that iterative scheduling serves as an
implicit curriculum that yields higher accuracy, more efficient training, and more concise solutions.

5 KEY TAKEAWAYS

RL scaling can manifest in small models as well Deepseek-R1 [12] demonstrates that applying
RL directly on small models is not as effective as distillation. Their ablations show that RL on Qwen-
32B achieves 47% on AIME, whereas distillation alone reaches 72.6%. A common myth is that RL
scaling only benefits large models. However, with high-quality SFT data distilled from larger models,
smaller models can also learn to reason more effectively with RL. Our results confirm this: RL
scaling improved a distilled model’s AIME accuracy from 28.9% to 43.1%! These findings suggest
that neither SFT nor RL alone is sufficient. Instead, by combining high-quality SFT distillation with
RL scaling, we can truly unlock the reasoning potential of LLMs.

Iterative lengthening enables more effective length scaling Prior works [53, 17] indicate that
training RL directly on 16K context yields no significant improvement over 8K, likely due to
insufficient compute for the model to fully exploit the extended context. And a recent work [26]
suggests longer response lengths consists of redundant self-reflection that leads to incorrect results.
Our experiments are consistent with these findings. By first optimizing reasoning at shorter contexts
(8K), we enable faster and more effective training in subsequent 16K and 24K runs. This iterative
approach grounds the model in effective thinking patterns before scaling to longer contexts, making
RL-based length scaling more efficient.

6 CONCLUSION

In this work, we introduce a novel iterative context lengthening technique for effective RL scaling.
Our approach gradually expands the model’s context windows during training (8K→16K→24K),
stabilizing learning and encouraging concise reasoning. Leveraging this technique, we train Deep-
ScaleR, a 1.5B model that achieves 43.3% Pass@1 on AIME2024— improving by 14.3% over its
base model and matching OpenAI’s o1-preview on various math reasoning benchmarks. Our
ablation study shows that iterative context lengthening is more effective than direct RL scaling, and
enables stronger and more efficient test-time scaling.
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A.1 TRAINING HYPERPARAMETERS ADDITIONAL TRAINING RESULTS
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Hyperparameters 8k 16k 24k

Train Batch Size 128 128 128

GRPO Group Size 8 16 16

Max Response Length 8192 16384 24576

Learning Rate 1× 10−6 1× 10−6 1× 10−6

PPO Mini-Batch Size 64 64 64

PPO Epochs 1 1 1

KL Loss Coefficient 0.001 0.001 0.001

Rollout Temperature 0.6 0.6 0.6

Total Steps 1040 480 250

Table 4: Training hyperparameters for DeepScaleR’s 8k, 16k and 24k runs.

Figure 8: DeepScaleR’s average response length and training rewards as training progresses. The
curves shows the running average over a window size of 100.

14


	Introduction
	Related work.
	Training Recipe
	Training Setup
	Iterative Context Lengthening
	Principles for Selecting the Context Window in Iterative Lengthening

	Evaluation
	Ablation Study
	Context Length Scheduling on the Countdown Task

	Key Takeaways
	Conclusion
	Appendix
	Training hyperparameters  Additional Training Results


