
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REASONING TO LEARN FROM LATENT THOUGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Compute scaling for language model (LM) pretraining has outpaced the growth of
human-written texts, leading to concerns that data will become the bottleneck to LM
scaling. To continue scaling pretraining in this data-constrained regime, we propose
that explicitly modeling and inferring the latent thoughts that underlie the text
generation process can significantly improve pretraining data efficiency. Intuitively,
our approach views web text as the compressed final outcome of a verbose human
thought process and that the latent thoughts contain important contextual knowledge
and reasoning steps that are critical to data-efficient learning. We empirically
demonstrate the effectiveness of our approach through data-constrained continued
pretraining for math. We first show that synthetic data approaches to inferring latent
thoughts significantly improve data efficiency, outperforming training on the same
amount of raw data. Furthermore, we demonstrate latent thought inference without
a strong teacher, where an LM bootstraps its own performance by using an EM
algorithm to iteratively improve the capability of the trained LM and the quality
of thought-augmented pretraining data. We show that a 1B LM can bootstrap its
performance across at least three iterations and significantly outperform baselines
trained on raw data, with increasing gains from additional inference compute when
performing the E-step. The gains from inference scaling and EM iterations suggest
new opportunities for scaling data-constrained pretraining.

1 INTRODUCTION

Human-written text is the culmination of an underlying thought process—when we write, there
is often an internal dialogue that clarifies or even determines the written word. However, modern
language models (LMs) (Radford et al., 2019; Brown et al., 2020; OpenAI, 2023; Dubey et al., 2024)
are pretrained directly on the final results of this process in a highly compressed form (e.g., research
papers). This may explain why LMs struggle with data efficiency and require almost the entire
human-written web to learn (Kaplan et al., 2020; Hoffmann et al., 2022). Since the rate of growth in
pretraining compute is far greater than that of the web itself (Villalobos et al., 2022; Muennighoff
et al., 2024), we may soon enter a data-constrained regime, motivating data efficiency approaches to
extract more capabilities from limited web data.

In contrast to LMs, humans learn very efficiently from the same compressed text, which suggests the
possibility of significantly improving data-efficient pretraining. In this work, we focus on how we
learn as one potential cause for this gap. For example, when we read a research paper, we analyze
specific claims, integrate them with prior knowledge, and attempt to “decompress” the author’s
original thought process. In other words, we use reasoning in service of learning, to infer the internal
dialogue that undergirds the observed text. We refer to this procedure—augmenting the observed
data with inferred thoughts to enable more efficient learning—as reasoning to learn.

Inspired by this, we introduce an LM pretraining approach that implements this reasoning-to-learn
paradigm to improve data efficiency (Fig. 1). Specifically, we approach language modeling from
a latent variable perspective, where the observed data X depends on underlying latent thoughts Z.
We train our LMs to learn from observed data X augmented with the latents Z by modeling the
joint distribution p(Z,X). The main challenge is synthesizing (and learning to synthesize) Z with a
latent generator q(Z | X) (Fig. 2a). One key insight of our work is that for a natural language latent
thought Z, the LM itself provides a strong prior for producing latent thoughts (via its reasoning and
theory-of-mind abilities (Wei et al., 2022a)). This observation turns latent thought inference into a
synthetic data generation problem and has significant practical benefits—it allows us to leverage the
strong capabilities of existing LMs, share weights between the LM and the latent thought generator,
and simplify training into a small modification to the standard pretraining pipeline (Fig. 2b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

109 1010

Total Training Tokens

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

Iteration 1
Iteration 2

Latent Bootstrap
Iteration 3
Iteration 0

Raw Baseline
Raw-Token-Match
Train-FLOP-Match

Figure 1: Reasoning to learn. (Left) Motivated by how humans apply deliberate thinking to learn
from limited data, we train an LM to infer (or “decompress”) latent thoughts underlying the highly
compressed observed data. These synthesized latent thoughts augment the raw observed data during
pretraining, improving the LM’s data efficiency. This procedure can be iteratively applied through an
EM algorithm (Fig. 4) and form a model self-improvement loop where increasingly capable LMs
synthesize more effective latent thoughts, which in turn train more capable models. (Right) Our
results demonstrate consistent improvement in model performance across bootstrap iterations.

