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ABSTRACT

Compute scaling for language model (LM) pretraining has outpaced the growth of
human-written texts, leading to concerns that data will become the bottleneck to LM
scaling. To continue scaling pretraining in this data-constrained regime, we propose
that explicitly modeling and inferring the latent thoughts that underlie the text
generation process can significantly improve pretraining data efficiency. Intuitively,
our approach views web text as the compressed final outcome of a verbose human
thought process and that the latent thoughts contain important contextual knowledge
and reasoning steps that are critical to data-efficient learning. We empirically
demonstrate the effectiveness of our approach through data-constrained continued
pretraining for math. We first show that synthetic data approaches to inferring latent
thoughts significantly improve data efficiency, outperforming training on the same
amount of raw data. Furthermore, we demonstrate latent thought inference without
a strong teacher, where an LM bootstraps its own performance by using an EM
algorithm to iteratively improve the capability of the trained LM and the quality
of thought-augmented pretraining data. We show that a 1B LM can bootstrap its
performance across at least three iterations and significantly outperform baselines
trained on raw data, with increasing gains from additional inference compute when
performing the E-step. The gains from inference scaling and EM iterations suggest
new opportunities for scaling data-constrained pretraining.

1 INTRODUCTION

Human-written text is the culmination of an underlying thought process—when we write, there
is often an internal dialogue that clarifies or even determines the written word. However, modern
language models (LMs) (Radford et al.,[2019; Brown et al.| 2020; (OpenAlL 2023} |[Dubey et al.| [2024)
are pretrained directly on the final results of this process in a highly compressed form (e.g., research
papers). This may explain why LMs struggle with data efficiency and require almost the entire
human-written web to learn (Kaplan et al.| 2020; [Hoffmann et al.| 2022). Since the rate of growth in
pretraining compute is far greater than that of the web itself (Villalobos et al., 2022; Muennighoff]
et al.| [2024), we may soon enter a data-constrained regime, motivating data efficiency approaches to
extract more capabilities from limited web data.

In contrast to LMs, humans learn very efficiently from the same compressed text, which suggests the
possibility of significantly improving data-efficient pretraining. In this work, we focus on how we
learn as one potential cause for this gap. For example, when we read a research paper, we analyze
specific claims, integrate them with prior knowledge, and attempt to “decompress” the author’s
original thought process. In other words, we use reasoning in service of learning, to infer the internal
dialogue that undergirds the observed text. We refer to this procedure—augmenting the observed
data with inferred thoughts to enable more efficient learning—as reasoning to learn.

Inspired by this, we introduce an LM pretraining approach that implements this reasoning-to-learn
paradigm to improve data efficiency (Fig. I). Specifically, we approach language modeling from
a latent variable perspective, where the observed data X depends on underlying latent thoughts Z.
We train our LMs to learn from observed data X augmented with the latents Z by modeling the
joint distribution p(Z, X). The main challenge is synthesizing (and learning to synthesize) Z with a
latent generator q(Z | X) . One key insight of our work is that for a natural language latent
thought Z, the LM itself provides a strong prior for producing latent thoughts (via its reasoning and
theory-of-mind abilities (Wei et al., 2022a)). This observation turns latent thought inference into a
synthetic data generation problem and has significant practical benefits—it allows us to leverage the
strong capabilities of existing LMs, share weights between the LM and the latent thought generator,
and simplify training into a small modification to the standard pretraining pipeline (Fig. 2b).
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Figure 1: Reasoning to learn. (Left) Motivated by how humans apply deliberate thinking to learn
from limited data, we train an LM to infer (or “decompress”) latent thoughts underlying the highly
compressed observed data. These synthesized latent thoughts augment the raw observed data during
pretraining, improving the LM’s data efficiency. This procedure can be iteratively applied through an
EM algorithm (Fig. 4) and form a model self-improvement loop where increasingly capable LMs
synthesize more effective latent thoughts, which in turn train more capable models. (Right) Our
results demonstrate consistent improvement in model performance across bootstrap iterations.

We show that training a model with latent thoughts enables it to produce higher-quality latent thoughts,
allowing a model to bootstrap its “reasoning to learn” ability with only a small amount of initial
supervision. We demonstrate this through a simple Expectation-Maximization based approach which
we refer to as Bootstrapping Latent Thoughts (BoLT) that enables an iterative improvement of the
latent thought generator (Fig. 4). Importantly, we show that BoLT can take advantage of additional
inference compute to further improve data efficiency. In particular, the E-step in BoLT makes use of
a Monte-Carlo estimator that serves as a non-parametric “policy improvement operator”’, where the
approximate posterior ¢(Z | X) approaches the true posterior as the number of samples increases.
We find in our experiments that BoLT is able to take advantage of additional samples (at least four)
to improve its data efficiency and bootstrap its performance for at least three iterations, opening the
possibility of new ways of scaling pretraining data efficiency.

We validate the effectiveness of our approach in improving model capabilities in data-constrained
setups. As a testbed, our experiments continually pretrain a TinyLlama (Zhang et al., |2024) model on
a limited amount of data from a reasoning-intensive corpus FineMath (Lozhkov et al.|[2024).

* First, we demonstrate the potential of training LMs with data augmented with latent thoughts:
when using GPT-40-mini (Hurst et al.| 2024)) to synthesize latent thoughts, the trained LM achieves
25.4% on MATH (Hendrycks et al., 2021a), significantly outperforming LMs trained on raw data
(5.74%) or synthetic Chain-of-Thought (Wei et al.| 2022a)) style paraphrases (19.4%) (Fig. ).

* Furthermore, we show that our BoLT algorithm enables an LM to bootstrap its performance on
limited data. When trained on a fixed amount of data (Fig. 6), we find LMs trained with self-
generated latents improve across iterations on both likelihood metrics and MATH evaluations
(Fig. 7). Crucially, these gains require no task-specific data and stem purely from improved latent
thought quality across bootstrap iterations.

Altogether, our results suggest that the powerful reasoning primitives of LMs may be leveraged to
extract more capabilities from limited, task-agnostic data during pretraining.

2 RELATED WORK

Here we briefly review the most relevant works and include an extended discussion in[Appx. B}

Synthetic data for training LMs Recent work has demonstrated the benefits of synthetic data to
improve training efficiency, typically by prompting frontier models to generate data for model training.
These approaches have yielded competitive performance at small data and model scales (Eldan and Li|
2023}, |Gunasekar et al.| [2023} [L1 et al., [2023; |Abdin et al.|[2024ajb). Another paradigm closer to our
work is to augment raw data by paraphrasing (Maini et al.| 2024) or describing relationships among
extracted entities (Yang et al.,[2025)), which uses real data to ground the synthetic data generation.
Our work differs in two key aspects. First, we take a latent variable perspective that augments (rather
than replaces) each text chunk X with latent thoughts Z, which we show is crucial to downstream
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Figure 2: Reasoning to learn with latent thought models (a) The latent thought model is trained to
“decompress” plausible human thoughts underlying the observed data (i.e., ¢(Z | X)) and to utilize
the latent thoughts in learning more efficiently from the data (i.e., p(Z, X)). (b) The latent thought
is modeled for each chunk of text in an autoregressive manner and in the same discrete text space.

Given paired data {(Z,,, X n)}g:v we use standard next-token prediction to train a single LM as

both the p(Z, X') and ¢(Z|X), by randomly placing Z,, before or after X, in the sequence. This
strategy allows for minimal modifications to the standard LM pretraining pipeline.

performance in Sec.[5.2] Additionally, our work studies bootstrapping of the data generator rather
than the distillation settings considered in most previous works.

Learning to reason using pretraining data Closer to our setting, some recent works attempt to
enhance LM reasoning capabilities using pretraining data without explicit external rewards. |Geiping
et al.| (2025) pretrain a looped transformer (Dehghani et al., 2019; Giannou et al., 2023) on general
web text, using continuous hidden states to model a thought process. [Zelikman et al.| (2024) propose
a domain-agnostic post-training method that uses reinforcement learning on pretraining data to learn
“thought tokens” that improve reasoning. Our work is distinct in the goal of leveraging reasoning
to improve pretraining data efficiency, which leads us to consider scalable, synthetic data—based
approaches. This leads to a number of benefits, including a simple training method and embarassingly
parallel latent generation. Our work provides a complementary perspective on how latent variable and
synthetic data perspectives can enable both “learning to reason” and “reasoning to learn”.

3 REASONING TO LEARN WITH LATENT THOUGHT MODELS

In this section, we introduce our “reasoning to learn” approach to pretraining LMs. Our key idea is to
model the latent thoughts underlying the human data generation process, and train a latent thought
model both to reason about the latent thoughts underlying pretraining data and to learn from the data
based on the synthesized latent thoughts.

3.1 LATENT THOUGHT MODELS

Learning by decompression Human-written data on the web is a compressed representation of an
underlying thought process. For example, when Geoffrey Hinton wrote |“GPT-4 is humanity’s butter-
fly”’, he drew upon his knowledge of how GPT-4 was trained on a large corpus of human-generated
data and distilled human intelligence, and analogized this process to a butterfly’s metamorphosis.
Understanding the context and reasoning steps behind the observed data can facilitate deeper under-
standing of the text they generate, but such reasoning traces are usually not explicitly presented in
our pretraining data. Our hypothesis is twofold: augmenting pretraining data with underlying human
thoughts can significantly improve its learning efficiency, and that this ability to infer latent thoughts
can be learned and improved after being trained with these thoughts during pretraining.

Formalizing latent thought models We formalize this from the perspective of latent variable
models, as illustrated in [Fig. Za] We model the human thoughts underlying the observed data X as
the latent Z, and the generative process as a joint distribution p(Z, X) = p(Z)p(X | Z). Instead of
training an LM to directly model the observed data p(X ), we train it both to “decompress” the latent
thoughts from the observed data (i.e., approximate posterior ¢(Z | X)) and to learn from the data
using the synthesized latent thoughts (i.e., p(Z, X)); we call this LM a latent thought model. The
latent thought Z is modeled in the same discrete text space as the observed data X (just as human
thoughts can often be expressed in natural language). By augmenting the data with latent thoughts,
the LM’s learning process resembles the human process of reasoning to learn, where we deliberately
think through the data to better absorb it. Importantly, we view latent thoughts as being encoded in
natural language. This allows us to initialize ¢(Z | X') using supervision from an existing model
prompted to infer latent reasoning and background context, as well as to jointly model all conditional
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You are provided with a pair of web document prefix and suffix. Your task is to insert
latent thoughts between them underlying the creation of the suffix conditioned on the
prefix. The latent thoughts should include: the missing background knowledge and the
reasoning traces underlying each claim (especially, step-by-step derivations or logical
reasoning) .

(a) Prompt for GPT-40-mini to synthesize latent thoughts.

## The first step, data decentralization

We directly decentralize the data (that is, the mean value of the data is at
the far point). If the data is not decentralized, we cannot find the optimal
dimensionality reduction.
<StartOfLatent><Prior> To find the optimal

a. The eigenva

maximum
## The second step is to find the new most marked axis

How do we find the most standard axis to achieve principal component analysis? That is,
the greater the distance between the projected point and the origin of the coordinate axis
, the better

(b) Example synthetic latent thoughts for a document about PCA’s mathematical derivation.

Figure 3: We use GPT-40-mini to synthesize latent thoughts to train the initial latent thought model.
The synthetic latents as shown in (b) typically contain the background knowledge and reasoning not
explicitly stated in the raw data, presented in a consistent and clean form. The prompt and example
are simplified for clarity; see[Prompt F.1.1|and|Appx. G.2|for the full prompt and additional examples.

distributions for Z and X using a single, autoregressive language model. We describe the training
and inference processes for latent thought models in the following.

3.2 TRAINING WITH SYNTHETIC LATENT THOUGHTS

We adopt an autoregressive generative model of latent thoughts that is compatible with standard

language modeling. Given a document X, we randomly chunk it into segments {X n}ivzl at the
sentence boundaries and aim to infer the latent thought Z,, underlying each chunk X, conditioned

on the previous context (see top).

Synthesizing latent thoughts for training Human-generated data like internet text does not natu-
rally come with underlying latent thoughts. Therefore, we need to synthesize the latent thought Z
from some surrogate ¢(Z | X) of the true posterior to augment the observed data X for training the
latent thought model. §(Z | X) can either be instantiated as a frontier model, or the approximate
posterior model ¢(Z | X) itself for bootstrapping as in our EM algorithm. For example, we can
prompt GPT-4o-mini (Hurst et al., [2024) to synthesize the latent thoughts by inferring missing
reasoning steps or background knowledge (see[Fig. 3| for the prompt and examples).

Training latent thought models We develop a simple method to train both a joint model p(Z, X)
and an approximate posterior model ¢(Z | X') with only minor modifications to the standard LM
training pipeline (Fig. 2b). Since both Z and X are presented in the same discrete text space, we
train models with standard next-token predictions. Given the synthetic latent thoughts paired with

the observed data {(Z,,, X n)}ijlv we train both the joint and the posterior as the same model by
formatting the data as conditional maximum likelihood estimation: we place Z,, as the suffix after X,
in the sequence to train the approximate posterior ¢(Z,, | X,,), and place Z,, as the prefix before X,
to train the joint p(Z,,, X,,) (see the bottom of . We format the data in these two modes with a
random coin flip and use two special tokens <Prior> and <Post > to differentiate them. All latents
are wrapped within the special <StartofLatent> and <EndofLatent> tokens to differentiate
them from the raw observed data (Fig. 3b). The formatted data can be directly fed into the standard

LM pretraining pipeline to train both the joint and the posterior with next-token predictions.

3.3 PREDICTION WITH LATENT THOUGHTS

Since models have been pretrained to utilize latent thoughts to predict the following text, they can
also use them to perform CoT reasoning for problem solving during downstream evaluation.
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Figure 4: Bootstrapping latent thoughts (BoLT) in an iterative Expectation-Maximization algo-
rithm. In the E-step, we use Monte Carlo sampling as a “policy improvement operator” to obtain
higher-quality latent thoughts. This boosts learning efficiency in the M-step, enabling the training of
more capable LMs that synthesize better latent thoughts.

Reasoning with CoT in the latent space During CoT prompting (Nye et al., 2021} [Wei et al.,
2022a), it is common to augment few-shot examples with explicit reasoning chains. For standard LMs,
these thoughts are simply part of the text prompt. However, in the case of latent thought models, we
now have the more natural option of putting the CoT prompts into the latent space Z. We implement
this by changing the formatting of the few-shot examples: given a question () and its answer A, we
wrap the CoT within the special tokens (<StartofLatent> and <EndofLatent>) and add the
<Prior> prefix to indicate that this reasoning should occur in the latent space for producing the
following answer (see for few-shot examples). We find that latent thought models are
highly effective latent CoT reasoners at inference time (see [Appx. G.T|for examples), achieving better
downstream performance than when reasoning in the observed text space X.

4 BOOTSTRAPPING LATENT THOUGHT MODELS

The data efficiency of training latent thought models relies on the surrogate posterior G(Z | X ) used to
synthesize the latent thoughts, which limits the potential of our approach in advancing frontier model
capabilites. To overcome this limitation, we introduce an Expectation-Maximization (EM) algorithm
called Bootstrapping Latent Thoughts (BoLT), illustrated in The key idea is to instantiate
4(Z | X) with a non-parametric, enhanced version of the model’s approximate posterior ¢(X | Z)
via Monte Carlo sampling. This enables a self-improvement loop, where more effective latents are
synthesized at the E-step, leading to more capable models with improved learning efficiency at the
M-step, which in turn improve latent quality at the next E-step.

4.1 EXPECTATION-MAXIMIZATION WITH MONTE CARLO SAMPLING

At each iteration ¢ in EM, we have access to the current latent thought model M;. This model
parameterizes both the approximate posterior ¢(Z | X; M) and the joint p(Z, X ; M;) through the
same data formatting and special token usage used during training (Sec. 3.2). A naive instantiation of
EM would be to alternate between sampling latents Z from the current posterior ¢(Z | X; M,) in the
E-step and training a model with the sampled latents Z in the M-step. However, it is unclear that
training a model on its self-generated latents can improve it. We address this gap with Monte Carlo
sampling, which induces a surrogate posterior §(Z | X; M;) that is provably better than the current
one to serve as a “policy improvement operator”’. We detail the procedure below.

E-step: Synthesizing better latents with Monte Carlo sampling At the E-step, we sample K
latents {Z(®¥)}I_ | from the current posterior ¢(Z | X'; M) and compute their importance weights

wh) = %. Intuitively, w(*) upweights a latent that is both simple (high p(Z OR M,)) and

predictive of the data (high p(X | Z(*); M,)), and downweights too obvious ones (¢(Z*) | X; M,)
in the denominator). Then, we resample one latent from the categorical distribution proportional to the

importance weights, i.e., j ~ Cat(w(k)), and use Z(9) as the final latent. This procedure is known to
sample from a posterior ¢(Z | X; M) that achieves the importance-weighted evidence lower bound
(ELBO), which is tighter than the naive ELBO (Burda et al., 2015} |Cremer et al.,|2017):

(%, X) 13- p(Z®, x) { (2, X)]
logp(X) > E_ [log 77| X)} Z [log K ; 70 (x| 2 8 gizxy P

The bound is tighter with more samples K and ¢ approximates the true posterior when K — oo.
Crucially, this procedure offers a potential way to improve the training efficiency of LMs by scaling
up the inference compute to select a better latent from more samples.

M-step: Training the model with bootstrapped latents At the M-step, we use the latents synthe-
sized by the current model M; and pair them with the raw data corpus X’ to train the next model
M1, following the same training procedure in Note that the new posterior q(Z | X; M;y1)
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Figure 5: Training on raw data augmented with synthetic latent thoughts significantly boosts
LM data efficiency. We study a data-constrained setup where a TinyLlama-1.1B model is continually
pretrained on 480M FineMath tokens with an 8B training token budget. GPT-40-mini generates
synthetic latent thoughts (as a proxy for human ground-truth thoughts) for the corpus. This augmented
data (“Latent Thought™) leads to substantial gains over both training on 8B unique raw tokens (“Raw-
Fresh) and paraphrased data with synthetic reasoning traces (“WRAP-CoT”). The synthetic token
budget for all synthetic data methods is fixed to ~1.1B tokens. The advantages of our method are
even more pronounced under prompt variations (see and when normalized by the effective

raw tokens seen by each method (Fig. D.3)).

is trained to approximate the improved posterior G(Z | X; M), and the new joint p(Z, X; M;11) is
trained by augmenting the data with bootstrapped latents from ¢(Z | X; M,).

