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ABSTRACT

The aspiration for artificial general intelligence, fueled by the rapid progress of
multimodal understanding, demands models to understand humans in diverse and
complex scenarios, as humans manifests intelligence and embody the world. We
propose HumanPCR, an evaluation suite for probing MLLMs’ capacity in human-
centric visual contexts across three hierarchical levels: Perception, Comprehension,
and Reasoning (denoted by Human-P, Human-C, and Human-R, respectively).
Human-P and Human-C consist of over 6,000 multiple-choice questions evaluat-
ing 34 fine-grained tasks covering 9 essential dimensions. Human-R presents a
manually curated challenging video reasoning test that requires integrating multi-
ple visual evidence, proactively extracting implicit context beyond question cues,
and applying human-like expertise. Each question includes human-annotated
Chain-of-Thought (CoT) rationales with key visual evidence to support further re-
search. Extensive evaluations on over 30 state-of-the-art models exhibit significant
challenges in human-centric visual understanding, particularly in tasks involving
detailed space perception, temporal understanding, and mind modeling. The analy-
sis of Human-R further exposes a critical failure in reasoning: models struggle to
proactively gather necessary visual evidence, instead showing a faulty reliance on
query-prompted cues, with advanced techniques offering only marginal gains. We
hope HumanPCR and our findings will advance the development, evaluation, and
human-centric applications of multimodal models.

1 INTRODUCTION

The rapid advancement of Multimodal Large Language Models (MLLMs) has shown remarkable
potential in understanding diverse contexts (Zhang et al., 2024c; Team et al., 2023; Hurst et al.,
2024; Bai et al., 2025; Wang et al., 2024). This progress fuels the aspiration toward artificial general
intelligence, where a key prerequisite lies in the ability to understand humans in diverse, complex, and
dynamic contexts, as human behavior inherently reflects intelligence as well as the complexities of
the world (Grauman et al., 2022; Jahangard et al., 2024; Caba Heilbron et al., 2015). In this work, we
systematically investigate how well MLLMs understand humans across critical aspects of perception,
comprehension, and reasoning in diverse human-centric visual understanding scenarios.

Human-centric visual understanding (Tang et al., 2023; Ci et al., 2023) remains a fundamental
challenge in artificial intelligence. However, current MLLM benchmarks provide a limited assessment
of such capabilities. They either isolate narrow tasks, such as action or facial recognition (Qin et al.,
2025; Mangalam et al., 2023; Salehi et al., 2024), or, when adopting broader scopes, overlook intricate
yet crucial aspects such as gaze and contact, while reporting only coarse-grained scores (Yue et al.,
2024; Fu et al., 2024; Xu et al., 2023; Zhou et al., 2024a). Consequently, they lack the necessary
probing power to rigorously evaluate MLLMs’ nuanced capabilities in human-centric scenarios,
thus providing limited guidance for future research and applications. A more critical gap lies in the
assessment of reasoning. Unlike humans, who naturally synthesize multiple visual cues in reasoning,
current task-specific or fragmented benchmarks rarely challenge models to perform multi-evidence
reasoning (Zhao et al., 2025; Hu et al., 2025; Chen et al., 2024a; Fu et al., 2024; Lu et al., 2023).
Although some recent video benchmarks have featured intricate reasoning questions(Cheng et al.,
2025; Zhu et al., 2025b; Cai et al., 2025), they often cannot necessitate sophisticated visual evidence
demand. As discovered by our analysis in Figure 2, two critical reasoning faculties remain overlooked:
1) the ability of integrating multiple, disparate visual evidence to achieve coherent understanding,
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Accessory Recognition
A yellow climbing helmet. A pair 
of blue climbing shoes.

Body Posture
His left calf and thigh are at 
an acute angle (less than 
90 degrees). His right knee 
is also bent, but to a lesser 
degree than the left one.

Gaze Estimation
The man looks forward, 
slightly down to the left.

Emotion
Physical relief, camaraderie, 
and inclusion joy.

Knowledge-Based Action
She prepares and manages her 
climbing chalk during a multi-
pitch rest to support a safe, 
successful next pitch.

Human-Object Interaction
Right hand holds portable 
container; left adjusts lid strap.

Spatial Relation

Body Orientation

Human Self-Contact
The man‘s left forearm is in 
contact with his left thigh, his left 
ankle is touching his buttocks。

Procedure Dependence
Q: Can the women swap the order of her 
action “droping the orange peel” and 
“removeing the glasses from the bag”?
A: No, as removing the glasses from the 
bag is a prerequisite for putting down 
the orange peel 

Multi-Evidence Reasoning

0:18-0:41

Q: When the woman places the phone on the rock, which is 
farther from the camera wearer: the phone or the shoes he 
later changes into?

Social Relation

Group Activity Struggle Detection

Gesture

Emotion

Basic Action

Knowledge-Based Action Crowd Event

Cultural Event Crime Abnormal

Disaster Understanding

Sequential Action Goal Planning

Procedure Dependence

Irrelevant Action

Multiple Human Sequencial Action

Human Comparison

Face Recognition

Identity Clustering

Causal Reasoning

PredictionAssessment Planning

Counter-Factual Reasoning

Outdoor Adventure Household Sports Education

Performance & Exhibition

Transport Daily Spending 

Outdoor Leisure & Recreation Indoor Leisure & Self Care Electric & Crafting 

Perception

Comprehension

Reasoning

Bodypart VisibilityPhysical Attribute

Clothing Attribute Accessory Recognition

Appearance
Human-Object Contact

Human Self-Contact

Contact Identity

Behavior Procedure Relation Scene

Domain Type

0:32-0:41 3:19-3:28 6:20-6:52

Object Existence

Spatial Relation

Human Presence

Spatiailty

Object Existence Hand-Object Interaction

Body Posture

Hand State

Gaze Estimation

Body Orientation

Posture

Hand-Object Interaction

Human Self-Contact

A: When the camera wearer sits down a second time, the woman retrieves his later shoes from a gap 
between the phone’s rock and another rock, and this gap is farther from him than the phone.

From Ego4D

Other

Figure 1: Illustration of HumanPCR, consisting of 34 tasks spanning 9 dimensions across Perception,
Comprehension, and Reasoning Levels. It features comprehensive human-centric visual understand-
ing abilities coverage, and proactive visual reasoning based on multiple evidence.

and 2) the ability of proactively seeking implicit visual cues. As a result, reasoning within complex
and dynamic human-centric contexts remains a significant, open challenge.

To bridge these critical gaps in evaluation, we introduce HumanPCR, a comprehensive evaluation
suite designed to meticulously probe the human-centric visual understanding of MLLMs. HumanPCR
is structured along a hierarchical taxonomy, perception (Human-P), comprehension (Human-C),
and reasoning (Human-R), as illustrated in Figure 1. To enable fine-grained probing, Human-P and
Human-C feature a large-scale dataset of over 6,000 image- and video-based QA pairs, assessing
34 tasks that span 9 dimensions from individual attributes to spatio-temporal dynamics. Moreover,
Human-R introduces a unique challenge through a manually curated, open-ended video reasoning
benchmark. Sourced from 11 diverse human-related domains, it compels models to integrate multiple,
disparate visual evidence and proactively seek implicit visual cues beyond what is explicitly prompted.
To support further research, each question in Human-R is augmented with expert-annotated Chain-of-
Thought (CoT) rationales (Wei et al., 2022) that detail all key visual evidence.

A large suite of open-source and proprietary models is benchmarked on HumanPCR. Our analysis
reveals several key findings. First, existing MLLMs face significant challenges in human-centric
visual understanding and expose inherent limitations in detailed space perception (Yang et al., 2024b),
temporal understanding (Fu et al., 2024), and mind modeling (Rezaei et al., 2025; Jin et al., 2024).
Second, Human-R highlights models’ struggles with multi-evidence reasoning across diverse human
scenes. A substantial proportion of errors arise from their reliance on explicit query-guided cues,
failing to proactively seek implicit visual evidence. Third, merely scaling visual contexts offers little
gains for Human-R (Team et al., 2023; Hurst et al., 2024; Bai et al., 2025; Wang et al., 2025b; Shen
et al., 2024), emphasizing the need for more precise visual context perception. Conversely, reasoning-
enhanced models like o3 (OpenAI, 2025) reduce missed proactive evidence and achieve consistent
improvements. We hope that HumanPCR will serve as a crucial tool to accelerate the development of
more capable MLLMs and facilitate their adaptation to diverse human-related applications.
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2 RELATED WORK

Multimodal Large Language Models (MLLMs). Evolving from LLMs, MLLMs now process
diverse modalities including image sequences, video, and audio (Liu et al., 2023; Li et al., 2024a;
Lin et al., 2023; Borsos et al., 2023). Recent models can handle dynamic resolutions and long
contexts (Bai et al., 2025; Zhu et al., 2025a). To manage long videos within limited context windows,
common strategies include efficient content extraction via frame selection (Tang et al., 2025; Huang
et al., 2025; Ye et al., 2025) or token pruning (Wang et al., 2025b; Zhang et al., 2025; Shen et al.,
2024). Concurrently, the rise of models with powerful intrinsic reasoning capabilities (Guo et al.,
2025; Jaech et al., 2024; Comanici et al., 2025; OpenAI, 2025) has inspired efforts to leverage these
cognitive strengths for more advanced visual understanding (Feng et al., 2025; Xu et al., 2024; Wang
et al., 2025a; Li et al., 2025).

Benchmarks for MLLM Evaluation. Evaluating MLLMs, particularly in human-centric contexts,
is a significant research focus. Many benchmarks target specific human-related tasks like motion
analysis (Hong et al., 2025; Feng et al., 2023), face recognition (Qin et al., 2025; Pham et al., 2024),
or domain-specific actions (Salehi et al., 2024; Cui et al., 2023; Plizzari et al., 2025), while they have
concluded that MLLMs still have substantial limitations in nuanced human understanding (Rezaei
et al., 2025; Mangalam et al., 2023; Zhou et al., 2024b; Li et al., 2024c). Broader, general benchmarks
also include human-centric tasks but often lack the structured taxonomies needed for systematic,
fine-grained ability diagnosis (Xu et al., 2023; Fu et al., 2024; Li et al., 2023). On the reasoning
front, benchmarks have grown in complexity, moving from image-based exams (Yue et al., 2024;
Chen et al., 2024a) to challenging video-based scenarios (Song et al., 2025; Cai et al., 2025; Cheng
et al., 2025; Zhu et al., 2025b). However, they often focus on knowledge-based reasoning from
instructional videos (Hu et al., 2025) or repurpose existing QA pairs (Han et al., 2024; Qi et al., 2025),
which may not adequately test the synthesis of multiple, disparate visual cues. Our HumanPCR,
features a hierarchical taxonomy for detailed ability diagnosis and assessing the critical skills of
integrating multiple pieces of visual evidence and proactively seeking implicit information in complex,
human-centric videos.

