

000 001 002 003 004 005 006 007 008 009 010 HUMANPCR: PROBING MLLM CAPABILITIES IN DIVERSE HUMAN-CENTRIC SCENES

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The aspiration for artificial general intelligence, fueled by the rapid progress of multimodal understanding, demands models to understand humans in diverse and complex scenarios, as humans manifests intelligence and embody the world. We propose **HumanPCR**, an evaluation suite for probing MLLMs’ capacity in human-centric visual contexts across three hierarchical levels: **Perception**, **Comprehension**, and **Reasoning** (denoted by Human-P, Human-C, and Human-R, respectively). Human-P and Human-C consist of over 6,000 multiple-choice questions evaluating 34 fine-grained tasks covering 9 essential dimensions. Human-R presents a manually curated challenging video reasoning test that requires integrating multiple visual evidence, proactively extracting implicit context beyond question cues, and applying human-like expertise. Each question includes human-annotated Chain-of-Thought (CoT) rationales with key visual evidence to support further research. Extensive evaluations on over 30 state-of-the-art models exhibit significant challenges in human-centric visual understanding, particularly in tasks involving detailed space perception, temporal understanding, and mind modeling. The analysis of Human-R further exposes a critical failure in reasoning: models struggle to proactively gather necessary visual evidence, instead showing a faulty reliance on query-prompted cues, with advanced techniques offering only marginal gains. We hope HumanPCR and our findings will advance the development, evaluation, and human-centric applications of multimodal models.

1 INTRODUCTION

The rapid advancement of Multimodal Large Language Models (MLLMs) has shown remarkable potential in understanding diverse contexts (Zhang et al., 2024c; Team et al., 2023; Hurst et al., 2024; Bai et al., 2025; Wang et al., 2024). This progress fuels the aspiration toward artificial general intelligence, where a key prerequisite lies in the ability to understand humans in diverse, complex, and dynamic contexts, as human behavior inherently reflects intelligence as well as the complexities of the world (Grauman et al., 2022; Jahangard et al., 2024; Caba Heilbron et al., 2015). In this work, we systematically investigate how well MLLMs understand humans across critical aspects of perception, comprehension, and reasoning in diverse human-centric visual understanding scenarios.

Human-centric visual understanding (Tang et al., 2023; Ci et al., 2023) remains a fundamental challenge in artificial intelligence. However, current MLLM benchmarks provide a limited assessment of such capabilities. They either isolate narrow tasks, such as action or facial recognition (Qin et al., 2025; Mangalam et al., 2023; Salehi et al., 2024), or, when adopting broader scopes, overlook intricate yet crucial aspects such as gaze and contact, while reporting only coarse-grained scores (Yue et al., 2024; Fu et al., 2024; Xu et al., 2023; Zhou et al., 2024a). Consequently, they lack the necessary **probing power** to rigorously evaluate MLLMs’ nuanced capabilities in human-centric scenarios, thus providing limited guidance for future research and applications. A more critical gap lies in the assessment of reasoning. Unlike humans, who naturally synthesize multiple visual cues in reasoning, current task-specific or fragmented benchmarks rarely challenge models to perform multi-evidence reasoning (Zhao et al., 2025; Hu et al., 2025; Chen et al., 2024a; Fu et al., 2024; Lu et al., 2023). Although some recent video benchmarks have featured intricate reasoning questions (Cheng et al., 2025; Zhu et al., 2025b; Cai et al., 2025), they often cannot necessitate sophisticated visual evidence demand. As discovered by our analysis in Figure 2, two critical reasoning faculties remain overlooked: 1) the ability of integrating **multiple, disparate visual evidence** to achieve coherent understanding,

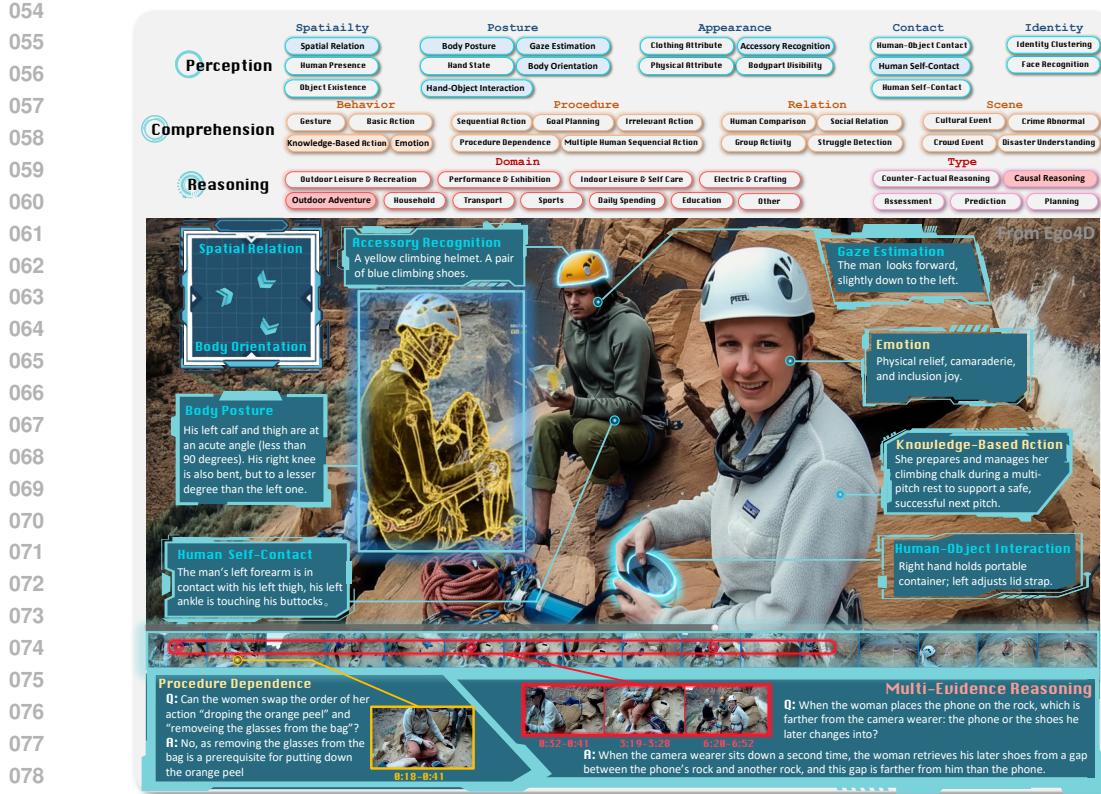


Figure 1: Illustration of HumanPCR, consisting of 34 tasks spanning 9 dimensions across Perception, Comprehension, and Reasoning Levels. It features comprehensive human-centric visual understanding abilities coverage, and proactive visual reasoning based on multiple evidence.

and 2) the ability of **proactively seeking implicit visual cues**. As a result, reasoning within complex and dynamic human-centric contexts remains a significant, open challenge.

To bridge these critical gaps in evaluation, we introduce **HumanPCR**, a comprehensive evaluation suite designed to meticulously probe the human-centric visual understanding of MLLMs. HumanPCR is structured along a hierarchical taxonomy, perception (**Human-P**), comprehension (**Human-C**), and reasoning (**Human-R**), as illustrated in Figure 1. To enable fine-grained probing, Human-P and Human-C feature a large-scale dataset of over 6,000 image- and video-based QA pairs, assessing 34 tasks that span 9 dimensions from individual attributes to spatio-temporal dynamics. Moreover, Human-R introduces a unique challenge through a manually curated, open-ended video reasoning benchmark. Sourced from 11 diverse human-related domains, it compels models to integrate multiple, disparate visual evidence and proactively seek implicit visual cues beyond what is explicitly prompted. To support further research, each question in Human-R is augmented with expert-annotated Chain-of-Thought (CoT) rationales (Wei et al., 2022) that detail all key visual evidence.

A large suite of open-source and proprietary models is benchmarked on HumanPCR. Our analysis reveals several key findings. First, existing MLLMs face significant challenges in human-centric visual understanding and expose inherent limitations in detailed space perception (Yang et al., 2024b), temporal understanding (Fu et al., 2024), and mind modeling (Rezaei et al., 2025; Jin et al., 2024). Second, Human-R highlights models' struggles with multi-evidence reasoning across diverse human scenes. A substantial proportion of errors arise from their reliance on explicit query-guided cues, failing to proactively seek implicit visual evidence. Third, merely scaling visual contexts offers little gains for Human-R (Team et al., 2023; Hurst et al., 2024; Bai et al., 2025; Wang et al., 2025b; Shen et al., 2024), emphasizing the need for more precise visual context perception. Conversely, reasoning-enhanced models like o3 (OpenAI, 2025) reduce missed proactive evidence and achieve consistent improvements. We hope that HumanPCR will serve as a crucial tool to accelerate the development of more capable MLLMs and facilitate their adaptation to diverse human-related applications.

108
109
110
2 RELATED WORK111
112
113
114
115
116
117
118
119
120
Multimodal Large Language Models (MLLMs). Evolving from LLMs, MLLMs now process
diverse modalities including image sequences, video, and audio (Liu et al., 2023; Li et al., 2024a;
Lin et al., 2023; Borsos et al., 2023). Recent models can handle dynamic resolutions and long
contexts (Bai et al., 2025; Zhu et al., 2025a). To manage long videos within limited context windows,
common strategies include efficient content extraction via frame selection (Tang et al., 2025; Huang
et al., 2025; Ye et al., 2025) or token pruning (Wang et al., 2025b; Zhang et al., 2025; Shen et al.,
2024). Concurrently, the rise of models with powerful intrinsic reasoning capabilities (Guo et al.,
2025; Jaech et al., 2024; Comanici et al., 2025; OpenAI, 2025) has inspired efforts to leverage these
cognitive strengths for more advanced visual understanding (Feng et al., 2025; Xu et al., 2024; Wang
et al., 2025a; Li et al., 2025).121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
Benchmarks for MLLM Evaluation. Evaluating MLLMs, particularly in human-centric contexts,
is a significant research focus. Many benchmarks target specific human-related tasks like motion
analysis (Hong et al., 2025; Feng et al., 2023), face recognition (Qin et al., 2025; Pham et al., 2024),
or domain-specific actions (Salehi et al., 2024; Cui et al., 2023; Plizzari et al., 2025), while they have
concluded that MLLMs still have substantial limitations in nuanced human understanding (Rezaei
et al., 2025; Mangalam et al., 2023; Zhou et al., 2024b; Li et al., 2024c). Broader, general benchmarks
also include human-centric tasks but often lack the structured taxonomies needed for systematic,
fine-grained ability diagnosis (Xu et al., 2023; Fu et al., 2024; Li et al., 2023). On the reasoning
front, benchmarks have grown in complexity, moving from image-based exams (Yue et al., 2024;
Chen et al., 2024a) to challenging video-based scenarios (Song et al., 2025; Cai et al., 2025; Cheng
et al., 2025; Zhu et al., 2025b). However, they often focus on knowledge-based reasoning from
instructional videos (Hu et al., 2025) or repurpose existing QA pairs (Han et al., 2024; Qi et al., 2025),
which may not adequately test the synthesis of multiple, disparate visual cues. Our HumanPCR,
features a hierarchical taxonomy for detailed ability diagnosis and assessing the critical skills of
integrating multiple pieces of visual evidence and proactively seeking implicit information in complex,
human-centric videos.136
137
138 3 THE HUMANPCR BENCHMARK
139
140
141142
143
144 3.1 TASK ARCHITECTURE AND DATA CONSTRUCTION
145
146
147
148
149
150
151

We introduce the HumanPCR benchmark to evaluate how MLLMs understand humans in real-world scenarios. The design of HumanPCR is motivated by **the need for probing fine-grained model capability essential to downstream applications** in human-centric visual understanding. To this end, a critical principle is to construct sufficient number of fine-grained tasks with comprehensive coverage and low redundancy. And each task should be supported by data sources as rich and varied as possible. To do so, we survey a wide range of human-centric perception and understanding works to first define tasks, then match them with rich and varied datasets. This iterative approach, grounded in diverse data from daily to professional scenes, mitigates single-source bias and ensures broad capability coverage (Figure 3). Task definitions and sources are provided in Supplementary Materials. The taxonomy is briefly introduced as follows:

152
153
154
155
156
Level 1: Perception evaluates visual recognition across 5 dimensions and 17 tasks: (1) **Spatiality**:
perceiving existence of people, objects, and their spatial relations; (2) **Posture**: recognizing physical
position and orientation of body parts, hands, and gaze; (3) **Appearance**: identifying human appear-
ances, including inherent attributes and attirement; (4) **Contact**: recognizing detailed interaction
regions between people and objects, or themselves; (5) **Identity**: recognizing people’s identity.157
158
159
160
161
Level 2: Comprehension assesses visual concepts comprehension, from 4 dimensions and 17 tasks,
based on commonsense or domain-specific cues: (1) **Behavior**: understanding human actions and
body movements, such as gestures and emotions; (2) **Procedure**: thoroughly understanding long-term
activities, including underlying intentions and dependence among action sequences; (3) **Relation**:
analyzing relations, roles and differences among individuals; (4) **Scene**: interpreting group dynamics
or human activities within broader contexts.

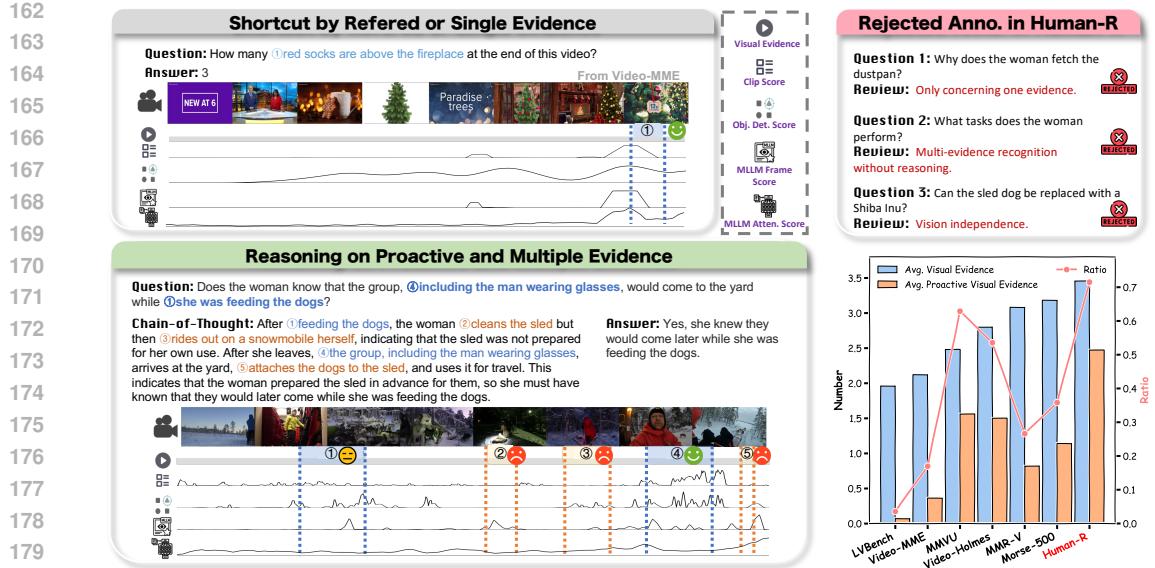


Figure 2: Illustration of multiple and proactive evidence reasoning in Human-R. (Left) Examples from Video-MME and Human-R. Clips of **proactive** and **referred visual evidence** are highlighted. Context matching by heuristics could resolve sparse or referred evidence and bypass comprehensive reasoning, so it is crucial to assess reasoning over multiple and proactive evidence. (Right) By rigorously filtering out annotations that fall below the required reasoning complexity, Human-R can precisely diagnose a model’s capabilities in video reasoning with multiple and proactive evidence, an area where existing benchmarks fall short.

Level 3: Reasoning examines whether models can integrate continuous, tightly coupled human dynamics within complex scenes for reasoning. We contend that the evaluation should satisfy three criteria: (1) **Visual Complexity**: questions should require sufficient *visual evidence*¹, and exclude redundant content, going beyond simple concept retrieval; (2) **Reasoning Necessity and Diversity**: questions should engage diverse reasoning chains rather than be limited to a few reasoning patterns; (3) **Proactivity**: questions should demand proactive extraction of visual evidence over the abundant contexts², rather than relying solely on the referred evidence in the question.

For the Reasoning level (Human-R), we found that videos from public academic datasets are not diverse enough and usually short. Therefore, we defined 11 domains ranging from daily life to professional scenarios, as detailed in Figure 1. Web videos were collected as a supplementary data source to populate these domains. They were pre-filtered via domain-relevant tags and then manually reviewed before annotation to guarantee both content richness and safety.

3.2 QA ANNOTATION PROTOCOL

The prompt and other details of annotation process are provided in Appendix B.

Human-P and Human-C. Benefiting from the data collection, we leverage annotations from existing datasets to efficiently scale up QA pairs without compromising data quality or diversity. Templates- and LLM-based generation are used to create *Multi-Choice questions* and options based on dataset annotations, as illustrated in the lower-left panel of Figure 3. Moreover, for under-explored tasks in existing datasets, we manually generate QA pairs and complementary annotations with the assistance of domain-specific expert annotators.