Full algorithm Our full approach is described in Since the initial base LM has not
been trained as a latent thought model, we first train it on a small corpus of warmstart data with
synthetic latent thoughts (synthesized by, e.g., GPT-40-mini), and then apply our EM algorithm on a
much larger corpus. The warmstart — iterative EM loop resembles the supervised finetuning — rein-
forcement learning pipeline (Ouyang et al.,2022)) that is widely adopted in LM post-training, though
our approach operates purely on task-agnostic pretraining data instead of supervised data.

5 SYNTHETIC LATENT THOUGHTS IMPROVE LM DATA EFFICIENCY

In this section, we first demonstrate that the data efficiency of LMs can be significantly improved
through joint training on observed data and latent thoughts. We show this by using a capable LM
(GPT-40-mini) as the surrogate posterior §(X | Z) to synthesize latent thoughts to augment a fixed
corpus, and compare its performance against several baseline approaches.

5.1 EXPERIMENTAL SETUP

Continued pretraining on a reasoning-intensive corpus We conduct continued pretraining (CPT)
of TinyLlama-1.1B (Zhang et al.,|2024) on a reasoning-intensive corpus FineMath-4+ (Lozhkov:
et al.,[2024). While reasoning to learn is domain-agnostic, we choose this setup to obtain meaningful
downstream accuracy readouts under an academic budget. We choose TinyLlama-1.1B because it has
not been specifically trained on mathematical reasoning data, enabling clean comparisons. To assess
the data efficiency of various methods, we adopt a data-constrained setup by fixing the total number
of unique “raw” tokens for CPT to 480M. We fix a total CPT compute budget of 8B tokens, with
methods training on additional synthetic data and/or for multiple epochs on raw data.

Synthetic generation of latent thoughts We use GPT-40-mini as the surrogate posterior ¢(Z | X)
and generate latent thoughts over the CPT corpus. We prompt the model with and
temperature 0.7. We split each document into chunks of sentences, where each chunk contains a
random number of sentences following a Poisson distribution with a mean of 8, truncated between 1
and 20. We generate one latent for each chunk using the previous L = 3 chunks as the prefix context.
Overall, the token ratio between synthetic and raw tokens is 2.3:1 (~1.1B synthetic tokens), and
under the 8B token compute budget, we CPT on the thought-augmented data for ~5 epochs.

Baselines We compare our approach with several natural baselines in the data-constrained regime
using a combination of data repetition and synthetic data generation: 1) Raw-Repeat: We train on the
raw corpus for ~16 epochs with early stopping; 2) Raw-Fresh: As an anticipated upper bound, we
train on 8B unique tokens without repetition; 3) WRAP-Orig: WRAP (Maini et al., 2024) rephrases
the data in diverse styles, and we prompt GPT-40-mini to rephrase each document with their prompts.



Under review as a conference paper at ICLR 2026

Table 1: Downstream performance of different methods and ablation studies. For our method,
it is crucial to embed the synthetic thoughts in a latent space Z separate from the observed raw text
X, and to utilize Z for CoT reasoning during downstream evaluation.

Data | MATH GSM8K MMLU-STEM
Raw-Repeat 5.74 5.76 27.31
Raw-Fresh 11.18 13.27 30.63
WRAP-Orig 11.06 12.43 31.40
WRAP-CoT 19.36 21.08 34.51
Latent Thought (Ours) 25.38 33.59 35.87
- mixing latents in raw text space during training | 22.38 20.17 33.33
- using CoT in raw text space during eval 20.34 22.97 31.78

4) WRAP-CoT: To probe whether the gains of our approach arise from simply including synthetic
reasoning traces in the training data, we develop a WRAP variant that prompts GPT-40-mini to
rephrase docs with interspersed reasoning steps. For both WRAP baselines, we generated multiple
paraphrases per document based on their synthetic-raw token ratios to match the total synthetic tokens
of our approach. We also tuned the synthetic-raw mixture coefficient and found entirely synthetic

works best (see[Figs. D.Taland[D.1b). We include more baseline details in[Appx. D.1]

Training & Evaluation We CPT using AdamW (Loshchilov and Hutter, 2019) with 5; = 0.9,
B2 = 0.95, weight decay of 0.01, and a tuned learning rate of le-4 (see Appx. D|for details). We
evaluate trained LMs on the popular reasoning benchmarks MATH (Hendrycks et al., 2021a), GSM8K
(Cobbe et al., [2021)), and MMLU-STEM (Hendrycks et al., [2021b) with few-shot CoT prompting
(Wei et al., [2022a). We use both the default CoT prompts and prompts with CoTs synthesized by
GPT-40-mini, and report the latter by default as it uniformly performed better across methods (see
[Fig. D.2)). Few-shot CoTs are placed in the latent space Z for our method, and in the raw text space
X for baselines. We refer the reader to for further experimental details.

5.2 RESULTS

Training with synthetic latent thoughts improves data efficiency over baselines [Fig. 5| and
show downstream performance during CPT for various methods. Training with synthetic
latent thoughts substantially outperforms all baselines, even outperforming training on an equivalent
amount of unique raw tokens (“Raw-Fresh”). While rephrasing-based synthetic data generation
methods do improve over raw data baselines—particularly the variant incorporating reasoning steps
(“WRAP-CoT”)—they still considerably underperform our approach. Moreover, our method is more
robust to prompt variations compared to baselines that suffer considerable degradation with standard
CoT prompts (see[Fig. D.Z). Notably, since our method trains jointly on synthetic latent thoughts and
raw data (at a 2.3:1 token ratio), it achieves better performance while seeing the raw data fewer times
(3.3x) than the baselines. We include a comparison normalized by the effective raw tokens seen by
each method in[Fig. D.3] where our method demonstrates even more significant gains.

Learning and utilizing latent thoughts in a separate latent space is critical A key distinction
between our approach and baselines (such as WRAP-CoT) is that we model thoughts in a latent space
Z separate from the observed text X, which we hypothesize to improve performance by explicitly
handling the language modeling task from the thought process. We ablate this design in[Table T} First,
we demonstrate the importance of jointly modeling thought and document chunk pairs (Z, X). We
test a variant of our approach that does not separate the latent thoughts from the raw text X and mixes
them with randomly sampled (unpaired) text chunks at a 1:1 ratio. This variant (second-to-last row)
performed comparably to WRAP-CoT but significantly worse than our full method, demonstrating
that our gains primarily stem from the latent model design rather than merely from the quality of
the synthetic thought data. Furthermore, we assess the effectiveness of reasoning with CoT in the
latent space during downstream evaluation. For our trained latent thought models, we instead provide
all few-shot CoTs in the raw text space X similar to the baselines and suppress the generation of all
special latent tokens during evaluation. This test-time intervention degrades performance (last row),
demonstrating the benefit of explicitly using latent thoughts during downstream evaluation.

6 LMs CAN SELF-IMPROVE BY BOOTSTRAPPING LATENT THOUGHTS

We have demonstrated that training jointly on raw texts and accompanying latent thoughts synthesized
by a powerful LM significantly improves data efficiency. In this section, we take a step towards LMs
that can self-improve on limited pretraining data, by investigating whether the BoLT algorithm enables
monotonic improvement across iterations. We focus on a scientific setup for understanding whether
BoLT can enable model self-bootstrapping by iteratively generating higher quality latents (see [Fig. 6).

7
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Figure 7: BoLT bootstraps performance on a fixed corpus. We bootstrap on a fixed corpus of
1.92B raw tokens and warmstart with 240M raw tokens, observing consistent gains in ELBO (left) and
downstream MATH evaluations (see for detailed results across prompt variations). Results
are over 5 training runs for bootstrapping and 3 runs for baselines to reduce variability.

Specifically, we fix the training corpus X and retrain the

model M, from scratch at each iteration. With a limited Synthesize

amount of fixed data, the final model performance at each

iteration is determined by the quality of synthesized latents e

Z,;, enabling a controlled study. In we also *,2) model M

study a more practical scenario where LMs are continually

bootstrapped from previous models (without retraining from Train Intialize Mo

scratch) and observe similar bootstrapping effects. g
M, U (A Z) !

6.1 BOOTSTRAPPING ON FIXED DATA
6.1.1 EXPERIMENTAL SETUP Figure 6: Bootstrapping on fixed data.

Bootstrapping configuration We use TinyLlama-1.1B as the base model M} and fix the training
corpus as 1.92B raw tokens from FineMath-4+. For the warmstart data X{y, we use a separate corpus of
240M raw tokens with GPT-40-mini synthetic latents as Zy (~ 550M synthesized tokens), following
We train the warmstart model M for 1 epoch on (X, Zy). At each bootstrap iteration ¢,
we use the current trained model M, _; to instantiate the posterior ¢(Z | X; M;_1) at temperature
1.0, from which we sample latents for each text chunk (with chunks split following [Sec. 5.1). We
sample K = 4 latents by default and select one by sampling proportional to their importance weights
(Sec.[), which we found to provide decent performance gains while maintaining a reasonable cost
for synthetic data generation. The synthetic:raw token ratio is ~2.4:1, and we train LMs on the
augmented data for 2 epochs at each iteration, corresponding to ~13B total training tokens.

Evaluation Due to high run-to-run variability, we require high signal-to-noise ratio evaluation
metrics that differentiate model quality across bootstrap iterations. We first use likelihood measures:
we use a holdout set of 1,000 documents from FineMath-4+ to measure test likelihoods. For latent
thought models, we measure the 4-sample ELBO (Burda et al., 2015)) as in[Eq. ()] for a tighter bound.
While the ELBO could be a loose bound on the true negative log-likelihood (NLL), it serves as a
smooth diagnostic metric to demonstrate that our model self-improves predictably with respect to our
chosen training metric. Second, we use downstream metrics: we evaluate performance on MATH
and GSMSK at each bootstrap iteration with few-shot CoT prompting, following We exclude
MMLU-STEM as performance fell within the noise floor (<28%). Because few-shot prompting
performance may be confounded by the LM’s in-context learning ability (Dominguez-Olmedo et al.,
2025)), we also perform finetuning-based evaluations on each benchmark with synthetic CoT traces
that measure the model performance after being finetuned on training splits. For clarity, we plot the
best performance achieved during training for each run. Exact performance curves are in
with similar relative comparisons. We refer readers to for further details.

6.1.2 RESULTS

BoLT enables monotonic self-improvement across multiple iterations shows the model
performance after each bootstrap iteration. Our results demonstrate that BoLT consistently improves
performance over multiple iterations in both ELBO and MATH accuracy, where more capable models
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generate higher quality latents that further enhance model capabilities. Performance improvements
remain clearly observable on the smoother ELBO and NLL metrics through the fourth
iteration. Downstream MATH performance shows consistent improvement through the third iteration,
with diminishing returns by the fourth. This plateau may be due to the discontinuous nature of
few-shot evaluations (Wei et al.l 2022bj [Schaeffer et al.| 2023)) that can mask smaller improvements;
after task-specific finetuning, gains persist through the fourth iteration (Fig. 8). We speculate that the
saturation point could correlate with scale, as our preliminary smaller-scale experiments showed few-
shot performance plateauing after the second iteration. Qualitatively, we observe instances where the

latents at earlier iterations make mistakes that are corrected in later ones (see[Example G.3.3).

Training on self-generated latents outper- —e— Latent Bootstrap Raw Train-FLOP-Match
forms training on raw data We compare ——- LatentWarmstart ~——- Raw Token-Match
the downstream MATH performance of BoLT-

. . . MATH (Fine-tuned GSMBK (Fine-tuned
trained models with those trained on raw data 018 ( ._)/_, . {Finertuned) v~
i - - ’— 0.36 {®
(Fig. 7). We include a FLOP-matched base ol i
line trained for the same total training tokens as 3 8 oss
ours (3.4x more passes over the corpus), and a = 8 014 —ccm e ee ] - R AR S—
. . < <
raw token—matched baseline trained on the same SN s s n— e N ——
count of raw tokens as ours (2 epochs over the 030
1oni 1 2 3 4 1 2 3 4
Corpus). BoLT 51gn1ﬁcantly OUtperformS both Bootstrap Iteration Bootstrap Iteration

baselines, demonstrating the effectiveness of rea- )

soning to learn with self-generated latents for Flgu.re 83. The 'performance gains of BoLT.across
improved data efficiency. Gains persist in fine- multiple iterations and over raw data baselines re-
tuning evaluations on MATH & GSMSK (Fig. §). Main robust in finetuning evaluations.

Latent examples are provided in

Synthesizing latents with more Monte Carlo o Validation ELBO 0 11I:IATH (Synthetic Few-Shot CoT)
samples improves data quality A key com- 51 ome I/I
ponent of our approach is the use of Monte §]:Z §Om /

Carlo sampling: we draw multiple samples and 3., Some ¥

reweight them to select one, inducing an im- &1 0110 I/

proved posterior and serving as a “policy im- “'4 0.108

1 8 1 8

. 2 4 2 4
provement operator”. We study the impact of Num MC Samples Num MC Samples

the number of MC samples K on latent qual- . ) .
ity, synthesizing latents with K — 1,2, 4,8 at Figure 9: More Monte Carlo samples lead to im-

the first iteration and training models on data proved latent quality and better trained models

augmented with them (Fig. 9). We find that the (further results infrig. E.4).
ELBO and MATH accuracy improve monotonically in the number of MC samples, demonstrating a
potential avenue for scaling inference compute in improving pretraining efficiency.

7 CONCLUSION

We have introduced reasoning to learn—a new approach to data-efficient LM pretraining by deliber-
ately thinking through the observed data. We show that training LMs with synthetic latent thoughts
significantly improves learning efficiency and downstream performance in data-constrained setups.
Moreover, we instantiate an EM algorithm—Bootstrapping Latent Thoughts (BoLT)—which enables
model self-improvement, where more capable models synthesize higher-quality latents that in turn
enable greater learning efficiency. We extensively validate BoLT with continued pretraining on math
data, and show that BoLT demonstrates steeper scaling and consistent downstream gains across
multiple bootstrap iterations. Our work demonstrates the promise of explicit inference of underlying
latent thoughts in improving data efficiency on task-agnostic pretraining data.

Limitations and future work Our work represents a proof-of-concept under a constrained compute
budget, using a 1B parameter model and a few billion tokens of math-specific data. Future work
should validate the approach at larger scales, with general-domain or even multimodal data, to
further explore the potential for unlocking general reasoning capabilities beyond domain-specific
reinforcement learning approaches (Jaech et al.,|2024; (Guo et al.| [2025). We focused on a particular
instantiation of our approach and did not exhaust design choices such as alternative latent structures or
hyperparameter configurations. Moreover, bootstrapping on self-generated data may amplify specific
biases; we observed a case where few-shot performance on GSM8K deteriorates over multiple BoLT
iterations (see[Fig. E.5)—such effects warrant more extensive investigation. We provide a detailed
discussion in
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A FULL ALGORITHM

The full algorithm of our approach is described in[Algorithm I] Since the initial base LM has not
been trained as a latent thought model, we first train it on a small corpus of warmstart data with
synthetic latent thoughts (e.g., by GPT-40-mini). The warmstart — iterative EM loop resembles the
supervised finetuning — reinforcement learning pipeline (Ouyang et al., [2022)) that is widely adopted
in LM post-training, though our approach operates purely on task-agnostic pretraining data instead
of supervised data. Our algorithm can be instantiated in different setups depending on the sources
of data for bootstrapping: we may either have a new corpus of data X; at each iteration where we
can initialize the training of M, from M, _1, or we may have a fixed corpus (with all X; being the
same) and retrain the model from scratch on better latents at each iteration; see for
details.

Algorithm 1: Bootstrapping Latent Thought Models (BoLT)

Input: Base model M, warmstart data (X, Zy), raw data corpora {Xt}thl
Parameters: EM iterations 7', Monte Carlo samples K, context window size L
Output: Bootstrapped model M

/* Initialize with warmstart data */
Moy = TrainLM (M, (Xo, Z0)) > Train with next-token predictions as inm
/* Tteratively train the latent thought model with EM, as illustrated in */
fort=1,2,--- T do
/* E-step: synthesize latent thoughts with the current model */
for VX € X; do
{Xn}nN=1 = ChunkData(X) > Randomly chunk the raw text into N chunks
forn=1,2,--- ,Ndo
Cn = Xn—Lim—-1) > Set context window

K
{ZT(Lk)} ~q(Z| Xy, Crs Mi—1) > Sample latents from the model posterior
k=1

(k) _ P(Zik)’xn | CnsMi—1)

Wy, o) > Weight by the model likelihood
02y | Xn,CnyMi—1)
G) O i :
Zn =2y’ ,j~ Cat {wn } > Resample with importance weights
k=1
end
(X4, Z¢).append ({Xn}ivzl , {Zn}f:;l) > Augment data with synthesized latents
end
/* M-step: train the model with bootstrapped thought data */

Mo — My if retrain from scratch
Ml My_; otherwise

My = TrainLM (Mipig, (X, Z4)) > Train with next-token predictions as in
end
return Mr
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B EXTENDED RELATED WORK

Synthetic data for training LMs Recent work demonstrates the benefits of synthetic data in
improving training efficiency, obtaining strong models at remarkably small data or model scales.
Eldan and Li|(2023) synthesize a dataset of short stories with simple words and train very small LMs
to generate coherent stories. (Gunasekar et al.|(2023)) synthesize textbooks and exercises to train a
small LM with strong reasoning performance. Similar approaches have been adopted in follow-up
works pretraining competitive small LMs (Li et al.; 2023} |Abdin et al., [2024azb)) or post-training LMs
with synthetic supervised data to enhance their reasoning (Liu et al., 2023} [Luo et al., 2023} |Wei
et al., [2023) or instruction following capabilities (Taori et al., 2023; Xu et al., [2023; |Ge et al.| 2024).
These approaches carefully curate prompts and/or a seed corpus to promote diversity in the generated
corpus; failure to do so may lead to mode collapse (Martinez et al.| [2023; [Taori and Hashimoto, [2023};
Alemohammad et al., [2023; |Dohmatob et al.| 2024} Kazdan et al., [2024). Another paradigm closer
to our work is to augment raw pretraining data by paraphrasing (Maini et al.| 2024) or describing
relationships among extracted entities (Yang et al.l 2025)), which may avoid mode collapse due to the
use of real data as a seed corpus. Our work differs in two key aspects. First, we take a latent variable
perspective that augments (rather than replaces) each document chunk X with latent thoughts Z.
We show this is crucial to downstream performance, outperforming strong synthetic data generation
baselines in Sec.[5.2] Additionally, our work studies bootstrapping of the data generator rather than
the teacher-student distillation settings considered in most synthetic data approaches.