3 THE HUMANPCR BENCHMARK

3.1 TASK ARCHITECTURE AND DATA CONSTRUCTION

We introduce the HumanPCR benchmark to evaluate how MLLMs understand humans in real-world
scenarios. The design of HumanPCR is motivated by the need for probing fine-grained model
capability essential to downstream applications in human-centric visual understanding. To this
end, a critical principle is to construct sufficient number of fine-grained tasks with comprehensive
coverage and low redundancy. And each task should be supported by data sources as rich and varied
as possible. To do so, we survey a wide range of human-centric perception and understanding works
to first define tasks, then match them with rich and varied datasets. This iterative approach, grounded
in diverse data from daily to professional scenes, mitigates single-source bias and ensures broad
capability coverage (Figure 3). Task definitions and sources are provided in Supplementary Materials.
The taxonomy is briefly introduced as follows:

Level 1: Perception evaluates visual recognition across 5 dimensions and 17 tasks: (1) Spatiality:
perceiving existence of people, objects, and their spatial relations; (2) Posture: recognizing physical
position and orientation of body parts, hands, and gaze; (3) Appearance: identifying human appear-
ances, including inherent attributes and attirement; (4) Contact: recognizing detailed interaction
regions between people and objects, or themselves; (5) Identity: recognizing people’s identity.

Level 2: Comprehension assesses visual concepts comprehension, from 4 dimensions and 17 tasks,
based on commonsense or domain-specific cues: (1) Behavior: understanding human actions and
body movements, such as gestures and emotions; (2) Procedure: thoroughly understanding long-term
activities, including underlying intentions and dependence among action sequences; (3) Relation:
analyzing relations, roles and differences among individuals; (4) Scene: interpreting group dynamics
or human activities within broader contexts.
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Reasoning on Proactive and Multiple Evidence 
Question: Does the woman know that the group, ④including the man wearing glasses, would come to the yard 
while ①she was feeding the dogs?

Chain-of-Thought: After ①feeding the dogs, the woman ②cleans the sled but 
then ③rides out on a snowmobile herself, indicating that the sled was not prepared 
for her own use. After she leaves, ④the group, including the man wearing glasses, 
arrives at the yard,⑤attaches the dogs to the sled, and uses it for travel. This 
indicates that the woman prepared the sled in advance for them, so she must have 
known that they would later come while she was feeding the dogs.

Answer: Yes, she knew they 
would come later while she was 
feeding the dogs.

Shortcut by Refered or Single Evidence 
Question: How many ①red socks are above the fireplace at the end of this video?
Answer: 3 From Video-MME

Visual Evidence

Clip Score

Obj. Det. Score

MLLM Frame 
Score

MLLM Atten. Score

① ② ③ ④ ⑤

①

Question 1: Why does the woman fetch the 
dustpan?
Review: Only concerning one evidence.

Question 2: What tasks does the woman 
perform?
Review: Multi-evidence recognition 
without reasoning.

Question 3: Can the sled dog be replaced with a 
Shiba Inu?
Review: Vision independence.

Rejected Anno. in Human-R

Figure 2: Illustration of multiple and proactive evidence reasoning in Human-R. (Left) Examples
from Video-MME and Human-R. Clips of proactive and referred visual evidence are highlighted.
Context matching by heuristics could resolve sparse or referred evidence and bypass comprehensive
reasoning, so it is crucial to assess reasoning over multiple and proactive evidence. (Right) By
rigorously filtering out annotations that fall below the required reasoning complexity, Human-R can
precisely diagnose a model’s capabilities in video reasoning with multiple and proactive evidence, an
area where existing benchmarks fall short.

Level 3: Reasoning examines whether models can integrate continuous, tightly coupled human
dynamics within complex scenes for reasoning. We contend that the evaluation should satisfy three
criteria: (1) Visual Complexity: questions should require sufficient visual evidence1 , and exclude
redundant content, going beyond simple concept retrieval; (2) Reasoning Necessity and Diversity:
questions should engage diverse reasoning chains rather than be limited to a few reasoning patterns;
(3) Proactivity: questions should demand proactive extraction of visual evidence over the abundant
contexts2, rather than relying solely on the referred evidence in the question.

For the Reasoning level (Human-R), we found that videos from public academic datasets are not
diverse enough and usually short. Therefore, we defined 11 domains ranging from daily life to
professional scenarios, as detailed in Figure 1. Web videos were collected as a supplementary data
source to populate these domains. They were pre-filtered via domain-relevant tags and then manually
reviewed before annotation to guarantee both content richness and safety.

3.2 QA ANNOTATION PROTOCOL

The prompt and other details of annotation process are provided in Appendix B.

Human-P and Human-C. Benefiting from the data collection, we leverage annotations from existing
datasets to efficiently scale up QA pairs without compromising data quality or diversity. Templates-
and LLM-based generation are used to create Multi-Choice questions and options based on dataset
annotations, as illustrated in the lower-left panel of Figure 3. Moreover, for under-explored tasks in
existing datasets, we manually generate QA pairs and complementary annotations with the assistance
of domain-specific expert annotators.

Human-R. Domain experts were recruited to annotate open-ended questions that encompass 5 distinct
types of reasoning: Causal Reasoning, Prediction, Counter-Factual Reasoning, Assessment, and
Planning. To satisfy our core reasoning criteria above, answering the questions requires integrating

1In this work, visual evidence refers to information conveyed in images or videos, such as instance attributes
or visual relationship, which serve as information units or propositions in reasoning.

2"Proactive visual evidence" refers to visual information that is not, or only partially, cued by the question,
in contrast to " referred visual evidence" which is explicitly indicated by the question.
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2. Annotation 3. Quality Control

1. Taxonomy and Data Source
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Comprehe
nsion

Reasoning

Contact
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Posture

Behavior

Procedure

…

Knowledge-
based Action

Emotion

…× Sports…

Prediction…

Scene 
Complexity

Expertise
RichnessDaily Professional

G
ro
up

In
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da

l

EgoExoLearn

LEMMA

CaptainCook4D

ProBio

HoloAssist

HA-Vid

ActionAtlas

NurViD

CrisisMMD

CelebA

DECO

EgoGesture
HAA500

ActivityNet

ViSRCrowd11

AdventureBaseball Taekwondo
Sports

BiologyNursing Chemistry
Science

Gathering

Social

Cooking
Life

LLM

Template

Image
Video Annotator

Question

Answer

Distractor

1. Recruit
2. Train
3. Trial Labeling

ExpertsVideo

Question

Answer

CoT

Difficulty
Filtering

Human
Verification

Filtering
Invalid

Meta Reviewer

Checklist

Scoring

Rejcet

Rejcet

Rejcet

Human-R

Human-P

Human-C

6,000+

442

Mechanic

Assembly

Assistant

Industry

Multi-choice

Open-ended

Reviewer

Figure 3: A comprehensive pipeline for HumanPCR Construction. The process includes: (1) building
a hierarchical task taxonomy through surveys and task-driven data collection to ensure diversity, (2)
recruiting annotators and conducting task-specific annotations, and (3) hybrid automated–manual
verification with iterative refinement.

multiple pieces of visual evidence, engaging diverse reasoning chains, and extracting at least one
proactive visual evidence from the video. In this process, the detailed reasoning steps and the
necessary visual evidence were also annotated. As illustrated in Figure 2, this design reliably tests a
model’s ability for holistic multimodal reasoning based on accurate evidence perception. This stands
in contrast to tests relying on sparse evidence or fully specified refernces, which often lead to shortcut
solutions instead of genuine video understanding and sufficient reasoning.

3.3 QUALITY CONTROL AND VERIFICATION

For Human-P and Human-C, QA pairs are first filtered by LLMs to eliminate those solvable without
visual input, followed by human verification conducted by trained annotators. Each annotation is
carefully reviewed for linguistic quality, answer accuracy, distractor plausibility, and, most impor-
tantly, its reliance on visual context. For Human-R, reviewers firstly fill out a detailed checklist that
validates annotations’ objectivity, factual accuracy, non-redundancy, and complexity; they then assign
a quantitative score and deliver targeted feedback to the annotator for a chance to modify. Meta-
reviewers further assess question complexity, ensuring that every question (1) requires integrating
multiple visual evidence, which cannot be fully determined from the question alone, and (2) relies on
at least one essential proactive visual evidence. The interaction flow among the annotators, reviewers,
and meta-reviewers is illustrated in the lower-right panel of Figure 3.

This pipeline yields over 6,000 Human-P&C multiple-choice questions, and 442 Human-R open-
ended questions with a final acceptance rate 20%. Table 2 and Figure 4 summarize HumanPCR
’s scale and modality diversity, while Figures 2 and 5 show that Human-R demands strong visual
evidence across all video lengths, well above prior datasets, reflecting rigorous quality control.

3.4 COMPARISON WITH EXISTING BENCHMARKS

As summarized in Table 1, HumanPCR fills critical gaps across two key domains:
(1) Human-centric Benchmarks: Existing works are often either too narrow, limited to scopes like
action (Hong et al., 2025; Salehi et al., 2024), or too broad, targeting general visual understanding
without alignment to human-centric tasks (Xu et al., 2023; Li et al., 2024d). Even dedicated human-
centric benchmarks (Qin et al., 2025; Zhou et al., 2024b) like HumanVBench are restricted by a few
dimensions and a single modality. HumanPCR provides a comprehensive and fine-grained taxonomy

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison of HumanPCR and existing benchmarks with respect to: the number of ability
dimensions (#Dim.) and tasks (#Tasks), covered modalities (Mod.), human-centric orientation
(HC), taxonomy for probing and diagnostic analysis (Probing), average video duration (V.Len.),
method of annotation (Anno., M/A means human-annotated/ automatically generated), open-ended
questions (OE), sourced from a broad range of open domains (OD), availability of rationales (CoT),
requirement for multiple visual evidence (MVE) and proactive visual reasoning (Proactive).

Benchmarks #Dim. #Tasks Mod. HC Probing OD

MotionBench - 1 V ✓ ✗ ✗
Face-Human-Bench 4 18 I ✓ ✗ ✗
ActionAtlas - 1 V ✓ ✗ ✗
MME 4 14 I ✗ ✗ ✓
MVBench 9 20 V ✗ ✓ ✓
HumanVbench 4 16 V ✓ ✗ ✗

Human-P&C 9 34 I+V ✓ ✓ ✓

Benchmarks V.Len. Anno. OE OD HC CoT MVE Proactive

EgoSchema 180 M ✗ ✗ ✓ ✗ ✓ ✗
VideoMME 1017 M ✗ ✓ ✗ ✗ ✗ ✗
CG-Bench 1624 M ✓ ✓ ✗ ✗ ✗ ✗
LVbench 4101 M ✗ ✓ ✗ ✗ ✗ ✗
MMVU 51 M ✗ ✗ ✗ ✓ ✗ ✗
Video-Holmes 60~300 A ✗ ✗ ✗ ✓ ✓ ✗
MMR-V 277 A ✗ ✓ ✗ ✗ ✓ ✗

Human-R 469.3 M ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Key statistics of Hu-
manPCR.

Statistics Value(Avg./Max)

Human-P&C

# Multi-Choice 6176
# Options 4.9 / 5
# Images 1.1 / 6
Video Duration 35.4 / 584.1

Human-R

# Open-Ended 442
Question Length 19.2 / 79
CoT Length 86.2 / 183
Answer Length 18.6 / 64
Video Duration 469.3 / 5225.0

3243

195

3180HumanPCR

Levels
Human-P
Human-C
Human-R

Modality
Single Image
Multi-Image
Video

Figure 4: Modality distri-
bution in HumanPCR.
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Figure 5: The distribution of the
visual evidence number.

for probing human-centric capabilities across a diverse range of tasks and modalities.
(2) Video Reasoning Benchmarks: General video benchmarks typically assess shallow comprehen-
sion with limited reasoning diversity and depth (Fu et al., 2024; Zhou et al., 2024a; Wu et al., 2024).
Early works either struggle with question quality due to semi-automatic annotation (Qi et al., 2025;
Han et al., 2024) or are confined to narrow source or task (Jin et al., 2024; Song et al., 2025). While
concurrent VideoHolmes (Cheng et al., 2025) and MMRV (Zhu et al., 2025b) require multi-frame
reasoning, their task-specific designs limit the diversity of evidence and reasoning paths. Most
importantly, their multiple-choice or certain question references often implicitly reveal the required
visual evidence, failing to evaluate the crucial ability of proactive evidence seeking. Human-R is thus
distinguished by its multi-domain, open-ended design that uniquely demands both the integration of
multiple visual cues and the proactive search for implicit evidence.