Human-R. Domain experts were recruited to annotate *open-ended questions* that encompass 5 distinct types of reasoning: Causal Reasoning, Prediction, Counter-Factual Reasoning, Assessment, and Planning. To satisfy our core reasoning criteria above, answering the questions requires integrating

¹In this work, *visual evidence* refers to information conveyed in images or videos, such as instance attributes or visual relationship, which serve as information units or propositions in reasoning.

²"**Proactive visual evidence**" refers to visual information that is not, or only partially, cued by the question, in contrast to "**referred visual evidence**" which is explicitly indicated by the question.

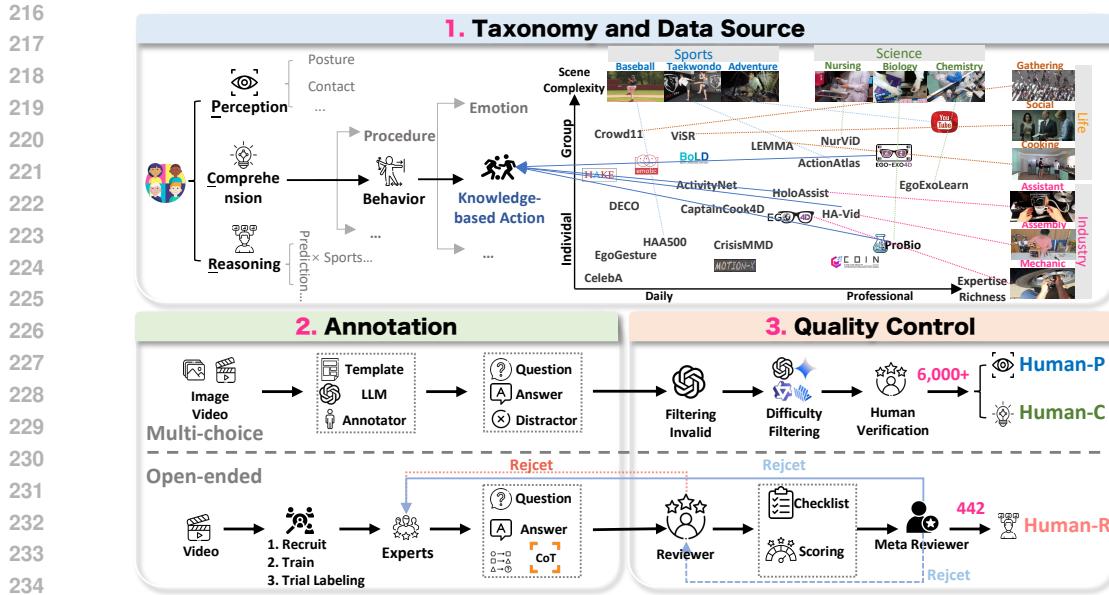


Figure 3: A comprehensive pipeline for HumanPCR Construction. The process includes: (1) building a hierarchical task taxonomy through surveys and task-driven data collection to ensure diversity, (2) recruiting annotators and conducting task-specific annotations, and (3) hybrid automated–manual verification with iterative refinement.

multiple pieces of visual evidence, engaging diverse reasoning chains, and extracting at least one **proactive visual evidence** from the video. In this process, the detailed *reasoning steps* and the necessary *visual evidence* were also annotated. As illustrated in Figure 2, this design reliably tests a model’s ability for holistic multimodal reasoning based on accurate evidence perception. This stands in contrast to tests relying on sparse evidence or fully specified references, which often lead to shortcut solutions instead of genuine video understanding and sufficient reasoning.

3.3 QUALITY CONTROL AND VERIFICATION

For **Human-P** and **Human-C**, QA pairs are first filtered by LLMs to eliminate those solvable without visual input, followed by human verification conducted by trained annotators. Each annotation is carefully reviewed for linguistic quality, answer accuracy, distractor plausibility, and, most importantly, its reliance on visual context. For **Human-R**, reviewers firstly fill out a detailed checklist that validates annotations’ objectivity, factual accuracy, non-redundancy, and complexity; they then assign a quantitative score and deliver targeted feedback to the annotator for a chance to modify. Meta-reviewers **further assess question complexity**, ensuring that every question (1) requires integrating multiple visual evidence, which cannot be fully determined from the question alone, and (2) relies on at least one essential proactive visual evidence. The interaction flow among the annotators, reviewers, and meta-reviewers is illustrated in the lower-right panel of Figure 3.

This pipeline yields over 6,000 Human-P&C multiple-choice questions, and 442 Human-R open-ended questions with a final acceptance rate 20%. Table 2 and Figure 4 summarize HumanPCR’s scale and modality diversity, while Figures 2 and 5 show that Human-R demands strong visual evidence across all video lengths, well above prior datasets, reflecting rigorous quality control.

3.4 COMPARISON WITH EXISTING BENCHMARKS

As summarized in Table 1, HumanPCR fills critical gaps across two key domains:

(1) **Human-centric Benchmarks:** Existing works are often either too narrow, limited to scopes like action (Hong et al., 2025; Salehi et al., 2024), or too broad, targeting general visual understanding without alignment to human-centric tasks (Xu et al., 2023; Li et al., 2024d). Even dedicated human-centric benchmarks (Qin et al., 2025; Zhou et al., 2024b) like HumanVBench are restricted by a few dimensions and a single modality. HumanPCR provides a comprehensive and fine-grained taxonomy

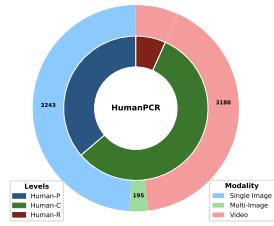
270
 271 Table 1: Comparison of HumanPCR and existing benchmarks with respect to: the number of ability
 272 dimensions (**#Dim.**) and tasks (**#Tasks**), covered modalities (**Mod.**), human-centric orientation
 273 (**HC**), taxonomy for probing and diagnostic analysis (**Probing**), average video duration (**V.Len.**),
 274 method of annotation (**Anno.**, M/A means human-annotated/ automatically generated), open-ended
 275 questions (**OE**), sourced from a broad range of open domains (**OD**), availability of rationales (**CoT**),
 276 requirement for multiple visual evidence (**MVE**) and proactive visual reasoning (**Proactive**).
 277

Benchmarks	#Dim.	#Tasks	Mod.	HC	Probing	OD
MotionBench	-	1	V	✓	✗	✗
Face-Human-Bench	4	18	I	✓	✗	✗
ActionAtlas	-	1	V	✓	✗	✗
MME	4	14	I	✗	✗	✓
MVBench	9	20	V	✗	✓	✓
HumanVbench	4	16	V	✓	✗	✗
Human-P&C	9	34	I+V	✓	✓	✓

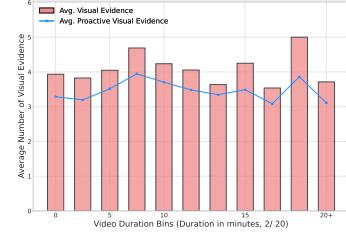
Benchmarks	V.Len.	Anno.	OE	OD	HC	CoT	MVE	Proactive
EgoSchema	180	M	✗	✗	✓	✗	✓	✗
VideoMME	1017	M	✗	✓	✗	✗	✗	✗
CG-Bench	1624	M	✓	✓	✗	✗	✗	✗
LVbench	4101	M	✗	✓	✗	✗	✗	✗
MMVU	51	M	✗	✗	✗	✓	✗	✗
Video-Holmes 60-300	A	✗	✗	✗	✓	✓	✓	✗
MMR-V	277	A	✗	✓	✗	✗	✓	✗
Human-R	469.3	M	✓	✓	✓	✓	✓	✓

283
 284 Table 2: Key statistics of Hu-
 285 manPCR.

	Statistics	Value(Avg./Max)
Human-P&C	# Multi-Choice	6176
Human-P&C	# Options	4.9 / 5
Human-P&C	# Images	1.1 / 6
Human-P&C	Video Duration	35.4 / 584.1
Human-R	# Open-Ended	442
Human-R	Question Length	19.2 / 79
Human-R	CoT Length	86.2 / 183
Human-R	Answer Length	18.6 / 64
Human-R	Video Duration	469.3 / 5225.0



294
 295 Figure 4: Modality distribution
 296 in HumanPCR.



297 Figure 5: The distribution of the
 298 visual evidence number.

299 for probing human-centric capabilities across a diverse range of tasks and modalities.

300 **(2) Video Reasoning Benchmarks:** General video benchmarks typically assess shallow comprehension
 301 with limited reasoning diversity and depth (Fu et al., 2024; Zhou et al., 2024a; Wu et al., 2024).
 302 Early works either struggle with question quality due to semi-automatic annotation (Qi et al., 2025;
 303 Han et al., 2024) or are confined to narrow source or task (Jin et al., 2024; Song et al., 2025). While
 304 concurrent VideoHolmes (Cheng et al., 2025) and MMRV (Zhu et al., 2025b) require multi-frame
 305 reasoning, their task-specific designs limit the diversity of evidence and reasoning paths. Most
 306 importantly, their multiple-choice or certain question references often implicitly reveal the required
 307 visual evidence, failing to evaluate the crucial ability of proactive evidence seeking. Human-R is thus
 308 distinguished by its multi-domain, open-ended design that uniquely demands both the integration of
 309 multiple visual cues and the proactive search for implicit evidence.

310 4 EXPERIMENTS

311 4.1 EVALUATION SETTINGS

312 **(1)Models.** We benchmark a diverse set of models, including 9 proprietary (e.g., Gemini-2.5-Flash,
 313 o4-mini) and 30 open-source MLLMs (e.g., Qwen-VL, InternVL) on HumanPCR. On Human-R, we
 314 add models specialized for video understanding and thinking. Human performance is also provided
 315 for comparison (Appendix C.4). **(2)Configuration.** For evaluation, we employ **Direct Answer**
 316 prompts for multi-choice questions and **CoT** for open-ended ones. Video inputs are processed by
 317 sampling 32 frames for multi-choice tasks and the maximum allowable frames for open-ended tasks.
 318 Further details on model configurations and prompts are in Appendix C.1 and C.2. **(3)Metrics.**
 319 Accuracy for multi-choice questions is determined by matching responses to the correct option. The
 320 average accuracy for each task, and the macro-average accuracy of tasks for each dimension or
 321 level is reported. For open-ended questions, we use a proprietary model, o3-mini, as a judge, which
 322 demonstrates high agreement with human evaluations (Sec 4.4).
 323

324
 325 Table 3: Results of Proprietary and Open-Source Models on HumanPCR. Macro-average accuracy
 326 of tasks within each level and dimension is reported. "†" indicates that the reported performance is
 327 based only on a subset of the HumanPCR dataset. Full results is in Appendix F.

Models	Multi-Choice											Open	
	Human-P						Human-C					Human-R	Acc.
	Spa.	Pos.	App.	Con.	Ide.	avg.	Beh.	Pro.	Rel.	Sce.	avg.		
Random	20.00	20.00	20.00	20.00	35.00	23.00	21.00	20.00	20.00	20.00	20.25	21.78	0.00
Human [†]	89.98	81.44	87.02	87.28	96.43	88.43	69.24	81.42	78.95	65.83	73.86	81.95	73.17
Open-source Models													
Aria (Li et al., 2024b)	79.12	39.72	61.32	36.58	76.53	55.53	48.85	41.31	50.08	55.30	48.44	51.98	28.96
LongViLA-256 (Chen et al., 2024b)	75.96	31.84	63.28	38.87	41.63	49.41	44.97	31.91	51.12	53.20	44.51	46.96	21.49
NViLA-8B (Liu et al., 2024a)	76.39	35.40	64.53	42.53	47.95	52.22	44.10	28.59	50.69	53.18	43.23	47.72	22.17
MiniCPM-V-2.6 (Yao et al., 2024)	74.07	36.90	57.77	35.56	70.47	52.08	47.39	28.66	50.46	54.67	44.32	48.20	16.74
MiniCPM-o-2.6 (OpenBMB, 2024)	80.08	43.80	63.58	36.95	71.26	56.88	47.83	31.43	53.98	55.38	46.23	51.56	21.04
LLaVA-Video-7B (Zhang et al., 2024c)	74.73	37.13	58.03	32.62	63.50	50.99	46.18	36.26	49.54	51.77	45.37	48.18	27.60
LLaVA-Video-72B (Zhang et al., 2024c)	76.64	42.97	71.68	56.54	63.63	60.49	51.74	43.73	55.41	60.92	52.41	56.45	28.28
LLaVA-OneVision-7B (Li et al., 2024a)	77.95	36.33	60.03	34.13	54.63	51.02	47.67	35.56	52.40	51.06	46.02	48.52	22.85
LLaVA-OneVision-72B (Li et al., 2024a)	82.57	44.77	70.40	57.79	71.95	62.96	51.53	43.19	58.17	61.52	52.99	57.98	27.60
Oryx-1.5-7B (Liu et al., 2024b)	74.62	36.48	62.36	42.49	39.18	50.68	44.21	34.37	51.98	49.21	44.32	47.50	22.17
Oryx-1.5-32B (Liu et al., 2024b)	82.08	40.86	64.88	47.90	45.00	55.52	47.61	44.61	54.53	57.51	50.68	53.10	28.51
Qwen2.5-VL-7B (Bai et al., 2025)	78.66	42.20	62.33	30.68	41.32	51.23	49.73	32.66	51.89	55.83	46.65	48.94	26.24
Qwen2.5-VL-72B (Bai et al., 2025)	82.11	50.00	68.70	43.76	41.32	57.94	55.77	46.49	53.23	64.43	54.48	56.21	34.39
InternVL2.5-8B (Chen et al., 2024c)	79.43	41.68	60.37	36.69	75.45	55.83	48.53	39.13	52.24	56.47	48.51	52.17	23.53
InternVL2.5-38B (Chen et al., 2024c)	84.34	45.14	68.70	50.02	84.29	63.07	53.89	55.79	54.44	63.17	56.76	59.92	35.97
InternVL2.5-78B (Chen et al., 2024c)	84.80	44.68	69.31	50.87	81.24	62.95	57.54	53.93	57.24	65.20	58.21	60.58	33.94
InternVL3-8B (Zhu et al., 2025a)	81.64	40.54	67.20	38.22	72.84	57.46	51.39	40.86	55.00	59.15	50.97	54.21	31.45
InternVL3-38B (Chen et al., 2024d)	84.73	49.55	69.16	58.08	85.89	66.15	57.86	55.38	59.01	66.02	59.32	62.74	35.75
InternVL3-78B (Zhu et al., 2025a)	86.54	46.46	73.39	50.82	86.42	65.34	57.96	54.31	59.78	70.21	60.20	62.77	37.56
Proprietary Models													
Doubao-1.5-vision-pro (ByteDance, 2024)	72.50	36.96	67.19	37.61	78.29	55.32	45.96	45.20	46.00	53.67	47.56	51.44	32.81
Grok-2-Vision (xAI, 2024)	57.83	30.97	57.51	41.14	50.21	46.01	46.51	42.42	42.27	56.52	46.67	46.34	36.20
Claude-3.5-Sonnet-v2 (Anthropic, 2024)	67.99	39.84	59.35	44.68	66.26	53.36	50.39	46.88	49.08	59.19	51.12	52.24	39.59
Gemini-1.5-Flash (Team et al., 2024)	54.99	38.34	53.78	32.82	54.45	45.83	47.63	41.92	44.64	51.81	46.23	46.03	35.97
Gemini-1.5-Pro (Team et al., 2024)	66.80	45.62	56.04	39.34	69.03	53.45	51.67	44.84	50.16	61.81	51.69	52.57	40.05
Gemini-2.0-Flash (Google DeepMind, 2024)	76.42	47.46	63.75	52.32	73.08	60.28	53.09	42.27	54.37	60.76	52.01	56.14	38.01
Gemini-2.5-Flash (Comanici et al., 2025)	82.01	48.10	69.41	49.37	93.50	64.66	54.05	49.19	57.27	62.56	55.38	60.02	43.44
GPT-4o (Hurst et al., 2024)	70.14	40.56	55.46	33.60	35.11	47.41	52.01	38.93	48.85	60.14	49.33	48.37	41.40
o4-mini (OpenAI, 2025)	80.69	53.13	71.86	41.09	85.89	64.13	61.10	54.43	61.68	65.97	60.42	62.28	53.39

4.2 MAIN RESULTS

Table 3 presents the main results of HumanPCR. Our principal findings are summarized as follows: **Current MLLMs are far from reliable human-centric understanding.** A significant gap exists across all levels, with humans outperforming the best MLLMs by over 15%. Leading models like InternVL3-78B achieve average accuracies of only 63.66% on Human-P&C, lagging behind the human baseline of 81.95%. While models show promise in basic tasks like *Spatiality*, the deficits in fine-grained perception (*Posture*, *Contact*) and high-level understanding (*Procedure*, *Relation*) underscore the need for the detailed probing evaluation that HumanPCR provides.