Learning to reason using external supervision An increasingly popular area of work improves
the reasoning capabilities of LMs using external supervision. Most paradigms rely on a verifiable
reward signal, enabling the use of reinforcement learning and/or self-play (Silver et al.| |2016;|2017a;
Trinh et al.,|2024)). This approach has been successfully applied to bootstrap reasoning capabilities in
math and coding tasks with verifiable rewards (Zelikman et al., |2022; [Huang et al.| [2022} Singh et al.|
2023} Jaech et al., 20245 |Guo et al.l 2025)). An alternative approach uses supervised finetuning data to
internalize verbalized chains-of-thought into continuous hidden states (Deng et al., [2024; Hao et al.,
2024; Kong et al., [2025). Some recent works take a latent variable inference perspective similar to
ours, treating reasoning traces as latent variables and deriving variational inference (Hoffman et al.|
2024;|Hu et al., 202445 |Chen et al., 2024} [Zhong et al., 2025) or Expectation-Maximization (Singh
et al.,|2023)) approaches to optimization. Unlike our approach, these methods are domain-specific
and rely on verifiable rewards or other external supervision.

Learning to reason using pretraining data Closer to our setting, other works enhance LM reason-
ing capabilities using pretraining data and no explicit external rewards. (Geiping et al.|(2025) pretrain
a looped transformer (Dehghani et al.| [2019; |Giannou et al|2023)) on general web text and find that
the continuous hidden states tend to converge with more applications of the backbone transformer, in
a thought-like process. Closest to our work among these is |Zelikman et al.| (2024) who propose a
domain-agnostic, post-training method that uses reinforcement learning to learn “thought tokens” to
improve reasoning with pretraining data. While our work is also domain-agnostic and learns latent
thoughts, our goal of leveraging reasoning to improve pretraining data efficiency is distinct and leads
us to consider scalable, synthetic data—based approaches rather than reinforcement learning ones. This
leads to a number of benefits, including a simple training method and embarassingly parallel latent
generation. Our work provides a complementary perspective on how latent variable and synthetic
data perspectives can enable both “learning to reason” and “reasoning to learn”. Lastly, Jiang et al.
(2024) also adopt a synthetic data approach, but focus on generating rationales for pretraining a
process reward model. Our work differs in our application of reasoning as a primitive to enable
data-efficient learning during pretraining, as well as our focus on enabling a model to bootstrap its
own latent thought synthesis abilities.
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C DISCUSSION

C.1 BROADER IMPLICATIONS

Learning to reason and reasoning to learn Recent RL-based approaches such as ol (Jaech et al.,
2024) and R1 (Guo et al., 2025)) learn to reason with LMs, using supervised data and verified rewards
to unlock the reasoning capabilities of a strong pretrained model. In contrast, our work demonstrates
the potential of reasoning to learn, by training a model to learn more from observed data by reasoning
through it. We show promising results on one reasoning-heavy domain, but the likelihood-based
supervision makes it applicable to more general domains, and we believe the same approach can
enable more data-efficient learning of capabilities at scale. These two paradigms are complementary,
and the base models trained with our approach may serve as a better starting point for task-specific
RL by transferring their thoughts trained at scale.

Using asynchronous synthetic data generation to improve synchronous training efficiency
Our and recent works (Javaheripi et al.| [2023; Maini et al} [2024} [Yang et al., 2025)) demonstrate
that synthetic data generation can enable improved scaling trends for synchronous pretraining on
centralized compute. Because synthetic data generation can be distributed across disparate resources
(Silver et al.l 2017b)), this approach shifts a portion of the overall synchronous pretraining compute
to an asynchronous workload. This trend may inspire changes in infrastructure design for LM
pretraining, enabling the effective use of distributed resources with low-bandwidth interconnects.
Additionally, developing more scalable synthetic data generation techniques, such as increasing
Monte Carlo samples in BoLT, could enable another axis for scaling the asynchronous compute used
in pretraining.

C.2 LIMITATIONS

Constrained experimental setup under compute budget Due to our compute budget, our exper-
imental setup was constrained to a 1B parameter LM and continued pretraining on a few billion
tokens of mostly mathematical text. These choices were made to demonstrate a proof-of-concept;
our use of a small model enables faster inference to synthesize billions of latent tokens, while con-
tinued pretraining on reasoning-intensive data enables measurable differences among methods in
downstream evaluations. We are hopeful that future work will test reasoning to learn at larger scales
and on general-domain pretraining data.

Limited exploration of design choices We focused on a particular instantiation of reasoning to
learn without extensive testing of design choices such as: the generative structure of latent thoughts
(currently latents are modeled autoregressively for each text chunk), the initial warmstart data
generated by different models or prompts, more efficient Monte Carlo sampling techniques such
as Sequential Monte Carlo (Doucet et al.,[2001), and various hyperparameters like the chunk size,
etc.

Side-effects of bootstrapping Bootstrapping LMs on their own synthetic data at scale may amplify
specific biases and ultimately lead to unintended consequences in model behavior. We observed one
possible example of such side effects: the few-shot CoT performance on GSM8K degraded with
BoLT iterations, though an alternative explanation is that more optimization on mathematical tokens
may degrade the language understanding necessary in GSM8K (see[Fig. E.5). Future work should
more extensively investigate the side effects of bootstrapping during pretraining.

C.3 FUTURE DIRECTIONS

Bootstrapping on general-domain pretraining data We believe the most exciting application of
our approach could be in enabling models to self-improve on general-domain pretraining-scale data
without task-specific supervision. This is in stark contrast to the recent approaches which improve
pretrained LMs with reinforcement learning on task-specific labeled data (Jaech et al.l 2024; |Guo
et al.} 2025). By bootstrapping LMs with latent thoughts on pretraining-scale data, we believe it may
be possible for models to acquire more general-domain reasoning capabilities that are useful beyond
specific domains.

Application to general data modalities Our approach is not limited to text data and may be
applied to general data modalities. This is because every piece of human-generated data is a result of
an underlying latent generative process that is typically not observable. For example, when working
with video data, one could train a multimodal latent model to extract the creative intent or emotional
pacing behind scene transitions, rather than focusing solely on pixel-level features. For non-textual
data, these underlying latent structures may be even more obscure, and models trained on such data
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typically demonstrates much worse data efficiency than LMs (Brooks et al.,[2024). Consequently,
augmenting these data modalities with learned latents could possibly yield more pronounced gains in
data efficiency than observed in the text domain.

Hierarchical latent structures Our current instantiation models the latent generation process in
an autoregressive manner, where each latent is generated for a single chunk of text conditioned on
the previous context. While we have demonstrated the effectiveness of this approach on reasoning-
intensive data, this local latent thought structure remains inherently “myopic”. It may not be
sufficiently expressive to capture the hierarchical planning processes that humans employ when
creating complex, long-form content such as research papers, novels, and large-scale codebases.
Future work could explore more sophisticated latent structures that mirror human planning hierarchies,
potentially incorporating both high-level planning and low-level reasoning.

D SYNTHETIC DATA GENERATION EXPERIMENTS

D.1 EXPERIMENTAL DETAILS

Baselines We compare our approach with several natural baselines in the data-constrained regime
(Muennighoft et al., [2024)) using a combination of data repetition and synthetic data genera-
tion:

* Raw-Repeat: We train on the raw CPT corpus for ~16 epochs with early stopping.

* Raw-Fresh: As an anticipated upper bound, we CPT on 8B unique tokens from FineMath-4+,
without any repetition.

* WRAP-Orig: WRAP (Maini et al., 2024) rephrases the data in four diverse styles: easy (with
simple language), hard (with complex language), Wikipedia (high-quality), and question-answer.
We prompt GPT-40-mini (see with temperature 0.7 to rephrase each document in
these styles. The average token ratio between synthetic paraphrases and raw tokens is 0.48:1, so
we generate 5 paraphrases per document to approximately match the total synthetic tokens of our
approach. While Maini et al.| (2024) found that mixing synthetic and raw data works best, we tuned
the mixture coefficient and found that entirely synthetic works best (see[Fig. D.Ta).

* WRAP-CoT: To probe whether the gains of our approach arise from simply including synthetic
reasoning traces in the training data, we develop a WRAP variant that prompts GPT-40-mini to
rephrase documents with interspersed reasoning steps (Prompt F.1.3). This strong WRAP baseline
allows us to assess whether it is key to maintain thoughts in a separate latent space to explain the
corresponding text, rather than directly in the raw text space. The synthetic-raw token ratio is 0.7:1,
so we generate 4 paraphrases per document for a total of ~1.3B synthetic tokens. As above, we
tuned the synthetic-raw mixture coefficient and found entirely synthetic works best (see[Fig. D.TD).

Training We use a cosine learning rate schedule with a 1000 step warmup and peak learning rate
of le-4 (tuned over {1e-5, 3e-5, le-4, 3e-4, le-3} in initial experiments). All models are trained with
sequence length 2048 and batch size 96 on 4 x H200 GPUs.

Evaluation To ensure robust evaluation, we evaluate with two distinct sets of few-shot CoT prompts
(see[Appx. F.2): (1) Standard prompts from previous works, i.e., Minerva CoT (Lewkowycz et al.
2022) for MATH, the default CoT from (Wei et al., [2022a)) for GSM8K, and the FLAN CoT (Wei
et al.,|2021)) for MMLU-STEM,; (2) Synthetic CoT prompts, where the CoT traces are synthesized by
GPT-40-mini using using the question as the prefix and answer as the suffix. We report
the results with synthetic CoT prompts by default, as they performed better uniformly across methods
(see[Fig. D.2). All models are evaluated with a temperature 0.0. We conducted all evaluations using
the LM Evaluation Harness (Gao et al.l 2024)), and the Math-Verify evaluator (HuggingFace, 2025))
for scoring MATH final answers against the ground-truth.

Tuning the mixing ratio of WRAP baselines We have tuned the ratio of mixing raw data with
paraphrased data for the WRAP baselines, similar toMaini et al.|(2024)). For each document during
training, we randomly select either the raw data or the paraphrased data according to a fixed mixing
ratio drawn from {0.0, 0.25, 0.5}, where 0.0 means using only paraphrased data without mixing raw
data. The results are shown in For both WRAP-Orig and WRAP-CoT, applying no mixing
(ratio=0.0) leads to the best performance, which we used in our experiments.
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Figure D.1: Training purely on paraphrased data without mixing raw data generally leads to the best
performance for WRAP baselines.

D.2 ADDITIONAL RESULTS

Evaluation results with different few-shot CoT prompts To facilitate a robust evaluation of
model downstream performance, we have tested each benchmark using two sets of few-shot CoT
prompts. Besides the synthetic CoT prompts that we used by default, we also tested the standard CoT
prompts from previous works — specifically, the Minerva CoT (Lewkowycz et al.,|2022) for MATH, the
default CoT from (Wei et al.l [2022a) for GSMS8K, and the FLAN CoT (Wei et al.,|2021) for MMLU-
STEM. See[Appx. F.2|for detailed prompts. The evaluation results are shown in[Fig. D.2] Our method
demonstrates robust performance across different prompt variations, maintaining consistent gains over
baselines. In contrast, several baselines, most notably WRAP-CoT, exhibit substantial performance
degradation when evaluated with standard prompts, leading to an even wider performance gap
between our method and the baselines.
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Figure D.2: Evaluation results with different few-shot CoT prompts: synthetic CoT prompts (left) vs.
standard CoT prompts used in previous works (right). Our method demonstrates robust performance
across different prompt variations and consistent gains over baselines. The performance gap is more
pronounced when using standard CoT prompts due to degradation of the baseline performance.
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Comparison normalized by the effective raw tokens seen by each method compares
different methods with the same amount of training tokens. However, since different methods produce
different amounts of training tokens per raw document, this means each method processes a different
number of raw documents during training. In particular, our method was trained on 3.3 times more
raw tokens (due to the latent to raw token ratio of 2.3) than the raw data baselines. To provide
a complementary perspective, [Fig. D.3| shows performance when methods are normalized by the
effective number of raw tokens seen during training. For WRAP baselines, we computed the effective
raw tokens based on the number of raw tokens that were paraphrased (i.e., training tokens divided by
synthetic-to-raw token ratio). We find that the gains of our method over baselines are more significant,
highlighting the data efficiency of our method.
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Figure D.3: Comparison normalized by the effective raw tokens seen by each method. Our method
achieves more significant gains over baselines, highlighting its data efficiency.
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E BOOTSTRAPPING EXPERIMENTS

E.1 BOOTSTRAPPING ON FIXED DATA

E.1.1 EXPERIMENTAL DETAILS

Bootstrapping configuration We distribute the latent generation workload over a cluster of
H100/200, A100/6000/5000/40, L40, and RTX3090 GPUs. We follow the training configuration in
Sec. 5.1} except we now use batch size 192 on 8 x H200 GPUs for bootstrapping training runs.

Downstream metrics and finetuned evaluation setup We take the training set for MATH &
GSMSK and finetune on this set. We synthetically generate CoT traces for the finetuning set using
our prompt in by treating the question as the prefix and the answer as the suffix. We
finetune using AdamW with standard hyperparameters 5; = 0.9, 82 = 0.95, weight decay 0, and a
cosine learning rate schedule with a warmup over the first 5% of steps. We split out 10% of the train
set as a validation set and tune hyperparameters to obtain a learning rate of 1e-4, batch size 64, and 5
epochs. We report test accuracy of the final model checkpoint with CoT, using standard sampling
hyperparameters top_k= 50, top_p= 0.9, and temperature 0.6. Due to the small test set size of
GSMBSK, we follow (Guo et al.|(2025)) and calculate the mean accuracy over 16 random samples for
each test question to reduce variance.

Reducing run-to-run variability We report means and standard errors over 5 train seeds for
bootstrapping and 3 train seeds for baselines. For finetuning evaluations, standard error is over 3
upstream CPT x 5 downstream finetuning = 15 total seeds.

E.1.2 ADDITIONAL RESULTS

Log-likelihood evaluation In|Fig. E.1} we measure the negative log-likelihood (NLL) of latent
thought models at each bootstrapping iteration on a holdout validation set. Note that this is not an
ideal evaluation metric for latent thought models as they are not trained to directly optimize NLL
and the evaluation does not utilize the latent thoughts. Nevertheless, we report it for reference and
to provide a relative comparison across bootstrap iterations as a smooth evaluation metric. Our
results show that latent thought models demonstrate lower NLL over multiple iterations with smooth
and clear gains up to the fourth iteration, which is consistent with the ELBO results in For
additional context, we also include raw data baselines, which directly optimize NLL during training
and therefore achieve substantially better NLL performance.

Latent Bootstrap Raw Baseline
— lteration1 — lteration 3 Iteration 0 (Warmstart) — Raw-Token-Match
Iteration 2 — lIteration 4 —— Train-FLOP-Match

Validation NLL

1.45
1.40
_,1.35
—
Z1.30
1.25

1.20

10° 10"
Total Training Tokens

Figure E.1: Evaluation results of negative log-likelihood (NLL) on a holdout validation set. Our
latent thought models demonstrate lower NLL over multiple iterations with clear gains, despite not
being directly trained to optimize NLL (unlike raw data baselines).

Detailed evaluation results on MATH In we include detailed evaluation results on
MATH on both our synthetic CoT prompt and the standard Minerva CoT prompt. We find that
the gains of latent thought models across multiple bootstrap iterations are robust across prompt
variations. The gains seem to plateau after the third iteration, which might partially be due to the
discrete nature of downstream evaluations. The gains over the baseline of training on raw data is even
more significant on the Minerva CoT prompt, indicating the effectiveness of training models with
self-generated latent thoughts.
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of latent thought models across multiple

bootstrap iterations are robust across prompt variations, and the gains over the baseline of training on

raw data is more significant on the Minerva CoT prompt.

Exact model performance curves In our main results (IElE. 7!;, we show the performance curves of

the best model during training at each bootstrap iteration. In|

we show the exact performance

curves of all models during training, which demonstrates a cosnistent relative comparison but with a

slightly larger variance.
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Figure E.3: Exact model performance curves during training. We observe a consistent relative

comparison with|Fig. 7|but with a slightly larger variance.

24



Under review as a conference paper at ICLR 2026

Additional results on scaling MC samples In we include additional results of scaling
MC samples, following the same setup as The performance gains remain robust across
different prompt variations and when evaluated GSM8K.

MATH (Minerva Few-Shot CoT) GSMB8K (Synthetic Few-Shot CoT) GSM8K (Default Few-Shot CoT)
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Figure E.4: Additional results on scaling MC samples. The performance gains of increasing MC
samples persist across prompt variations (left) and when evaluated on GSM8K (middle and right).

“Negative” bootstrapping results In we include some negative bootstrapping results
where the model performance on GSM8K with few-shot prompting deteriorates over multiple
bootstrap iterations (but still outperforms the raw data baselines), which differs from our results on
MATH (Fig.7) or on fine-tuning evaluations (Fig. 8] right). A potential explanation for the degradation
could be that as the model optimizes better on the mathematical-heavy FineMath data, it becomes
worse at natural language understanding. We tested this hypothesis on a holdout validation set from
the general-domain DCLM (Li et al} 2024) data, shown in[Fig. E.3| (right). We find that models
trained more on FineMath typically get worse on DCLM NLL (as evidenced by bootstrapped models
performing worse than the warmstart model, and the train-FLOP-matched baseline performing worse
than the raw-token-matched baseline). As a result, the bootstrapped models’ worse performance on
GSMSK might be attributed to their decreased natural language understanding capabilities due to
increased optimization on the FineMath training data. We have also included some failure examples
of bootstrapped models on GSMS8K in where the bootstrapped models made mistake
seemingly due to misinterpretation of the math word problems.

—e— |atent Bootstrap ===~ Latent Warmstart
Raw Train-FLOP-Match ——- Raw Token-Match
GSMB8K (Synthetic Few-Shot CoT) Validation NLL on DCLM
>
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o
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Figure E.5: “Negative” bootstrapping results. The bootstrapped models’ performance on GSM8K
deteriorates over multiple bootstrap iterations (left), which might be attributed to their decreased
natural language understanding capabilities due to increased optimization on the FineMath training
data, as evidenced by their worse NLL on DCLM (right).
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Decomposed ELBO across bootstrap iterations To provide more insights on how the latent
thoughts evolve across bootstrap iterations, we decompose the ELBO objective as follows and
measure each term respectively across bootstrap iterations:

ELBO = Eyz/x)[logp(X|Z) + logp(Z)] + H[q(Z|X)]
=Ey(z1x)llogp(X|2)] — Dxr[a(Z|X)l|p(Z)]

Here, the three terms can be interpreted as:

* Utility: log p(X|Z) — how well Z helps predict X,
* Simplicity: log p(Z) — how well the prior fits Z,
* Diversity: H|[q(Z|X)] - the entropy of the thought generator.