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

(1)Models. We benchmark a diverse set of models, including 9 proprietary (e.g., Gemini-2.5-Flash,
o4-mini) and 30 open-source MLLMs (e.g., Qwen-VL, InternVL) on HumanPCR. On Human-R, we
add models specialized for video understanding and thinking. Human performance is also provided
for comparison (Appendix C.4). (2)Configuration. For evaluation, we employ Direct Answer
prompts for multi-choice questions and CoT for open-ended ones. Video inputs are processed by
sampling 32 frames for multi-choice tasks and the maximum allowable frames for open-ended tasks.
Further details on model configurations and prompts are in Appendix C.1 and C.2. (3)Metrics.
Accuracy for multi-choice questions is determined by matching responses to the correct option. The
average accuracy for each task, and the macro-average accuracy of tasks for each dimension or
level is reported. For open-ended questions, we use a proprietary model, o3-mini, as a judge, which
demonstrates high agreement with human evaluations (Sec 4.4).
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Table 3: Results of Proprietary and Open-Source Models on HumanPCR. Macro-average accuracy
of tasks within each level and dimension is reported. "†" indicates that the reported performance is
based only on a subset of the HumanPCR dataset. Full results is in Appendix F.

Multi-Choice Open

Models Human-P Human-C Human-R

Spa. Pos. App. Con. Ide. avg. Beh. Pro. Rel. Sce. avg. Acc. Acc.

Random 20.00 20.00 20.00 20.00 35.00 23.00 21.00 20.00 20.00 20.00 20.25 21.78 0.00
Human† 89.98 81.44 87.02 87.28 96.43 88.43 69.24 81.42 78.95 65.83 73.86 81.95 73.17

Open-source Models

Aria (Li et al., 2024b) 79.12 39.72 61.32 36.58 76.53 55.53 48.85 41.31 50.08 55.30 48.44 51.98 28.96

LongVILA-256 (Chen et al., 2024b) 75.96 31.84 63.28 38.87 41.63 49.41 44.97 31.91 51.12 53.20 44.51 46.96 21.49
NVILA-8B (Liu et al., 2024a) 76.39 35.40 64.53 42.53 47.95 52.22 44.10 28.59 50.69 53.18 43.23 47.72 22.17

MiniCPM-V-2.6 (Yao et al., 2024) 74.07 36.90 57.77 35.56 70.47 52.08 47.39 28.66 50.46 54.67 44.32 48.20 16.74
MiniCPM-o-2.6 (OpenBMB, 2024) 80.08 43.80 63.58 36.95 71.26 56.88 47.83 31.43 53.98 55.38 46.23 51.56 21.04

LLaVA-Video-7B (Zhang et al., 2024c) 74.73 37.13 58.03 32.62 63.50 50.99 46.18 36.26 49.54 51.77 45.37 48.18 27.60
LLaVA-Video-72B (Zhang et al., 2024c) 76.64 42.97 71.68 56.54 63.63 60.49 51.74 43.73 55.41 60.92 52.41 56.45 28.28

LLaVA-OneVision-7B (Li et al., 2024a) 77.95 36.33 60.03 34.13 54.63 51.02 47.67 35.56 52.40 51.06 46.02 48.52 22.85
LLaVA-OneVision-72B (Li et al., 2024a) 82.57 44.77 70.40 57.79 71.95 62.96 51.53 43.19 58.17 61.52 52.99 57.98 27.60

Oryx-1.5-7B (Liu et al., 2024b) 74.62 36.48 62.36 42.49 39.18 50.68 44.21 34.37 51.98 49.21 44.32 47.50 22.17
Oryx-1.5-32B (Liu et al., 2024b) 82.08 40.86 64.88 47.90 45.00 55.52 47.61 44.61 54.53 57.51 50.68 53.10 28.51

Qwen2.5-VL-7B (Bai et al., 2025) 78.66 42.20 62.33 30.68 41.32 51.23 49.73 32.66 51.89 55.83 46.65 48.94 26.24
Qwen2.5-VL-72B (Bai et al., 2025) 82.11 50.00 68.70 43.76 41.32 57.94 55.77 46.49 53.23 64.43 54.48 56.21 34.39

InternVL2.5-8B (Chen et al., 2024c) 79.43 41.68 60.37 36.69 75.45 55.83 48.53 39.13 52.24 56.47 48.51 52.17 23.53
InternVL2.5-38B (Chen et al., 2024c) 84.34 45.14 68.70 50.02 84.29 63.07 53.89 55.79 54.44 63.17 56.76 59.92 35.97
InternVL2.5-78B (Chen et al., 2024c) 84.80 44.68 69.31 50.87 81.24 62.95 57.54 53.93 57.24 65.20 58.21 60.58 33.94

InternVL3-8B (Zhu et al., 2025a) 81.64 40.54 67.20 38.22 72.84 57.46 51.39 40.86 55.00 59.15 50.97 54.21 31.45
InternVL3-38B (Chen et al., 2024d) 84.73 49.55 69.16 58.08 85.89 66.15 57.86 55.38 59.01 66.02 59.32 62.74 35.75
InternVL3-78B (Zhu et al., 2025a) 86.54 46.46 73.39 50.82 86.42 65.34 57.96 54.31 59.78 70.21 60.20 62.77 37.56

Proprietary Models

Doubao-1.5-vision-pro (ByteDance, 2024) 72.50 36.96 67.19 37.61 78.29 55.32 45.96 45.20 46.00 53.67 47.56 51.44 32.81
Grok-2-Vision (xAI, 2024) 57.83 30.97 57.51 41.14 50.21 46.01 46.51 42.42 42.27 56.52 46.67 46.34 36.20
Claude-3.5-Sonnet-v2 (Anthropic, 2024) 67.99 39.84 59.35 44.68 66.26 53.36 50.39 46.88 49.08 59.19 51.12 52.24 39.59
Gemini-1.5-Flash (Team et al., 2024) 54.99 38.34 53.78 32.82 54.45 45.83 47.63 41.92 44.64 51.81 46.23 46.03 35.97
Gemini-1.5-Pro (Team et al., 2024) 66.80 45.62 56.04 39.34 69.03 53.45 51.67 44.84 50.16 61.81 51.69 52.57 40.05
Gemini-2.0-Flash (Google DeepMind, 2024) 76.42 47.46 63.75 52.32 73.08 60.28 53.09 42.27 54.37 60.76 52.01 56.14 38.01
Gemini-2.5-Flash (Comanici et al., 2025) 82.01 48.10 69.41 49.37 93.50 64.66 54.05 49.19 57.27 62.56 55.38 60.02 43.44
GPT-4o (Hurst et al., 2024) 70.14 40.56 55.46 33.60 35.11 47.41 52.01 38.93 48.85 60.14 49.33 48.37 41.40
o4-mini (OpenAI, 2025) 80.69 53.13 71.86 41.09 85.89 64.13 61.10 54.43 61.68 65.97 60.42 62.28 53.39

4.2 MAIN RESULTS

Table 3 presents the main results of HumanPCR. Our principal findings are summarized as follows:
Current MLLMs are far from reliable human-centric understanding. A significant gap exists
across all levels, with humans outperforming the best MLLMs by over 15%. Leading models like
InternVL3-78B achieve average accuracies of only 63.66% on Human-P&C, lagging behind the
human baseline of 81.95%. While models show promise in basic tasks like Spatiality, the deficits
in fine-grained perception (Posture, Contact) and high-level understanding (Procedure, Relation)
underscore the need for the detailed, probing evaluation that HumanPCR provides.

Open-source models rival in perception and comprehension, lag in reasoning. On Human-P and
Human-C, open-source models match proprietary ones. Notably, InternVL3-78B surpasses the top
proprietary model, o4-mini. However, they underperform in reasoning—most remain below 30%
accuracy on Human-R, whereas all proprietary models exceed this value. Models like o4-mini and
Gemini-2.5-Flash illustrate the advantages of proprietary designs for reasoning. While open-source
models match proprietary ones at perception and comprehension, they struggle on reasoning tasks
involving complex visual evidence.

Understanding human-centric scenes reflects general capabilities. The consistent poor perfor-
mance on dimension Posture, Contact, Behavior, and Procedure points to fundamental limitations
that transcend human-centric scenarios. These results expose core deficiencies in fine-grained spatial
perception (especially with occlusion) and in the temporal understanding necessary to complex,
long-term activities. Therefore, the challenges presented in HumanPCR do not merely identify gaps
in human-centric understanding but also reflect general, critical shortcomings in current MLLMs.
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(a) Overall Acc. (b) Visual Evidence: 2-3 (c) Visual Evidence: 4-5 (d) Visual Evidence: 6+
Figure 6: Effect of frame sampling on Human-R. (a) Overall accuracy. (b–d) Accuracy grouped by
the number of visual evidence required in the question: (b) 2–3 evidence, (c) 4–5 evidence, (d) 6 or
more evidence. Increasing frames shows varying impact depending on visual complexity.

Figure 7: Accurary gain over video understanding baseline methods on Human-R and Video-MME.
See the full configuration of them in Appendix C.1

4.3 DELVING INTO VISUAL REASONING ON MULTIPLE EVIDENCE

On Human-R, we analyze the characteristics and limitations of MLLMs’ reasoning ability.

Effects of frame number. As shown in Figure 6, merely increasing the input frame count yields
negligible accuracy gains for most models. Notably, only the reasoning-oriented o4-mini improves
consistently, implying that stronger reasoning is needed to make full use of broader visual context.
This trend is amplified as the reasoning challenge intensifies: when a problem requiring integrating
more pieces of visual evidence, overall accuracy drops. In these more complex scenarios, the
marginal benefit of adding frames diminishes, even becoming detrimental in cases requiring six or
more evidence items. This suggests a larger visual context can introduce distractors, complicating the
evidence extraction and integration process when the core reasoning task becomes more demanding.

Takeaway: More frames may mitigate perceptual gaps, but cannot substitute for the core
reasoning ability required to effectively utilize broader visual contexts.

Does advanced video understanding configuration help? We investigate advanced configurations
to determine if they could address the challenges in Human-R. (1) Visual context extraction. As
shown in Figure 7, techniques that are effective on standard benchmarks like Video-MME (Fu et al.,
2024), such as token selection and memory-based retrieval, see a significant performance drop on
Human-R. This performance gap verifies that integrating multiple visual cues required by Human-R
presents a unique challenge that cannot be solved by simple query-guided or heuristic matching
methods. (2) Test-time computation. Best-of-N (BoN) sampling consistently boosts performance by
over 5%, with gains scaling with better reward models. In contrast, Self-Refine offers only marginal
benefits. The strong performance of specialized reasoning models like Video-R1 and the proprietary
o3 (Figure 7, Table 4) underscores that enhancing the core reasoning process itself is critical.

Takeaway: Complex reasoning demands finer context management than general understanding;
simple, heuristic extraction fail to generalize to problems requiring multi-faceted evidence.