Open-source models rival in perception and comprehension, lag in reasoning. On Human-P and Human-C, open-source models match proprietary ones. Notably, InternVL3-78B surpasses the top proprietary model, o4-mini. However, they underperform in reasoning—most remain below 30% accuracy on Human-R, whereas all proprietary models exceed this value. Models like o4-mini and Gemini-2.5-Flash illustrate the advantages of proprietary designs for reasoning. While open-source models match proprietary ones at perception and comprehension, they struggle on reasoning tasks involving complex visual evidence.

Understanding human-centric scenes reflects general capabilities. The consistent poor performance on dimension *Posture*, *Contact*, *Behavior*, and *Procedure* points to fundamental limitations that transcend human-centric scenarios. These results expose core deficiencies in fine-grained spatial perception (especially with occlusion) and in the temporal understanding necessary to complex, long-term activities. Therefore, the challenges presented in HumanPCR do not merely identify gaps in human-centric understanding but also reflect general, critical shortcomings in current MLLMs.

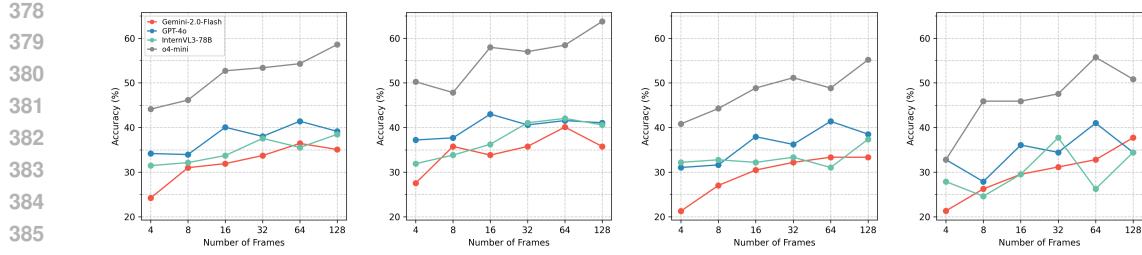


Figure 6: Effect of frame sampling on Human-R. (a) Overall accuracy. (b-d) Accuracy grouped by the number of visual evidence required in the question: (b) 2–3 evidence, (c) 4–5 evidence, (d) 6 or more evidence. Increasing frames shows varying impact depending on visual complexity.

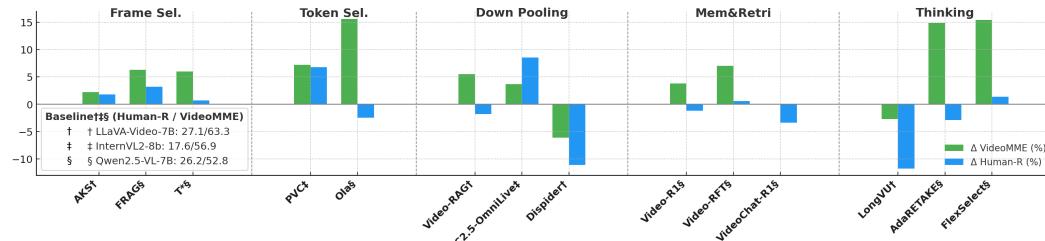


Figure 7: Accuracy gain over video understanding baseline methods on Human-R and Video-MME. See the full configuration of them in Appendix C.1

4.3 DELVING INTO VISUAL REASONING ON MULTIPLE EVIDENCE

On Human-R, we analyze the characteristics and limitations of MLLMs’ reasoning ability.

Effects of frame number. As shown in Figure 6, merely increasing the input frame count yields negligible accuracy gains for most models. Notably, only the reasoning-oriented o4-mini improves consistently, implying that stronger reasoning is needed to make full use of broader visual context. This trend is amplified as the reasoning challenge intensifies: when a problem requiring integrating more pieces of visual evidence, overall accuracy drops. In these more complex scenarios, the marginal benefit of adding frames diminishes, even becoming detrimental in cases requiring six or more evidence items. This suggests a larger visual context can introduce distractors, complicating the evidence extraction and integration process when the core reasoning task becomes more demanding.

Takeaway: *More frames may mitigate perceptual gaps, but cannot substitute for the core reasoning ability required to effectively utilize broader visual contexts.*

Does advanced video understanding configuration help? We investigate advanced configurations to determine if they could address the challenges in Human-R. (1) **Visual context extraction.** As shown in Figure 7, techniques that are effective on standard benchmarks like Video-MME (Fu et al., 2024), such as token selection and memory-based retrieval, see a significant performance drop on Human-R. This performance gap verifies that integrating multiple visual cues required by Human-R presents a unique challenge that cannot be solved by simple query-guided or heuristic matching methods. (2) **Test-time computation.** Best-of-N (BoN) sampling consistently boosts performance by over 5%, with gains scaling with better reward models. In contrast, Self-Refine offers only marginal benefits. The strong performance of specialized reasoning models like Video-R1 and the proprietary o3 (Figure 7, Table 4) underscores that enhancing the core reasoning process itself is critical.

Takeaway: *Complex reasoning demands finer context management than general understanding; simple, heuristic extraction fail to generalize to problems requiring multi-faceted evidence.*

Error analysis. Manual analysis of errors within a subset of 200 questions for top models on Human-R (shown in Figure 8a) reveals the predominant failure is visual-evidence extraction, specifically in identifying proactive visual evidence (in Figure 8b). This suggests models often treat the question as a retrieval shortcut, bypassing necessary complex reasoning. Our findings support that while scaling the frames significantly reduces errors of Gemini-2.0-flash in missing referred evidence, it provides

Table 4: Results for test-time scaling strategies on Human-R. BoN uses 2^M candidates and Self-Refine performs M iterations. Results of more models are in Table 12.

Model	Method	Reward Model	Direct	M=0 (CoT)	M=1	M=2	M=3
GPT-4o	BoN	GPT-4o (Self)			43.21	45.70	45.93
	BoN	Gemini-2.5-Flash	32.81	41.40	44.57	45.02	46.38
	BoN	o4-mini			44.11	46.38	45.02
	Self-Refine	-			39.59	39.82	40.95
Gemini-2.5-Pro	Thinking	-	-	51.13	-	-	-
Claude-3.7-sonnet	Thinking	-	-	40.50	-	-	-
o3	Thinking	-	-	59.28	-	-	-

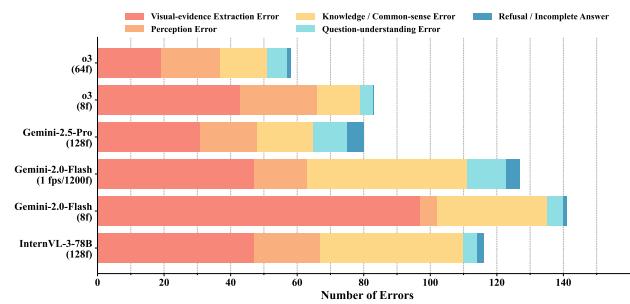


Figure 8: Distribution of error types on Human-R across top models (“f”: the number of sampled frames). (a) Counts of 5 major error types. Most errors are visual-related. (b) Fine-grained breakdown of visual-related errors. Proactive evidence is more frequently missed than referred evidence.

minimal benefit for finding proactive evidence. Consequently, models with superior reasoning, such as Gemini-2.5-Pro (Comanici et al., 2025) and Claude-3.7-sonnet (Anthropic, 2025), outperform high-frame-count models like Gemini-2.0-Flash, even with fewer frames. Furthermore, models exhibit distinct error tendencies: For example, while Gemini-2.5-Pro reduces proactive evidence omissions compared to o3, it tends to introduce more irrelevant information.

Takeaway: Proactive evidence extraction is a major practical challenge on Human-R, and difficulties in selecting implicit visual cues can limit performance, suggesting that evaluation setups should discourage purely query-driven shortcuts.

Interventions on evidence extraction difficulty. To further probe the role of proactive evidence, we conduct an intervention study on Human-R, progressively lowering the difficulty of visual evidence extraction while keeping the question and answer fixed. We enrich prompts with three levels of guidance: (1) **Relation awareness** (Level 1), giving generic relation-type hints (e.g., “check surrounding context”); (2) **Logic awareness** (Level 2), additionally highlighting which referred cues are logically linked to potential proactive evidence; and (3) **Proactive guidance** (Level 3), adding vague descriptions that loosely point to the proactive evidence without revealing the reasoning steps or answer. As shown in Table 6, Level 1/2 hints yield only modest gains, whereas Level 3 consistently improves accuracy by about 10–13 points across models. This indicates that directly easing proactive evidence extraction has a much larger impact than generic relational or logical hints, providing intervention-based support for our insight that proactive evidence extraction is a prominent practical weakness of current models on complex video reasoning.

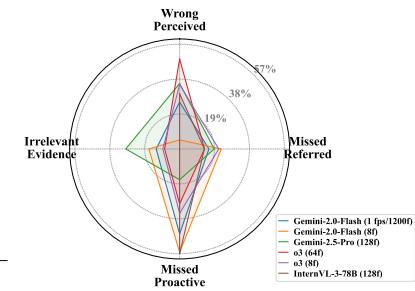
Takeaway: *On Human-R, vague guidance that directly targets proactive evidence yields the largest gains, reinforcing proactive evidence extraction as a prominent practical weakness in complex video reasoning.*

4.4 FURTHER ANALYSIS

Mixed CoT effects and diagnostic value of Human-P/C. Figure 9a shows that CoT has mixed effects on Human-P/C: proprietary models typically improve, whereas many open-source models see limited or even negative gains, and the trend already varies across high-level dimensions, with visually complex and understanding-related questions benefiting more than simple attribute-perception tasks. Figure 9b further reveals substantial spread in both accuracy and Δ (cot–direct) across neighboring

Table 5: Benchmark evaluation across input modalities on GPT-4o. ‘Image’ uses the central frame; ‘Video’ samples 32 uniform frames.

Benchmark	Text (ratio↓)	Image (ratio↓)	Video
Video-MME	44.00 (61.1%)	54.14 (75.0%)	71.85
LongVideoBench	40.38 (69.0%)	41.70 (71.3%)	58.50
Human-R	2.94 (7.3%)	11.08 (26.8%)	41.40



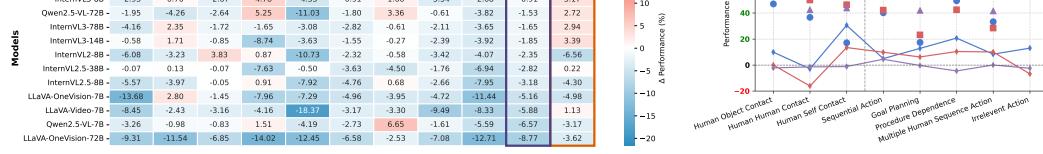
(a)

(b)

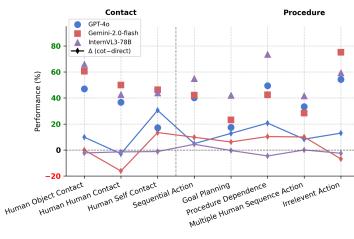
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 6: Intervention on evidence extraction for Human-R with various evidence hints. Level 1/2/3 provide generic relational, logical hints, and vague descriptions of proactive evidence, respectively.

Model	Orig.	Level 1	Level 2	Level 3
o4-mini	53.39	52.26 (-1.13)	54.07 (+0.68)	63.35 (+9.96)
GPT-4o	41.40	41.62 (+0.22)	44.11 (+2.71)	52.35 (+10.95)
Gemini-2.5-Flash	43.44	41.40 (-2.04)	45.93 (+2.49)	53.40 (+9.96)
Qwen-2.5-VL-72B	34.39	34.61 (+0.22)	38.46 (+4.07)	47.74 (+13.35)



(a)



(b)

Figure 9: Ablation study examining the impact of CoT. (a) Relative improvements of CoT of models on all dimensions and levels. (b) Detailed performance across tasks in the *Contact* and *Procedure* dimensions. “ Δ (cot-direct)” represents the accuracy difference between direct answers and CoT-prompted responses.

subtasks within the same dimension, with some tasks consistently benefiting from CoT while others degrade and model rankings change accordingly. These heterogeneous patterns indicate that Human-P/C subtasks are non-redundant and provide diagnostic resolution that would be lost under a single coarse “action” or “relation” score.

Human-R Quality Check To validate the quality of Human-R, we examine potential single-frame and textual biases and compare them with other impactful benchmarks. As shown in Table 5, Human-R exhibits **minimal bias**, unlike datasets such as Video-MME where strong results can be achieved using only text or a single frame, revealing redundancy and bias in evaluating full video reasoning. This confirms that Human-R tasks require genuine temporal and multi-evidence reasoning, demonstrating the effectiveness of our rigorous curation and expert review.

Reliability of LLM-based Judges. To verify evaluation robustness, we compared multiple LLM judges against 4000 human annotations, as in Figure 10. All judges produced highly consistent model rankings, with strong Pearson correlations to human accuracy (higher than 0.64) and strong alignment on pairwise win-fail preferences (around 0.85). Additional analyses (Appendix C.3) show that annotated CoT could improve agreement with humans while no self-preference of LLM judge is observed.

5 CONCLUSION

We present HumanPCR, a comprehensive benchmark for evaluating how well MLLMs understand humans across diverse scenarios. First, it probes MLLMs’ nuanced visual understanding in human-centric scenarios through a systematic, fine-grained taxonomy. Second, it introduces a paradigm for video reasoning that integrates disparate visual evidence and proactively seeks implicit visual cues. Consequently, HumanPCR reveals persistent shortcomings and yields diagnostic insights. Specifically, MLLMs not only face challenges detailed space perception, temporal understanding, and mind modeling, but also often fail to proactively extract visual evidence in reasoning. Limitations of HumanPCR include reliance on academic datasets; future work will extend to professional domains and efficient annotation methods.

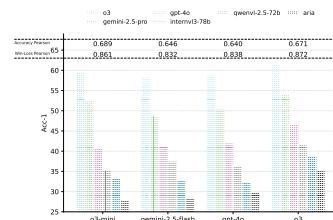


Figure 10: Model performance under multiple judge models and their agreement to Human judge.

540 ETHICS STATEMENT
541

542 We have prioritized ethical considerations throughout the creation and planned release of HumanPCR.
 543 **1. Data Sourcing and Privacy:** Our benchmark is built upon previously published, public datasets
 544 and supplemented with publicly available internet videos. To respect copyright and the privacy of
 545 content creators, we will only release metadata (e.g., public video IDs and timestamps) for internet-
 546 sourced videos, not the raw video files themselves. Our full data hosting and usage policy is detailed
 547 in our Data Use Agreement (DUA) in Figure 25. **2. Annotation and Distribution Safeguards:**
 548 During the annotation process, all annotators and reviewers were instructed to filter out questions
 549 that require time-sensitive, private, or personally identifiable information for their resolution. The
 550 HumanPCR benchmark is intended strictly for non-commercial, academic research purposes. The
 551 DUA explicitly prohibits any use of the data for biometric identification, tracking, surveillance, or the
 552 development of related applications. **3. Compliance and Responsibility:** For any source data that
 553 we are permitted to host, we require end-users to agree to the original dataset’s license terms. We are
 554 committed to being responsible stewards of this data and will promptly respond to any inquiries or
 555 takedown requests from copyright holders.
 556

557 REPRODUCIBILITY STATEMENT
558

559 We are committed to ensuring the full reproducibility of our work. **1. Code and Prompts:** All
 560 prompts used for model evaluation are detailed in Appendix C.2. The evaluation code has been
 561 included in the supplementary materials. Configurations for all evaluated models are detailed in
 562 Appendix C. **2. Data and Annotations:** All annotations created for HumanPCR will be released to
 563 public in accordance with our DUA upon acceptance. For the small subset of source data we cannot
 564 host directly (due to original license or copyright), full metadata and data processing scripts would
 565 be provided to reconstruct the dataset. Our data release policy has been detailed in Appendix E. A
 566 portion of the data is available in the supplementary material to demonstrate its structure.
 567

568 REFERENCES
569

570 Anthropic. Introducing Claude 3.5 Sonnet. <https://www.anthropic.com/news/3-5-models-and-computer-use>, June 2024.

572 Anthropic. Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, February 2025.

575 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 576 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 577 2025.

578 Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi,
 579 Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a language
 580 modeling approach to audio generation. *IEEE/ACM transactions on audio, speech, and language
 581 processing*, 31:2523–2533, 2023.

583 ByteDance. Doubao. <https://www.volcengine.com/product/doubao>, 2024.

585 Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
 586 A large-scale video benchmark for human activity understanding. In *Proceedings of the ieee
 587 conference on computer vision and pattern recognition*, pp. 961–970, 2015.

588 Zikui Cai, Andrew Wang, Anirudh Satheesh, Ankit Nakhawa, Hyunwoo Jae, Keenan Powell, Minghui
 589 Liu, Neel Jay, Sungbin Oh, Xiayao Wang, et al. Morse-500: A programmatically controllable video
 590 benchmark to stress-test multimodal reasoning. *arXiv preprint arXiv:2506.05523*, 2025.

592 Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M 3 cot: A novel bench-
 593 mark for multi-domain multi-step multi-modal chain-of-thought. *arXiv preprint arXiv:2405.16473*,
 2024a.