In we plot each term (measured in nats per sample) over four bootstrapping iterations and
observe the following trends:

* Utility (log P(X|Z)) decreased slightly, from about -1290 to -1320 nats/sample,
* Simplicity (log P(Z)) improved substantially, from about -3090 to -2920 nats/sample,
* Diversity (H[Q(Z|X)]) also decreased slightly, from about 2790 to 2730 nats/sample.

These changes contributed to an overall ELBO improvement from about -1590 to -1510 nats/sample.
This suggests that, in our regime, there remains a large gap between the posterior and the prior, and
the bootstrapping process optimizes for narrowing this gap—i.e., making the latent thoughts more
learnable—while sacrificing a small amount of predictability and diversity. Ultimately, this improves
the overall ELBO and downstream accuracy, and therefore we consider it to be desirable.
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Figure E.6: Decomposed ELBO across bootstrap iterations. Latent thought models prioritize mak-
ing the latents simpler and more learnale (higher log p(Z)) while sacrificing a small amount of
predictability (lower log p(X|Z)) and diversity (lower H[q(Z|X)]).
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Figure E.7: Continual bootstrapping: We study a more practical scenario in which an LM is
continually pretrained on a series of corpora, using the model at each iteration to generate latent
thoughts for the subsequent corpus to train itself.

E.2 CONTINUAL BOOTSTRAPPING

Our previous experiment confirms that BoLT leads to iterative improvement of the latent thought
model. However, re-training the latent thought model from scratch at each iteration could be wasteful,
and a more realistic setting would be to perform those experiments as part of continual learning,
where the model updates its latent thought generator as it processes more and more data. We show
that BoLT continues to work in this setting.

E.2.1 EXPERIMENTAL SETUP

Bootstrapping configuration We use TinyLlama-1.1B as the base model M, and 240M raw
tokens from the FineMath-4+ dataset as the warmstart data Ay. We conduct 7' = 4 bootstrap
iterations, where each iteration ¢ uses a distinct subset of the FineMath-4+ dataset with logarithmically
increasing size as X;—960M, 960M, 1.92B, and 3.84B raw tokens respectively. Models are trained
for 1 epoch on the warmstart data and 2 epochs on the bootstrap data at each iteration. To mitigate
forgetting and model degradation during continual training, we use the warmup-stable-decay (WSD,
Hu et al.| [2024b) schedule. In particular, the learning rate is warmed up for 1000 steps only at the
warmstart stage and then maintained at a constant value until the decay phase. For each training stage
(including both warmstart and bootstrap iterations), we linearly decay the learning rate during the final
15% of training steps, where the final checkpoint is obtained as M, for evaluation and synthetic latent
generation. When training M, 1 at next iteration, we initialize both the model and the optimizer states
from the pre-decay checkpoint, and continue training with the same constant learning rate without
re-warming up. The learning rate is set to 3e-5, which was tuned in our preliminary experiments to
mitigate forgetting and achieve stable transitions across iterations. All other configurations follow
Sec. 6.1.1} such as the use of 4 MC samples for synthetic latent generation.

Baseline comparison The key question to answer in this setup is whether iterative improvement
of the latent thought model leads to performance benefits. To understand this, we compare to a
baseline where we stop iterative improvement at time ¢’, fixing the latent thought generation model.
We investigate this by comparing our bootstrapped models (that use the most recent and capable
model M, to synthesize latents for M, at each iteration) against the alternatives of fixing the
latent generator at a previous iteration M for training subsequent models M, V¢ > ¢’. We conduct
3 training runs for each training setup to reduce the run-to-run variability and measure the models’
performance at each iteration following the same evaluation protocol described in[Sec. 6.1.1}

E.2.2 RESULTS

Continual, iterative improvement of latent thought models shows the best model
performance at each bootstrap iteration, comparing the use of the bootstrapped model to generate
latents for the next training corpus, versus the use of models from previous iterations to generate
latents. Our results demonstrate that using the more capable bootstrapped models lead to a steeper
scaling trend in likelihood-based metrics (see left for ELBO and left for NLL
results), which demonstrates the bootstrapping effects of our approach in improving data scaling with
higher-quality latents. The gains are also reflected in the downstream MATH performance (Fig. E.8§|
right), where the bootstrapped models consistently outperform the fixed-latent-generator baselines,
with an increasingly pronounced gap in performance at later iterations. We include the detailed model
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Figure E.8: BoLT can bootstrap in continual learning settings. We instantiate the setup illustrated
in[Fig. E.7]by training on a series of corpora and compare two options: bootstrapping the latent model
across all four iterations (blue), or fixing the latent generator at earlier iterations. Our bootstrapped
models lead to a steeper scaling trend in likelihood-based metrics (left) and consistently outperform
the fixed-latent-generator baselines on downstream MATH performance (right), with gains becoming
more pronounced at later iterations. Results over 3 training runs are reported. Due to the log-sized
scaling of the x-axis, the scaling trends here are comparable to a traditional data-scaling law. See

for additional results and for detailed evaluations over the training runs.

performance during training runs in[Fig. E.I0] Collectively, these results demonstrate the potential of
our approach in forming a model self-improvement loop—where the more capable latent thought
models produce higher quality latents that lead to better learning efficiency.

Additional evaluation results In we include additional evaluation results of NLL on
the holdout validation set and the MATH performance on the Minerva CoT prompt. We find that
NLL evaluation demonstrates a similar trend as the ELBO evaluation in (left), where the
bootstrapped models lead to a steeper scaling trend than the fixed-latent-generator baselines. For
the MATH performance on the Minerva CoT prompt, the bootstrapped models also demonstrate
consistent gains, even though the performance gap at the forth iteration is a bit less pronounced than
using the synthetic CoT prompt (Fig. E.§|right).

Detailed evaluation results during training runs In we include the evaluation results
of each model during the training runs. We plot the best model performance during each training run
to denoise the evaluation results and report the average over 3 runs, following the same practice in
[Fig. 7} From the plots, we can observe a clear difference of scaling trend between the bootstrapped
models and the fixed-latent-generator baselines, especially for the likelihood-based metrics (top
IoW).
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Figure E.9: Additional evaluation results of NLL on the holdout validation set (left) and MATH per-
formance on the Minerva CoT prompt (right). Similar to our main results (Fig. E-8), the bootstrapped
models lead to a steeper scaling trend in likelihood-based metrics and consistent improvement on
downstream MATH performance.
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Figure E.10: Detailed evaluation results during training runs. We report the best model performance
during each training run to denoise the results and report the average over 3 runs. The dashed
curves denote the learning rate decay phase of each training run, where the final models are used for
evaluation and latent generation. Models right before the decay phase are used for continual training
at the next iteration.
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F PROMPTS

F.1 PROMPTS FOR SYNTHETIC DATA GENERATION

4[ Prompt F.1.1: GPT-40-mini to generate latent thoughts on warmstart data ]7

## System

You are an advanced AI system, highly knowledgeable and capable of deeply understanding
and reasoning through any web document

## User

You are provided with a pair of web document prefix and suffix. Your task is to insert
latent thoughts between them underlying the creation of the suffix conditioned on the
prefix. The latent thoughts should include: the missing background knowledge and the
reasoning traces underlying each claim (especially, step-by-step derivations or logical
reasoning) .

### Prefix

{prefix}

### Suffix
{suffix}
### Your turr

Now provide the latent thoughts. Use concise, simple, and declarative language. Do not
give any supporting remarks or references to the terms 'prefix' and 'suffix', as this
output will go directly into a computer program. Do not apply any markdown formatting or
text embellishments. Optimize the content to ensure every word is informative, avoid
vague language like 'xxx 1s essential'. Emphasize on the suffix without repeating the
content in the prefix. Focus on implicit reasoning and background knowledge that is not
explicitly stated in the suffix, and use concrete logical reasoning or mathematical
derivations when applicable.

_[ Prompt F.1.2: GPT-40-mini to rephrase the data with WRAP (Maini et al.}[2024) prompts ]_

# Prompt I
For the following website, give me a paraphrase of it using a very small vocabulary and

extremely simple sentences that a toddler will understand.

## Website
{text}

# Prompt T

For the following website, give me a paraphrase of it using very terse and abstruse
language that only an erudite scholar will understand. Replace simple words and phrases
with rare and complex ones.

## Website
{text}

# Prompt III
For the following website, give me a diverse paraphrase of it in high quality English
language, as in sentences on Wikipedia.

## Website
{text}

# Prompt
Convert the following website into a conversational format with multiple tags of '
Question:' followed by 'Answer:'.

## Website
{text}
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4[ Prompt F.1.3: GPT-40-mini to rephrase the data with explicit reasoning steps ]—

You are provided with the following document. Give me a diverse paraphrase in high
quality English language that preserves all information in the original document. Also,
insert detailed reasoning thoughts (especially, step-by-step mathematical derivations or
logical reasoning). Do not output '## Paraphrased Document'.

## Document
{text}

F.2 PROMPTS FOR FEW-SHOW COT EVALUATION

Here we include the detailed prompts used in our few-shot CoT evaluation. In particular, we used
distinct sets of few-shot CoT prompts (see [Appx. F.2): (1) Synthetic CoT prompts (Appx. F.2.1)
— where the CoT traces are synthetically generated by GPT-40-mini using
question as prefix and answer as suffix; (2) Standard prompts from previous works
— specifically, the Minerva CoT (Lewkowycz et al.| 2022)) for MATH, the default CoT from (Wei
[20224) for GSMSK, and the FLAN CoT (Wet et al.| for MMLU-STEM. We include the
prompts used for our latent thought models for illustration — for baselines we used the exact same
prompts with special latent tokens (i.e., <StartofLatent>, <Prior>, and <EndofLatent>)
removed.

For each prompt, we include the few-shot CoT examples and a randomly sampled test question. For
MATH, we used the same few-shot questions as in the Minerva prompts. For GSM8K, we used a
randomly selected 8 problems from the training set as the few-shot examples in our synthetic CoT
prompt, which aligns better with the actual test problem distribution than the easier problems in the
default CoT prompt. For MMLU-STEM, we randomly selected 4 problems from 4 subjects in our
synthetic CoT prompt, while FLAN CoT prompts use subject-specific few-shot examples for each
subject (we include the one for high school statistics for an example).

F.2.1 SYNTHETIC FEW-SHOT COT PROMPTS
{ Prompt F.2.1: Synthetic Few-Shot CoT for MATH }

Problem:

i

x

5 —

Find the domain of the expression

1

<StartOfLatent><Prior>

main of the express we need to ensure the numerator and denominator

on,

are both defined and the denominator is not zero.

Start with the numerator: x — 2. This square root is defined when the expression inside

is non-negativ
x-22>0

x > 2.

. Thus, we require:

Next, consider
inside is no

by zero. There

Now, we

from the

ine the two inequalities. From the first inequality, we have x > 2, and

= have x < 5.

econd inequality,

The combined conditions are:

2 < x < 5.

In interval notation, this

Thus, the fina
The final an
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1728
1729 <EndOfLatent>
Final Answer: The final answer is [2,5). I hope it is correct.
1730
1731 Problem:
1732 If det A =2 and detB =12, then find det(AB).
1733 <StartOfLatent><Prior>
1734 To find the determinant of the product of two matrices, we use the property that states
1735 det(AB) = det(A) - det(B). This property holds for any square matrices A and B of the
36 same size.
17
1737 Given that det A =2 and det B =12, we can directly apply this property.
17
38 We calculate:
1739
1740 1. Start with the known determinants: det A =2 and detB = 12.
1741 2. Multiply these two values together: 2-12.
3. Perform the multiplication: 2-12 = 24.
1742
Thus, based on these calculations, we conclude that det(AB) = 24.
1743
The final answer is 24
1744
1745 <EndOfLatent>
1746 Final Answer: The final answer is 24. I hope it is correct.
1747 Problem:
1748 Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights
1749 instead, how many times must Terrell lift them in order to lift the same total weight?
1750 <StartOfLatent><Prior>
1751 To determine how many times Terrell must 1lift the two 15-pound weights to equal the
1752 total weight lifted with the two 20-pound weights, we first calculate the total weight
lifted with the 20-pound weights.
1753
1754 Each 20-pound weight contributes 20 pounds, and since he lifts two weights, the total
weight per 1ift is 20 pounds + 20 pounds = 40 pounds. He 1lifts this total 12 times,
1755 resulting in a total weight of 40 pounds * 12 = 480 pounds.
1756
1757 Next, we compute how many times he needs to lift the two 15-pound weights to match this
total weight. Each 15-pound weight contributes 15 pounds, so the total weight per 1lift
1758 with the 15-pound weights is 15 pounds + 15 pounds = 30 pounds.
1759
1760 To find the number of lifts required to reach the same total weight of 480 pounds, we
set up the equation: 30 pounds » x lifts = 480 pounds, where x represents the number of
1761 lifts.
1762
1763 Solving for x, we divide both sides by 30 pounds:
x = 480 pounds / 30 pounds = 16 lifts.
1764
1765 Thus, Terrell must 1lift the two 15-pound weights 16 times to equal the total weight he
lifts with the two 20-pound weights.
1766 The final answer is 16
1767
1768 <EndOfLatent>
1769 Final Answer: The final answer is 16. I hope it is correct.
1770 Problem:
If the system of equations
1771 Y quatt
1772
6r —4y = a
1773 y=@
1774 6y — 9x = b.
1775
1776 has a solution (z,y) where z and y are both nonzero,
find ¢, assuming b is nonzero.
1777
1778 <StartOfLatent><Prior>
To find the ratio %, we start with the system of equations given. The first equation is
1779 .
6x — 4y = a, and the second is 6y — 9x = b.
1780
1781 We can express a in terms of z and y from the first equation:
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1782
1783 a = 6x - 4y.
1784 .
Next, we rearrange the second equation to express b:
1785 b = 6y - 9x.
1786
To find the ratio %, we substitute the expressions we derived:
1787 a _ 6z—4dy
b — 6y—9z °
1788
1789 Next, we need to simplify this expression. We can factor out a common factor in the
numerator and the denominator. First, observe that both a and b can be rewritten in a
1790
way that may reveal their relationship:
1791 In the numerator, we can rearrange it as 6z — 4y = 2(3z — 2y).
1792 In the denominator, we rearrange 6y — 9z = 3(2y — 3xz).
1793 Now, substituting these factorizations back into our ratio gives us:
1794 _ 2(30-2y)
1705 %"'3@y73m'
1796 Next, we can simplify further. Notice that 2y — 3z can be rewritten as —(3z — 2y):
a _ 2(3xz—2y)
1797 b T 3(=(Bxz—2y)) "
1798 This simplifies to:
- 2 _ 2
1799 e -2 -2
1800
Since we assumed b is nonzero, this leads us to conclude that the system of equations
1801
has a specified relationship between a and b when both x and y are nonzero.
1802 The final answer is 7%
1803
<EndOfLatent>
1804 Final Answer: The final answer is —2. I hope it is correct.
3
1805
1806 Problem:
Rationalize the denominator: =Li.
1807 2T
1808 <StartOfLatent><Prior>
1809
1810
1811 [ Prompt F.2.2: Synthetic Few-Shot CoT for GSM8K }
1812
1813 ##Problem
Question: Ben works 8-hour shifts in a furniture shop. It takes him 5 hours to build 1
1814
rocking chair. How many chairs can he build in 10 days?
1815 Final Answer:
1816 <StartOfLatent><Prior>
1817 To find out how many rocking chairs Ben can build in 10 days, first determine the total
number of hours he works in that period. Since he works 8-hour shifts, over 10 days, he
1818 works a total of 8 hours/day multiplied by 10 days, which equals 80 hours.
1819
1820 Next, calculate how many rocking chairs Ben can build in those 80 hours. Each rocking
chair takes him 5 hours to complete. To find the total number of chairs, divide the
1821 total hours worked by the time taken to build one chair: 80 hours divided by 5 hours/
1822 chair equals 16 chairs.
1823 Thus, in 10 days, Ben can build 16 rocking chairs. Therefore, the answer is 16.
1824 <EndOfLatent>
1825 The final answer is 16. I hope it is correct.
1826
1827
1828 ##Problem
Question: A family has three adults and children, both girls and boys. They went out for
1829 a family trip and prepared 3 dozen boiled eggs for the trip. Every adult got 3 eggs,
1830 and the boys each received 1 more egg than each girl since the girls had some snacks.
1831 How many boys went on the trip if the number of girls was 7 and each girl received an
egg?
1832 Final Answer:
1833 <StartOfLatent><Prior>
1834
1835
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1836

1837 To determine the number of boys on the trip, we first analyze the information given. We

1838 know there are 7 girls. Each girl received 1 egg. Therefore, the total number of eggs
given to the girls is:

1839

1840 7 girls x 1 egg/girl = 7 eggs.

1841 Next, we find out how many eggs were allocated to the adults. There are 3 adults, and

1842 each received 3 eggs, which results in:

eas 3 adult 3 /adult 9

adults * eggs/adu = eggs.

1844

1845 Now we calculate the total number of eggs distributed so far:

184

846 7 eggs (to girls) + 9 eggs (to adults) = 16 eggs.

1847

1848 Since the family prepared 3 dozen boiled eggs, we find the total number of eggs:

1849 3 dozen = 3 % 12 = 36 eggs.

1850

1851 Now we determine how many eggs remain for the boys:

1852 36 total eggs - 16 eggs already distributed = 20 eggs available for the boys.

1853

1854 According to the problem, each boy received 1 more egg than each girl, which means each
boy received:

1855

1856 1 egg (for the girl) + 1 egg = 2 eggs.

1857

Let B represent the number of boys. The total number of eggs given to the boys can be
1858 expressed as:

1859
1860 B boys * 2 eggs/boy = 2B eggs.
1861 Setting the available eggs for the boys equal to the eggs they received, we have:
1862
2B = 20.
1863
1864 To find B, we solve the equation:
1865
B =20/ 2 = 10.
1866
1867 Thus, the number of boys who went on the trip is 10. Therefore, the answer is 10.
1868 <EndOfLatent>
The final answer is 10. I hope it is correct.
1869
1870
1871 ##Problem
1872 Question: A deep-sea monster rises from the waters once every hundred years to feast on
a ship and sate its hunger. Over ree hundred years, i as consume people. ips
1873 hi d te its h (¢} th hundred it h d 847 1 Shi
ave been built larger over time, so each new shi as twice as man eople as the last
1874 h b built larg i h hip h i y peopl he 1

ship. How many people were on the ship the monster ate in the first hundred years?
1875 Final Answer:

1876 <StartOfLatent><Prior>

To find the number of people on the ship the monster ate in the first hundred years, we
1877 need to understand the pattern of ship sizes and the total consumption over three
1878 hundred years.
1879 : . .