Error analysis. Manual analysis of errors within a subset of 200 questions for top models on Human-
R (shown in Figure 8a) reveals the predominant failure is visual-evidence extraction, specifically in
identifying proactive visual evidence (in Figure 8b). This suggests models often treat the question as
a retrieval shortcut, bypassing necessary complex reasoning. Our findings support that while scaling
the frames significantly reduces errors of Gemini-2.0-flash in missing referred evidence, it provides
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Table 4: Results for test-time scaling strategies on Human-
R. BoN uses 2M candidates and Self-Refine performs M
iterations. Results of more models are in Table12.
Model Method Reward Model Direct M=0 (CoT) M=1 M=2 M=3

GPT-4o

BoN GPT-4o (Self)

32.81 41.40

43.21 45.70 45.93
BoN Gemini-2.5-Flash 44.57 45.02 46.38
BoN o4-mini 44.11 46.38 45.02
Self-Refine - 39.59 39.82 40.95

Gemini-2.5-Pro Thinking - - 51.13 -
Claude-3.7-sonnet Thinking - - 40.50 -
o3 Thinking - - 59.28 -

Table 5: Benchmark evaluation across
input modalities on GPT-4o. ‘Image‘
uses the central frame; ‘Video‘ samples
32 uniform frames.

Benchmark Text (ratio↓) Image (ratio↓) Video

Video-MME 44.00 (61.1%) 54.14 (75.0%) 71.85
LongVideoBench 40.38 (69.0%) 41.70 (71.3%) 58.50

Human-R 2.94 (7.3%) 11.08 (26.8%) 41.40

0 20 40 60 80 100 120 140
Number of Errors

InternVL-3-78B
(128f)

Gemini-2.0-Flash
(8f)

Gemini-2.0-Flash
(1 fps/1200f)

Gemini-2.5-Pro
(128f)

o3
(8f)

o3
(64f)

Visual-evidence Extraction Error
Perception Error

Knowledge / Common-sense Error
Question-understanding Error

Refusal / Incomplete Answer

(a)

Wrong
Perceived

Missed
Referred

Missed
Proactive

Irrelevant
Evidence

19%

38%

57%

Gemini-2.0-Flash (1 fps/1200f)
Gemini-2.0-Flash (8f)
Gemini-2.5-Pro (128f)
o3 (64f)
o3 (8f)
InternVL-3-78B (128f)

(b)
Figure 8: Distribution of error types on Human-R across top models (“f”: the number of sampled
frames). (a) Counts of 5 major error types. Most errors are visual-related. (b) Fine-grained breakdown
of visual-related errors. Proactive evidence is more frequently missed than referred evidence.

minimal benefit for finding proactive evidence. Consequently, models with superior reasoning, such
as Gemini-2.5-Pro (Comanici et al., 2025) and Claude-3.7-sonnet (Anthropic, 2025), outperform
high-frame-count models like Gemini-2.0-Flash, even with fewer frames. Furthermore, models
exhibit distinct error tendencies: For example, while Gemini-2.5-Pro reduces proactive evidence
omissions compared to o3, it tends to introduce more irrelevant information.

Takeaway: Proactive evidence extraction is a major practical challenge on Human-R, and
difficulties in selecting implicit visual cues can limit performance, suggesting that evaluation
setups should discourage purely query-driven shortcuts.

Interventions on evidence extraction difficulty. To further probe the role of proactive evidence,
we conduct an intervention study on Human-R, progressively lowering the difficulty of visual
evidence extraction while keeping the question and answer fixed. We enrich prompts with three
levels of guidance: (1) Relation awareness (Level 1), giving generic relation-type hints (e.g., “check
surrounding context”); (2) Logic awareness (Level 2), additionally highlighting which referred cues
are logically linked to potential proactive evidence; and (3) Proactive guidance (Level 3), adding
vague descriptions that loosely point to the proactive evidence without revealing the reasoning steps
or answer. As shown in Table 6, Level 1/2 hints yield only modest gains, whereas Level 3 consistently
improves accuracy by about 10–13 points across models. This indicates that directly easing proactive
evidence extraction has a much larger impact than generic relational or logical hints, providing
intervention-based support for our insight that proactive evidence extraction is a prominent practical
weakness of current models on complex video reasoning.

Takeaway: On Human-R, vague guidance that directly targets proactive evidence yields the
largest gains, reinforcing proactive evidence extraction as a prominent practical weakness in
complex video reasoning.

4.4 FURTHER ANALYSIS

Mixed CoT effects and diagnostic value of Human-P/C. Figure 9a shows that CoT has mixed
effects on Human-P/C: proprietary models typically improve, whereas many open-source models see
limited or even negative gains, and the trend already varies across high-level dimensions, with visually
complex and understanding-related questions benefiting more than simple attribute-perception tasks.
Figure 9b further reveals substantial spread in both accuracy and ∆ (cot–direct) across neighboring
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Table 6: Intervention on evidence extraction for Human-R with various evidence hints. Level 1/2/3
provide generic relational, logical hints, and vague descriptions of proactive evidence, respectively.

Model Orig. Level 1 Level 2 Level 3

o4-mini 53.39 52.26 (-1.13) 54.07 (+0.68) 63.35 (+9.96)
GPT-4o 41.40 41.62 (+0.22) 44.11 (+2.71) 52.35 (+10.95)
Gemini-2.5-Flash 43.44 41.40 (-2.04) 45.93 (+2.49) 53.40 (+9.96)
Qwen-2.5-VL-72B 34.39 34.61 (+0.22) 38.46 (+4.07) 47.74 (+13.35)

Spatial Posture Appearance Contact Identity Behavior Procedure Relation Scene P&C R
Dimensions

GPT-4o
Gemini-1.5-flash
Gemini-2.0-flash

InternVL3-8B
Qwen2.5-VL-72B

InternVL3-78B
InternVL3-14B
InternVL2-8B

InternVL2.5-38B
InternVL2.5-8B

LLaVA-OneVision-7B
LLaVA-Video-7B
Qwen2.5-VL-7B

LLaVA-OneVision-72B

M
od

el
s

7.78 3.48 1.86 12.47 11.39 4.53 11.92 5.78 4.94 6.74 8.59
11.18 1.89 6.35 2.40 21.63 2.06 -1.44 6.80 3.28 4.71 1.70
2.08 0.97 0.30 -0.92 17.26 2.82 5.90 0.74 2.82 2.92 5.88
-2.93 0.70 -2.67 4.78 -4.55 -0.91 1.66 -3.54 -2.68 -0.91 3.17
-1.95 -4.26 -2.64 5.25 -11.03 -1.80 3.36 -0.61 -3.82 -1.53 2.72
-4.16 2.35 -1.72 -1.65 -3.08 -2.82 -0.61 -2.11 -3.65 -1.65 2.94
-0.58 1.71 -0.85 -8.74 -3.63 -1.55 -0.27 -2.39 -3.92 -1.85 3.39
-6.08 -3.23 3.83 0.87 -10.73 -2.32 -0.58 -3.42 -4.07 -2.35 -6.56
-0.07 0.13 -0.07 -7.63 -0.50 -3.63 -4.50 -1.76 -6.94 -2.82 0.22
-5.57 -3.97 -0.05 0.91 -7.92 -4.76 0.68 -2.66 -7.95 -3.18 -4.30
-13.68 2.80 -1.45 -7.96 -7.29 -4.96 -3.95 -4.72 -11.44 -5.16 -4.98
-8.45 -2.43 -3.16 -4.16 -18.37 -3.17 -3.30 -9.49 -8.33 -5.88 1.13
-3.26 -0.98 -0.83 1.51 -4.19 -2.73 6.65 -1.61 -5.59 -6.57 -3.17
-9.31 -11.54 -6.85 -14.02 -12.45 -6.58 -2.53 -7.08 -12.71 -8.77 -3.62 20
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Figure 9: Ablation study examining the impact of CoT. (a) Relative improvements of CoT of models
on all dimensions and levels. (b) Detailed performance across tasks in the Contact and Procedure
dimensions. “∆ (cot-direct)” represents the accuracy difference between direct answers and CoT-
prompted responses.

subtasks within the same dimension, with some tasks consistently benefiting from CoT while others
degrade and model rankings change accordingly. These heterogeneous patterns indicate that Human-
P/C subtasks are non-redundant and provide diagnostic resolution that would be lost under a single
coarse “action” or “relation” score.
Human-R Quality Check To validate the quality of Human-R, we examine potential single-frame
and textual biases and compare them with other impactful benchmarks. As shown in Table 5,
Human-R exhibits minimal bias, unlike datasets such as Video-MME where strong results can be
achieved using only text or a single frame, revealing redundancy and bias in evaluating full video
reasoning. This confirms that Human-R tasks require genuine temporal and multi-evidence reasoning,
demonstrating the effectiveness of our rigorous curation and expert review.

o3-mini gemini-2.5-flash gpt-4o o3
Judge Model

25

30

35

40
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55
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65

Ac
c-

1

0.689
0.861

0.646
0.832

0.640
0.838

0.671
0.872

Accuracy Pearson

Win-Loss Pearson

o3
gemini-2.5-pro

gpt-4o
internvl3-78b

qwenvl-2.5-72b aria

Figure 10: Model performance under mul-
tiple judge models and their agreement to
Human judge.

Reliability of LLM-based Judges. To verify evaluation
robustness, we compared multiple LLM judges against
4000 human annotations, as in Figure 10. All judges
produced highly consistent model rankings, with strong
Pearson correlations to human accuracy (higher than
0.64) and strong alignment on pairwise win-fail pref-
erences (around 0.85). Additional analyses(Appendix
C.3) show that annotated CoT could improve agreement
with humans while no self-preference of LLM judge is
observed.

5 CONCLUSION

We present HumanPCR, a comprehensive benchmark for evaluating how well MLLMs understand
humans across diverse scenarios. First, it probes MLLMs’ nuanced visual understanding in human-
centric scenarios through a systematic, fine-grained taxonomy. Second, it introduces a paradigm
for video reasoning that integrates disparate visual evidence and proactively seeks implicit visual
cues. Consequently, HumanPCR reveals persistent shortcomings and yields diagnostic insights.
Specifically, MLLMs not only face challenges detailed space perception, temporal understanding, and
mind modeling, but also often fail to proactively extract visual evidence in reasoning. Limitations of
HumanPCR include reliance on academic datasets; future work will extend to professional domains
and efficient annotation methods.
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ETHICS STATEMENT

We have prioritized ethical considerations throughout the creation and planned release of HumanPCR.
1. Data Sourcing and Privacy: Our benchmark is built upon previously published, public datasets
and supplemented with publicly available internet videos. To respect copyright and the privacy of
content creators, we will only release metadata (e.g., public video IDs and timestamps) for internet-
sourced videos, not the raw video files themselves. Our full data hosting and usage policy is detailed
in our Data Use Agreement (DUA) in Figure 25. 2. Annotation and Distribution Safeguards:
During the annotation process, all annotators and reviewers were instructed to filter out questions
that require time-sensitive, private, or personally identifiable information for their resolution. The
HumanPCR benchmark is intended strictly for non-commercial, academic research purposes. The
DUA explicitly prohibits any use of the data for biometric identification, tracking, surveillance, or the
development of related applications. 3. Compliance and Responsibility: For any source data that
we are permitted to host, we require end-users to agree to the original dataset’s license terms. We are
committed to being responsible stewards of this data and will promptly respond to any inquiries or
takedown requests from copyright holders.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our work. 1. Code and Prompts: All
prompts used for model evaluation are detailed in Appendix C.2. The evaluation code has been
included in the supplementary materials. Configurations for all evaluated models are detailed in
Appendix C. 2. Data and Annotations: All annotations created for HumanPCR will be released to
public in accordance with our DUA upon acceptance. For the small subset of source data we cannot
host directly (due to original license or copyright), full metadata and data processing scripts would
be provided to reconstruct the dataset. Our data release policy has been detailed in Appendix E. A
portion of the data is available in the supplementary material to demonstrate its structure.
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SUMMARY OF APPENDIX

The appendix is organized as follows:

• Details of the Taxonomy (Appendix A);
• Annotation Setup (Appendix B);
• Evaluation Setup (Appendix C);
• Additional Data Statistics (Appendix D);
• Public Release and Data Usage Terms (Appendix E);
• Additional Results (Appendix F);
• Additional Analysis (Appendix G);
• Use of Large Language Models (LLMs) (Appendix H).
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A DETAILS OF TAXONOMY

The comprehensive presentation of the full taxonomy of HumanPCR is shown in Figure 11.