594 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 595 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 596 long videos. *arXiv preprint arXiv:2408.10188*, 2024b.

597

598 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 599 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
 600 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024c.

601 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 602 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 603 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision*
 604 and pattern recognition, pp. 24185–24198, 2024d.

605

606 Junhao Cheng, Yuying Ge, Teng Wang, Yixiao Ge, Jing Liao, and Ying Shan. Video-holmes: Can
 607 mllm think like holmes for complex video reasoning? *arXiv preprint arXiv:2505.21374*, 2025.

608 Yuanzheng Ci, Yizhou Wang, Meilin Chen, Shixiang Tang, Lei Bai, Feng Zhu, Rui Zhao, Fengwei
 609 Yu, Donglian Qi, and Wanli Ouyang. Unihep: A unified model for human-centric perceptions.
 610 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 611 17840–17852, 2023.

612

613 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 614 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 615 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 616 *arXiv preprint arXiv:2507.06261*, 2025.

617

618 Jieming Cui, Ziren Gong, Baoxiong Jia, Siyuan Huang, Zilong Zheng, Jianzhu Ma, and Yixin Zhu.
 619 Probio: A protocol-guided multimodal dataset for molecular biology lab. *Advances in Neural*
 620 *Information Processing Systems*, 36:41543–41571, 2023.

621

622 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Benyou
 623 Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in mllms. *arXiv preprint*
arXiv:2503.21776, 2025.

624

625 Yao Feng, Jing Lin, Sai Kumar Dwivedi, Yu Sun, Priyanka Patel, and Michael J Black. Posegpt:
 626 Chatting about 3d human pose. *CoRR*, 2023.

627

628 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 629 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
 benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

630

631 Google DeepMind. Introducing gemini 2.0: Our new ai model for the agen-
 632 tic era. [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/)
 633 google-gemini-ai-update-december-2024/, 2024.

634

635 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
 636 Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 637 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF conference on computer vision*
 and pattern recognition, pp. 18995–19012, 2022.

638

639 Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
 640 Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
 641 Understanding skilled human activity from first-and third-person perspectives. In *Proceedings of*
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19383–19400, 2024.

642

643 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 644 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 645 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

646

647 Songhao Han, Wei Huang, Hairong Shi, Le Zhuo, Xiu Su, Shifeng Zhang, Xu Zhou, Xiaojuan Qi,
 648 Yue Liao, and Si Liu. Videospresso: A large-scale chain-of-thought dataset for fine-grained video
 649 reasoning via core frame selection. *arXiv preprint arXiv:2411.14794*, 2024.

648 Wenyi Hong, Yean Cheng, Zhuoyi Yang, Weihan Wang, Lefan Wang, Xiaotao Gu, Shiyu Huang,
 649 Yuxiao Dong, and Jie Tang. Motionbench: Benchmarking and improving fine-grained video
 650 motion understanding for vision language models. *arXiv preprint arXiv:2501.02955*, 2025.

651 Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan Zhang, Xiang Yue, Bo Li, and Ziwei Liu.
 652 Video-mmmu: Evaluating knowledge acquisition from multi-discipline professional videos. *arXiv
 653 preprint arXiv:2501.13826*, 2025.

654 De-An Huang, Subhashree Radhakrishnan, Zhiding Yu, and Jan Kautz. Frag: Frame selec-
 655 tion augmented generation for long video and long document understanding. *arXiv preprint
 656 arXiv:2504.17447*, 2025.

657 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 658 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 659 arXiv:2410.21276*, 2024.

660 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 661 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint
 662 arXiv:2412.16720*, 2024.

663 Simindokht Jahangard, Zhixi Cai, Shiki Wen, and Hamid Rezatofighi. Jrdb-social: A multifaceted
 664 robotic dataset for understanding of context and dynamics of human interactions within social
 665 groups. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 666 pp. 22087–22097, 2024.

667 Chuanyang Jin, Yutong Wu, Jing Cao, Jiannan Xiang, Yen-Ling Kuo, Zhiting Hu, Tomer Ullman,
 668 Antonio Torralba, Joshua B Tenenbaum, and Tianmin Shu. Mmtom-qa: Multimodal theory of
 669 mind question answering. *arXiv preprint arXiv:2401.08743*, 2024.

670 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 671 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 672 arXiv:2408.03326*, 2024a.

673 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 674 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 675 2023.

676 Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Fan Zhou,
 677 Chengan Huang, Yanpeng Li, et al. Aria: An open multimodal native mixture-of-experts model.
 678 *arXiv preprint arXiv:2410.05993*, 2024b.

679 Keliang Li, Zaifei Yang, Jiae Zhao, Hongze Shen, Ruibing Hou, Hong Chang, Shiguang Shan, and
 680 Xilin Chen. Herm: Benchmarking and enhancing multimodal llms for human-centric understanding.
 681 *arXiv preprint arXiv:2410.06777*, 2024c.

682 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 683 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 684 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 685 22195–22206, 2024d.

686 Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao,
 687 Yi Wang, and Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforcement
 688 fine-tuning. *arXiv preprint arXiv:2504.06958*, 2025.

689 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 690 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 691 2023.

692 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 693 neural information processing systems*, 36:34892–34916, 2023.

694 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 695 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. *arXiv
 696 preprint arXiv:2412.04468*, 2024a.

702 Zuyan Liu, Yuhao Dong, Ziwei Liu, Winston Hu, Jiwen Lu, and Yongming Rao. Oryx mllm: On-
 703 demand spatial-temporal understanding at arbitrary resolution. *arXiv preprint arXiv:2409.12961*,
 704 2024b.

705 Zuyan Liu, Yuhao Dong, Jiahui Wang, Ziwei Liu, Winston Hu, Jiwen Lu, and Yongming Rao. Ola:
 706 Pushing the frontiers of omni-modal language model with progressive modality alignment. *arXiv*
 707 *preprint arXiv:2502.04328*, 2025.

708 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 709 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 710 of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

711 Yongdong Luo, Xiawu Zheng, Xiao Yang, Guilin Li, Haojia Lin, Jinfa Huang, Jiayi Ji, Fei Chao, Jiebo
 712 Luo, and Rongrong Ji. Video-rag: Visually-aligned retrieval-augmented long video comprehension.
 713 *arXiv preprint arXiv:2411.13093*, 2024.

714 Zelun Luo, Wanze Xie, Siddharth Kapoor, Yiyun Liang, Michael Cooper, Juan Carlos Niebles, Ehsan
 715 Adeli, and Fei-Fei Li. Moma: Multi-object multi-actor activity parsing. *Advances in neural*
 716 *information processing systems*, 34:17939–17955, 2021.

717 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
 718 benchmark for very long-form video language understanding. *Advances in Neural Information*
 719 *Processing Systems*, 36:46212–46244, 2023.

720 OpenAI. Introducing OpenAI o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025.

721 OpenBMB. Minicpm-o: An open-source tool for compressing llms with orthogonal projection.
 722 <https://github.com/OpenBMB/MinicPM-o>, 2024. Accessed: 2024-05-21.

723 Chau Pham, Hoang Phan, David Doermann, and Yunjie Tian. Personalized large vision-language
 724 models. *arXiv preprint arXiv:2412.17610*, 2024.

725 Chiara Plizzari, Alessio Tonioni, Yongqin Xian, Achin Kulshrestha, and Federico Tombari. Omnia
 726 de egotempo: Benchmarking temporal understanding of multi-modal llms in egocentric videos. In
 727 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 24129–24138, 2025.

728 Yukun Qi, Yiming Zhao, Yu Zeng, Xikun Bao, Wenxuan Huang, Lin Chen, Zehui Chen, Jie Zhao,
 729 Zhongang Qi, and Feng Zhao. Vcr-bench: A comprehensive evaluation framework for video
 730 chain-of-thought reasoning. *arXiv preprint arXiv:2504.07956*, 2025.

731 Rui Qian, Shuangrui Ding, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahua Lin, and
 732 Jiaqi Wang. Dispider: Enabling video llms with active real-time interaction via disentangled
 733 perception, decision, and reaction. *arXiv preprint arXiv:2501.03218*, 2025.

734 Lixiong Qin, Shilong Ou, MiaoXuan Zhang, Jiangning Wei, Yuhang Zhang, Xiaoshuai Song, Yuchen
 735 Liu, Mei Wang, and Weiran Xu. Face-human-bench: A comprehensive benchmark of face and
 736 human understanding for multi-modal assistants. *arXiv preprint arXiv:2501.01243*, 2025.

737 MohammadHossein Rezaei, Yicheng Fu, Phil Cuvin, Caleb Ziems, Yanzhe Zhang, Hao Zhu, and
 738 Diyi Yang. Egonormia: Benchmarking physical social norm understanding. *arXiv preprint*
 739 *arXiv:2502.20490*, 2025.

740 Mohammadreza Reza Salehi, Jae Sung Park, Aditya Kusupati, Ranjay Krishna, Yejin Choi, Hanna
 741 Hajishirzi, and Ali Farhadi. Actionatlas: A videoqa benchmark for domain-specialized action
 742 recognition. *Advances in Neural Information Processing Systems*, 37:137372–137402, 2024.

743 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 744 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adaptive
 745 compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.

746 Enxin Song, Wenhao Chai, Weili Xu, Jianwen Xie, Yuxuan Liu, and Gaoang Wang. Video-mmlu:
 747 A massive multi-discipline lecture understanding benchmark. *arXiv preprint arXiv:2504.14693*,
 748 2025.

756 Shixiang Tang, Cheng Chen, Qingsong Xie, Meilin Chen, Yizhou Wang, Yuanzheng Ci, Lei Bai,
 757 Feng Zhu, Haiyang Yang, Li Yi, et al. Humanbench: Towards general human-centric perception
 758 with projector assisted pretraining. In *Proceedings of the IEEE/CVF Conference on Computer*
 759 *Vision and Pattern Recognition*, pp. 21970–21982, 2023.

760

761 Xi Tang, Jihao Qiu, Lingxi Xie, Yunjie Tian, Jianbin Jiao, and Qixiang Ye. Adaptive keyframe
 762 sampling for long video understanding. *arXiv preprint arXiv:2502.21271*, 2025.

763

764 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 765 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 766 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

767

768 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 769 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 770 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

771

772 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 773 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 774 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

775

776 Qi Wang, Yanrui Yu, Ye Yuan, Rui Mao, and Tianfei Zhou. Videorft: Incentivizing video reasoning
 777 capability in mllms via reinforced fine-tuning. *arXiv preprint arXiv:2505.12434*, 2025a.

778

779 Xiao Wang, Qingyi Si, Jianlong Wu, Shiyu Zhu, Li Cao, and Liqiang Nie. Adaretake: Adaptive
 780 redundancy reduction to perceive longer for video-language understanding. *arXiv preprint*
 781 *arXiv:2503.12559*, 2025b.

782

783 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 784 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 785 *neural information processing systems*, 35:24824–24837, 2022.

786

787 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 788 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 789 37:28828–28857, 2024.

790

791 xAI. Grok-2 beta release. <https://x.ai/news/grok-2>, May 2024.

792

793 Cheng Xu, Xiaofeng Hou, Jiacheng Liu, Chao Li, Tianhao Huang, Xiaozhi Zhu, Mo Niu, Lingyu
 794 Sun, Peng Tang, Tongqiao Xu, et al. Mmbench: Benchmarking end-to-end multi-modal dnns and
 795 understanding their hardware-software implications. In *2023 IEEE International Symposium on*
 796 *Workload Characterization (IISWC)*, pp. 154–166. IEEE, 2023.

797

798 Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
 799 models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

800

801 Chenyu Yang, Xuan Dong, Xizhou Zhu, Weijie Su, Jiahao Wang, Hao Tian, Zhe Chen, Wenhui Wang,
 802 Lewei Lu, and Jifeng Dai. Pvc: Progressive visual token compression for unified image and video
 803 processing in large vision-language models. *arXiv preprint arXiv:2412.09613*, 2024a.

804

805 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 806 space: How multimodal large language models see, remember, and recall spaces. *arXiv preprint*
 807 *arXiv:2412.14171*, 2024b.

808

809 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 810 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 811 *arXiv:2408.01800*, 2024.

Jinhui Ye, Zihan Wang, Haosen Sun, Keshigeyan Chandrasegaran, Zane Durante, Cristobal Eyza-
 812 quirre, Yonatan Bisk, Juan Carlos Niebles, Ehsan Adeli, Li Fei-Fei, et al. Re-thinking temporal
 813 search for long-form video understanding. In *Proceedings of the Computer Vision and Pattern*
 814 *Recognition Conference*, pp. 8579–8591, 2025.

810 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 811 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 812 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
 813 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

814 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 815 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, et al. Lmms-eval: Reality check on the evaluation
 816 of large multimodal models. *arXiv preprint arXiv:2407.12772*, 2024a.

817 Pan Zhang, Xiaoyi Dong, Yuhang Cao, Yuhang Zang, Rui Qian, Xilin Wei, Lin Chen, Yifei Li, Junbo
 818 Niu, Shuangrui Ding, et al. Internlm-xcomposer2. 5-omnilive: A comprehensive multimodal
 819 system for long-term streaming video and audio interactions. *arXiv preprint arXiv:2412.09596*,
 820 2024b.

821 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 822 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024c.

823 Yunzhu Zhang, Yu Lu, Tianyi Wang, Fengyun Rao, Yi Yang, and Linchao Zhu. Flexselect: Flexible
 824 token selection for efficient long video understanding. *arXiv preprint arXiv:2506.00993*, 2025.

825 Yilun Zhao, Lujing Xie, Haowei Zhang, Guo Gan, Yitao Long, Zhiyuan Hu, Tongyan Hu, Weiyuan
 826 Chen, Chuhan Li, Junyang Song, et al. Mmvu: Measuring expert-level multi-discipline video
 827 understanding. *arXiv preprint arXiv:2501.12380*, 2025.

828 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 829 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 830 understanding. *arXiv preprint arXiv:2406.04264*, 2024a.

831 Ting Zhou, Dao yuan Chen, Qirui Jiao, Bolin Ding, Yaliang Li, and Ying Shen. Humanvbench:
 832 Exploring human-centric video understanding capabilities of mllms with synthetic benchmark data.
 833 *arXiv preprint arXiv:2412.17574*, 2024b.

834 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
 835 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 836 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025a.

837 Kejian Zhu, Zhuoran Jin, Hongbang Yuan, Jiachun Li, Shangqing Tu, Pengfei Cao, Yubo Chen, Kang
 838 Liu, and Jun Zhao. Mmr-v: What’s left unsaid? a benchmark for multimodal deep reasoning in
 839 videos. *arXiv preprint arXiv:2506.04141*, 2025b.

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **SUMMARY OF APPENDIX**
865866 The appendix is organized as follows:
867868 • Details of the Taxonomy (Appendix A);
869 • Annotation Setup (Appendix B);
870 • Evaluation Setup (Appendix C);
871 • Additional Data Statistics (Appendix D);
872 • Public Release and Data Usage Terms (Appendix E);
873 • Additional Results (Appendix F);
874 • Additional Analysis (Appendix G);
875 • Use of Large Language Models (LLMs) (Appendix H).
876877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 A DETAILS OF TAXONOMY
919920 The comprehensive presentation of the full taxonomy of HumanPCR is shown in Figure 11.
921964 Figure 11: A comprehensive presentation of the full taxonomy.
965966 B ANNOTATION SETUP
967968 B.1 ANNOTATION AND FILTERING PROMPTS
969970 **Question Generation Prompts.** To automatically generate high-quality questions, we employ two
971 complementary strategies: LLM-based generation and template-based generation. In the LLM-based

972 pipeline, we feed GPT-4o with carefully crafted prompts augmented by comprehensive auxiliary
 973 information (see example prompts in Figure 12). In the template-based pipeline, we start from a set
 974 of seed templates and task the LLM with expanding them into a more diverse collection of question
 975 templates (examples appear in Figure 13).
 976

```

977
978     ### I will provide a caption about the spatial relationship of two
979     object, the label of the spatial relationship. For 3 inputs, you
980     will generate one diverse question for each input that can
981     examine the following aspects:
982     Correctly answer the multiple-choice exam about recognizing the
983     spatial relationship of two objects in the image, which is
984     described by the caption.
985
986     ### As for your questions, you should ensure:
987     1. Output only question text.
988     2. Anyone can not obtain the answer just by reading the question
989     text. Avoid implying answers in the questions.
990     3. Do not include specific visual details of the scene in the
991     question.
992     4. Use plain text. Do not use Markdown format.
993     5. Make the questions concise, simple and straightforward. Do NOT
994     add imaginary details to the questions.
995     6. Make the answer to the question point towards the spatial
996     relation label of the two objects.
997     7. Do NOT disclose the spatial relation label in the questions. Do
998     not say "caption" in questions.
999
1000    ### When announcing the question please label each question as '
1001    Question 1,2,3: [full question]'. Don't repeat the input.
1002
1003    ### The input form for an image will be:
1004    1.
1005    Spatial Relation Caption: {caption}
1006    Spatial Relation Label: {label}
1007
1008    2.
1009    Spatial Relation Caption: {caption}
1010    Spatial Relation Label: {label}
1011
1012    3.
1013    Spatial Relation Caption: {caption}
1014    Spatial Relation Label: {label}
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
```

Figure 12: Example prompt of LLM-based question generation used in the task Spatial Relation

1016 **Option Generation Prompts.** To generate high-quality options, we decouple option generation
 1017 from question generation. During option generation, we provide the LLM (GPT-4o) with the question,
 1018 its correct answer, and supplementary context. The model is then instructed to produce options that
 1019 are all pertinent to the question, with incorrect options crafted to be plausible yet wrong, thereby
 1020 increasing the overall difficulty. An example prompt employed for option generation is illustrated in
 1021 Figure 14.