The monster consumes a ship every hundred years, meaning it consumes a total of three
1880 ships over three hundred years. The problem states that ships have been built larger
1881 over time, specifically that each new ship has twice as many people as the last ship.
1882 Let's denote the number of people on the ship in the first hundred years as x. According
1883 to the problem, the second ship, which the monster eats in the second hundred years,
1884 has twice as many people, or 2x. The third ship has twice the number of people as the
1885 second ship, or 4x.
1886 Now we can express the total number of people consumed over the three hundred years as:
1887 x (first ship) + 2x (second ship) + 4x (third ship) = 847 people.
1888 Combining these terms gives us:
1889
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1890
1891 X + 2x + 4x = Tx.
1892 Setting this equal to the total consumption:
1893 Tx = 847.
1894
To find x, we divide both sides by 7:
1895 x =847 / 7 = 121.
1896
1897 Thus, the number of people on the ship the monster ate in the first hundred years is 121.
Therefore, the answer is 121.
1898 <EndOfLatent>
1899 The final answer is 121. I hope it is correct.
1900
1901
1902 ##Problem
Question: Nancy is filling an aquarium for her fish. She fills it halfway and goes to
1903 answer the door. While she's gone, her cat knocks the aquarium over and spills half the
1904 water in it. Then Nancy comes back and triples the amount of water in the aquarium. If
1905 the aquarium is 4 feet long, 6 feet wide, and 3 feet high, how many cubic feet of water
are in the aquarium?
1906 Final Answer:
1907 <StartOfLatent><Prior>
1908 To find the total volume of water in the aquarium, calculate the aquarium's total volume
first. The formula for the volume of a rectangular prism is length multiplied by width
1909 multiplied by height. Here, the dimensions are 4 feet long, 6 feet wide, and 3 feet high.
1910
1911 Calculate the total volume:
1912 Volume = length x width x height
1913 Volume = 4 feet x 6 feet x 3 feet = 72 cubic feet.
1914

Initially, Nancy fills the aquarium halfway. Therefore, the amount of water after she
1915 fills it is:

1916 Half of 72 cubic feet = 72 / 2 = 36 cubic feet.
1917 While Nancy is away, the cat spills half of this amount:
1918 Amount spilled = 36 cubic feet / 2 = 18 cubic feet.
1919 Thus, the remaining water in the aquarium after the spill is:
1920 36 cubic feet - 18 cubic feet = 18 cubic feet.
1921 When Nancy returns, she triples the remaining amount of water. Calculate the new amount
1922 of water: . .
New amount = 3 x 18 cubic feet = 54 cubic feet.
1923
1924 The final amount of water in the aquarium in cubic feet is 54. Therefore, the answer is
54.
1925 <EndOfLatent>
1926 The final answer is 54. I hope it is correct.
1927
1928
1929 ##Problem
Question: There are 30 different nuts in a bowl. If 5/6 of the nuts were eaten, how many
1930
nuts were left?
1931 Final Answer:
1932 <StartOfLatent><Prior>
1933 To determine how many nuts are left after 5/6 of them are eaten, first, calculate how
many nuts were consumed. Start with the total number of nuts, which is 30. To find the
1934 number of nuts eaten, multiply 30 by 5/6.
1935
1936 30 » (5/6) = 25 nuts eaten.
1937 Next, subtract the number of nuts eaten from the total number of nuts to find how many
1938 are left.
1939 30 - 25 = 5 nuts remaining.
1940
1941 Thus, after consuming 5/6 of the nuts, 5 nuts are left in the bowl. Therefore, the
answer is 5.
1942 <EndOfLatent>
1943
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1944

1945 The final answer is 5. I hope it is correct.
1946

1947

1948 ##Problem

Question: Yuan is 7 years older than his brother David and twice his age. How old 1is

1949 David?

1950 Final Answer:
1951 <StartOfLatent><Prior>
Let Y represent Yuan's age and D represent David's age.
1952
1953 From the information given, we can establish two equations based on the relationships
described.
1954
1955 First, the statement "Yuan is 7 years older than his brother David" can be
1956 mathematically expressed as:
Y =D+ 7.
1957
1958 Second, the statement "Yuan is twice his age" translates to:
1959 o
1960

Now, we can set the two equations equal to each other since both represent Yuan's age:

1961 D+ 7 = 2D.

1962 ‘ .
To isolate D, we need to rearrange the equation:
1963 7= 20 - b,
1964 7 = D.
1965

Thus, David's age is determined to be 7 years old. Therefore, the answer is 7.
1966 <EndOfLatent>

1967 The final answer is 7. I hope it is correct.

1968

1969

1970 ##Problem
Question: Joey wants to buy the latest released pair of designer High Jump basketball

1971 ; ; ;
sneakers. He plans to mow 3 neighbors' lawns for $8 a lawn, sell 2 collectible figures

1972 to his friends for $9 each, and work an after-school job for 10 hours at $5 per hour. If

1973 his earnings just cover the price of the High Jump sneakers, how much do the shoes cost
?

1974 Fin

al Answer:

1975 <StartOfLatent><Prior>

1976 To find the total earnings Joey accumulates, we need to calculate each source of income
step-by-step.

1977

1978 First, calculate the income from mowing lawns. Joey mows 3 lawns at a rate of $8 per

1979 lawn. Therefore, the total income from mowing is:
3 lawns x $8/lawn = $24.

1980

1981 Next, calculate the income from selling collectible figures. Joey sells 2 figures at a
price of $9 each. Thus, the total income from selling figures is:

1982 2 figures x $9/figure = $18.

1983

1984 Now, calculate the income from his after-school job. Joey works for 10 hours at a rate
of $5 per hour. Therefore, his income from the job is:

1985 10 hours * $5/hour = $50.

1986

1987 Now, sum all these earnings to find the total amount Joey has:

088 $24 (mowing) + $18 (selling figures) + $50 (job) = $92.

1

1989 Since Joey's total earnings of $92 exactly cover the price of the High Jump basketball

1990 sneakers, it can be concluded that the cost of the sneakers is $92. Therefore, the
answer is 92.

1991 <EndOfLatent>

1992 The final answer is 92. I hope it is correct.

1993

1994

1995 ##Problem
Question: Before getting to work, Jess has a few errands to run. Jess has to walk 11

1996 blocks to the store and 6 blocks to the gallery, before walking the final 8 blocks to

1997
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1998

1999 arrive at work. If Jess has already walked 5 blocks, how many more blocks must she walk
before arriving at work?

2000 Final Answer:

2001 <StartOfLatent><Prior>

2002 To determine the total distance Jess needs to walk to work, first calculate the total

number of blocks from the store and the gallery to work. The distance to the store is 11

2003 blocks, and the distance to the gallery is 6 blocks. Thus, the total distance to work

2004 is the sum of these two distances plus the final stretch to work, which is 8 blocks.
2005 _
Total distance = 11 blocks (to store) + 6 blocks (to gallery) + 8 blocks (to work) = 25
2006 blocks.
2007
2008 Next, subtract the distance Jess has already walked, which is 5 blocks, from the total
distance calculated.
2009
2010 Remaining distance = Total distance - Distance already walked = 25 blocks - 5 blocks =
20 blocks.
2011
2012 Thus, Jess must walk 20 more blocks to reach work. Therefore, the answer is 20.
2013 <EndOfLatent>
The final answer is 20. I hope it is correct.
2014
2015
2016
##Problem
2017 Question: Marcell and Beatrice are having a contest to see who can eat the most fruit
2018 roll-ups, so they unroll as many as they can find. Unfortunately, someone makes a
2019 mistake and Beatrice's was two roll-ups wide and 24 rolls up long while Marcell's was 3

roll-ups wide and 14 roll-ups long. If they both ate their entire amount, how many did
2020 they eat on average?

2021 Final Answer:

<StartOfLatent><Prior>

2022
2023
2024 ( - )
2025 l Prompt F.2.3: Synthetic Few-Shot CoT for MMLU-STEM |
2026
##Problem
2027 Question: A microwave oven is connected to an outlet, 120 V, and draws a current of 2
2028 amps. At what rate is energy being used by the microwave oven?
2029 (2) 10w
(B) 30 W
2030 (C) 60 W
2031 (D) 240 W
Answer:
2032 <StartOfLatent><Prior>
2033 To determine the rate of energy usage, we apply the formula for electrical power, which
2034 is given by P = V X I, where P is power in watts, V is voltage in volts, and I is
current in amps.
2035
2036 In this scenario, the voltage V is 120 V and the current I is 2 A.
2037
Calculating the power:
2038 P =120V X 2 A = 240 W.
2039
2040 This calculation shows that the microwave oven consumes energy at a rate of 240 watts.
2041 Thus, the answer is (D) 240 W.
2042 <EndOfLatent>
The answer is (D) 240W.
2043 ®
2044
2045
2046 ##Problem
Question: The variable x varies directly as the square of y, and y varies directly as
2047 the cube of z. If x equals —16 when z equals 2, what is the value of x when z equals %?
2048 () -1
(B) 16
2049 ©) —5is
2050 o i
2051 Answer:
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2052
2053 <StartOfLatent><Prior>
2054 To solve the problem, we need to establish the relationships between the variables x, y,
and z based on the given conditions.
2055
2056 Firstly, since x varies directly as the square of y, we can express this relationship
mathematically as:
2057 x = kl * y*2, where k1l is a constant.
2058
2059 Next, since y varies directly as the cube of z, we can express this relationship as:
2060 y = k2 x z"3, where k2 is another constant.
2061 Now we can substitute y in the first equation with its expression in terms of z:
x = k1 * (k2 % z73)"2
2062 x = k1l k2”2 x z"6.
2063
2064 This shows that x varies directly as the sixth power of z, leading us to express this as
2065 x = k x 276, where k = k1l » k2"2.
2066
2067 Given that x = -16 when z = 2, we can substitute these values into the equation to find
k:
2068 216 = k + (276)
2069 -16 = k * 64
2070 k = -16 / 64
k = -1/4.
2071
2072 Now we have the relationship for x in terms of z:
2073 x = -1/4 % z"6.
2074 Next, we need to find the value of x when z = 1/2. We substitute z = 1/2 into the
2075 equation:
x = -1/4 = (1/2)"6
2076 x = -1/4 %= (1/64)
2077 x = -1/256.
2078
20 Therefore, the value of x when z = 1/2 is -1/256. Thus, the answer is (C) -\frac{1l}{256}.
79
2080 <EndOfLatent>
2081
2082
2083 ##Problem
2084 Question: Which expression is equivalent to 5 x 9?2
(A) (5 x 4) x (6 x 5)
2085 (B) (5 x 5) + (5x 4)
2086 (C) (5 x5) + (5x 9)
(D) (5 x 9) x (6 x 9)
2087 Answer:
2088 <startOfLatent><Prior>
2089 To determine which expression is equivalent to 5 x 9, we need to evaluate each option
step by step.
2090
2091 Option (A): (5 x 4) x (6 x 5)
2092 This expression simplifies to 20 x 30, which equals 600. This is not equal to 5 x 9 = 45.
2093
2094 Option (B): (5 x 5) + (5 x 4)
2095 This expression simplifies to 25 + 20, which equals 45. This matches 5 x 9.
2096 Option (C): (5 x 5) + (5 x 9)
2097 This expression simplifies to 25 + 45, which equals 70. This is not equal to 5 x 9.
2098 Option (D): (5 x 9) x (6 x 9)
2099 This expression simplifies to 45 x 54, which equals 2430. This is not equal to 5 x 9.
2100
Thus, the answer is (B) (5 x 5) + (5 x 4).
2101 <EndOfLatent>
2102 The answer is (B) (5 x 5) + (5 x 4).
2103
2104
2105
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2106
2107 ##Problem
Question: A new smartwatch is manufactured in one part of a factory, then secured for
2108 shipping in another, independent part of the factory. The weight of the smartwatch has a
2109 mean of 62 grams and a standard deviation of 1.0 grams. The weight of the packaging (
2110 box, user's guide, bubble wrap, etc.) has a mean of 456 grams and a standard deviation
of 6 grams. Together, the distribution of the weight of the smartwatch and its packaging
2111 would have the following mean and standard deviation:
2112 (A) Mean 518 grams; standard deviation 7.0 grams
2113 (B) Mean 518 grams; standard deviation 3.5 grams
(C) Mean 518 grams; standard deviation 6.1 grams
2114 (D) Mean 394 grams; standard deviation 6.1 grams
2115 Answer:
2116 <StartOfLatent><Prior>
To find the combined mean and standard deviation of the smartwatch and packaging, we
2117 start by calculating the mean of the total weight. The mean weight of the smartwatch is
2118 62 grams, and the mean weight of the packaging is 456 grams. The total mean weight is
2119 calculated by adding these two means:
2120 Mean total weight = Mean smartwatch + Mean packaging
2121 Mean total weight = 62 grams + 456 grams = 518 grams.
2122 Next, we need to calculate the standard deviation of the total weight. Since the weights
2123 of the smartwatch and packaging are independent, we can use the formula for the sum of
2124 two independent random variables:
2125 Standard deviation of total weight = sqrt((Standard deviation of smartwatch)”2 + (
2126 Standard deviation of packaging)*2).
2127 . ) R
The standard deviation of the smartwatch is 1.0 grams, and the standard deviation of the
2128 packaging is 6 grams. Now, we apply the values to the formula:
2129
Standard deviation of total weight = sqrt((1.0 grams)”"2 + (6 grams)"2)
2130 B
= sgrt(l + 36)
2131 = sqrt (37)
2132 ~ 6.08 grams.
2133 Rounding this value to one decimal place gives us approximately 6.1 grams.
2134
2135 Therefore, the combined mean weight is 518 grams, and the combined standard deviation is
approximately 6.1 grams, which corresponds to option (C). Thus, the answer is (C) Mean
2136 518 grams; standard deviation 6.1 grams.
2137 <EndOfLatent>
2138 The answer is (C) Mean 518 grams; standard deviation 6.1 grams.
2139
2140
##Problem
2141 Question: Mr. Bee's statistics class had a standard deviation of 11.2 on a standardized
2142 test, while Mr. Em's class had a standard deviation of 5.6 on the same test. Which of
2143 the following is the most reasonable conclusion concerning the two classes' performance
on the test?
2144 (A) Mr. Bee's class is less heterogeneous than Mr. Em's.
2145 (B) Mr. Em's class is more homogeneous than Mr. Bee's.
2146 (C) Mr. Bee's class performed twice as well as Mr. Em's.
(D) Mr. Em's class did not do as well as Mr. Bee's.
2147 Answer:
2148 <StartOfLatent><Prior>
2149
2150
o F.2.2 STANDARD FEW-SHOT COT PROMPTS

2152 4[ Prompt F.2.4: Minerva Few-Shot CoT for MATH (Lewkowycz et al.}[2022) ]7

2153

Problem:
2154 ) ) ) )
Find the domain of the expression — -
2155 ¥
2156 <StartOflLatent><Prior>
2157 The expressions inside each square root must be non-negative. Therefore, z —2 >0, so

x >2, and 5—2 >0, so  <5. Also, the denominator cannot be equal to zero, so 5 —a >0

2158
2159 '

which gives x < 5. Therefore, the domain of the expression is
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2160
2161
2162
2163
2164
2165
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2168
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2199
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2202
2203
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The final answer is [2,5)

<EndOfLatent>
Final Answer: The final answer is [2,5). I hope it is correct.

Problem:
If det A =2 and detB =12, then find det(AB).

<StartOfLatent><Prior>

We have that det(AB) = (det A)(det B) = (2)(12) =[24]

The final answer is 24

<EndOfLatent>
Final Answer: The final answer is 24. I hope it is correct.

Problem:

Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights
instead, how many times must Terrell lift them in order to lift the same total weight?
<StartOfLatent><Prior>

If Terrell lifts two 20-pound weights 12 times, he lifts a total of 2-12-20 = 480 pounds

of weight. If he lifts two 15-pound weights instead for m times, he will 1lift a total
of 2-15-n =30n pounds of weight. Equating this to 480 pounds, we can solve for n:

30n = 480

=  n=480/30=]16]

The final answer is 16

<EndOfLatent>
Final Answer: The final answer is 16. I hope it is correct.

Problem:
If the system of equations

6xr — 4y = a,

|
S

6y — 9z =
has a solution (z,y) where = and y are both nonzero,
find ¢, assuming b is nonzero.

<StartOfLatent><Prior>
If we multiply the first equation by 4,%’ we obtain

6y — 9 :
— 9z = ——a.
Y 2

Since we also know that 6y — 9x = b, we have

——a=b=> —=|—=|
2

The final answer is —f%
<EndOfLatent>
2

Final Answer: The final answer is —%. I hope it is correct.

Problem:

Rationalize the denominator: vk

<StartOfLatent><Prior>
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2214
Prompt F.2.5: Default Few-Shot CoT for GSMS8K from (Wei et al.|
s —— P po2ze) |
2216 ##Problem
2217 Q: Olivia has 23.Sheboughtfivebagelsfor3 each. How much money does she have left?
2218 A:
<StartOfLatent><Prior>
2219 Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she
2220 has 23 - 15 dollars left. 23 - 15 is 8.
2221 <EndOfLatent>
9999 The answer is 8.
2223
2224
##Problem
2225 Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
2226 many lollipops did Jason give to Denny?
A:
2227 <StartOfLatent><Prior>
2228 Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
2229 Denny 20 - 12 = 8.
<EndOfLatent>
2230 The answer is 8.
2231
2232
2233 ##Problem
2234 Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
2235 After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
2236 A:
2237 <StartOfLatent><Prior>
There are 15 trees originally. Then there were 21 trees after some more were planted. So
2238
there must have been 21 - 15 = 6.
2239 <EndOfLatent>
2240 The answer is 6.
2241
2242
2243 ##Problem
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
2244 the parking lot?
2245 A:
2246 <StartOfLatent><Prior>
There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
2247 <EndOfLatent>
2248 The answer is 5.
2249
2250
2951 ##Problem
Q: There were nine computers in the server room. Five more computers were installed each
2252 day, from monday to thursday. How many computers are now in the server room?
2253 A:
2254 <StartOfLatent><Prior>
There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5
2255 « 4 = 20 computers were added. 9 + 20 is 29.
2256 <EndOfLatent>
2957 The answer is 29.
2258
2259
2960 ##Problem
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2
2261 more. How many golf balls did he have at the end of wednesday?
2262 A:
<StartOfLatent><Prior>
2263 Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35.
2264 After losing 2 more, he had 35 - 2 = 33 golf balls.
2265 <EndOfLatent>
2966 The answer is 33.
2267
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##Problem
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?