Human-P

Human-C

Human-R

Spatiailty

Behavior

Posture

Appearance

Contact

Identity

Procedure

Relation

Scene

Spatial Relation Object Existence

Human Presence

Body Posture Hand State

Hand-Object Interaction Body Orientation

Gaze Estimation

Clothing Attribute Accessory Recognition

Bodypart Visibility Physical Attribute

Human-Object Contact Human-Human Contact

Human Self-Contact

Face Recognition Identity Clustering

Gesture Emotion

Basic Action Knowledge-Based Action

Sequential Action Goal Planning

Procedure Dependence Irrelevant Action

Multiple Human Sequence Action

Human Comparison Social Relation

Group Activity Struggle Detection

Crowd Event Cultural Event

Crime Abnormal Disaster Understanding

Type

Domain

Causal Reasoning Prediction

Assessment Planning

Counter-Factual Reasoning

Indoor Leisure & Self Care Outdoor Adventure

Household
Outdoor Leisure & 

Recreation

Electric & Crafting Transport

Sports Performance & Exhibition

Daily Spending Education

Others

Figure 11: A comprehensive presentation of the full taxonomy.

B ANNOTATION SETUP

B.1 ANNOTATION AND FILTERING PROMPTS

Question Generation Prompts. To automatically generate high-quality questions, we employ two
complementary strategies: LLM-based generation and template-based generation. In the LLM-based
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pipeline, we feed GPT-4o with carefully crafted prompts augmented by comprehensive auxiliary
information (see example prompts in Figure 12). In the template-based pipeline, we start from a set
of seed templates and task the LLM with expanding them into a more diverse collection of question
templates (examples appear in Figure 13).

### I will provide a caption about the spatial relationship of two
object, the label of the spatial relationship. For 3 inputs, you
will generate one diverse question for each input that can
examine the following aspects:

Correctly answer the multiple-choice exam about recognizing the
spatial relationsip of two objects in the image, which is
described by the caption.

### As for your questions, you should ensure:
1. Output only question text.
2. Anyone can not obtain the answer just by reading the question

text. Avoid implying answers in the questions.
3. Do not include specific visual details of the scene in the

question.
4. Use plain text. Do not use Markdown format.
5. Make the questions concise, simple and straightforward. Do NOT

add imaginary details to the questions.
6. Make the answer to the question point towards the spatial

relation label of the two objects.
7. Do NOT disclose the spatial relation label in the questions. Do

not say "caption" in questions.

### When announcing the question please label each question as ’
Question 1,2,3: [full question]’. Don’t repeat the input.

### The input form for an image will be:
1.
Spatial Relation Caption: {caption}
Spatial Relation Label: {label}

2.
Spatial Relation Caption: {caption}
Spatial Relation Label: {label}

3.
Spatial Relation Caption: {caption}
Spatial Relation Label: {label}

Figure 12: Example prompt of LLM-based question generation used in the task Spatial
Relation

.

Option Generation Prompts. To generate high-quality options, we decouple option generation
from question generation. During option generation, we provide the LLM (GPT-4o) with the question,
its correct answer, and supplementary context. The model is then instructed to produce options that
are all pertinent to the question, with incorrect options crafted to be plausible yet wrong, thereby
increasing the overall difficulty. An example prompt employed for option generation is illustrated in
Figure 14.

Blind Filtering Prompt. After acquiring the automatically generated annotations, we eliminate
any question that can be answered correctly without visual input. Specifically, we prompt GPT-4o
to provide its optimal answer to each question in the absence of the corresponding image or video.
Any question that is answered correctly across multiple runs—with the answer choices randomly
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"What is the position of the person’s hand in the picture?"
"How is the person’s hand positioned in the image?"
"What is the state of the person’s hand in the photo?"
"How is the hand of the person in the picture?"
"What condition is the person’s hand in within the image?"
"In the picture, what is the status of the person’s hand?"
"How does the person’s hand appear in the photograph?"
"What is the arrangement of the person’s hand in the image?"
"What is the specific condition of the person’s hand in the picture?"
"How exactly is the person’s hand positioned in the image?"
"What precise state is the person’s hand in within the photo?"
"Can you describe the exact state of the person’s hand in the

picture?"
"What is the detailed posture of the person’s hand in the image?"
"How is the person’s hand specifically arranged in the photograph?"
"What particular position is the person’s hand in within the image?"
"How would you describe the exact condition of the person’s hand in

the picture?"
"What is the exact gesture of the person’s hand in the picture?"
"How is the person’s hand specifically posed in the image?"
"What is the detailed form of the person’s hand in the photo?"
"Can you describe the precise hand gesture of the person in the

picture?"
"What is the specific shape of the person’s hand in the image?"
"How exactly is the person’s hand configured in the photograph?"
"What distinct position is the person’s hand assuming in the image?"
"How would you characterize the specific hand posture of the person

in the picture?"

Figure 13: Example templates of template-based question generation used in the task Hand State.
The ambiguous references in questions were subsequently identified and corrected by annotators.

permuted each time—is subsequently discarded. The prompt employed for blind filtering is illustrated
in Figure 15.

B.2 ANNOTATION AND REVIEW INTERFACE

We designed personalized annotation and review interfaces to maximize annotation quality and
streamline the entire workflow. The annotation interface guides each annotators to record the
question, detailed reasoning steps, final answer, question category, and the relevant time interval. The
review interface then requires reviewers to verify every annotated field and to assign both objective
evaluations and subjective scores according to a comprehensive checklist. Finally, both interfaces
include integrated messaging channels, enabling iterative feedback loops between annotators and
reviewers and thus ensuring consistently high-quality annotations. A few snapshots of annotation and
review interfaces is shown in Figure 16.
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### I will provide a caption about the spatial relationship of two
object, the label of the spatial relationship, and the
questions, and 3 diverse questions that can examine the
following aspects:

Correctly answer the multiple-choice exam about recognizing the
spatial relationsip of two objects in the image, which is
described by the caption.

### Based on the provided questions, I want you to create a
difficult and diverse multiple-choice exam that tests the above
aspects.

Each question should have 5 short answers, including 1 correnct
answer and 4 wrong answers. Each answer option should reflect a
reasonable understanding of a broadly similar but
detail-different image.

The wrong answers should diverge from the correct ones only by
fine-grained and subtle details that are easily mistaken.

### As for your answers, you should ensure:
1. Only one answer will be correct.
2. Answers are short and concise. Answers should not include

irrelevant details that weren’t queried.
3. Use plain text. Do not use Markdown format.
4. Make the answers concise, simple and straightforward. Do NOT add

imaginary details to the answers.
5. Do NOT change the given questions.

### Print a question and then print each correct answer on a new
line exactly as "Correct answer: [full answer]" Please print
each wrong answer on a new line and print each wrong answer as
"Wrong answer 1,2,3,4: [full answer]. Parse question-answer
pairs by ’\n\n’.

The input form will be:
1.
Spatial Relation Caption: CAPTION
Spatial Relation Label: LABEL
Questions: QUESTIONS

2.
Spatial Relation Caption: CAPTION
Spatial Relation Label: LABEL
Questions: QUESTIONS

3.
Spatial Relation Caption: CAPTION
Spatial Relation Label: LABEL
Questions: QUESTIONS

Figure 14: Example prompt of option generation used in the task Spatial Relation
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You will be presented with a multiple-choice question, each with a
fixed set of labeled options (e.g. A, B, C, D).

Your task:

1. You **must** choose exactly one of the provided --optionsA, B, C,
etc.

2. Do **not** say "’theres not enough information," "no answer", or
refuse.

3. If you genuinely cannot determine a "correct" answer, pick the
option that seems **most plausible**.

4. Only output a option label, e.g.: "A".

Figure 15: The prompt employed for blind filtering.

(a) (b)

(c) (d)

Figure 16: Snapshots of annotation and review interfaces.
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B.3 DETAILED ANNOTATION AND REVIEW PROTOCOL FOR HUMAN-R.

This subsection extensively describes the annotation and review processes employed in constructing
Human-R, elaborating details beyond the main text.

Table 7: Example video tags of 11 human-related domains for Human-R.

Domain Tags

Electric & Crafting Smart home devices, Kitchen appliances, Mobile device setup, Audio-
visual equipment, Power tools usage, 3D printers, Smart thermostats,
Electric scooters, Solar panel installation, Portable power stations

Outdoor Leisure & Recreation Trail running, Paddleboarding fitness, Aqua aerobics, Slacklining, Out-
door yoga, Hot yoga, Balance and stability training, Kickboxing sessions,
Animal flow workouts, Recreational cycling

Outdoor Adventure Obstacle course training, Mountain biking, Marathon training plans,
Ultra-trail running, Kayaking expeditions, Rock-climbing practice,
Snowboarding sessions, Zip-line experiences, Caving basics, White-
water rafting

Household Wound cleaning and bandaging, Correct thermometer use, Home blood-
pressure checks, Blood-glucose meter steps, Oral hygiene care, PPE
donning methods, Nail disinfection, Skin antisepsis steps, Baby-bathing
technique, Umbilical-cord care

Sports HIIT workouts, Powerlifting programs, CrossFit sessions, Spinning
classes, Strength-training routines, Cardio circuits, Kettlebell workouts,
Rowing-machine drills, Plyometric exercises, Speed-and-agility drills

Transport People in the subway, Passenger behavior on buses, Rush-hour metro
crowds, Live bus footage, Commuters on trains, Night-bus activities,
Airport-terminal scenes, Cycling commuters, Ferry passenger journeys,
Public-transport safety tips

Indoor Leisure & Self Care Yoga sessions, Pilates classes, Stretching routines, Home blood-pressure
check, Meditation practice, Resistance-band workouts, Prenatal yoga,
Postnatal fitness, Power yoga, Handstand training

Daily Spending Supermarket shopping vlog, Online-shopping process, Restaurant dining
vlog, Ordering food delivery, Thrift-store shopping, Paying bills in per-
son, Buying electronics in store, Unboxing subscription boxes, Booking
movie tickets online, Coffee-shop visits

Performance & Exhibition Attending a concert vlog, Street artists on trains, Metro musical perfor-
mances, Flash mobs on buses, Visiting a museum, Public art in stations,
Art-workshop vlog, Open-mic night, Theatre-performance vlog, Dance-
recital backstage

Education Health-education workshop, Diabetes-education session, First-aid train-
ing demo, Speech-therapy practice, Clinical-trial walkthrough, Nutrition-
counseling session, Community-health education, Occupational-health
lesson, Travel-health briefing, CPR operation video

Others Community health-center routine, Cancer-screening demo, Sleep-study
procedure, Travel-health consultation, Language-therapy session, Geri-
atric patient care, Dietitian counseling, Pain-management therapy, Vac-
cination outreach, Sports-injury treatment

B.3.1 ANNOTATION PROCESS

Step 1: Video Collection. To ensure domain coverage and contextual diversity, videos were
sourced from 11 human-related domains (as illustrated in Figure 7) by two main channels. (a) We
leveraged curated egocentric and third-person activity datasets—Ego4D (Grauman et al., 2022),
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EgoExo4D (Grauman et al., 2024), ActivityNet (Caba Heilbron et al., 2015), and MOMA (Luo et al.,
2021)—and relied exclusively on their test or validation splits to avoid data leakage. (b) We collected
internet videos from YouTube using domain-specific auto-generated tags. Clips under five minutes or
containing low-quality or off-topic content were excluded. Only videos published within the past two
years were considered.