1022 **Blind Filtering Prompt.** After acquiring the automatically generated annotations, we eliminate
 1023 any question that can be answered correctly without visual input. Specifically, we prompt GPT-4o
 1024 to provide its optimal answer to each question in the absence of the corresponding image or video.
 1025 Any question that is answered correctly across multiple runs—with the answer choices randomly

```

1026
1027 "What is the position of the person's hand in the picture?""
1028 "How is the person's hand positioned in the image?""
1029 "What is the state of the person's hand in the photo?""
1030 "How is the hand of the person in the picture?""
1031 "What condition is the person's hand in within the image?""
1032 "In the picture, what is the status of the person's hand?""
1033 "How does the person's hand appear in the photograph?""
1034 "What is the arrangement of the person's hand in the image?""
1035 "What is the specific condition of the person's hand in the picture?""
1036 "How exactly is the person's hand positioned in the image?""
1037 "What precise state is the person's hand in within the photo?""
1038 "Can you describe the exact state of the person's hand in the
1039 picture?""
1040 "What is the detailed posture of the person's hand in the image?""
1041 "How is the person's hand specifically arranged in the photograph?""
1042 "What particular position is the person's hand in within the image?""
1043 "How would you describe the exact condition of the person's hand in
1044 the picture?""
1045 "What is the exact gesture of the person's hand in the picture?""
1046 "How is the person's hand specifically posed in the image?""
1047 "What is the detailed form of the person's hand in the photo?""
1048 "Can you describe the precise hand gesture of the person in the
1049 picture?""
1050 "What is the specific shape of the person's hand in the image?""
1051 "How exactly is the person's hand configured in the photograph?""
1052 "What distinct position is the person's hand assuming in the image?""
1053 "How would you characterize the specific hand posture of the person
1054 in the picture?""

```

Figure 13: Example templates of template-based question generation used in the task Hand State. The ambiguous references in questions were subsequently identified and corrected by annotators.

1055
1056
1057 permuted each time—is subsequently discarded. The prompt employed for blind filtering is illustrated
1058 in Figure 15.

1060 B.2 ANNOTATION AND REVIEW INTERFACE

1061
1062 We designed personalized annotation and review interfaces to maximize annotation quality and
1063 streamline the entire workflow. The annotation interface guides each annotators to record the
1064 question, detailed reasoning steps, final answer, question category, and the relevant time interval. The
1065 review interface then requires reviewers to verify every annotated field and to assign both objective
1066 evaluations and subjective scores according to a comprehensive checklist. Finally, both interfaces
1067 include integrated messaging channels, enabling iterative feedback loops between annotators and
1068 reviewers and thus ensuring consistently high-quality annotations. A few snapshots of annotation and
1069 review interfaces is shown in Figure 16.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```