A:
<StartOfLatent><Prior>
Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.

After eating 35, they had 74 35 = 39.
<EndOfLatent>
The answer is 39.

##Problem

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?

A:

<StartOfLatent><Prior>

Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4
more toys. 5 + 4 = 9.

<EndOfLatent>

The answer is 9.

##Problem

Q: Marcell and Beatrice are having a contest to see who can eat the most fruit roll-ups,
so they unroll as many as they can find. Unfortunately, someone makes a mistake and

Beatrice's was two roll-ups wide and 24 rolls up long while Marcell's was 3 roll-ups

wide and 14 roll-ups long. If they both ate their entire amount, how many did they eat

on average®?

A:

<StartOfLatent><Prior>

_[ Prompt F.2.6: FLAN Few-Shot CoT for MMLU-STEM from ]_

The following are multiple choice questions (with answers) about high school statistics.

##Problem

Question: A new smartwatch is manufactured in one part of a factory, then secured for
shipping in another, independent part of the factory. The weight of the smartwatch has a
mean of 62 grams and a standard deviation of 1.0 grams. The weight of the packaging (

box, user's guide, bubble wrap, etc.) has a mean of 456 grams and a standard deviation

of 6 grams. Together, the distribution of the weight of the smartwatch and its packaging
would have the following mean and standard deviation:

(A) Mean 518 grams; standard deviation 7.0 grams (B) Mean 518 grams; standard deviation
3.5 grams (C) Mean 518 grams; standard deviation 6.1 grams (D) Mean 394 grams; standard

deviation 6.1 grams

Answer:

<StartOfLatent><Prior>

Let's think step by step. Since the weight of the watch and the weight of the packaging
are independent random variables, the mean and variance of their sum is equal to the sum
of their individual means and variances. So the mean is 62 + 456 = 518 grams, and the

variances is 1.0"2 + 6.07"2 = 37, leading to a standard deviation of 6.1 grams. The
answer is (C).

<EndOfLatent>

The answer is (C).

##Problem

Question: After a frost warning was issued, the owner of a large orange grove asked his
workers to spray all his trees with water. The water was supposed to freeze and form a
protective covering of ice around the orange blossom. Nevertheless, the owner suspected
that some trees suffered considerable damage due to the frost. To estimate the
proportion of trees that suffered more than 50 percent damage due to the frost, he took
a random sample of 100 trees from his grove. What is the response variable in this
experiment?
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(A) The proportion of trees that suffered more than 50 percent damage due to frost. (B)
The number of trees affected by the frost. (C) The number of trees sampled from the

grove. (D) For each sampled tree, whether it suffered more than 50 percent damage or at

most 50 percent damage.

Answer:

<StartOfLatent><Prior>

Let's think step by step. In this experiment, the response variable is what is measured.
For each tree, what is measured is whether or not it suffered more than 50 percent
damage due to the frost. The answer is (D).

<EndOfLatent>

The answer is (D).

##Problem

Question: Suppose X and Y are random variables with E(X) = 37, var(X) =5, E(Y) = 62,
and var(Y) = 12. What are the expected value and variance of the random variable X + Y?
(A) E(X +Y) = 99, var(X + Y) = 8.5 (B) E(X + Y) = 99, var(X + Y) = 13 (C) E(X + Y) =
99, var(X + Y) = 17 (D) There is insufficient information to answer this question.
Answer:

<StartOfLatent><Prior>

Let's think step by step. While means of sums of random variables add (regardless of

whether the variables are independent) in order to determine the variance of a sum of
random variables, we need to know not just their individual variances but the covariance
of the two variables, which is not given in this problem. The answer is (D).
<EndOfLatent>

The answer is (D).

##Problem

Question: Which of the following sets has the smallest standard deviation? Which has the
largest?

I: {1,2,3}

II: {-10,10}

IIT: {100}

(A) I, II (B) II, III (C) III, I (D) III, II

Answer:

<StartOflLatent><Prior>

Let's think step by step. The variance of distribution I is the expected squared

deviation from its mean (which is 2), so the variance is 2/3 . The variance of

distribution II is 1072 (because both elements are 10 away from the mean of zero). The

variance of distribution III is 0, since it has a single entry. So distribution III has

the smallest standard deviation and distribution II has the largest. The answer is (D).
<EndOfLatent>

The answer is (D).

##Problem

Question: Mr. Bee's statistics class had a standard deviation of 11.2 on a standardized
test, while Mr. Em's class had a standard deviation of 5.6 on the same test. Which of
the following is the most reasonable conclusion concerning the two classes' performance
on the test?

(A) Mr. Bee's class is less heterogeneous than Mr. Em's. (B) Mr. Em's class is more
homogeneous than Mr. Bee's. (C) Mr. Bee's class performed twice as well as Mr. Em's. (D)
Mr. Em's class did not do as well as Mr. Bee's.

Answer:

<StartOfLatent><Prior>

G
G.1

EXAMPLES OF LATENT THOUGHTS

EXAMPLES OF DOWNSTREAM TRANSFER OF LATENT THOUGHTS

{ Example G.1.1: Solving algebra problems on MATH }

Problem: What is the distance between the two intersections of y =22 and z +y=1?

<StartOfLatent><Prior>
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2376
To find the distance between the two intersections of the curves y=x"2 and x+y=1, we

2377

2378 first need to determine the points of intersection. Setting the equations equal to each
other gives us x72 = x + 1. Rearranging this leads to x"2 - x - 1 = 0. We can solve this

2379 quadratic equation using the quadratic formula, x = [1 4 sqrt(l + 4)] / 2, which

2380 simplifies to x = [1 &+ sqrt(5)] / 2. This results in two intersection points: (1 + sqrt
(5))/2 and (1 - sgrt(5))/2.

2381

2382 Next, we need to find the distance between these two points. The distance formula

2383 between two points (x1, yl) and (x2, y2) is given by d = sqgrt((x2 - x1)"2 + (y2 - yl)"2).
Substituting our points into this formula, we have d = sqrt(((l1 + sqrt(5))/2 - (1 -

2384 sqrt (5))/2)°2 + ((1 + sqrt(5))/2 - (1 - sqrt(5))/2)"2) .

2385

2386 Calculating the differences in the x-coordinates and y-coordinates separately, we find:

2387 1. For the x-coordinates: (1 + sqrt(5))/2 - (1 - sqrt(5))/2 = (1 + sqgrt(5) - 1 + sqgrt(5)

2388 )/2 = (2sqrt(5))/2 = sqrt(5).

2389 2. For the y-coordinates: (1 + sqgrt(5))/2 - (1 - sqgrt(5))/2 = (1 + sqgrt(5) - 1 + sqgrt(5)
)/2 = (2sqrt(5))/2 = sqrt(5).

2390

2391 Now, substituting these values back into the distance formula gives us d = sqgrt ((sgrt(5)
)*2 + (sqgrt(5))"2) = sqrt(5 + 5) = sqgrt(10).

2392

2393 Thus, the final answer is sqrt (10).

2394 <EndOfLatent>

2395 Final Answer: The final answer is +/10. I hope it is correct.

2396

2397

2 2 2 9

o8 Example G.1.2: Solving combinatorial problems on MATH

2399

2400 Problem: Pat is to select six cookies from a tray containing only chocolate chip,

2401 oatmeal, and peanut butter cookies. There are at least six of each of these three kinds

2402 of cookies on the tray. How many

different assortments of six cookies can be selected? (Note that cookies of the same
2403 type are not distinguishable.)

2404
2405 <StartOfLatent><Prior>
To determine the number of different assortments of six cookies from a tray containing
2406 chocolate chip, oatmeal, and peanut butter cookies, we need to consider the constraints
2407 imposed by the requirement of at least six of each type of cookie.
2408 First, we recognize that the total number of cookies is fixed at six. The problem can be
approached using combinatorial methods, specifically the "stars an ars" theorem. This
2409 hed i bi ial hod ificall he " d b " th hi
2410 theorem helps us find the number of ways to distribute indistinguishable objects (the
cookies) into distinguishable boxes (the types of cookies).
2411
2412 Let:
2413 - x = number of chocolate chip cookies
- y = number of oatmeal cookies
2414 - z = number of peanut butter cookies
2415
The total number of cookies is given by the equation:
2416 _
X +y +z =656
2417
2418 The stars and bars theorem states that the number of ways to distribute n
2419 indistinguishable objects into k distinguishable boxes is given by the formula:
2420 (n + k - 1) choose (k - 1)
2421 ) ‘
In our case, n = 6 (the total number of cookies) and k = 3 (the types of cookies:
2422 chocolate chip, oatmeal, and peanut butter).
2423
Applying the formula:
2424 pRlvne e
2425 (6 + 3 - 1) choose (3 - 1) = 8 choose 2
2426
Calculating this gives:
2427 N N
2428 8 choose 2 = 8! / (2!(8-2)!) = 8! / (2! = 6!) = (8 x 7) / (2 » 1) = 28
2429
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Thus, there are 28 different assortments of six cookies that can be selected from the
tray, ensuring that at least six of each type are included.
<EndOfLatent>

Final Answer: The final answer is 28. I hope it is correct.

[ Example G.1.3: Solving number theory problems on MATH }

Problem: How many positive factors does 48 have?

<StartOfLatent><Prior>
To find the number of positive factors of 48, we start by determining its prime
factorization. The prime factorization of 48 is 274 % 37°1.

Next, we apply the formula for finding the number of positive factors from the prime
factorization. For a number expressed as pl”®el % p2”%e2 x ... x pk”ek, the total number
of factors is given by (el + 1)(e2 + 1)...(ek + 1).

In the case of 48, we have:

- For the prime factor 2, the exponent is 4.

— For the prime factor 3, the exponent is 1.

Applying the formula: (4 + 1) (1 + 1) = 5 % 2 = 10. Thus, 48 has 10 positive factors.

The final answer is 10.
<EndOfLatent>

Final Answer: The final answer is 10. I hope it is correct.

[ Example G.1.4: Solving math word problems on GSM8K }

Question: Farmer Brown has 60 animals on his farm, all either chickens or cows. He has
twice as many chickens as cows. How many legs do the animals have, all together?

Final Answer:

<StartOfLatent><Prior>

To find the total number of legs, we need to establish the relationship between the
number of chickens and cows. Let the number of cows be represented as C. According to
the problem, the number of

chickens is twice that of cows, so we can express the number of chickens as 2C.

Next, we know that the total number of animals is 60. Therefore, we can set up the
equation:

C + 2C = 60

This simplifies to:

3C = 60

To find C, we divide both sides by 3:

c =20

Now that we have the number of cows, we can find the number of chickens:

Number of chickens = 2C = 2 % 20 = 40

Now we can calculate the total number of legs. Each chicken has 2 legs, and each cow has
4 legs. The total number of legs can be calculated as follows:

Total legs = Number of chickens » Legs per chicken + Number of cows » Legs per cow

Substituting the known values:

Total legs = 40 = 2 + 20 * 4
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2484
2485
Calculating this gives:
2486
2487 Total legs = 80 + 80 = 160
2488
us, the total number o egs 1is .
Th h tal b f1 is 160
2489 <EndOfLatent>
2490 The final answer is 160.
2491
2492
2493 G.2 EXAMPLES OF GPT-40-MINI SYNTHESIZED LATENT THOUGHTS
2494
2495 _[ Example G.2.1: Latent thoughts recover missing background knowledge and reasoning ]_
2496
<StartOfLatent>
2497 Principal Component Analysis (PCA) is a statistical technique used for dimensionality
reduction, which is crucial in data analysis and machine learning. e objective o
24 ducti hich i ial in dat lysi d hi 1 i Th bjecti f PCA
2499 is to identify the directions (principal components) in which the variance of the data
is maximized. This process involves transforming the original features into a new set of
2500 uncorrelated features, ordered by the amount of variance they capture.
2501
2502 To begin with, we consider a dataset with multiple dimensions, where each dimension
represents a feature. The first step in PCA is to center the data by subtracting the
2503 mean of each feature from the dataset. This step is vital because it ensures that the
2504 new coordinate system is based around the origin, allowing for a more accurate analysis
of variance.
2505
2506 Next, we compute the covariance matrix of the decentralized data. The covariance matrix
2507 captures the relationships between the different features, indicating how they vary
2508 together. The covariance values reveal the spread and the direction of the data in the
feature space.
2509
2510 Following the covariance matrix calculation, we need to determine the eigenvalues and
eigenvectors of this matrix. The eigenvectors represent the directions of the principal
2511 components, while the eigenvalues indicate the magnitude of variance in those directions.
2512 The larger the eigenvalue, the more significant the corresponding eigenvector is in
2513 explaining the variance in the dataset.
2514 To select the principal components, we rank the eigenvectors based on their eigenvalues
2515 in descending order. The top k eigenvectors, where k is the number of dimensions we wish
to retain, form a new feature space that captures the most variance.
2516
2517 Finally, we project the original, decentralized data onto this new feature space by
2518 multiplying the original data matrix by the matrix of the top k eigenvectors. This
projection results in a reduced dataset that retains the essential characteristics of
2519 the original data while minimizing information loss. The effectiveness of PCA lies in
2520 its ability to simplify complex datasets, making subsequent analyses more manageable and
interpretable.
2521 o
<EndOfLatent>
2522
2523 # The basic idea of PCA
2524 Principal component analysis is to find out the most important aspects in the data and
2525 replace the original data with the most important aspects in the data. To put it bluntly
2526 , it is to reduce the data from n-dimensional to n'-dimensional, and hope that the data
2597 set of n'-dimensional features retains most of the information as much as possible.
2528 # PCA mathematical derivation (maximum variance method)
2529
For example, if the data is a two-dimensional plum, we project the original data (blue
2530 dots) onto the new most marked axis (yellow and blue crosshairs). The way to find this
2531 new coordinate axis is to find the point (red point) where the data is projected on the
2532 new coordinate axis and the distance from the origin of the new coordinate axis is the
largest, which is the maximum variance method.
2533
2534 <StartOfLatent>
2535 Decentralization adjusts the data such that its mean is zero, which is crucial for PCA.
If the data is not centered, the computed variances along the axes will be skewed,
2536 leading to misleading results in the identification of principal components. The
2537 principal component should ideally capture the largest variance, and uncentered data
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2538
2539 would cause the variance to reflect the mean of the data rather than the true
distribution of the data points.
2540
2541 Without decentralization, the projection of the original data onto the new axis would
2542 not accurately reflect the inherent structure of the data, undermining the effectiveness
of dimensionality reduction. Thus, the step of data decentralization is not merely a
2543 preprocessing step; it fundamentally ensures that PCA captures the true variance of the
2544 data, allowing for an accurate reduction in dimensionality while retaining as much
2545 information as possible.
2546 <EndOfLatent>
54
2547 ## The first step, data decentralization
2548
The discussion of the new coordinate axis and the old coordinate axis is very
2549 troublesome. We directly decentralize the data (that is, the mean value of the data is
2550 at the far point).
2551 If the data is not decentralized, we cannot find the optimal dimensionality reduction.
2552 This step is necessary
2553
<StartOfLatent>
2554 To find the optimal axis for PCA, we utilize the covariance matrix of the decentralized
2555 data. The eigenvalues of this matrix indicate the amount of variance captured by each
2556 principal component, while the corresponding eigenvectors provide the direction of these
components. The first principal component (PCl) is the eigenvector associated with the
2557 largest eigenvalue, representing the direction of maximum variance.
2558
2559 The distance from the projected data points to the origin of the new axis (PCl) is
calculated as the projection of the original data points onto this axis. The objective
2560 is to maximize the sum of squared distances (z:df), which mathematically quantifies the
variance captured by the principal component. This optimization problem can be framed as
2561
2562 maximizing the Rayleigh quotient for the covariance matrix, leading to the derivation
of the eigenvalues and eigenvectors.
2563 <EndOfLatent>
2564
2565 ## The second step is to find the new most marked axis
2566 How do we find the best most standard axis to achieve principal component analysis?
That is, the greater the distance between the projected point and the origin of the
2567
2568 coordinate axis, the better (this is the maximum variance)
2569 As shown in the figure, the red dotted line is the new coordinate axis, we call it PC1;
2570 the green dot is the initial data sample point; the green cross is the point projected
on the new coordinate; dl, d2, d3...d6 are the projected ones The distance from the
2571 i i
point to the far point.
2572 o ' ,
2573 All we need to do is find the largest sum of squares (that's E:di).
2574 Here comes the math! ! ! !
2575
<StartOfLatent>
2576 To find the optimal new coordinate axis for dimensionality reduction, we must analyze
2577 the relationships among the data points. This involves calculating the correlation
2578 coefficient matrix, which quantifies how much each feature varies with others.
2579 Once we have the correlation matrix, we compute its eigenvalues and eigenvectors. The
2580 eigenvalues indicate the amount of variance captured by each corresponding eigenvector.
2581 The eigenvector with the highest eigenvalue gives us the direction of the axis that
maximizes variance among the data points.
2582
2583 In principal component analysis (PCA), we focus on the principal components (PCs) that
2584 represent the highest variance first. This ensures that we retain the most important
information while reducing dimensions. We select a percentage of these components, based
2585 on the cumulative variance they explain, to maintain a balance between data fidelity
2586 and dimensionality reduction.
2587 By projecting the original data onto these new axes (PCl, PC2, etc.), we can effectively
2588 reduce the number of features while preserving the essential structure and
2589 relationships within the data. The choice of how many components to keep is guided by
2590 examining the explained variance ratios. The goal is to achieve a compact representation
that still captures the underlying patterns in the dataset.
2591
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2592
2593 <EndOfLatent>
2594 . . .
As can be seen from the figure above, when we are looking for the best newest axis, we
2595 are actually finding eigenvalues and eigenvectors by finding the data correlation
2596 coefficient matrix
2597 ## The third step is to choose a few percent of the data you need
2598
2599 When we perform PCA dimensionality reduction to find new coordinates, the number of
coordinates is the same as the number of data features. But we project the data on the
2600 new coordinate axis in order to express the information of the entire data with as few
2601 features as possible.
2602
In the figure below, we can see that we have obtained two coordinate axes, PCl and PC2,
2603 res i
pectively.
2604
2605 <StartOfLatent>
To understand why the coordinate axes PCl and PC2 are chosen, we first recognize that
2606 PCA aims to maximize the variance captured by the new axes. The eigenvalues obtained
2607 from the eigenvalue decomposition of the data correlation coefficient matrix indicate
2608 the variance explained by each principal component.
2609 The eigenvector corresponding to the largest eigenvalue defines the direction of PCI1,
2610 capturing the most significant variance in the data. The second eigenvector,
corresponding to the second largest eigenvalue, defines PC2 and is orthogonal to PC1,
2611 ensuring that these axes are independent and do not introduce redundancy in the
2612 representation of the data.
2613
The information captured by each principal component can be quantified by the proportion
2614 of the total variance they explain. In this case, PCl accounts for 83% of the variance,
2615 indicating that it captures the most critical features of the data. PC2, while still
2616 informative, only captures 17% of the variance.
2617 When reducing dimensions, it is logical to prioritize PCl over PC2 due to its higher
2618 variance contribution. This prioritization allows for a more efficient representation of
2619 the data with fewer dimensions, simplifying analysis while retaining essential
information.
2620
2621 In three dimensions, using only PCl and PC2 to represent the data can effectively
capture the underlying structure without the noise, as the dimensionality reduction is
2622 inherently aimed at compressing the data while minimizing loss. This approach
2623 demonstrates PCA's effectiveness in unsupervised learning, particularly for data
2624 compression and denoising, making it a widely adopted technique in various practical
applications.
2625 <EndOfLatent>
2626
2627 The two coordinate axes are perpendicular to each other and do not interfere with each
other.
2628 Among them, the information on the data on PCl accounts for 83%, and the information on
2629 the data on PC2 accounts for 17%. Anyone can see which coordinate axis should be chosen
2630 to represent the information after dimensionality reduction.
2631 When we look at three dimensions, we can see that if we use PCl and PC2 to reduce the
dimension
2632
2633 As a dimensionality reduction method for unsupervised learning, it only needs eigenvalue
2634 decomposition to compress and denoise data . Therefore, it is widely used in practical
scenarios.
2635
2636
2637 <StartOfLatent>
2638 When performing PCA, we seek to maximize the variance captured by each principal
component. Since variance is central to determining the principal components, squaring
2639 the differences ensures that components capturing larger variances are prioritized. This
2640 aligns with the goal of PCA, which is to identify directions in the data that account
for the greatest amount of variability.
2641
2642 The orthogonality of principal components guarantees that the information captured by
2643 each component is independent of the others. This independence is crucial for effective
dimensionality reduction because it ensures that the chosen components do not overlap in
2644 the information they represent. The simplification of calculations through eigenvalue
2645
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# question
1. Why square it ?