Step 2: Annotation Protocol. Visual reasoning involves extracting visual evidence across gran-
ularities and integrating them with world knowledge to perform inference. To ensure this, each
question must involve at least two distinct visual evidences—defined as either specific attributes (e.g.,
orientation, action) or relationships (e.g., events, interactions)—and must invoke knowledge triggered
by visual content. Trivial tasks like unconditioned counting or basic captioning are excluded.

To ensure diversity and evaluability, questions are created within one of five designated reasoning
types. Causal Reasoning involves identifying cause-effect relations in the video, such as “Why did
the person fall after stepping on the mat?”; Prediction involves anticipating what might happen next,
e.g., “What will the person likely do after picking up the toolbox?”; Counter-Factual Reasoning asks
about hypothetical alternatives, such as “What would have happened if the person had not pulled the
lever?”; Assessment asks for judgment based on visual evidence and criteria, such as “Which athlete
demonstrated better form during the lift?”; and Planning requires proposing a viable plan grounded
in context, such as “What should the worker do next to safely continue the repair?”

Step 3: Annotator Qualification and Tasks. Annotators were selected based on domain expertise.
For specialized domains such as Education, Sports, Electric & Crafting, and Transport, annotators
held relevant undergraduate degrees or had at least three years of experience. For general topics,
annotators were computer science graduate students unaffiliated with the author team. All annotators
underwent standardized training and trial tasks.

Each annotator was responsible for formulating open-ended questions that met the complexity criteria
and fell under one of the designated reasoning types. They provided concise, direct answers and
explicitly detailed the reasoning process, identifying essential visual evidence and associated knowl-
edge. Annotators were allowed to flexibly choose relevant video segments to preserve contextual
richness while avoiding oversimplification. To maintain fidelity in meaning, all annotations were
first created in the annotators’ native language and later translated professionally. Based on reviewer
feedback, annotators were allowed to revise their submissions once.

B.3.2 REVIEW AND QUALITY CONTROL PROCESS

Step 4: Initial Review. Trained reviewers manually evaluated each submission for objectivity,
factual correctness, conciseness, and reasoning complexity. To encourage proactively seeking the
visual reasoning evidence, a focal point in this process was eliminating reference redundancy, where
questions explicitly mention or imply the essential visual evidence, thus undermining the need for
true reasoning. Instead, reviewers encouraged general references and annotated potential revision
points with detailed feedback. Annotations that passed this stage without major issues advanced to
the next round, while others were returned once for revision or rejected outright if irreparable.

Step 5: Meta-Review. Meta-reviewers, typically senior researchers, conducted a second round of
checks with a higher threshold for complexity and reasoning depth. They ensured each annotation
incorporated at least two distinct pieces of visual evidence and required the integration of external
knowledge triggered by visual content. Annotations relying solely on dominant cues or surface-level
understanding were filtered out. The number of visual and proactive evidence per question was also
counted and finalized after cross-validation.

Outcome. This layered quality control pipeline, with stringent emphasis on complexity and reason-
ing integrity, resulted in a final acceptance rate below 20%. Due to the meticulous verification process,
the average cost per question, including annotation and review, reached approximately $12. The
outcome was a set of 442 high-quality reasoning questions, each crafted to challenge and benchmark
advanced visual understanding capabilities.
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B.4 ANNOTATOR RECRUITMENT IN HUMAN-R CONSTRUCTION

As detailed in Table 7, Human-R covers 11 diverse domains. In constructing this dataset, we
prioritized domain relevance and expertise in annotator recruitment over a rigid “one-size-fits-all”
standard, so that the questions and reasoning chains reflect realistic domain-specific characteristics
rather than generic templates.

For specialized domains (e.g., Sports, Electric & Crafting, Transport), we recruited annotators with
relevant practitioner experience or educational backgrounds. For instance, sports-related questions
were assigned to fitness coaches or student athletes, while Electric & Crafting items were handled by
annotators with engineering-related training or degrees. This ensured that both the question design
and the associated CoT-style reasoning remained faithful to how domain experts would actually
reason in these settings.

For general domains (e.g., Household, Daily Spending), we instead engaged high-quality annotators
with strong performance in our qualification trials (i.e., high pass rates), without requiring formal
professional credentials.

Overall, the dataset was constructed by a dedicated team of annotators recruited specifically for this
project. We ensured that each domain had at least two annotators. Each annotator was assigned to
domains aligned with their background and was required to pass qualification trials based on our
annotation guidelines before contributing to the final dataset. This process helped ensure that domain
expertise and annotation quality were systematically controlled across all 11 domains.

C EVALUATION SETUP

C.1 CONFIGURATION OF EVALUATED MODELS

Table 8 detail the configuration of each evaluated models on HumanPCR. Across all experiments, we
use the default settings from the official implementation of each model to process vision input while
the temperature is set to 1.0 and the maximum output length to 1,024 tokens, except for proprietary
reasoning models (e.g., o3 and Gemini-2.5-pro-preview), for which the maximum output length is
extended to 4,096 tokens to accommodate their extended CoT reasoning mechanisms. Additionally,
for the Human-R evaluation, we tested all proprietary models and open-source models larger than
8B with frame numbers of 32, 64, and 128, and selected the configuration that yielded the best
performance. All experiments are conducted using LMMs-Eval (Zhang et al., 2024a) on 8 Nvidia
A100 GPUs.

For experiments of context extraction and RL-based thinking methods, we implemented their results
by their official repository. Table 9 shows their configuration.

C.2 EVALUATION PROMPT

We present the prompts in the evaluation in the following figures, for answering multiple-choice
(Direct Answer in Figure 17 and CoT in Figure 18) and open-ended questions (Direct Answer in
Figure 19 and CoT in Figure 20), respectively. The prompt for accuracy evaluation is presented in
Figure 21.

C.3 RELIABILITY OF LLM-BASED JUDGES

To ensure the robustness of our evaluation methodology, we tested multiple LLM judges and bench-
marked their performance against human evaluation. For the human judgement, four annotators
scored 4,000 model responses for per-instance accuracy and pairwise win-loss preference. The
win-loss preference for LLM judges was determined by comparing their assigned scores across
instances. Figure 10 in the main paper illustrates the evaluation results from four distinct judge
models: o3-mini, gemini-2.5-flash, gpt-4o, and o3 and our findings are listed as below:

High consistency in relative model rankings across all LLM judges Performance orders of the
evaluated models remain stable regardless of the judge employed, indicating that our evaluation
outcomes are robust and not dependent on any single judge.
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Table 8: Configurations of evaluated MLLMs on HumanPCR.

Organization Model Release Version Input Frames
(P&C/R)

Open-source Models

Rhymes Aria 2024-11 Aria-Chat 32/64

Shanghai AI Lab

InternVL2-8b 2024-6 InternVL2-8b 32/32
InternVL2.5-1B 2024-11 InternVL2.5-1B 32
InternVL2.5-2B 2024-11 InternVL2.5-2B 32
InternVL2.5-4B 2024-11 InternVL2.5-4B 32
InternVL2.5-8B 2024-11 InternVL2.5-8B 32
InternVL2.5-38B 2024-11 InternVL2.5-38B 32/64
InternVL2.5-78B 2024-11 InternVL2.5-78B 32/64
InternVL3-1B 2025-4 InternVL3-1B 32
InternVL3-2B 2025-4 InternVL3-2B 32
InternVL3-8B 2025-4 InternVL3-8B 32/64
InternVL3-14B 2025-4 InternVL3-14B 32/64
InternVL3-38B 2025-4 InternVL3-38B 32/64
InternVL3-78B 2025-4 InternVL3-78B 32

Alibaba Qwen2-VL-7B 2024-8 Qwen2-VL-7B-Instruct 32
Qwen2.5-VL-7B 2025-2 Qwen2.5-VL-7B-Instruct 32/64
Qwen2.5-VL-72B 2025-2 Qwen2.5-VL-72B-Instruct 32

lmms-lab

LLaVA-NeXT-Video-34B 2024-5 LLaVA-NeXT-Video-34B 32
LLaVA-OneVision-7B 2024-9 llava-onevision-qwen2-7b-ov-hf 32/128
LLaVA-OneVision-72B 2024-9 llava-onevision-qwen2-72b-ov-hf 32
LLaVA-Video-7B 2024-10 LLaVA-Video-7B-Qwen2 32/128
LLaVA-Video-72B 2024-10 LLaVA-Video-72B-Qwen2 32

OpenBMB MiniCPM-V-2.6 2024-8 MiniCPM-V-2_6 32
MiniCPM-o-2.6 2025-1 MiniCPM-o-2_6 32

Thu Oryx-1.5-7B 2024-10 Oryx-1.5-7B 32/64
Oryx-1.5-32B 2024-10 Oryx-1.5-32B 32

Nvidia LongVILA-256 2024-12 qwen2-7b-longvila-256f 128
NVILA-8B 2024-12 NVILA-8B 64

Proprietary Models

OpenAI
GPT-4o 2024-8 gpt-4o-2024-08-06 32/64
o4-mini 2025-4 o4-mini-2025-04-16 32/64
o3 2025-4 o3-2025-04-16 64

Google

Gemini-1.5-Flash 2024-9 gemini-1.5-flash 32/64
Gemini-1.5-Pro 2024-9 gemini-1.5-pro 32
Gemini-2.0-Flash 2024-12 gemini-2.0-flash 32/64
Gemini-2.5-Flash 2025-4 gemini-2.5-flash-preview-04-17 32/64
Gemini-2.5-Pro 2025-3 gemini-2.5-pro-preview-03-25 64

Anthropic Claude-3.5-Sonnet-v2 2024-10 claude-3-5-sonnet-20241022 32/64
Claude-3.7-Sonnet 2025-2 claude-3-7-sonnet-20250219 64

ByteDance Doubao-1.5-vision-pro 2025-1 doubao-1.5-vision-pro-32k-250115 32/80

xAI Grok-2-Vision 2024-12 grok-2-vision-1212 32/80

Question: {question}
A: {option_a}
B: {option_b}
C: {option_c}
D: {option_d}
E: {option_e}

Answer with the option’s letter from the given choices directly.

Figure 17: Direct Answer prompt for multiple-choice questions.

Strong correlation between LLM-based evaluations and human judgment The Pearson correla-
tion coefficients for accuracy are consistently high (0.640 to 0.689), and the alignment for pairwise
win-loss preference is even stronger (0.832 to 0.872). We also found that providing judges with our
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Table 9: Overview of evaluated context-extraction strategies and RL-based thinking models. The
extraction granularity of the context of these strategies and all official code resources is also presented.