1080
1081
1082
1083
1084
1085     ### I will provide a caption about the spatial relationship of two
1086     object, the label of the spatial relationship, and the
1087     questions, and 3 diverse questions that can examine the
1088     following aspects:
1089     Correctly answer the multiple-choice exam about recognizing the
1090     spatial relationship of two objects in the image, which is
1091     described by the caption.
1092
1093     ### Based on the provided questions, I want you to create a
1094     difficult and diverse multiple-choice exam that tests the above
1095     aspects.
1096
1097     Each question should have 5 short answers, including 1 correct
1098     answer and 4 wrong answers. Each answer option should reflect a
1099     reasonable understanding of a broadly similar but
1100     detail-different image.
1101
1102     The wrong answers should diverge from the correct ones only by
1103     fine-grained and subtle details that are easily mistaken.
1104
1105     ### As for your answers, you should ensure:
1106     1. Only one answer will be correct.
1107     2. Answers are short and concise. Answers should not include
1108         irrelevant details that weren't queried.
1109     3. Use plain text. Do not use Markdown format.
1110     4. Make the answers concise, simple and straightforward. Do NOT add
1111         imaginary details to the answers.
1112     5. Do NOT change the given questions.
1113
1114     ### Print a question and then print each correct answer on a new
1115     line exactly as "Correct answer: [full answer]" Please print
1116     each wrong answer on a new line and print each wrong answer as
1117     "Wrong answer 1,2,3,4: [full answer]. Parse question-answer
1118     pairs by '\n\n'.
1119
1120     The input form will be:
1121     1.
1122     Spatial Relation Caption: CAPTION
1123     Spatial Relation Label: LABEL
1124     Questions: QUESTIONS
1125
1126     2.
1127     Spatial Relation Caption: CAPTION
1128     Spatial Relation Label: LABEL
1129     Questions: QUESTIONS
1130
1131     3.
1132     Spatial Relation Caption: CAPTION
1133     Spatial Relation Label: LABEL

```

Figure 14: Example prompt of option generation used in the task Spatial Relation

1134

1135

1136

1137

1138

1139 You will be presented with a multiple-choice question, each with a
 1140 fixed set of labeled options (e.g. A, B, C, D).

1141 Your task:

- 1142 1. You **must** choose exactly one of the provided --optionsA, B, C, etc.
- 1143 2. Do **not** say "'theres not enough information," "no answer", or refuse.
- 1144 3. If you genuinely cannot determine a "correct" answer, pick the option that seems **most plausible**.
- 1145 4. Only output a option label, e.g.: "A".

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

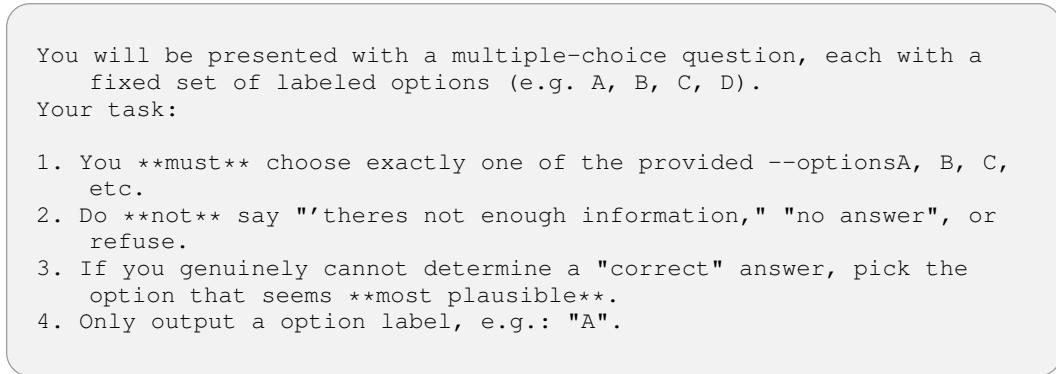


Figure 15: The prompt employed for blind filtering.

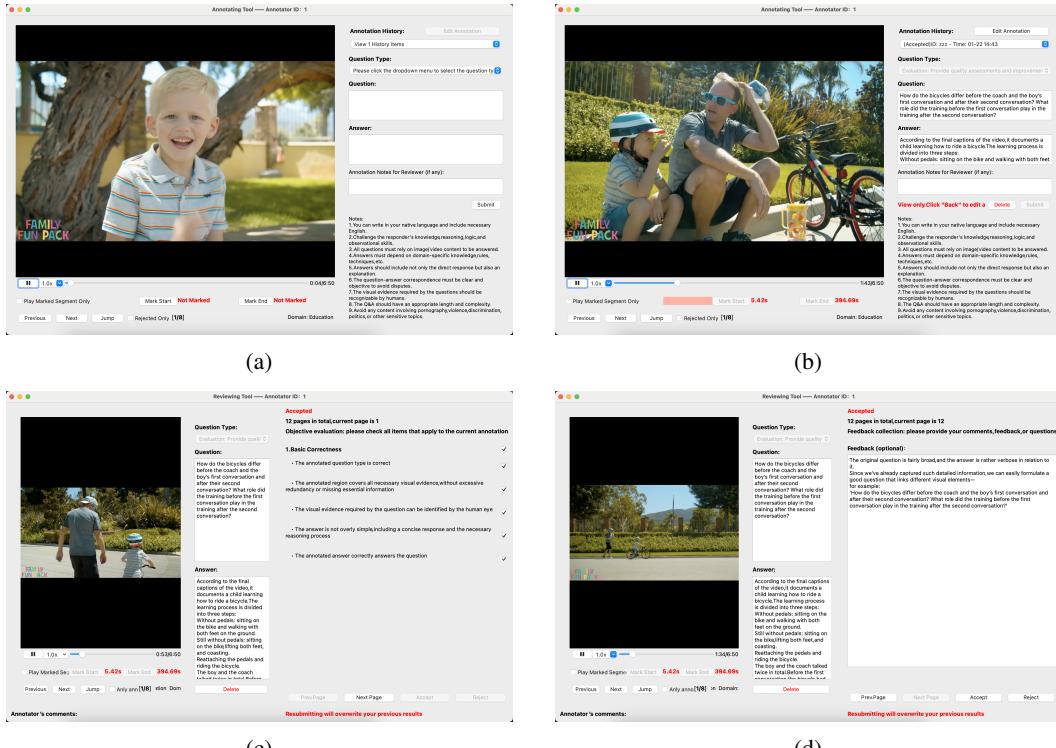


Figure 16: Snapshots of annotation and review interfaces.

1184

1185

1186

1187

1188 B.3 DETAILED ANNOTATION AND REVIEW PROTOCOL FOR HUMAN-R.
11891190 This subsection extensively describes the annotation and review processes employed in constructing
1191 Human-R, elaborating details beyond the main text.
11921193 Table 7: Example video tags of 11 human-related domains for Human-R.
1194

1195 Domain	1196 Tags
1196 Electric & Crafting	1197 Smart home devices, Kitchen appliances, Mobile device setup, Audio- 1198 visual equipment, Power tools usage, 3D printers, Smart thermostats, Electric scooters, Solar panel installation, Portable power stations
1199 Outdoor Leisure & Recreation	1200 Trail running, Paddleboarding fitness, Aqua aerobics, Slacklining, Out- 1201 door yoga, Hot yoga, Balance and stability training, Kickboxing sessions, Animal flow workouts, Recreational cycling
1202 Outdoor Adventure	1203 Obstacle course training, Mountain biking, Marathon training plans, 1204 Ultra-trail running, Kayaking expeditions, Rock-climbing practice, 1205 Snowboarding sessions, Zip-line experiences, Caving basics, White- water rafting
1206 Household	1207 Wound cleaning and bandaging, Correct thermometer use, Home blood- 1208 pressure checks, Blood-glucose meter steps, Oral hygiene care, PPE 1209 donning methods, Nail disinfection, Skin antisepsis steps, Baby-bathing technique, Umbilical-cord care
1210 Sports	1211 HIIT workouts, Powerlifting programs, CrossFit sessions, Spinning 1212 classes, Strength-training routines, Cardio circuits, Kettlebell workouts, Rowing-machine drills, Plyometric exercises, Speed-and-agility drills
1213 Transport	1214 People in the subway, Passenger behavior on buses, Rush-hour metro 1215 crowds, Live bus footage, Commuters on trains, Night-bus activities, 1216 Airport-terminal scenes, Cycling commuters, Ferry passenger journeys, Public-transport safety tips
1217 Indoor Leisure & Self Care	1218 Yoga sessions, Pilates classes, Stretching routines, Home blood-pressure 1219 check, Meditation practice, Resistance-band workouts, Prenatal yoga, Postnatal fitness, Power yoga, Handstand training
1220 Daily Spending	1221 Supermarket shopping vlog, Online-shopping process, Restaurant dining 1222 vlog, Ordering food delivery, Thrift-store shopping, Paying bills in per- 1223 son, Buying electronics in store, Unboxing subscription boxes, Booking movie tickets online, Coffee-shop visits
1224 Performance & Exhibition	1225 Attending a concert vlog, Street artists on trains, Metro musical perfor- 1226 mances, Flash mobs on buses, Visiting a museum, Public art in stations, 1227 Art-workshop vlog, Open-mic night, Theatre-performance vlog, Dance- recital backstage
1228 Education	1229 Health-education workshop, Diabetes-education session, First-aid train- 1230 ing demo, Speech-therapy practice, Clinical-trial walkthrough, Nutrition- 1231 counseling session, Community-health education, Occupational-health lesson, Travel-health briefing, CPR operation video
1232 Others	1233 Community health-center routine, Cancer-screening demo, Sleep-study 1234 procedure, Travel-health consultation, Language-therapy session, Geri- 1235 atric patient care, Dietitian counseling, Pain-management therapy, Vac- cination outreach, Sports-injury treatment

1236 B.3.1 ANNOTATION PROCESS
12371238 **Step 1: Video Collection.** To ensure domain coverage and contextual diversity, videos were
1239 sourced from 11 human-related domains (as illustrated in Figure 7) by two main channels. (a) We
1240 leveraged curated egocentric and third-person activity datasets—Ego4D (Grauman et al., 2022),
1241

1242 EgoExo4D (Grauman et al., 2024), ActivityNet (Caba Heilbron et al., 2015), and MOMA (Luo et al.,
 1243 2021)—and relied exclusively on their test or validation splits to avoid data leakage. (b) We collected
 1244 internet videos from YouTube using domain-specific auto-generated tags. Clips under five minutes or
 1245 containing low-quality or off-topic content were excluded. Only videos published within the past two
 1246 years were considered.

1247

1248 **Step 2: Annotation Protocol.** Visual reasoning involves extracting visual evidence across gran-
 1249 ularities and integrating them with world knowledge to perform inference. To ensure this, each
 1250 question must involve at least two distinct visual evidences—defined as either specific attributes (e.g.,
 1251 orientation, action) or relationships (e.g., events, interactions)—and must invoke knowledge triggered
 1252 by visual content. Trivial tasks like unconditioned counting or basic captioning are excluded.

1253

1254 To ensure diversity and evaliability, questions are created within one of five designated reasoning
 1255 types. *Causal Reasoning* involves identifying cause-effect relations in the video, such as “Why did
 1256 the person fall after stepping on the mat?”; *Prediction* involves anticipating what might happen next,
 1257 e.g., “What will the person likely do after picking up the toolbox?”; *Counter-Factual Reasoning* asks
 1258 about hypothetical alternatives, such as “What would have happened if the person had not pulled the
 1259 lever?”; *Assessment* asks for judgment based on visual evidence and criteria, such as “Which athlete
 1260 demonstrated better form during the lift?”; and *Planning* requires proposing a viable plan grounded
 1261 in context, such as “What should the worker do next to safely continue the repair?”

1262

1263 **Step 3: Annotator Qualification and Tasks.** Annotators were selected based on domain expertise.
 1264 For specialized domains such as Education, Sports, Electric & Crafting, and Transport, annotators
 1265 held relevant undergraduate degrees or had at least three years of experience. For general topics,
 1266 annotators were computer science graduate students unaffiliated with the author team. All annotators
 1267 underwent standardized training and trial tasks.

1268

1269 Each annotator was responsible for formulating open-ended questions that met the complexity criteria
 1270 and fell under one of the designated reasoning types. They provided concise, direct answers and
 1271 explicitly detailed the reasoning process, identifying essential visual evidence and associated knowl-
 1272 edge. Annotators were allowed to flexibly choose relevant video segments to preserve contextual
 1273 richness while avoiding oversimplification. To maintain fidelity in meaning, all annotations were
 1274 first created in the annotators’ native language and later translated professionally. Based on reviewer
 1275 feedback, annotators were allowed to revise their submissions once.

1276

B.3.2 REVIEW AND QUALITY CONTROL PROCESS

1277

1278 **Step 4: Initial Review.** Trained reviewers manually evaluated each submission for objectivity,
 1279 factual correctness, conciseness, and reasoning complexity. To encourage proactively seeking the
 1280 visual reasoning evidence, a focal point in this process was eliminating reference redundancy, where
 1281 questions explicitly mention or imply the essential visual evidence, thus undermining the need for
 1282 true reasoning. Instead, reviewers encouraged general references and annotated potential revision
 1283 points with detailed feedback. Annotations that passed this stage without major issues advanced to
 1284 the next round, while others were returned once for revision or rejected outright if irreparable.

1285

1286 **Step 5: Meta-Review.** Meta-reviewers, typically senior researchers, conducted a second round of
 1287 checks with a higher threshold for complexity and reasoning depth. They ensured each annotation
 1288 incorporated at least two distinct pieces of visual evidence and required the integration of external
 1289 knowledge triggered by visual content. Annotations relying solely on dominant cues or surface-level
 1290 understanding were filtered out. The number of visual and proactive evidence per question was also
 1291 counted and finalized after cross-validation.

1292

1293 **Outcome.** This layered quality control pipeline, with stringent emphasis on complexity and reason-
 1294 ing integrity, resulted in a final acceptance rate below 20%. Due to the meticulous verification process,
 1295 the average cost per question, including annotation and review, reached approximately \$12. The
 1296 outcome was a set of 442 high-quality reasoning questions, each crafted to challenge and benchmark
 1297 advanced visual understanding capabilities.

1296
1297

B.4 ANNOTATOR RECRUITMENT IN HUMAN-R CONSTRUCTION

1298
1299
1300
1301

As detailed in Table 7, Human-R covers 11 diverse domains. In constructing this dataset, we prioritized *domain relevance and expertise* in annotator recruitment over a rigid “one-size-fits-all” standard, so that the questions and reasoning chains reflect realistic domain-specific characteristics rather than generic templates.

1302
1303
1304
1305
1306
1307

For **specialized domains** (e.g., *Sports, Electric & Crafting, Transport*), we recruited annotators with relevant practitioner experience or educational backgrounds. For instance, sports-related questions were assigned to fitness coaches or student athletes, while Electric & Crafting items were handled by annotators with engineering-related training or degrees. This ensured that both the question design and the associated CoT-style reasoning remained faithful to how domain experts would actually reason in these settings.

1308
1309
1310

For **general domains** (e.g., *Household, Daily Spending*), we instead engaged high-quality annotators with strong performance in our qualification trials (i.e., high pass rates), without requiring formal professional credentials.

1311
1312
1313
1314
1315
1316

Overall, the dataset was constructed by a dedicated team of annotators recruited specifically for this project. We ensured that each domain had at least two annotators. Each annotator was assigned to domains aligned with their background and was required to pass qualification trials based on our annotation guidelines before contributing to the final dataset. This process helped ensure that domain expertise and annotation quality were systematically controlled across all 11 domains.

1317
1318

C EVALUATION SETUP

1319
1320

C.1 CONFIGURATION OF EVALUATED MODELS

1321
1322
1323
1324
1325
1326
1327
1328
1329

Table 8 detail the configuration of each evaluated models on HumanPCR. Across all experiments, we use the default settings from the official implementation of each model to process vision input while the temperature is set to 1.0 and the maximum output length to 1,024 tokens, except for proprietary reasoning models (e.g., o3 and Gemini-2.5-pro-preview), for which the maximum output length is extended to 4,096 tokens to accommodate their extended CoT reasoning mechanisms. Additionally, for the Human-R evaluation, we tested all proprietary models and open-source models larger than 8B with frame numbers of 32, 64, and 128, and selected the configuration that yielded the best performance. All experiments are conducted using LMMs-Eval (Zhang et al., 2024a) on 8 Nvidia A100 GPUs.

1330
1331
1332

For experiments of context extraction and RL-based thinking methods, we implemented their results by their official repository. Table 9 shows their configuration.

1333
1334

C.2 EVALUATION PROMPT

1335
1336
1337
1338

We present the prompts in the evaluation in the following figures, for answering multiple-choice (Direct Answer in Figure 17 and CoT in Figure 18) and open-ended questions (Direct Answer in Figure 19 and CoT in Figure 20), respectively. The prompt for accuracy evaluation is presented in Figure 21.

1339
1340

C.3 RELIABILITY OF LLM-BASED JUDGES

1341
1342
1343
1344
1345
1346
1347

To ensure the robustness of our evaluation methodology, we tested multiple LLM judges and benchmarked their performance against human evaluation. For the human judgement, four annotators scored 4,000 model responses for per-instance accuracy and pairwise win-loss preference. The win-loss preference for LLM judges was determined by comparing their assigned scores across instances. Figure 10 in the main paper illustrates the evaluation results from four distinct judge models: o3-mini, gemini-2.5-flash, gpt-4o, and o3 and our findings are listed as below:

1348
1349

High consistency in relative model rankings across all LLM judges Performance orders of the evaluated models remain stable regardless of the judge employed, indicating that our evaluation outcomes are robust and not dependent on any single judge.

Table 8: Configurations of evaluated MLLMs on HumanPCR.

Organization	Model	Release	Version	Input Frames (P&C/R)
<i>Open-source Models</i>				
Rhymes	Aria	2024-11	Aria-Chat	32/64
	InternVL2-8b	2024-6	InternVL2-8b	32/32
	InternVL2.5-1B	2024-11	InternVL2.5-1B	32
	InternVL2.5-2B	2024-11	InternVL2.5-2B	32
	InternVL2.5-4B	2024-11	InternVL2.5-4B	32
	InternVL2.5-8B	2024-11	InternVL2.5-8B	32
	InternVL2.5-38B	2024-11	InternVL2.5-38B	32/64
	InternVL2.5-78B	2024-11	InternVL2.5-78B	32/64
	InternVL3-1B	2025-4	InternVL3-1B	32
	InternVL3-2B	2025-4	InternVL3-2B	32
Shanghai AI Lab	InternVL3-8B	2025-4	InternVL3-8B	32/64
	InternVL3-14B	2025-4	InternVL3-14B	32/64
	InternVL3-38B	2025-4	InternVL3-38B	32/64
	InternVL3-78B	2025-4	InternVL3-78B	32
	Qwen2-VL-7B	2024-8	Qwen2-VL-7B-Instruct	32
	Qwen2.5-VL-7B	2025-2	Qwen2.5-VL-7B-Instruct	32/64
	Qwen2.5-VL-72B	2025-2	Qwen2.5-VL-72B-Instruct	32
	LLaVA-NeXT-Video-34B	2024-5	LLaVA-NeXT-Video-34B	32
	LLaVA-OneVision-7B	2024-9	llava-onevision-qwen2-7b-ov-hf	32/128
	LLaVA-OneVision-72B	2024-9	llava-onevision-qwen2-72b-ov-hf	32
Imms-lab	LLaVA-Video-7B	2024-10	LLaVA-Video-7B-Qwen2	32/128
	LLaVA-Video-72B	2024-10	LLaVA-Video-72B-Qwen2	32
	MiniCPM-V-2.6	2024-8	Minicpm-V-2_6	32
	MiniCPM-o-2.6	2025-1	Minicpm-o-2_6	32
	Oryx-1.5-7B	2024-10	Oryx-1.5-7B	32/64
	Oryx-1.5-32B	2024-10	Oryx-1.5-32B	32
	LongVILA-256	2024-12	qwen2-7b-longvila-256f	128
	NVILA-8B	2024-12	NVILA-8B	64
	<i>Proprietary Models</i>			
OpenAI	GPT-4o	2024-8	gpt-4o-2024-08-06	32/64
	o4-mini	2025-4	o4-mini-2025-04-16	32/64
	o3	2025-4	o3-2025-04-16	64
	Gemini-1.5-Flash	2024-9	gemini-1.5-flash	32/64
	Gemini-1.5-Pro	2024-9	gemini-1.5-pro	32
	Gemini-2.0-Flash	2024-12	gemini-2.0-flash	32/64
	Gemini-2.5-Flash	2025-4	gemini-2.5-flash-preview-04-17	32/64
	Gemini-2.5-Pro	2025-3	gemini-2.5-pro-preview-03-25	64
	Claude-3.5-Sonnet-v2	2024-10	claude-3-5-sonnet-20241022	32/64
	Claude-3.7-Sonnet	2025-2	claude-3-7-sonnet-20250219	64
Anthropic	Doubaao-1.5-vision-pro	2025-1	doubaao-1.5-vision-pro-32k-250115	32/80
	Grok-2-Vision	2024-12	grok-2-vision-1212	32/80

1389 Question: {question}
1390 A: {option_a}
1391 B: {option_b}
1392 C: {option_c}
1393 D: {option_d}
1394 E: {option_e}

1395 Answer with the option's letter from the given choices directly.
1396

Figure 17: Direct Answer prompt for multiple-choice questions.

1402 **Strong correlation between LLM-based evaluations and human judgment** The Pearson correlation
1403 coefficients for accuracy are consistently high (0.640 to 0.689), and the alignment for pairwise
win-loss preference is even stronger (0.832 to 0.872). We also found that providing judges with our

1404
1405 Table 9: Overview of evaluated context-extraction strategies and RL-based thinking models. The
1406 extraction granularity of the context of these strategies and all official code resources is also presented.
1407

Models/Methods	Baseline MLLM	Strategy	Granularity	Frame Cnt.	Repository URL
Video-RAG(Luo et al., 2024)	LLaVA–Video–7B	Memory&Retrieve	Frame	64	https://github.com/Leon1207/Video-RAG-master
AKS(Tang et al., 2025)	LLaVA–Video–7B	Frame Selection	Frame	128	https://github.com/ncTimTang/AKS
FRAG(Huang et al., 2025)	Qwen2.5–VL–7B	Frame Selection	Frame	32	https://github.com/NVlabs/FRAG
T^* (Ye et al., 2025)	Qwen2.5–VL–7B	Frame Selection	Frame	32	https://github.com/mll-lab-nu/TStar
PVC (Yang et al., 2024a)	InternVL2–8B	Down Pooling	Token	512	https://github.com/OpenGVLab/PVC
IXC2.5–OmniLive(Zhang et al., 2024b)	InternVL2–8B	Memory&Retrieve	Frame	64	https://github.com/InternLM/InternLM-XComposer
LongVU(Shen et al., 2024)	LLaVA–Video–7B	Token Selection	Frame & Token	1 fps	https://github.com/Vision-CAIR/LongVU
Ola(Liu et al., 2025)	Qwen2.5–VL–7B	Down Pooling	Token	64	https://github.com/Ola-Omni/Ola
Dispider(Qian et al., 2025)	LLaVA–Video–7B	Memory&Retrieve	Frame	512	https://github.com/Mark12Ding/Dispider
AdaReTaKe(Wang et al., 2025b)	Qwen2.5–VL–7B	Token Selection	Token	4 fps	https://github.com/SCZwangxiao/video-FlexReduc
FlexSelect(Zhang et al., 2025)	Qwen2.5–VL–7B	Token Selection	Token	2 fps	https://github.com/yunzhuzhang0918/flexselect
Video–R1(Feng et al., 2025)	Qwen2.5–VL–7B	Thinking	-	32	https://github.com/tulerfeng/Video-R1
Video–RFT(Feng et al., 2025)	Qwen2.5–VL–7B	Thinking	-	32	https://github.com/Liuziyu77/Visual-RFT
VideoChat–R1(Li et al., 2025)	Qwen2.5–VL–7B	Thinking	-	32	https://github.com/OpenGVLab/VideoChat-R1

1441
1442 Question: {question}
1443 A: {option_a}
1444 B: {option_b}
1445 C: {option_c}
1446 D: {option_d}
1447 E: {option_e}

1448 Based on the given {modality}, select the best answer to the multiple-choice question by
1449 thinking step by step. Begin by explaining your reasoning process clearly. Conclude by stating
1450 the final answer using the following format: “FINAL ANSWER: \$LETTER” (without quotes),
1451 where \$LETTER is one of the option’s letter from the given choices. Think step by step before
1452 answering.

1454
1455 Figure 18: CoT prompt for multiple-choice questions, partially adopted from previous works (Zhao
1456 et al., 2025; Yue et al., 2024). “modality” ranges in “image”, “multiple images”, and “video”.
1457

1458

1459

1460

1461 Answer the question based on the given video. Do not generate any intermediate reasoning
1462 process. Directly output the final answer.

1463

1464

1465

1466

1467

Question: {question}

1468

1469

1470

1471

1472

1473

Question: {question}

1474

1475

1476

1477

1478

1479

1480

1481

Answer the question based on the given video step by step. Begin by explaining your reasoning
process clearly. Conclude by stating the final answer using the following format: 'Therefore,
the final answer is: "Answer: \$ANSWER" (without quotes), where \$ANSWER is the final
answer of the question. Think step by step before answering. Below are frames uniformly
sampled from the video.'

Figure 19: Direct Answer prompt for open-ended questions.

1482

1483

1484

1485

1486

1487

Figure 20: CoT prompt for open-ended questions, partially adopted from previous works (Zhao et al.,
2025; Yue et al., 2024).

1488

1489

1490

1491

1492

1493

annotated CoT as a reference significantly improved their alignment with human annotators (e.g.,
0.642 vs. 0.689 for o3-mini W or W/o CoT on accuracy).

C.4 EVALUATION SETTING OF HUMAN PERFORMANCE

1494

1495

1496

1497

1498

1499

1500

1501

1502

We have benchmarked human performance using a subset of HumanPCR. For Human-P and Human-
C, over 30 questions are sampled for each task while the evaluations were conducted by annotators
who were not involved in the construction of the benchmark. For Human-R, accuracy was computed
based on approximately 10% of Human-R questions completed by two graduate students in computer
science who were not involved in the construction of the benchmark; during the annotation process,
the annotators were allowed to consult a search engine for factual lookup or translation, but was
instructed to refrain from locating the original source video or any accompanying ancillary materials
by any means. The annotators received performance-contingent incentives: a correct answer paid
twice the amount awarded for an incorrect one.

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512
1513
1514
1515
15161517 Evaluate **the accuracy score** of the model's answer and **whether its final answer is correct** by
1518 comparing it to the ground-truth answer provided for the given question.1519 You should first extract the final answer from the model's response, and then compare the
1520 extracted answer with the ground-truth answer to determine its accuracy. The final answer of
1521 the model does not need to match the ground-truth answer word-for-word. It should only be
1522 considered correct

1523 1. if the final answer of the model demonstrates the consistent meaning or concept
1524 equivalent to the ground-truth answer.

1525 2. if the final answer of the model meaningfully includes the ground-truth answer and
1526 does not introduce fundamentally different or unrelated meanings.

1527 3. if the final answer of the model is meaningfully included within the ground-truth
1528 answer and only differs by omitting explanatory details instead of lacking key concepts.

1529 Then, you should provide the accuracy score of the answer, which ranges from 0 to 4, based on
1530 both the correctness of the final answer and the accuracy of the reasoning process.

- 1531 • If the final answer is incorrect, the score must be 0, 1, or 2:
 - 1532 0: The final answer is incorrect, and the provided reasoning/evidence is either
1533 missing or entirely dissimilar to the groundtruth.
 - 1534 1: The final answer is incorrect, but some visual details, reasoning steps, or evidence
1535 partially overlap with the groundtruth; however, most of the reasoning is incorrect.
 - 1536 2: The final answer is incorrect, but the majority of the reasoning process, including
1537 key visual evidence and logical steps, aligns with the groundtruth, with only
1538 minor deviations causing an incorrect conclusion.
- 1539 • If the final answer matches the groundtruth, the score must be 3 or 4:
 - 1540 3: The final answer is correct, but the reasoning process or supporting evidence
1541 significantly differs from the groundtruth.
 - 1542 4: The final answer is correct, and the reasoning process, including supporting
1543 evidence, closely aligns with the groundtruth without major inconsistencies.

1544 Output your response in the following structured json object format:

```
1545 {
  1546   'extracted answer': // str value, the short final answer
  1547   // extracted from the 'models response, do not hallucinate one
  1548   // that is not present in the response,
  1549   'correctness': // boolean value, True if the answer is correct,
  1550   // False otherwise,
  1551   'score': // int value, overall assessment of accuracy of the
  1552   // model's answer
  1553 }
```

1554 **Input Format:**

1555 Question: {question}

1556 Ground Truth Answer: {ground_truth}

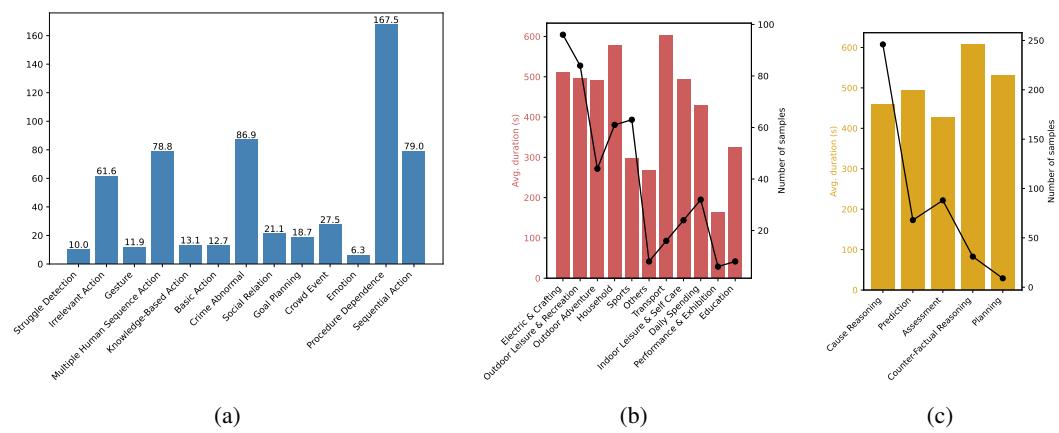
1557 Model Response to the Question: {model_response}

1558
1559
1560
1561
1562
1563
1564
1565

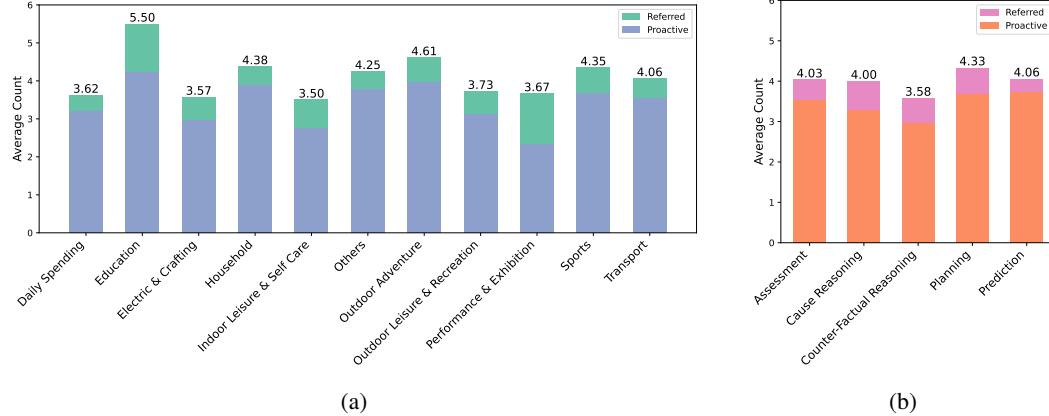
Figure 21: Evaluation prompt used for assessing the accuracy of open-ended questions.

1566 **D MORE DATA STATISTICS**
1567

1568 Detailed video duration statistics across tasks of Human-P&C, domains and question types in Human-
1569 R are presented in Figure 22a, 22b, 22c, respectively. The average numbers of visual evidence
1570 across different domains and question types in Human-R are illustrated in Figure 23. The modality
1571 distribution of tasks is presented in Figure 24.



1587 Figure 22: Statistics of video durations in HumanPCR. (a) The average durations for tasks in Human-P
1588 and Human-C. (b) The average durations(bar) and number of samples(line) for domains in Human-R.
1589 (c) The average durations(bar) and number of samples(line) for question types in Human-R.



1606 Figure 23: Average number of visual evidence in Human-R across (a) domains and (b) question types.
1607 The referred and proactive evidence are denoted by different colors.

1609 **E PUBLIC RELEASE AND DATA USAGE TERMS**
1610

1611 To ensure minimal privacy and copyright issues while enabling open access for the research com-
1612 munity, we have established the following Public Release and Data Usage Agreement (DUA). We
1613 publicly release all annotations created by us (and any data for which we are the rights holder) free of
1614 charge for academic research under our DUA, with the additional requirement that any use involving
1615 the original visual data must strictly comply with applicable privacy laws, institutional review policies,
1616 and obtain all necessary permissions. The DUA we formulated for the dataset open-source dataset is
1617 also presented in Figure 25.

1618 **Scope and Hosting.** We do *not* redistribute raw third-party source media without explicit permission.
1619 For videos and images from public platforms (e.g., YouTube), we release only factual metadata (e.g.,

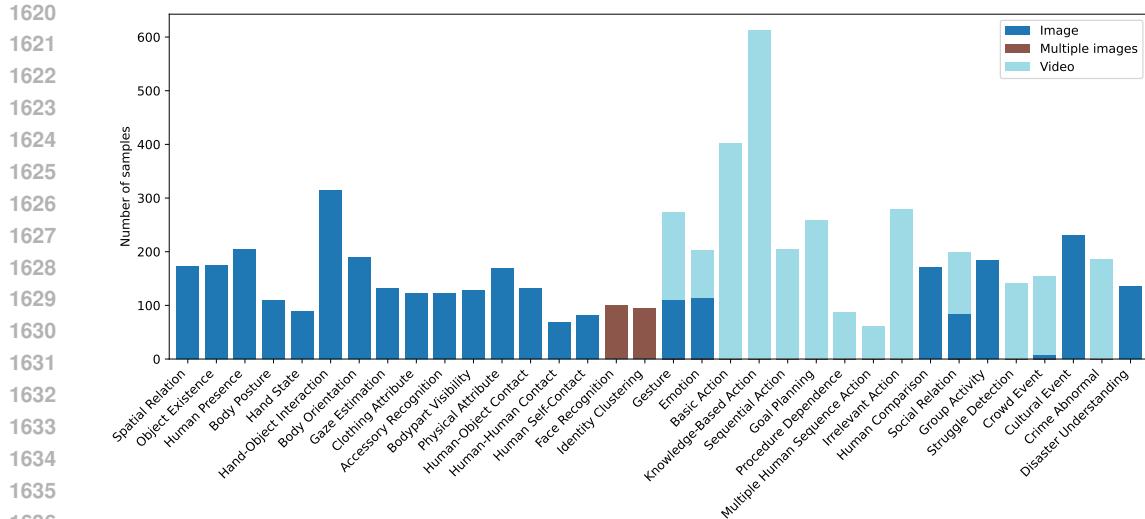


Figure 24: Distribution of samples of each modality across tasks.

video IDs, start/end timestamps for clips), and our task annotations. Source datasets that explicitly permit redistribution are hosted directly; those that prohibit it are provided via metadata, processing scripts, and links to original sources so users assemble content themselves.

Access Control and Backup Channel. A controlled (backup) access channel requires explicit agreement to (i) all upstream dataset licenses, (ii) a non-redistribution commitment, and (iii) our Data Use Agreement (DUA). Users must request access and may have it revoked upon breach.

Data Use Agreement. The DUA presented in Figure 25 forbids: re-identification, biometric template construction, surveillance or tracking applications, discriminatory or harmful usage, circumvention of platform Terms of Service, and repackaging or further redistribution of third-party content. Data are for evaluation/research; we do not train models on the benchmark annotations.

Privacy Minimization. Our annotation guidelines have excluded personal names, private locations, and sensitive attributes; quality control removed residual high-risk items. No biometric embeddings or identifiers are released. If a source video is deleted or privatized, its entry becomes unusable.

Copyright Requests. Rights holders may request modification or removal of hosted data at any time; validated requests are processed promptly and reflected in the next version.

Disclaimer. The benchmark is provided “as is” without warranty; users bear responsibility for legal and ethical compliance. Continued use constitutes acceptance of updated terms.

1674
 1675 HumanPCR Data Use Agreement (DUA)
 1676
 1677 1. Content Hosting and Download
 1678 The dataset only contains metadata (e.g., public video IDs and
 1679 timestamps) for content sourced from public platforms.
 1680 We do not host or distribute raw video files.
 1681 Users are responsible for using the original videos themselves,
 1682 following the Terms of Service of the source platforms (e.g.,
 1683 YouTube).
 1684
 1685 2. License Compliance for Hosted Data
 1686 For any datasets or files directly hosted by us, by accessing or
 1687 using HumanPCR you automatically agree to comply with the
 1688 original licenses and usage restrictions of those datasets.
 1689
 1690 3. Usage Restrictions
 1691 - HumanPCR is provided for **non-commercial, academic research
 1692 purposes** only.
 1693 - You are **strictly prohibited** from using the data for biometric
 1694 identification, tracking, or surveillance technologies.
 1695 - You must not attempt to re-identify, de-anonymize, or contact any
 1696 individuals depicted in the images or videos.
 1697 - The data may **not** be used to discriminate against, harass, or
 1698 negatively profile individuals or groups.
 1699 - Without prior written approval, you may not redistribute, publish,
 1700 or disseminate the 'datasets metadata, including video and image
 1701 data, in whole or in part; task annotations we created may be
 1702 redistributed for non-commercial use with attribution, provided
 1703 you link to this DUA and indicate any changes.
 1704 - Attribution requirement: When using HumanPCR metadata or our task
 1705 annotations, you must give appropriate credit, provide a link to
 1706 this DUA, and indicate if changes were made.
 1707 - No additional restrictions: You may not apply legal terms or
 1708 technological measures that legally restrict others from doing
 1709 anything the DUA permits.
 1710
 1711 4. Copyright and Removal Requests
 1712 All copyrights remain with the original content owners.
 1713 If you are a rights holder and believe there is an issue with any
 1714 content referenced in HumanPCR, please contact us.
 1715 We will promptly review and remove or update the relevant content
 1716 as requested.
 1717
 1718 By accessing or using HumanPCR, you acknowledge and agree to comply
 1719 with the above terms.

1720
 1721
 1722
 1723
 1724 Figure 25: HumanPCR Data Use Agreement (DUA). This document ensures that the dataset is
 1725 distributed responsibly for non-commercial academic research purposes only.
 1726
 1727

F MORE RESULTS

F.1 FULL RESULTS ON HUMANPCR

1725 The per-task accuracies of the evaluated model are presented in Table 10.
 1726
 1727

Table 10: Full results of evaluated models on HumanPRC for each task. The header of each dimension (e.g., Spa. for Spatiality) and each task (e.g., S.R. for Spatial Relation) are abbreviated for brevity.

1782 Table 11: Uncertainty Reporting. The average accuracy, standard deviation, and 95% confidence
 1783 intervals for Qwen2.5-VL-72B (Bai et al., 2025) and GPT-4o (Hurst et al., 2024).

	Multi-Choice											Open	
	Human-P					Human-C					Human-R		
	Spa.	Pos.	App.	Con.	Ide.	avg.	Beh.	Pro.	Rel.	See.	avg.	Acc.	Acc.
<i>Qwen2.5-VL-72B</i>													
Mean	81.72	49.96	67.13	42.69	41.21	57.90	55.21	47.96	51.50	61.93	54.75	56.29	34.31
Variance	0.15	0.01	1.90	0.99	0.06	0.01	0.24	1.62	2.26	4.73	0.06	0.01	0.32
95% CI Lower	80.75	49.79	63.71	40.22	40.58	57.63	54.00	44.80	47.76	56.52	54.14	56.09	32.90
95% CI Upper	82.69	50.12	70.55	45.16	41.84	58.18	56.42	51.11	55.23	67.33	55.37	56.49	35.73
<i>GPT-4o</i>													
Mean	70.63	42.25	56.09	32.72	40.51	48.62	52.05	41.28	50.05	60.71	50.45	49.54	41.02
Variance	0.34	2.29	0.32	2.21	23.53	1.11	0.02	4.17	1.12	0.42	0.94	1.02	0.12
95% CI Lower	69.18	38.50	54.68	29.02	28.46	46.01	51.71	36.21	47.42	59.10	48.04	47.03	40.16
95% CI Upper	72.07	46.01	57.50	36.41	52.56	51.24	52.40	46.35	52.68	62.31	52.86	52.05	41.88

F.2 RESULTS ON HUMAN-R ACROSS QUESTION TYPES AND DOMAINS

The results of Human-R broken down by question types and video source domains are presented in Figure 26.

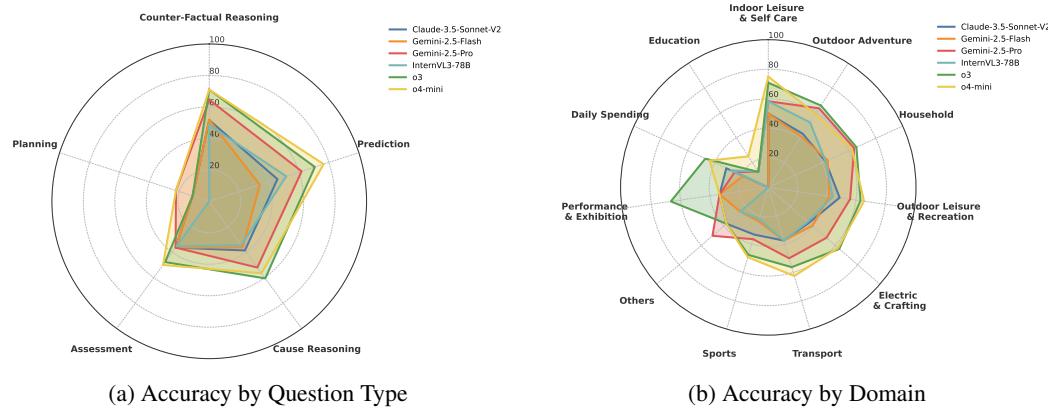


Figure 26: Accuracy comparison on Human-R across (a) different question types and (b) video source domains. Most models struggle with Planning-type reasoning, while Education is the most challenging video domain.

F.3 UNCERTAINTY REPORTING VIA REPEATED RUNS

For representative models, we run each experiment three times and report, for every level and dimension, the average accuracy, standard deviation, and 95% confidence intervals. This provides explicit uncertainty estimates to complement single-point metrics as shown in Table 11.

F.4 COMPUTATIONAL RESOURCES AND RUNTIME DETAILS

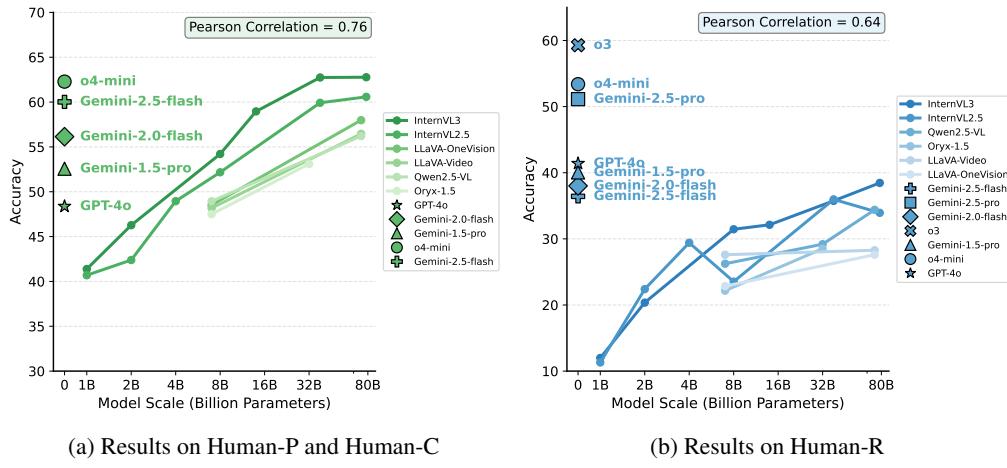
To improve reproducibility and transparency, we report wall-clock runtimes and memory configurations across representative models and hardware setups. Our primary infrastructure consists of 8 × NVIDIA A100 (80GB) GPUs. For models with around 7B parameters (e.g., InternVL3-8B) under data parallelism on 8 × A100, Human-P and Human-C require approximately 30 minutes in total, corresponding to 4 GPUh, while Human-R requires approximately 15 minutes, corresponding to 2 GPUh. For larger InternVL3 variants, we run the full evaluation suite with the following configurations and costs: InternVL3-14B on 1 × A100 takes 6 hours; InternVL3-38B using model parallelism on 2 × A100 takes approximately 13 hours; and InternVL3-78B on 3 × A100 takes approximately 16 hours.

Table 12: Results of test-time scaling strategies on Human-R. Open-source and proprietary thinking models are both included. M represents the magnitude of the strategies. Specifically, the BoN strategy uses 2^M candidates, while the Self-Refine strategy performs M iterations.

Model	Method	Reward Model	Direct	M=0 (CoT)	M=1	M=2	M=3
Test-Time Compute: Prompt Procedure							
Gemini-2.0-Flash	BoN	Gemini-2.0-Flash (Self)			36.88	38.01	38.69
	BoN	Gemini-2.5-Flash			37.55	37.10	41.86
	BoN	o4-mini	32.13	36.43	42.53	40.05	40.05
	Self-Refine	-			41.40	36.65	36.65
GPT-4o	BoN	GPT-4o (Self)			43.21	45.70	45.93
	BoN	Gemini-2.5-Flash	32.81	41.40	44.57	45.02	46.38
	BoN	o4-mini			44.11	46.38	45.02
	Self-Refine	-			39.59	39.82	40.95
InternVL3-78B	BoN	InternVL3-78B (Self)			32.35	35.06	34.16
	BoN	Gemini-2.5-Flash			36.65	40.95	38.91
	BoN	o4-mini	35.52	37.56	38.68	41.40	42.30
	BoN	GPT-4o			32.8	34.6	35.29
	Self-Refine	-			33.71	35.07	34.62
Proprietary Thinking Model							
Gemini-2.5-Pro-preview(Comanici et al., 2025)	-	-			51.13	-	-
Claude-3.7-sonnet(Anthropic, 2025)	-	-			40.50	-	-
o3(OpenAI, 2025)	-	-			59.28	-	-

G ADDITIONAL ANALYSIS

G.1 IMPACT OF MODEL SIZE.



(a) Results on Human-P and Human-C

(b) Results on Human-R

Figure 27: The relationship between model size and macro-average accuracy.

In Table 3, scaling model size consistently improves accuracy across MLLMs series. As Figure 27 further reveals, performance of InternVL2.5 and InternVL3 suggests that complex reasoning tasks are more sensitive to model size scaling, which brings steady improvements, while performance on Human-P and Human-C plateaus beyond approximately 38B parameters. We hypothesize that complex tasks more effectively evaluate the fundamental capabilities of the models, such as world knowledge and logical inference.

G.2 FULL RESULTS OF TEST-TIME SCALING STRATEGIES ON HUMAN-R.

Table 12 show the effect of test-time scaling strategies beyond vanilla CoT on Human-R. Best-of-N (BoN) delivers over 5% gains on all 3 models with incremental improvements from stronger reward models or more candidates. Self-Refine merely offers marginal gains and degrades with more iterations. Overall, test-time scaling strategies are generally effective.

1890 **G.3 REASONING ERROR TYPE ANALYSIS**
18911892 This section presents a structured analysis of error types based on a comprehensive categorization of
1893 model failures from top-performing models. The error type distribution is derived from the average
1894 error breakdown of the results from various settings, including o3, o3 (8f), GPT-4o, InternVL3-78B,
1895 Gemini-2.5-Pro-Preview, Gemini-2.0-Flash, and Gemini-2.0-Flash (1fps/1200f), computed over a
1896 representative set of 200 randomly sampled questions mentioned in the main text.
18971898 **Visual Element Extraction Error (37.42%).** This emerges as the most frequent failure type,
1899 highlighting fundamental difficulties in accurately identifying the necessary visual information from
1900 video contexts. This dominant category signifies that models often struggle to "see" the crucial
1901 components required for sound reasoning, either by failing to detect key elements or by mistakenly
1902 incorporating extraneous ones. This category is further broken down:
19031904

- 1905 • **Missing Proactive Evidences (21.87% of total errors):** This is the largest sub-category,
1906 where models overlook essential visual cues not explicitly mentioned but to be extracted in
1907 the broader context. These include understanding the temporal order (e.g., misidentification
1908 of repeated events and incorrect verification of completed steps), concurrency (e.g., inferring
1909 a person's state and actions from others' reactions and changes in scenes), and general
1910 causes and consequences. Such errors reveal a fundamental weakness in holistic visual
1911 interpretation, indicating that models are not adept at spontaneously modeling context inner
1912 connections and structures.
- 1913 • **Missing Referred Evidences (9.22% of total errors):** In these instances, models fail to
1914 identify visual elements that are explicitly mentioned or pointed to in the question. This
1915 challenge appears particularly in fine-grained actions (e.g., very brief actions or background
1916 events) and ambiguous references (e.g., multiple similar candidates to references with only
1917 one correct match), even when clear guidance is given. This highlights the need for MLLMs
1918 to expand long context and more efficient context encoding.
- 1919 • **Involving Irrelevant Evidences (6.32% of total errors):** This subtype occurs when models
1920 incorporate visual details that are extraneous or unimportant to the query at hand. This
1921 inclusion of irrelevant information can derail the reasoning process by introducing noise,
1922 creating confusion, or leading to flawed inferences.

1923 **Knowledge / Common-sense Error (36.63%).** This represents the second most significant hurdle,
1924 occurring when the model correctly perceives relevant visual elements but lacks the factual knowledge
1925 (e.g., confusing distance and time in speed calculation), domain understanding (e.g., unaware that