It is because if the distance is not squared, there will be positive and negative
distances, which will cancel each other out.

2.x+%Why is the correlation coefficient matrix instead of the covariance matrix? =% You
will know this when you look down

# Does PCA need to be dimensioned?

(1) When: when the unit of each attribute is the same (for example, both are kg, both
are meters), each attribute is comparable. Therefore, it is enough to directly calculate
the covariance between attributes. The size of the original covariance does not
indicate the degree of correlation (covariance only indicates positive or negative
correlation),But when the units are the same, we can think that the greater the
covariance, the greater the correlation

(2) When the units of each attribute are different (for example, one is kg and the other
is meter), at this time, due to the different units, the covariance does not indicate
the degree of correlation. At this time, we need to use the correlation coefficient to
describe.

The formula of the correlation coefficient (that is, the correlation coefficient matrix
is divided by two standard deviations, where dividing by the standard deviation is a way
of dimensioning). It eliminates the influence of the range of change of two variables,
but simply reflects the degree of similarity between the two variables per unit change.

### Guess you like

Origin blog.csdn.net/CSTGYinZong/article/details/127097464

Recommended
Ranking
Daily
—[ Example G.2.2: Latent thoughts elaborate physical knowledge ]—
<StartOfLatent>

The draining of water creates a vortex due to fluid dynamics principles. In fluid
mechanics, when water flows towards a drain, it encounters resistance and varying
velocity, resulting in a circular motion. The initial swirl can be caused by a small
disturbance, which can be a random fluctuation in water movement. As this disturbance
propagates, it influences adjacent water particles, leading to a self-reinforcing loop
of motion. This phenomenon can be described by the Navier-Stokes equations, which govern
fluid flow and demonstrate how momentum and viscosity interact to create vortices.

In physics, time and space are interwoven in the fabric of the universe, as described by
the theory of relativity. Just as water spirals down a drain, objects in spacetime can
exhibit similar swirling patterns due to gravitational forces. Massive objects, like
planets or stars, warp spacetime around them, creating paths that can be likened to the
water's spiral. The curvature of spacetime can be mathematically represented by Einstein
's field equations, which illustrate how mass influences the geometry of the universe.

The analogy suggests that just as water spirals towards a drain through self-reinforcing
interactions, objects in spacetime move along geodesics-paths determined by the

curvature of spacetime. The motion of celestial bodies can be influenced by the

gravitational pull of nearby masses, creating a dynamic interplay that mirrors the
swirling water. This interconnectedness in physical phenomena reveals deeper insights
into the nature of motion and force, both in fluids and in the cosmos.

<EndOfLatent>

# Circling the Drain

In Relativity by Brian Koberlein4 Comments

If you've ever watched water drain from a bathtub, you've seen that it doesn't flow into
the drain in a straight line, but rather swirls around the drain. Contrary to popular
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2808
2809
The agreement between the observed and predicted precession validates the theoretical
2810 framework of general relativity. The consistent measurements reinforce the understanding
2811 of how rotating masses influence spacetime geometry.
2812
The analogy of water spiraling down a drain illustrates the concept of frame dragging
2813 but simplifies complex spacetime dynamics. Understanding these dynamics requires
2814 knowledge of tensor calculus and the geodesic equations governing motion in curved
2815 spacetime.
2816 Overall, the experiment demonstrates a fundamental aspect of general relativity, linking
2817 mass, rotation, and the structure of spacetime, while providing empirical evidence for
theoretical predictions.
2818 <EndOfLatent>
2819
2820 Basically, you put a gyroscope in orbit and see if its axis of rotation changes. If
2891 there %s no frame drégglng, then the.orlentétion of the gyros?ope §houldn't change. If
there is frame dragging, then the spiral twist of space and time will cause the
2822 gyroscope to precess, and its orientation will slowly change over time.
2823
We've actually done this experiment, and you can see the results in the figure below.
2824 The black line represents the change in orientation over time, and the red line is the
2825 predicted change via the Lense-Thirring effect. As you can see, they agree very well.
2826 . ) . ) ) .
So the next time you watch water circling the drain, you will know that a similar effect
2827 occurs with space and time itself.
2828
2829 1. Do you know why there is max in measurements roughly every 1000 days?
2830 <StartOfLatent>
2831 The gyroscope's behavior in orbit is influenced by gravitational interactions and the
geometry of spacetime. The concept of frame dragging arises from general relativity,
2832 where massive objects like Earth distort the curvature of spacetime around them. This
2833 distortion affects objects in orbit.
2834
The maximum in measurements every 1000 days can be attributed to the elliptical nature
2835 of the orbit. An elliptical orbit means that the distance between the gyroscope and
2836 Earth varies periodically. The gravitational force experienced by the gyroscope is
2837 strongest when it is closest to Earth, at the perigee of its orbit.
2838 The Lense-Thirring effect predicts that frame dragging will vary depending on the
2839 distance to the massive body. As the gyroscope approaches the perigee, the gravitational
2840 influence increases, leading to a greater precession rate. Thus, the maximum frame
dragging occurs at this closest point, resulting in a peak in the gyroscope's
2841 orientation change.
2842 . . .
2843 The‘perlod of 1000 days corresponds to thg orbital characterls?lcs of the gyrés;ope,
defined by Kepler's laws of planetary motion. These laws describe how the orbiting body
2844 travels faster when closer to the massive body and slower when farther away. The
2845 relationship between the orbital period and the semi-major axis can be expressed using
Kepler's third law, where the square of the orbital period is proportional to the cube
2846 of the semi-major axis of the orbit.
2847
2848 In summary, the gyroscope's orbit experiences maximum frame dragging as it reaches its
closest point to Earth every 1000 days due to the predictable nature of its elliptical
2849 orbit, influenced by gravitational forces and the curvature of spacetime.
2850 <EndOfLatent>
2851 ) . :
1. Space has to wind to some local maximum of curvature, and then snap back. Since Earth
2852 's mass is constant, this maximum winding should be predictable.
2853 ] . . . . . .
2854 2: What i think %s t?at , by the time you put Fhe gyroscop§ 1§ orbit Fhere is a Tax
distance and a min distance from earth (supposing that orbit is an elipse) . So if the
2855 period is almost 1000 days then every 1000 days it will reach the min distance from
2856 earth where the gravity field is max so the frame dragging should be max
2857 <StartOfLatent>
2858 The phenomenon of water spiraling down a drain is influenced by various factors beyond
2859 mere random currents. The Coriolis effect, resulting from Earth's rotation, plays a
significant role in determining the direction of fluid motion. The Earth's rotation
2860 creates a force that affects moving objects, including fluids, causing them to follow a
2861
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2862
2863 curved path rather than a straight line. This effect is more pronounced over larger
2864 distances and timescales, but it can still impact smaller systems like water draining in
a sink.
2865
2866 If the motion were entirely random, one would expect a uniform distribution of spiral
directions. However, the consistent direction observed suggests a systematic influence,
2867 which can be explained by the Coriolis effect. The interaction between the water's
2868 initial velocity, the shape of the drain, and the rotation of the Earth results in a
2869 dominant rotational direction.
2870 Mathematically, the Coriolis force can be expressed as F. = 2m(v)(Q)sin(¢), where m is
2871 the mass of the fluid element, v is its velocity, € is the angular velocity of the Earth
2872 , and ¢ is the latitude. This force acts perpendicular to the velocity of the fluid,
leading to a predictable rotation direction.
2873
2874 Moreover, factors such as the geometry of the sink and the initial conditions of the
2875 water's movement can create a bias towards a particular direction of spin. The
conservation of angular momentum further supports this, as any slight initial spin will
2876 be amplified due to the closed system of the drain. Thus, while randomness may
2877 contribute to local turbulence, the underlying forces impart a consistent rotational
behavior that aligns with the Earth's rotation.
2878 <EndOfLatent>
2879
2880 2. If the water spiralling down the drain is just due to "random currents in the water"
and not the Earths rotation, why is the spiral always the same direction of rotation? If
2881 it was truly random, surely it would be 50/50 on direction of rotation?
2882
2883
2884 4[ Example G.2.3: Latent thoughts elaborate mathematical derivations ]7
2885
2886 <StartOfLatent>
2887 To solve the integral of the product of tangent functions, we start by recognizing that
2888 the tangent identity can simplify the problem. The tangent function can be expressed in
terms of sine and cosine. We can also leverage the angle addition formula for tangent.
2889
2890 We define t, = tan(nz). The product of tangents can be expressed using the identity for
tangent of sums:
2891
. . __ tan A4+tan B
2892 tan Atan B = {3 atan
2893
This allows us to express tan(bz) in terms of tan(3z) and tan(2z):
2894
__ _tan(3z)+tan(2x)
2895 tan(Sx) T 1—tan(3x) tan(2x)
2896
2897 Rearranging this gives us:
2898 tan(5z) — tan(3z) — tan(2z) = tan(5z) tan(3z) tan(2x)
2899
This leads to th tion:
2900 is leads to e equation
2901 ts — 13 — t2 = tstala
2902
2003 To integrate, we substitute this result back into the integral:
2904 [ tan(5z) tan(3z) tan(2z) de = [ (tan(5z) — tan(3z) — tan(2z)) dx
2905
2906 Now, we can integrate each term separately. The integral of tan(nz) is known:
2907 [ tan(nz) de = — L log | cos(nz)| + C
2o08 Applyi thi t t ield
pplying is to our terms yields:
2909
. _ 1 .
2910 1. For tan(5z): [tan(5z)dz = —% log|cos(5z)]
2911
2. For tan(3z): [tan(3z)dz = —% log|cos(3x)]
2912
2913 3. For tan(2z): [tan(2z)dz = —1 log|cos(2z)]
2914 . ) . . . . )
Substituting these results back into the integral, we compile the contributions:
2915
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2916
2917 . . .
2018 J tan(5x) tan(3z) tan(2z) dz = — £ log | cos(5z)| 4 3 log | cos(3x)| — 3 log | cos(2z)| 4+ C
2919 Finally, we can rearrange this into a single expression if desired, but it is already
2020 presented clearly as separate contributions from each tangent function. The solution is
2921 complete with the integration constants summed together at the end.
2922 <EndOfLatent>
2923 , ,
# How to find the integral [ tan(5z)tan(3z)tan(2z) dz?
2924
2925 Find the integral [ tan(5z)tan(3z)tan(2z) dz.
2926 ) ) ) ) .
This question is posted in a maths group in Facebook. What way should we use to solve
2927 integral like this? Thanks in advance
2928
2929 #### Solutions Collecting From Web of "How to find the integral
J tan(5z) tan(3z) tan(2z) dx?"
2930
2931 Let t, = tan(nxz), we have t5 = %3%?5 = t5 —tstgta =ty +ta = tstglo =t5 — b3 — to
2932
2933
tan(5x) tan(3z) tan(2z)dz = [ (tan(bz) — tan(3z) — tan(2z)) dx
2934
1 1 1
2935 =3 log cos(2x) + 3 log cos(3x) — 5 log cos(5z) + const.
2936
2937
2938
2939 4[ Example G.2.4: Latent thoughts demystify complex Mathematica logs ]7
2940
2941 <StartOfLatent>
. —1 o
2942 To evaluate the integral [ e coth (am)037 j;)s/zdm, we begin by analyzing the term
-1
2943 edcoth™ (az)  The hyperbolic cotangent inverse function, coth_l(u), can be expressed in
. -1
2944 terms of logarithmic functions: coth_IOU = %ln (Z—%)' This implies that e?c¢oth™ (a®)
2945 transforms into an exponential function involving ax and logarithmic components.
2946 ,
2947 Next, we need to explore the term (04—53)3/ . This indicates a dependency on z that can
simplify under certain substitutions. Notably, as x approaches infinity, this expression
2948 simplifies to cg/z, suggesting that limits and behavior at infinity might be important
2949 in evaluating the integral.
2950 ‘ ’ Loae . .
Rearranging the term yields (¢(1 — ;3))”/=. This opens up a potential substitution where
2951 we let w = ax. Consequently, dx transforms into %%, leading to a new form of the
2952 integral in terms of w.
2953 . . L . . .
The expression requires careful treatment of the limits of integration and potential
2954 singularities, particularly considering the behavior of g; as T approaches zero.
2955
2056 To derive the result, we will apply integration techniques that may include integration
—1iax
2957 by parts or special functions. The presence of eBcoth™ (ax) suggests that the integral is
non-elementary, potentially requiring numerical methods or special functions for
2958 evaluation.
2959
2960 The final expression involves several terms combined from the integration steps:
2961 1. The first term appears to arise from the integration of the polynomial-like
2062 expression after applying the substitution and integration techniques.
2. The second term involves derivatives of the logarithmic form that comes from
2963 differentiating the exponentiated terms.
2964 3. The third term stems from integrating the product of the hyperbolic function and the
2065 resultant polynomial.
2966 Each of these components is derived by applying the fundamental theorem of calculus,
2967 respecting the chain rule where appropriate, and ensuring all terms are accounted for in
the final assembly of the integral's evaluation.
2968 i N
2969
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2970
2971 This leads to the concluding expression, which captures the complexity of the integral
and reflects the interplay between exponential, ogarithmic, and polynomia orms. The
2972 d f1 he i 1 b ial, 1 ithmi d 1 ial £ h
combination of these terms indicates a sophisticated integration process that likely
2973 necessitates verification through differentiation to confirm correctness.
2974 <EndOfLatent>
2975 -1
3.458 [e3coth (a2) (¢ — )3/2 4y
2976 o
2977 Ve, [1——L
2,2
20978 3/2 3¢3/2 tapn—1| —V___a“z®
7 csm(1—~21—2) 3c2 1—;21:2 cfﬁ
. . _ a‘x
2979 Optimal. Leaf size=118 \3/2 — a\/c—i —+ -
=) ax
2980
2981 (Out]
2982 (=3xc”2xSqgrt[1 - 1/(a"2xx"2)])/(axSqgrtlc - c/(a*x)]) + (c"3x(1 - 1/(a"2xx"2))"(3/2)*x)/(
2983 c - c/(a*x))"(3/2) + (
2084 3%xc”(3/2) *ArcTanh[ (Sqrt[c]*Sqrt[l - 1/(a”2%x"2)])/Sqrtlc - c/(a*x)]1])/a
2985
2986
2087 <StartOfLatent>
2988 The integral involves the function e®¢°th™ (“w), where the inverse hyperbolic cotangent
function, ArcCoth, is transformed to ArcTanh for simplification in the calculations. The
2989 transformation is made using the identity that relates the two functions, leveraging
2990 properties of hyperbolic functions.
. The ex i — £)3/2 4 i indi i i
pression (c ax) in the integrand indicates that the variable dependencies of ¢
2992 and a must be handled carefully. This leads to the necessity of simplifying the
2993 expression to isolate the variable x and expressing it in a form amenable to integration.
2994
2995 The optimal antiderivative size of 118 signifies the complexity of the expression being
2006 handled and the efficiency of the algorithm used. The normalized size of 1 indicates
2997 that the final expression is effectively simplified to its most concise form, making it
easier to handle computationally.
2998
2999 The number of steps used, 5, denotes the sequential approach taken to derive the
antiderivative, indicating that multiple integration techniques may have been employed,
3000 such as substitution or integration by parts.
3001
3002 The rules employed, specifically 6177, 863, 865, 875, and 208, correspond to integration
techniques or transformations utilized in the process. Each rule applies specific
3003 mathematical properties or identities that facilitate the evaluation of the integral.
3004
3005 The final expression includes three distinct terms, each derived from different
components of the original integrand. The term involving ArcTanh suggests the
3006 utilization of hyperbolic identities, while the other terms reflect polynomial behavior
3007 modulated by square root functions.
3008 The successful verification of the antiderivative confirms that the computed result
3009 matches the expected behavior of the integral, adhering to the properties of continuous
3010 functions over the specified domain of integration, further supporting the correctness
3011 of the applied rules and techniques.
<EndOfLatent>
3012
Rubi [A] time = 0.214601, antiderivative size = 118, normalized size of antiderivative =
3013
1., number of steps used = 5, number of rules used = 5, integrand size = 24,
3014 futber of rules _ 0,208, Rules used = {6177, 863, 865, 875, 208)
3015 ¢*/
3016 3/2 1 3¢3/2 tanh—1
¢ z( a2 ) l_azw2 + C_i
3017 ( __c ) a\/c—— a
ax
3018
3019 Antiderivative was successfully verified.
3020
[In]
3021
3022 Int [E” (3xArcCothla*xx])*(c - c/(a*x))”*(3/2),x]
3023
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3024