Models/Methods Baseline MLLM Strategy Granularity Frame Cnt. Repository URL

Video-RAG(Luo et al., 2024) LLaVA–Video–7B Memory&Retrieve Frame 64 https://github.
com/Leon1207/
Video-RAG-master

AKS(Tang et al., 2025) LLaVA–Video–7B Frame Selection Frame 128 https://github.
com/ncTimTang/AKS

FRAG(Huang et al., 2025) Qwen2.5-VL-7B Frame Selection Frame 32 https://github.
com/NVlabs/FRAG

T∗(Ye et al., 2025) Qwen2.5-VL-7B Frame Selection Frame 32 https://github.
com/mll-lab-nu/
TStar

PVC (Yang et al., 2024a) InternVL2–8B Down Pooling Token 512 https://github.
com/OpenGVLab/PVC

IXC2.5–OmniLive(Zhang et al., 2024b) InternVL2–8B Memory&Retrieve Frame 64 https://github.
com/InternLM/
InternLM-XComposer

LongVU(Shen et al., 2024) LLaVA–Video–7B Token Selection Frame & Token 1 fps https://github.
com/Vision-CAIR/
LongVU

Ola(Liu et al., 2025) Qwen2.5-VL-7B Down Pooling Token 64 https://github.
com/Ola-Omni/Ola

Dispider(Qian et al., 2025) LLaVA–Video–7B Memory&Retrieve Frame 512 https://github.
com/Mark12Ding/
Dispider

AdaReTaKe(Wang et al., 2025b) Qwen2.5-VL-7B Token Selection Token 4 fps https://github.
com/SCZwangxiao/
video-FlexReduc

FlexSelect(Zhang et al., 2025) Qwen2.5-VL-7B Token Selection Token 2 fps https://
github.com/
yunzhuzhang0918/
flexselect

Video–R1(Feng et al., 2025) Qwen2.5-VL-7B Thinking - 32 https://github.
com/tulerfeng/
Video-R1

Video–RFT(Feng et al., 2025) Qwen2.5-VL-7B Thinking - 32 https://github.
com/Liuziyu77/
Visual-RFT

VideoChat–R1(Li et al., 2025) Qwen2.5-VL-7B Thinking - 32 https://github.
com/OpenGVLab/
VideoChat-R1

Question: {question}
A: {option_a}
B: {option_b}
C: {option_c}
D: {option_d}
E: {option_e}

Based on the given {modality}, select the best answer to the multiple-choice question by
thinking step by step. Begin by explaining your reasoning process clearly. Conclude by stating
the final answer using the following format: “FINAL ANSWER: $LETTER” (without quotes),
where $LETTER is one of the option’s letter from the given choices. Think step by step before
answering.

Figure 18: CoT prompt for multiple-choice questions, partially adopted from previous works (Zhao
et al., 2025; Yue et al., 2024). "modality" ranges in "image", "multiple images", and "video".
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Question: {question}

Answer the question based on the given video. Do not generate any intermediate reasoning
process. Directly output the final answer.

Figure 19: Direct Answer prompt for open-ended questions.

Question: {question}

Answer the question based on the given video step by step. Begin by explaining your reasoning
process clearly. Conclude by stating the final answer using the following format: ’Therefore,
the final answer is: “Answer: $ANSWER” (without quotes), where $ANSWER is the final
answer of the question. Think step by step before answering. Below are frames uniformly
sampled from the video."

Figure 20: CoT prompt for open-ended questions, partially adopted from previous works (Zhao et al.,
2025; Yue et al., 2024).

annotated CoT as a reference significantly improved their alignment with human annotators (e.g.,
0.642 vs. 0.689 for o3-mini W or W/o CoT on accuracy).

Self-Bias Test. We further conducted a Welch’s t-test on whether a judge might favor models from
its own family. The null hypothesis assumes that the score deviation over averages of other models
of a judge for models from its own family is not significantly different from that for non-family
models. With α = 0.05, the test yields high p-values (e.g., p=0.864 for o3-mini judging o3; p=0.774
for gemini-2.5-flash on Gemini-family models), leading us to fail to reject the null hypothesis. This
indicates very little statistical evidence of self-bias in our evaluation setting.

Collectively, these findings validate that in our setting, LLM judges serve as a reliable and robust
alternative to human evaluation. We attribute this to the use of precise reference answers and detailed
reasoning traces, combined with modern LLMs’ strong instruction-following ability, which helps
eliminate subjective noise and ambiguity in evaluation.

C.4 EVALUATION SETTING OF HUMAN PERFORMANCE

We have benchmarked human performance using a subset of HumanPCR. For Human-P and Human-
C, over 30 questions are sampled for each task while the evaluations were conducted by annotators
who were not involved in the construction of the benchmark. For Human-R, accuracy was computed
based on approximately 10% of Human-R questions completed by two graduate students in computer
science who were not involved in the construction of the benchmark; during the annotation process,
the annotators were allowed to consult a search engine for factual lookup or translation, but was
instructed to refrain from locating the original source video or any accompanying ancillary materials
by any means. The annotators received performance-contingent incentives: a correct answer paid
twice the amount awarded for an incorrect one.
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Evaluate the accuracy score of the model’s answer and whether its final answer is correct by
comparing it to the ground-truth answer provided for the given question.
You should first extract the final answer from the model’s response, and then compare the
extracted answer with the ground-truth answer to determine its accuracy. The final answer of
the model does not need to match the ground-truth answer word-for-word. It should only be
considered correct

1. if the final answer of the model demonstrates the consistent meaning or concept
equivalent to the ground-truth answer.

2. if the final answer of the model meaningfully includes the ground-truth answer and
does not introduce fundamentally different or unrelated meanings.

3. if the final answer of the model is meaningfully included within the ground-truth
answer and only differs by omitting explanatory details instead of lacking key concepts.

Then, you should provide the accuracy score of the answer, which ranges from 0 to 4, based on
both the correctness of the final answer and the accuracy of the reasoning process.

• If the final answer is incorrect, the score must be 0, 1, or 2:
0: The final answer is incorrect, and the provided reasoning/evidence is either

missing or entirely dissimilar to the groundtruth.
1: The final answer is incorrect, but some visual details, reasoning steps, or evidence

partially overlap with the groundtruth; however, most of the reasoning is incorrect.
2: The final answer is incorrect, but the majority of the reasoning process, including

key visual evidence and logical steps, aligns with the groundtruth, with only
minor deviations causing an incorrect conclusion.

• If the final answer matches the groundtruth, the score must be 3 or 4:
3: The final answer is correct, but the reasoning process or supporting evidence

significantly differs from the groundtruth.
4: The final answer is correct, and the reasoning process, including supporting

evidence, closely aligns with the groundtruth without major inconsistencies.

Output your response in the following structured json object format:

{
’extracted answer’: // str value, the short final answer

extracted from the ’models response, do not hallucinate one
that is not present in the response,

’correctness’: // boolean value, True if the answer is correct,
False otherwise,

’score’: // int value, overall assessment of accuracy of the
model’s answer

}

Input Format:
Question: {question}
Ground Truth Answer: {ground_truth}
Model Response to the Question: {model_response}

Figure 21: Evaluation prompt used for assessing the accuracy of open-ended questions.
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D MORE DATA STATISTICS

Detailed video duration statistics across tasks of Human-P&C, domains and question types in Human-
R are presented in Figure 22a, 22b, 22c, respectively. The average numbers of visual evidence
across different domains and question types in Human-R are illustrated in Figure 23. The modality
distribution of tasks is presented in Figure 24.
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Figure 22: Statistics of video durations in HumanPCR. (a) The average durations for tasks in Human-P
and Human-C. (b) The average durations(bar) and number of samples(line) for domains in Human-R.
(c) The average durations(bar) and number of samples(line) for question types in Human-R.
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Figure 23: Average number of visual evidence in Human-R across (a) domains and (b) question types.
The referred and proactive evidence are denoted by different colors.

E PUBLIC RELEASE AND DATA USAGE TERMS

To ensure minimal privacy and copyright issues while enabling open access for the research com-
munity, we have established the following Public Release and Data Usage Agreement (DUA). We
publicly release all annotations created by us (and any data for which we are the rights holder) free of
charge for academic research under our DUA, with the additional requirement that any use involving
the original visual data must strictly comply with applicable privacy laws, institutional review policies,
and obtain all necessary permissions. The DUA we formulated for the dataset open-source dataset is
also presented in Figure 25.

Scope and Hosting. We do not redistribute raw third-party source media without explicit permission.
For videos and images from public platforms (e.g., YouTube), we release only factual metadata (e.g.,
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Figure 24: Distribution of samples of each modality across tasks.

video IDs, start/end timestamps for clips), and our task annotations. Source datasets that explicitly
permit redistribution are hosted directly; those that prohibit it are provided via metadata, processing
scripts, and links to original sources so users assemble content themselves.

Access Control and Backup Channel. A controlled (backup) access channel requires explicit
agreement to (i) all upstream dataset licenses, (ii) a non-redistribution commitment, and (iii) our Data
Use Agreement (DUA). Users must request access and may have it revoked upon breach.

Data Use Agreement. The DUA presented in Figure 25 forbids: re-identification, biometric
template construction, surveillance or tracking applications, discriminatory or harmful usage, circum-
vention of platform Terms of Service, and repackaging or further redistribution of third-party content.
Data are for evaluation/research; we do not train models on the benchmark annotations.

Privacy Minimization. Our annotation guidelines have excluded personal names, private locations,
and sensitive attributes; quality control removed residual high-risk items. No biometric embeddings
or identifiers are released. If a source video is deleted or privatized, its entry becomes unusable.

Copyright Requests. Rights holders may request modification or removal of hosted data at any
time; validated requests are processed promptly and reflected in the next version.

Disclaimer. The benchmark is provided “as is” without warranty; users bear responsibility for legal
and ethical compliance. Continued use constitutes acceptance of updated terms.
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HumanPCR Data Use Agreement (DUA)

1. Content Hosting and Download
The dataset only contains metadata (e.g., public video IDs and

timestamps) for content sourced from public platforms.
We do not host or distribute raw video files.
Users are responsible for using the original videos themselves,

following the Terms of Service of the source platforms (e.g.,
YouTube).

2. License Compliance for Hosted Data
For any datasets or files directly hosted by us, by accessing or

using HumanPCR you automatically agree to comply with the
original licenses and usage restrictions of those datasets.

3. Usage Restrictions

- HumanPCR is provided for **non-commercial, academic research
purposes** only.

- You are **strictly prohibited** from using the data for biometric
identification, tracking, or surveillance technologies.

- You must not attempt to re-identify, de-anonymize, or contact any
individuals depicted in the images or videos.

- The data may **not** be used to discriminate against, harass, or
negatively profile individuals or groups.

- Without prior written approval, you may not redistribute, publish,
or disseminate the ’datasets metadata, including video and image
data, in whole or in part; task annotations we created may be
redistributed for non-commercial use with attribution, provided
you link to this DUA and indicate any changes.

- Attribution requirement: When using HumanPCR metadata or our task
annotations, you must give appropriate credit, provide a link to
this DUA, and indicate if changes were made.

- No additional restrictions: You may not apply legal terms or
technological measures that legally restrict others from doing
anything the DUA permits.