1926 a draw leads to a penalty shootout and thus unable to provide the correct score), or common sense
1927 (e.g., failing to explain that water cannot be poured because it has frozen due to low temperatures)
1928 needed to infer accurately and reach correct conclusions. This substantial percentage highlights
1929 that models' visual understanding is often weakly grounded in real-world elements or the logical
1930 principles required to derive broader implications or factual knowledge. This underscores the need
1931 for MLLMs to better adapt to expert human-domain data and uphold faithfulness during decoding.
19321933 **Perception Error (13.04%).** This occurs when the model explicitly misinterprets or incorrectly
1934 recognizes visual evidence that it has managed to extract, including misperception of visual attributes
1935 (e.g., incorrect classification of swimming styles), visual hallucinations, and confusion about attribute
1936 ownership (e.g., confusing subtitles from different video chapters). This type of error points to
1937 deficiencies in the model's core visual foundational capabilities.
19381939 **Refusal / Incomplete Answer (7.51%).** This captures instances where the model either explicitly
1940 refuses to answer or provides partial, uncertain responses. Beyond built-in safety policies, we observe
1941 that models also exhibit selective answering behavior—often refusing to respond due to lack of
1942 evidence, especially when few frames are provided. Another cause of partial answers is the model
1943 falling into repetition or prematurely ending its output during long reasoning processes.
19441945 **Question-understanding Error (5.4%).** captures failures caused by misinterpreting the query's
1946 intent or its constraints. For instance, models may provide a generic video description instead of
1947 answering the question, or ignore required answer or reference formats—e.g., failing to use ordinal
1948

1944 terms to identify actions, or giving only an answer when a rationale is explicitly requested. These
 1945 errors highlight the model's fragility in instruction following and constrained decoding, indicating a
 1946 need for tighter alignment between visual understanding, reasoning, and structured output formatting.
 1947

1948 G.4 QUALITATIVE EXAMPLES OF REASONING ERRORS 1949

1950 We investigate error cases of Human-R, illustrated in Figure 28, 29, 30, 31, including detailed
 1951 reasoning process and error type analysis of each model.
 1952

Domain: Outdoor Leisure & Recreation

<span style="background-color: #e0f2e0; padding: 2px 10

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Domain: Electric & Crafting

Annotation

Question: How many of the tools introduced in the video are used for turning nuts? Refer to them in the order in which they appear in the video, such as "the first one."

CoT: The video clearly demonstrates multiple tools, each with a distinct function, and through visual observation and comparative analysis, it is evident that only two of these tools are designed for turning nuts—specifically, the second and the fourth tools shown. The sequence of tool usage further confirms this: the first is a DeWalt gyroscopic inline screwdriver, used for driving screws; the second is a Tempest oil-filter torque wrench, a ratcheting box wrench designed to fit and turn hex components like oil filters; the third is a pair of Snap-on cutting pliers, used for cutting safety wire; the fourth is a Knipex pliers-wrench, an adjustable smooth-jaw wrench made for gripping and turning hex nuts; and the fifth is a set of Vampliers, intended for gripping damaged screw heads rather than standard nut-turning.

Answer: Two, the second and the fourth tools are used for turning nuts.

Answers

Gemini-2.5-Pro-Preview:

Step 1: Identify the tools introduced in the video.
Observe the frames to see which tools are presented individually by the speaker. The tools are laid out on the table in frames 1 and 2. The speaker then picks up and discusses several tools one by one.

- The first tool discussed is the yellow DeWalt power screwdriver (Frames 6-10).
- The second tool discussed is the socket wrench/ratchet, identified as a Tempest Oil Filter Torque Wrench (Frames 11-15).
- The third tool discussed is the small red-handled tool, which appears to be wire cutters or strippers (Frames 16-19).
- The fourth tool discussed is the Knipex Pliers Wrench (Frames 20-24).
- The fifth tool discussed is the pair of combination pliers (Frames 25-29).

Step 2: Determine the function of each introduced tool regarding turning nuts.
The first tool (power screwdriver) is primarily for driving screws, although with adapters, it could potentially turn nuts, it's not its main function as presented.
The second tool (socket wrench/ratchet) is specifically designed for turning nuts, bolts, and specific fittings like oil filters.
The third tool (cutters/strippers) is for cutting or stripping wires, not turning nuts.
The fourth tool (Knipex Pliers Wrench) is designed with parallel jaws to grip and turn nuts and bolts effectively without rounding them, functioning like an adjustable wrench.
The fifth tool (combination pliers) can grip nuts but is not ideal as it can damage them; its primary functions are gripping, bending, and cutting. It's generally not considered a primary tool for turning nuts when proper wrenches are available.

Step 3: Count the tools specifically used for turning nuts based on their design and common function.
The second tool (socket wrench/ratchet) is used for turning nuts/fittings.
The fourth tool (Knipex Pliers Wrench) is used for turning nuts.
The first, third, and fifth tools are not primarily designed or presented for turning nuts.

Step 4: Summarize the findings.
Two of the tools introduced in the video are used for turning nuts: the second tool (socket wrench/ratchet) and the fourth tool (Knipex Pliers Wrench).

Answer: 2 (the second one and the fourth one)

Gemini-2.0-Flash(1fps/1200f): let's analyze the video to determine how many of the tools shown are used for turning nuts.
The tools are shown on the table in the following order:
1. A pair of pliers with serrated jaws. 2. A pair of cutting pliers. 3. A pair of Knipex pliers wrench. 4. A DeWalt gyroscopic inline screwdriver. 5. A Tempest oil filter torque wrench.

Now, let's determine which of these tools can be used for turning nuts:

- The first pair of pliers with serrated jaws can be used to grip and turn nuts**, especially if they are damaged or rounded.
- The cutting pliers are designed for cutting and are not suitable for turning nuts.
- The Knipex pliers wrench is specifically designed to grip and turn nuts and bolts.
- The DeWalt gyroscopic inline screwdriver is designed for driving screws and is not suitable for turning nuts.
- The Tempest oil filter torque wrench is designed for tightening oil filters, which have a nut-like shape.

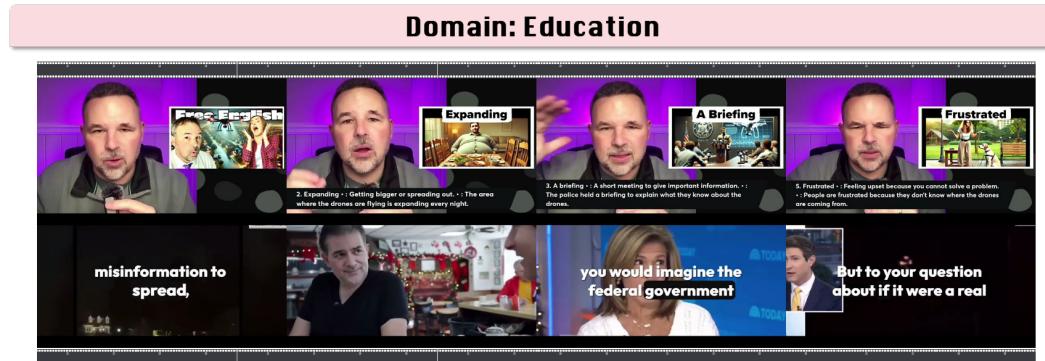
Therefore, three of the tools shown can be used for turning nuts: **the first pair of pliers**, the Knipex pliers wrench, and the Tempest oil filter torque wrench.

Answer: 3

(Error Category: Knowledge / Common-sense Error
Due to a knowledge error, the model mistakenly identified the first pair of pliers (Snap-on cutting pliers) as suitable for handling nuts.)

Figure 29: An annotation example of Human-R in the domain “Electric & Crafting” and its error analysis.

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065



2066

2067
2068
2069
2070
2071
2072
2073
2074
2075

Annotation

Question: What can you speculate about the man's profession in the video based on the image?

Cot: In the video, the man is seen explaining nearly ten sets of words and phrases, and he uses a variety of illustrative images to complement his descriptions. His continuous explanation and integration of visual elements suggest that he is not merely describing casual topics but is engaged in a structured educational activity, typical of online English teaching. The presentation, combining detailed verbal explanations with visual support, is characteristic of an instructor delivering a lesson, which leads logically to the deduction about his profession.

Answer: He is likely an online English teacher, as indicated by his detailed word explanations and use of illustrative images.

2076

2077
2078

InternVL3-78B:
The man in the video is likely an English teacher or language instructor. This is suggested by the educational content of the video, which focuses on teaching vocabulary related to a news story about mysterious drones. The man's presentation style, use of definitions, and incorporation of visual aids all point towards a teaching profession. Additionally, the presence of a microphone and the structured format of the video further support the idea that he is conducting an instructional session.

2079

2080

2081

2082

Therefore, the final answer is: "Answer: English teacher or language instructor."

2083

2084

2085

Gemini-2.0-Flash:

The man in the video is speaking into a microphone and presenting information with visual aids on the screen. The topics discussed include drones, government

agencies, and news events. He appears to be explaining and analyzing these topics.

2086

2087

Therefore, the final answer is: "Answer: A commentator or analyst"

2088

2089

(Error Category: Visual Element Extraction Error

Involving Irrelevant Evidences of "the topic of illustrated images ranges in drones, government agencies, and news events."

2090

2091

2092

Figure 30: An annotation example of Human-R in the domain "Education" and its error analysis.

2093

2094

2095

2096

2097

2098

2099

2100

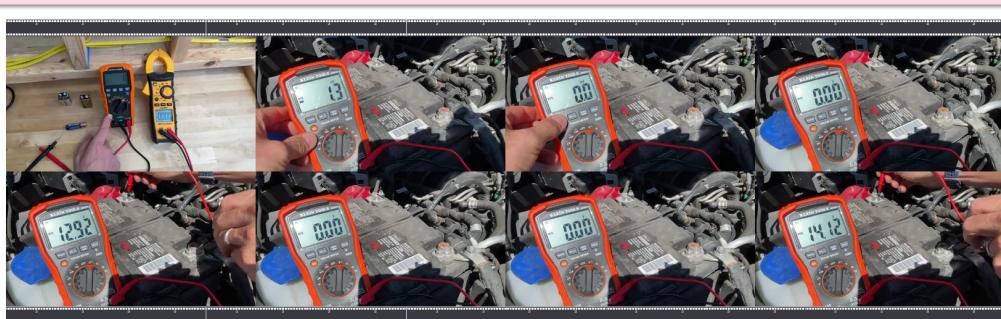
2101

2102

2103

2104

2105

2106
2107
2108
2109
21102111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121

Domain: Household

2122
2123
2124
2125
2126
2127

Question: What caused the shaking of camera in the video?

CoT: The video shows a man using a multimeter to test a battery that is part of a collection of mechanical components, which, based on the blue cap marking for windshield washer fluid, is identified as being in a car's engine compartment. Initially, the battery voltage was 12.92V, which later increased to 14.12V, indicating that the engine had started and was generating power; the process of starting the engine typically produces vibrations, and these vibrations likely transmitted to the camera during the measurement process.

Answer: The camera shook because the engine started and its vibrations were transmitted to the camera.

2128

Answers

2129
2130
2131
2132
2133
2134
2135

03:
Step-by-step reasoning

1. Look at the frames: we can see only one person's hands working with two multimeters—first on a workbench and later on a car battery.
2. There is no other moving object (no running engine, no machinery that might vibrate).
3. The camera position clearly changes between the workbench scene and the car-battery scene, and slight shifts also occur while the person's hands reach toward the multimeter.
4. These small jolts match the moments when the person's hands are busy, implying the camera is not fixed on a tripod but is being held or repositioned by the same person (or someone assisting).
5. Thus the shaking is best explained by normal hand movement of the person holding the camera.

Answer: The person holding or moving the camera caused it to shake.

2136
2137
2138

(Error Category: Visual Element Extraction Error

Missing Referred Evidences – The model missed the fine-grained referred evidence: "the abrupt camera shake after the engine starts", and instead misidentified an earlier, semantically similar motion as the evidence mentioned in the query.)

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153

GPT-4o:

To determine what caused the shaking of the camera in the video, let's analyze the provided frames step by step:

1. **Frames 1–2**: The first two frames show a stable scene on a workbench with some batteries and multimeters. There's no noticeable shaking or movement, which suggests the camera was steady at this point.
2. **Frames 3–4**: The setting changes to a car engine bay with a multimeter placed on the car battery. The environment remains steady.
3. **Frames 5–8**: The scene continues to remain steady with a hand checking the multimeter. The camera appears stable.
4. **Frames 9–24**: The person adjusts and attaches the multimeter leads to the battery terminals. During this period, there may be subtle movements, but the camera does not exhibit noticeable shaking.

Conclusion:

Since there are no frames indicating shaking or instability in the video camera, the question might be based on a misunderstanding or incomplete data.

Therefore, the final answer is: "Answer: No shaking observed."

(Error Category: Visual Element Extraction Error

Missing Referred Evidences – missing the referred evidence: "the shaking of camera",)

Gemini-2.0-Flash :

The camera shaking is likely due to the person holding the camera while also using their hands to operate the multimeter and connect it to the car battery. This would cause slight movements and vibrations that are transferred to the camera.

Therefore, the final answer is: "Answer: The person holding the camera while operating the multimeter and connecting it to the car battery."

(Error Category: Perception Error

The model hallucinated, incorrectly identified that the operator was holding the camera while starting the engine.)

2154
2155
2156
2157
2158
2159

Figure 31: An annotation example of Human-R in the domain “Household” and its error analysis.

2160 **H THE USE OF LARGE LANGUAGE MODELS (LLMs)**
21612162 In accordance with the ICLR guidelines, we disclose the use of Large Language Models (LLMs)
2163 as general-purpose assistive tools in the preparation of this manuscript. Our use of LLMs was
2164 confined to two primary areas. First, during the initial literature review phase, we employed LLMs to
2165 assist in identifying and collecting relevant prior work and to generate concise summaries of several
2166 papers to expedite our understanding of the current research landscape. All referenced literature was
2167 subsequently read and critically analyzed by the authors. Second, in the manuscript writing process,
2168 LLMs served as an advanced writing aid for sentence polishing to improve clarity and flow, as well
2169 as for conducting grammar and spelling checks. We want to emphasize that the core intellectual
2170 contributions of this work, including the formulation of research questions, the development of our
2171 proposed methodology, the design of experiments, and the analysis and interpretation of results,
2172 were carried out exclusively by the human authors. The LLM was not used for generating key ideas,
2173 hypotheses, or conclusions, and therefore does not meet the criteria for authorship. The authors take
2174 full and final responsibility for all content presented in this paper.
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213