3025 [out]

3026 ~ ~ ~ ~ ~ ~ ~
(=3%c”2%8qrt[1 - 1/(a”2xx"2)])/(axSgrtc - c/(a*x)]) + (c"3%x(1 - 1/(a”2xx"2))"(3/2)*x)/(

3027 c - c/(a*x))"(3/2) + (

3028 3xc” (3/2) *ArcTanh[ (Sqrt [c]*Sqrt [l - 1/(a”2%x"2)])/Sqrt[c - c/(a*x)]1])/a

3029 Rule 6177

3030

3031

3032 G.3 EXAMPLES OF TINYLLAMA-1B SELE-GENERATED LATENT THOUGHTS

3033 [ Example G.3.1: Models think through the data for learning ]—
3034

3035 <StartOfLatent>
3036 Understanding the concept of factorial requires knowledge of basic arithmetic operations
and the rules governing multiplication. A factorial is defined for a non-negative
3037 integer n, expressed as n!. This definition implies that the result of n! is calculated
3038 by taking n and multiplying it by the next integer down from it, thereby accumulating
3039 all integers from 1 to n.
3040 To derive n! explicitly, one can compute it using the formula:
3041
3042 nl=n-(n—-1)-(n—2)-...-2-1.
3043 This recursive relationship can be visualized as multiplying the number by the number
3044 immediately preceding it, illustrating how each additional integer reduces the result.
3045 The factorial function grows extremely fast, with the value of 1! being 1 and 2! being 2.
3046 This fact showcases the exponential growth of factorials as n increases.
3047 o ) ) ) ) )
In contexts such as probability, combinatorics, and calculus, the factorial is pivotal
3048 in calculating permutations and combinations, where arrangements and selections from a
3049 set are analyzed. For example, the number of ways to arrange n distinct objects is given
3050 by n!, which explains its widespread application in these fields.
3051 Thus, the factorial concept signifies a foundational element in mathematics, bridging
3052 basic arithmetic with more complex applications in various scientific and mathematical
3053 disciplines. Understanding its calculation and implications is crucial for further
mathematical exploration and real-world problem-solving.
3054 <EndOfLatent>
3055
3056 # Factorial number
3057 In mathematics symbolized by placing the "!" (known as the exclamation mark or bang)
3058 after a number, it represents multiplying a number by all whole numbers smaller than it.
3059 ## Definition
3060
3061 A factorial is defined by the product
3062 nl=1-2-3---(n=2)-(n—1) - n
3063
3064 for n > 1.
3065
3066 <StartOfLatent>
The factorial notation represents the product of descending positive integers, which
3067 means for any integer n, the factorial is calculated as n multiplied by the product of
3068 all positive integers from (n-1) down to 1. This can be expressed mathematically as n! =
3069 nx (n-1) x (n-2) x ... x 2 x 1.
3070 For n = 0, the factorial is defined as 0! = 1 because the product of no numbers is 1.
3071 This is a foundational rule in combinatorics, as it ensures that there is one way to
3072 choose zero objects.
3073 To evaluate larger factorials, the recurrence relation is useful. This relation is
3074 derived from the definition of factorial, indicating that n! can be computed directly or
3075 recursively based on smaller factorials. Specifically, it states that n! is equal to n

multiplied by (n-1)!, which means to find the factorial of n, one can take the factorial
3076 of the factorial of (n-1).

3077
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3078
3079 The computational implementation in computer programming languages like Python utilizes
3080 this definition directly for standard input, while Java and C# provide corresponding
classes to facilitate easy access and manipulation of factorial values.
3081
3082 For example, to calculate 5!, one applies the defined multiplication: 5! = 5 x 4 x 3 x 2
x 1, ultimately simplifying to 120. This demonstrates the practical application of the
3083 factorial definition in programming contexts, where efficient computation of large
3084 factorial values is necessary.
3085 <EndOfLatent>
3086 The same written as mathmatical product
3087
—TI™ 4
3088 =1l e
3089 and as recurrence relation
3090
3091 n!l=n-(n—1)!
3092 ## Examples
3093
5! =5 %4 % 3 x 2 % 1=120
3094 101
3095
3096 <StartOfLatent>
To derive the value 10!, we need to multiply 10 distinct positive integers: 1, 2, 3, 4,
3097 5, 6, 7, 8, 9, and 10. Each integer contributes to the factorial, which is a product of
3098 all integers from 1 to n. The multiplication of these integers provides the result:
3099 R
3100 21 =2
3101 3t =6
4! = 24
3102 5! =120
3103 6! = 1720
3104 7! = 5040
8! = 40320
3105 9! = 362880
3106 10! = 3628800
3107 ) ) ‘ ) ) )
This demonstrates the factorial's recursive nature, where each factorial is defined from
3108 the product of the integers preceding it. The first factorial starts with 1! equal to
3109 1, establishing the base case. The subsequent calculations follow the established
3110 pattern of multiplication for increasing integers.
3111 The base cases for factorial calculations include:
3112 - n! =n for n = 1, where the product of all integers equals 1.
3113 - n! =1 for n =0, as it is defined that 0! = 1.
- n! =0 for n < 0, as established conventionally in factorial definitions.
3114
In the case of higher-order factorials, the pattern continues with:
3115
- n! =n for odd n, and 1 for n = 0.
3116 - n! =n! divn for n > 0, denoted as n / 1!.
3117
This provides a comprehensive understanding of how factorials are computed across
3118
various integers, including the calculation of 10!, confirming the established sequence
3119 of factorial products.
3120 <EndOfLatent>
121
3 =10 x 9 x 8 x 7 % 6 5 % 4 % 3 x 2 x 1= 3628800
3122
3123
3124 . .
- Example G.3.2: Models learn math problem solving with latent thoughts
3126 <StartOfLatent>
3127 To determine the percent increase and decrease, we first need to understand that
3128 percentages represent a portion of a whole, hence percent increase or decrease is a way
3129 to express this portion in terms of 100.
3130 For an increase, the formula is:
3131
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Percent Increase = (New Value - Original Value) / Original Value % 100.
For a decrease, the formula is similar:
Percent Decrease = (Original Value - New Value) / Original Value x 100.

In the calculation of an increase in pay from $10.00 to $12.00, we observe that the
increase is $2.00. Thus, the percent increase can be calculated as follows:

Identify the original value (PV = $10.00) and the new value (NPV = $12.00).
Calculate the difference: NPV - PV = $12.00 - $10.00 = $2.00.

Divide the difference by the original value: $2.00 / $10.00 = 0.2.

Multiply by 100 to convert to a percentage: 0.2 x 100 = 20%.

BWw N

This indicates that Ann's pay increased by 20%.

For the example involving the sale price of $50.00 after a 20% discount, we follow a
similar process. The discount represents a reduction in price, equivalent to a decrease
of $20 from the original price. Therefore, we can calculate:

1. Identify the original price ($50.00) and the discounted price ($50.00 - $20.00 =
$30.00) .
2. Calculate the percentage decrease: ($30.00 / $50.00) » 100 = 60%.

This shows that the sale price is 60% of the original price, indicating a substantial
reduction from the original value.
<EndOfLatent>

# Calculating Percentage Increase And Decrease

## Learn About Calculating Percent Increase And Decrease With The Following Examples And
Interactive Exercises.

Example 1: Ann works in a supermarket for $10.00 per hour. If her pay is increased to
$12.00, then what is her percent increase in pay?

Analysis: When finding the percent increase, we take the absolute value of the
difference and divide it by the original value. The resulting decimal is then converted
to a percent.

Solution:

Answer: The percent increase in Ann's pay is 20%.

<StartOfLatent>

To calculate a percent decrease, it's important to understand the concept of a
percentage as a way to express a number as a fraction of 100. A percent decrease is
essentially finding the remaining value after a certain amount is taken away from a
total.

In the case of the staff at a company, the number of employees decreased from 40 to 29.
To find the percent decrease, we first determine the difference between the new and old
values. This difference is 29 - 40 = -11. The next step involves finding the absolute
value of this difference, which is 11.

To convert this absolute value into a decimal, we divide 11 by 40. This calculation
results in 0.275. To express this decimal as a percent, we multiply 0.275 by 100,

converting it entirely into a percent form. This results in a percent decrease of 27.5%,
indicating that the number of employees has decreased by 27.5% from the original count.

This process illustrates the mechanics of both increasing and decreasing values in terms
of percentages, which is crucial for interpreting life scenarios like salary or
employment changes. Understanding these calculations enables accurate financial planning
and assessment of trends in employment numbers.

<EndOfLatent>

Let's look at an example of percent decrease.
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3240
3241 Percent Decrease = (Decrease in Length / Original Length) * 100 = (8 / 12) » 100 = 66%.
3242 Both calculations show how to calculate percent decrease based on original and new
3243 values. Understanding these steps is crucial for effectively applying percentage
3244 calculations in various contexts.
3245 <EndOfLatent>
3246 Example 3: At a supermarket, a certain item has increased from 75 cents per pound to 81
3247 cents per pound. What is the percent increase in the cost of the item?
3248 Solution:
3249
3250 Answer: There was an 8% increase in the cost of the item.
3251 Example 4: Four feet are cut from a 12-foot board. What is the percent decrease in
3252 length?
3253 )
Solution:
3254
3255
3256 <StartOfLatent>
3257 To find the percent decrease in length, we start with the original length of the board,
3258 which is 12 feet, and the length after cutting four feet, which is 8 feet. The formula
for percent decrease is given by the expression (original value - adjusted value) /
3259 original value » 100%.
3260
3261 First, calculate the difference between the adjusted value and the original value:
3262 8 feet - 12 feet = -4 feet
3263
3264 Next, divide this difference by the original value:
3265 -4 feet / 12 feet = -0.3333
3266
3067 Now, to convert this decimal to a percentage, multiply by 100%:
3268 -0.3333 » 100% = -33.33%
3269
The result indicates that the length of the board decreased by approximately 33.33% of
3270 its original length. This interpretation of the percent decrease is crucial in various
3271 applications, such as assessing material usage in construction or evaluating changes in
3272 inventory. The negative sign reflects the decrease, while the absolute value of the
calculation provides a clearer understanding of the severity of the change relative to
3273 the original value. The final answer indicates a clear understanding of how percent
3274 decreases are derived from the original and adjusted values.
<EndOfLatent>
3275
3276 Answer: There was a 33.3% decrease in length.
3277
Summary: Percent increase and percent decrease are measures of percent change, which is
3278 the extent to which something gains or loses value. Percent change is useful to help
3279 people understand changes in a value over time. The formula for finding percent change
3280 s
3281
3282
3283 _[ Example G.3.3: Models made mistakes in the earlier iterations but corrected in later ones ]_
3284
3285 Latent thought at 1lst iteration
<StartOfLatent>
3286 The problem requires determining the cost of two appliances: a washer and a dryer. The
3287 costs are related by a linear equation, which can be derived from the information given.
3288 To set up the equation, we define the costs: let the cost of the dryer be represented as
3289 x. Consequently, the cost of the washer, being 91 dollars less than that of the dryer,
3290 can be expressed as y = x + 91.
3291 The total cost of both appliances is given as 659 dollars. This total can be represented
3292 by the equation:
3293
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x +y = 659.

Substituting the expression for y into the equation gives:

x + (x + 91) = 659.

This combines the costs of the washer and dryer into one equation. Simplifying this
leads to:

2x + 91 = 659.

Next, we isolate the variable x by subtracting 91 from both sides:

2x = 659 - 91,
2x = 578.

Now, divide both sides by 2 to solve for x:

x =578 / 2,
x = 289.

Thus, the cost of the dryer, which is represented by y, can be calculated as:
y = x + 91,

y = 289 + 91,
y = 380.

The conclusion is that the dryer costs 380 dollars. This approach demonstrates the
systematic use of algebraic representation and substitution to solve for unknown
variables in an equation involving linear relationships.

<EndOfLatent>

Latent thought at 2nd iteration

<StartOfLatent>

To solve for the cost of the dryer, start by defining the variables. Let x represent the
cost of the washer. Since the dryer costs 91 dollars more than the washer, we can

express the dryer's cost as x + 91.

Next, we have the total cost equation:
X + (x + 91) = 659.

This equation represents the basic principle of addition, where we combine the costs of
both washers and drainers to find the total cost.

Now, we simplify the equation:
x + x + 91 = 659,

which combines to:

2x + 91 = 659.

To isolate the cost variable, we first subtract 91 from both sides:
2x = 659 - 91,

which simplifies to:

2x = 568.

Next, we divide both sides by 2 to solve for x:
x = 568 / 2,

resulting in:

x = 284.

Therefore, the dryer costs 284 dollars. It is important to ensure the units are
consistent throughout the calculations to avoid errors, particularly when separating
everyday uses like shoes and utensils. This method exemplifies setting up an equation
based on known relationships and then applying algebraic operations to find unknowns.
<EndOfLatent>

Latent thought at 4th iteration
<StartOfLatent>
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To find the amount of money spent on the dryer, we start by defining variables for the
costs of the washer and dryer. Let the cost of the washer be represented by x and the
cost of the dryer by vy.

We know from the problem statement that the total cost of both items is 659. This gives
us the equation:

x + y = 659.

Next, we know that the washer costs 91 less than the dryer, which can be expressed as
the equation:

y = x + 91.
Now, we have a system of equations:

1. x +y = 659
2.y =x + 91.

To solve for one variable in terms of the other, we can substitute the second equation
into the first equation:

x + (x + 91) = 659.

This simplifies to:

2x + 91 = 659.

Next, we isolate 2x:

2x = 659 - 91.

Calculating the right side gives us:
2x = 568.

Now, we divide both sides by 2 to solve for x:
x = 568 / 2.

This results in:

x = 284.

Now that we have the cost of the washer, we can find the cost of the dryer by
substituting x back into the equation for y:

y = 284 + 91.
Calculating this gives us:
y = 375.

Thus, the dryer costs 375, and the washer costs 284.
<EndOfLatent>

2014-08-08T20:49:07-04:00

a washer and a dryer cost 659 combined. The washer costs 91 less than the dryer, how
much was the dryer?

washer —--> x

dryer —-> vy

x +y = 659
y =x + 91

x + x + 91 = 659
2x = 659 - 91

<StartOfLatent>

[..omit..]
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<EndOfLatent>

2x = 568 [:2

284
x + 91 = 284 + 91 = 375

X
Yy

The dryer costs 375 and washer costs 284
* Brainly User
2014-08-08T20:52:05-04:00

G.4 FAILURE EXAMPLES OF BOOTSTRAPPED MODELS ON GSM8K

Here, we present examples of bootstrapped models (at the fourth iteration) that failed to solve math
word problems seemingly due to misunderstanding the math word problem and that were correctly
solved at earlier iterations. These examples serve as preliminary qualitative observations of the

potential side-effects of bootstrapping but not a rigorous analysis.

_[ Example G.4.1: Failure of bootstrapped models in interpreting the math word problem ]_

##Problem

form?
Final Answer:

<StartOfLatent><Prior>

We start by calculating the current number of groups formed.
number of students per group:
54 students =+ 12 students/group = 4.5 groups.

This means that 4 groups have been formed.

6 groups — 4 groups = 2 more groups.

Thus, the answer is 2 more groups needed to form the desired number of gr
<EndOfLatent>

The final answer is 2. I hope it is correct.

Question: In a school activity, fifty-four students are to be separated into six groups
of equal size. If the activity requires 12 groups, how many more groups are needed to

To determine how many more groups are needed to form, we first need to understand the

current number of groups. There are 54 students, and we need to form 6 groups.

Since each group requires 12 students, we divide the total number of students by the

Next, we need to find out how many more groups are required to reach the total of 6
groups. We subtract the number of groups formed from the total number of groups needed:

oups.

~

—[ Example G.4.2: Failure of bootstrapped models in providing the proper answer ]—

##Problem

was able to pay it after 3 months, how much should she give to Benedict?
Final Answer:

<StartOfLatent><Prior>
To determine how much Mandy should give to Benedict, we need to calculate

interest owed after 3 months. Mandy owes Benedict $100. The interest rate

means the interest for each month is calculated as follows:

Interest for the first month = 2% of $100 = 0.02 * 100 = $2.
Interest for the second month = 2% of $100 = 0.02 % 100 = $2.
Interest for the third month = 2% of $100 0.02 x 100 = $2.

Adding these amounts gives the total interest owed after 3 months:
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Total interest = $2 + $2 + $2 = $6.

Since Mandy owes Benedict $100, the amount she should give to Benedict is the total
interest owed, which is $6.

Thus, the final answer is 6.
<EndOfLatent>

The final answer is 6. I hope it is correct.

—[ Example G.4.3: Failure of bootstrapped models in converting to the final answer ]—

##Problem

Question: Marcell and Beatrice are having a contest to see who can eat the most fruit
roll-ups, so they unroll as many as they can find. Unfortunately, someone makes a
mistake and Beatrice's was two roll-ups wide and 24 rolls up long while Marcell's was 3
roll-ups wide and 14 roll-ups long. If they both ate their entire amount, how many did
they eat on average?

Final Answer:

<StartOfLatent><Prior>

To find the average number of roll-ups eaten by Marcell and Beatrice, we first need to
calculate the total number of roll-ups each person ate. Marcell ate 2 roll-ups wide and
24 roll-ups long, while Beatrice ate 3 roll-ups wide and 14 roll-ups long.

Calculating the total roll-ups for Marcell:
Total roll-ups for Marcell = 2 roll-ups % 24 roll-ups = 48 roll-ups.

Calculating the total roll-ups for Beatrice:
Total roll-ups for Beatrice = 3 roll-ups = 14 roll-ups = 42 roll-ups.

Next, we sum the total roll-ups eaten by both:
Total roll-ups eaten = 48 roll-ups + 42 roll-ups = 90 roll-ups.

Now, to find the average number of roll-ups eaten, we divide the total roll-ups eaten
by the total number of roll-ups eaten:

Average roll-ups eaten = Total roll-ups eaten / Total roll-ups eaten = 90 roll-ups /
90 roll-ups = 1 roll-up.

Thus, the average number of roll-ups eaten by Marcell and Beatrice is 1 roll-up.

<EndOfLatent>

The final answer is 1. I hope it is correct.
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