4. Copyright and Removal Requests
All copyrights remain with the original content owners.
If you are a rights holder and believe there is an issue with any

content referenced in HumanPCR, please contact us.
We will promptly review and remove or update the relevant content

as requested.

By accessing or using HumanPCR, you acknowledge and agree to comply
with the above terms.

Figure 25: HumanPCR Data Use Agreement (DUA). This document ensures that the dataset is
distributed responsibly for non-commercial academic research purposes only.

F MORE RESULTS

F.1 FULL RESULTS ON HUMANPCR

The per-task accuracies of the evaluated model are presented in Table 10.
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Table 11: Uncertainty Reporting. The average accuracy, standard deviation, and 95% confidence
intervals for Qwen2.5-VL-72B (Bai et al., 2025) and GPT-4o (Hurst et al., 2024).

Multi-Choice Open

Human-P Human-C Human-R

Spa. Pos. App. Con. Ide. avg. Beh. Pro. Rel. Sce. avg. Acc. Acc.

Qwen2.5-VL-72B
Mean 81.72 49.96 67.13 42.69 41.21 57.90 55.21 47.96 51.50 61.93 54.75 56.29 34.31
Variance 0.15 0.01 1.90 0.99 0.06 0.01 0.24 1.62 2.26 4.73 0.06 0.01 0.32
95% CI Lower 80.75 49.79 63.71 40.22 40.58 57.63 54.00 44.80 47.76 56.52 54.14 56.09 32.90
95% CI Upper 82.69 50.12 70.55 45.16 41.84 58.18 56.42 51.11 55.23 67.33 55.37 56.49 35.73

GPT-4o
Mean 70.63 42.25 56.09 32.72 40.51 48.62 52.05 41.28 50.05 60.71 50.45 49.54 41.02
Variance 0.34 2.29 0.32 2.21 23.53 1.11 0.02 4.17 1.12 0.42 0.94 1.02 0.12
95% CI Lower 69.18 38.50 54.68 29.02 28.46 46.01 51.71 36.21 47.42 59.10 48.04 47.03 40.16
95% CI Upper 72.07 46.01 57.50 36.41 52.56 51.24 52.40 46.35 52.68 62.31 52.86 52.05 41.88

F.2 RESULTS ON HUMAN-R ACROSS QUESTION TYPES AND DOMAINS

The results of Human-R broken down by question types and video source domains are presented in
Figure 26.
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Figure 26: Accuracy comparison on Human-R across (a) different question types and (b) video
source domains. Most models struggle with Planning-type reasoning, while Education is the most
challenging video domain.

F.3 UNCERTAINTY REPORTING VIA REPEATED RUNS

For representative models, we run each experiment three times and report, for every level and
dimension, the average accuracy, standard deviation, and 95% confidence intervals. This provides
explicit uncertainty estimates to complement single-point metrics as shown in Tbale 11.

F.4 COMPUTATIONAL RESOURCES AND RUNTIME DETAILS

To improve reproducibility and transparency, we report wall-clock runtimes and memory configura-
tions across representative models and hardware setups. Our primary infrastructure consists of 8×
NVIDIA A100 (80GB) GPUs. For models with around 7B paprameters (e.g., InternVL3-8B) under
data parallelism on 8×A100, Human-P and Human-C require approximately 30 minutes in total,
corresponding to 4 GPUh, while Human-R requires approximately 15 minutes, corresponding to 2
GPUh. For larger InternVL3 variants, we run the full evaluation suite with the following configura-
tions and costs: InternVL3-14B on 1×A100 takes 6 hours; InternVL3-38B using model parallelism
on 2×A100 takes approximately 13 hours; and InternVL3-78B on 3×A100 takes approximately 16
hours.
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Table 12: Results of test-time scaling strategies on Human-R. Open-source and proprietary thinking
models are both included. M represents the magnitude of the strategies. Specifically, the BoN
strategy uses 2M candidates, while the Self-Refine strategy performs M iterations.

Model Method Reward Model Direct M=0 (CoT) M=1 M=2 M=3

Test-Time Compute: Prompt Procedure

Gemini-2.0-Flash

BoN Gemini-2.0-Flash (Self)

32.13 36.43

36.88 38.01 38.69
BoN Gemini-2.5-Flash 37.55 37.10 41.86
BoN o4-mini 42.53 40.05 40.05
Self-Refine - 41.40 36.65 36.65

GPT-4o

BoN GPT-4o (Self)

32.81 41.40

43.21 45.70 45.93
BoN Gemini-2.5-Flash 44.57 45.02 46.38
BoN o4-mini 44.11 46.38 45.02
Self-Refine - 39.59 39.82 40.95

InternVL3-78B

BoN InternVL3-78B (Self)

37.56

32.35 35.06 34.16
BoN Gemini-2.5-Flash 36.65 40.95 38.91
BoN o4-mini 35.52 38.68 41.40 42.30
BoN GPT-4o 32.8 34.6 35.29
Self-Refine - 33.71 35.07 34.62

Proprietary Thinking Model

Gemini-2.5-Pro-preview(Comanici et al., 2025) - - - 51.13 -
Claude-3.7-sonnet(Anthropic, 2025) - - - 40.50 -
o3(OpenAI, 2025) - - - 59.28 -

G ADDITIONAL ANALYSIS

G.1 IMPACT OF MODEL SIZE.
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Figure 27: The relationship between model size and macro-average accuracy.

In Table 3, scaling model size consistently improves accuracy across MLLMs series. As Figure 27
further reveals, performance of InternVL2.5 and InternVL3 suggests that complex reasoning tasks
are more sensitive to model size scaling, which brings steady improvements, while performance
on Human-P and Human-C plateaus beyond approximately 38B parameters. We hypothesize that
complex tasks more effectively evaluate the fundamental capabilities of the models, such as world
knowledge and logical inference.

G.2 FULL RESULTS OF TEST-TIME SCALING STRATEGIES ON HUMAN-R.

Table 12 show the effect of test-time scaling strategies beyond vanilla CoT on Human-R. Best-of-
N (BoN) delivers over 5% gains on all 3 models with incremental improvements from stronger
reward models or more candidates. Self-Refine merely offers marginal gains and degrades with more
iterations. Overall, test-time scaling strategies are generally effective.
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G.3 REASONING ERROR TYPE ANALYSIS

This section presents a structured analysis of error types based on a comprehensive categorization of
model failures from top-performing models. The error type distribution is derived from the average
error breakdown of the results from various settings, including o3, o3 (8f), GPT-4o, InternVL3-78B,
Gemini-2.5-Pro-Preview, Gemini-2.0-Flash, and Gemini-2.0-Flash (1fps/1200f), computed over a
representative set of 200 randomly sampled questions mentioned in the main text.

Visual Element Extraction Error (37.42%). This emerges as the most frequent failure type,
highlighting fundamental difficulties in accurately identifying the necessary visual information from
video contexts. This dominant category signifies that models often struggle to "see" the crucial
components required for sound reasoning, either by failing to detect key elements or by mistakenly
incorporating extraneous ones. This category is further broken down:

• Missing Proactive Evidences (21.87% of total errors): This is the largest sub-category,
where models overlook essential visual cues not explicitly mentioned but to be extracted in
the broader context. These include understanding the temporal order(e.g., misidentification
of repeated events and incorrect verification of completed steps), concurrency (e.g., inferring
a person’s state and actions from others’ reactions and changes in scenes), and general
causes and consequences. Such errors reveal a fundamental weakness in holistic visual
interpretation, indicating that models are not adept at spontaneously modeling context inner
connections and structures.

• Missing Referred Evidences (9.22% of total errors): In these instances, models fail to
identify visual elements that are explicitly mentioned or pointed to in the question. This
challenge appears particularly in fine-grained actions (e.g., very brief actions or background
events) and ambiguous references (e.g., multiple similar candidates to references with only
one correct match), even when clear guidance is given. This highlights the need for MLLMs
to expand long context and more efficient context encoding.

• Involving Irrelevant Evidences (6.32% of total errors): This subtype occurs when models
incorporate visual details that are extraneous or unimportant to the query at hand. This
inclusion of irrelevant information can derail the reasoning process by introducing noise,
creating confusion, or leading to flawed inferences.

Knowledge / Common-sense Error (36.63%). This represents the second most significant hurdle,
occurring when the model correctly perceives relevant visual elements but lacks the factual knowledge
(e.g., confusing distance and time in speed calculation), domain understanding (e.g., unaware that
a draw leads to a penalty shootout and thus unable to provide the correct score), or common sense
(e.g., failing to explain that water cannot be poured because it has frozen due to low temperatures)
needed to infer accurately and reach correct conclusions. This substantial percentage highlights
that models’ visual understanding is often weakly grounded in real-world elements or the logical
principles required to derive broader implications or factual knowledge. This underscores the need
for MLLMs to better adapt to expert human-domain data and uphold faithfulness during decoding.

Perception Error (13.04%). This occurs when the model explicitly misinterprets or incorrectly
recognizes visual evidence that it has managed to extract, including misperception of visual attributes
(e.g., incorrect classification of swimming styles), visual hallucinations, and confusion about attribute
ownership(e.g., confusing subtitles from different video chapters). This type of error points to
deficiencies in the model’s core visual foundational capabilities.

Refusal / Incomplete Answer (7.51%). This captures instances where the model either explicitly
refuses to answer or provides partial, uncertain responses. Beyond built-in safety policies, we observe
that models also exhibit selective answering behavior—often refusing to respond due to lack of
evidence, especially when few frames are provided. Another cause of partial answers is the model
falling into repetition or prematurely ending its output during long reasoning processes.

Question-understanding Error (5.4%). captures failures caused by misinterpreting the query’s
intent or its constraints. For instance, models may provide a generic video description instead of
answering the question, or ignore required answer or reference formats—e.g., failing to use ordinal
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terms to identify actions, or giving only an answer when a rationale is explicitly requested. These
errors highlight the model’s fragility in instruction following and constrained decoding, indicating a
need for tighter alignment between visual understanding, reasoning, and structured output formatting.

G.4 QUALITATIVE EXAMPLES OF REASONING ERRORS

We investigate error cases of Human-R, illustrated in Figure 28, 29, 30, 31, including detailed
reasoning process and error type analysis of each model.

Figure 28: An annotation example of Human-R in the domain “Outdoor Leisure & Recreation” and
its error analysis.
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Figure 29: An annotation example of Human-R in the domain “Electric & Crafting” and its error
analysis.
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Figure 30: An annotation example of Human-R in the domain “Education” and its error analysis.
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Figure 31: An annotation example of Human-R in the domain “Household” and its error analysis.
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR guidelines, we disclose the use of Large Language Models (LLMs)
as general-purpose assistive tools in the preparation of this manuscript. Our use of LLMs was
confined to two primary areas. First, during the initial literature review phase, we employed LLMs to
assist in identifying and collecting relevant prior work and to generate concise summaries of several
papers to expedite our understanding of the current research landscape. All referenced literature was
subsequently read and critically analyzed by the authors. Second, in the manuscript writing process,
LLMs served as an advanced writing aid for sentence polishing to improve clarity and flow, as well
as for conducting grammar and spelling checks. We want to emphasize that the core intellectual
contributions of this work, including the formulation of research questions, the development of our
proposed methodology, the design of experiments, and the analysis and interpretation of results,
were carried out exclusively by the human authors. The LLM was not used for generating key ideas,
hypotheses, or conclusions, and therefore does not meet the criteria for authorship. The authors take
full and final responsibility for all content presented in this paper.
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