We show that training a model with latent thoughts enables it to produce higher-quality latent thoughts,
allowing a model to bootstrap its “reasoning to learn” ability with only a small amount of initial
supervision. We demonstrate this through a simple Expectation-Maximization based approach which
we refer to as Bootstrapping Latent Thoughts (BoLT) that enables an iterative improvement of the
latent thought generator (Fig. 4). Importantly, we show that BoLT can take advantage of additional
inference compute to further improve data efficiency. In particular, the E-step in BoLT makes use of
a Monte-Carlo estimator that serves as a non-parametric “policy improvement operator”, where the
approximate posterior q(Z | X) approaches the true posterior as the number of samples increases.
We find in our experiments that BoLT is able to take advantage of additional samples (at least four)
to improve its data efficiency and bootstrap its performance for at least three iterations, opening the
possibility of new ways of scaling pretraining data efficiency.

We validate the effectiveness of our approach in improving model capabilities in data-constrained
setups. As a testbed, our experiments continually pretrain a TinyLlama (Zhang et al., 2024) model on
a limited amount of data from a reasoning-intensive corpus FineMath (Lozhkov et al., 2024).

• First, we demonstrate the potential of training LMs with data augmented with latent thoughts:
when using GPT-4o-mini (Hurst et al., 2024) to synthesize latent thoughts, the trained LM achieves
25.4% on MATH (Hendrycks et al., 2021a), significantly outperforming LMs trained on raw data
(5.74%) or synthetic Chain-of-Thought (Wei et al., 2022a) style paraphrases (19.4%) (Fig. 5).

• Furthermore, we show that our BoLT algorithm enables an LM to bootstrap its performance on
limited data. When trained on a fixed amount of data (Fig. 6), we find LMs trained with self-
generated latents improve across iterations on both likelihood metrics and MATH evaluations
(Fig. 7). Crucially, these gains require no task-specific data and stem purely from improved latent
thought quality across bootstrap iterations.

Altogether, our results suggest that the powerful reasoning primitives of LMs may be leveraged to
extract more capabilities from limited, task-agnostic data during pretraining.

2 RELATED WORK

Here we briefly review the most relevant works and include an extended discussion in Appx. B.
Synthetic data for training LMs Recent work has demonstrated the benefits of synthetic data to
improve training efficiency, typically by prompting frontier models to generate data for model training.
These approaches have yielded competitive performance at small data and model scales (Eldan and Li,
2023; Gunasekar et al., 2023; Li et al., 2023; Abdin et al., 2024a;b). Another paradigm closer to our
work is to augment raw data by paraphrasing (Maini et al., 2024) or describing relationships among
extracted entities (Yang et al., 2025), which uses real data to ground the synthetic data generation.
Our work differs in two key aspects. First, we take a latent variable perspective that augments (rather
than replaces) each text chunk X with latent thoughts Z, which we show is crucial to downstream

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Learning by decompression (b) Training with next-token predictions

Figure 2: Reasoning to learn with latent thought models (a) The latent thought model is trained to
“decompress” plausible human thoughts underlying the observed data (i.e., q(Z |X)) and to utilize
the latent thoughts in learning more efficiently from the data (i.e., p(Z,X)). (b) The latent thought
is modeled for each chunk of text in an autoregressive manner and in the same discrete text space.
Given paired data {(Zn, Xn)}Nn=1, we use standard next-token prediction to train a single LM as
both the p(Z,X) and q(Z|X), by randomly placing Zn before or after Xn in the sequence. This
strategy allows for minimal modifications to the standard LM pretraining pipeline.

performance in Sec. 5.2. Additionally, our work studies bootstrapping of the data generator rather
than the distillation settings considered in most previous works.
Learning to reason using pretraining data Closer to our setting, some recent works attempt to
enhance LM reasoning capabilities using pretraining data without explicit external rewards. Geiping
et al. (2025) pretrain a looped transformer (Dehghani et al., 2019; Giannou et al., 2023) on general
web text, using continuous hidden states to model a thought process. Zelikman et al. (2024) propose
a domain-agnostic post-training method that uses reinforcement learning on pretraining data to learn
“thought tokens” that improve reasoning. Our work is distinct in the goal of leveraging reasoning
to improve pretraining data efficiency, which leads us to consider scalable, synthetic data–based
approaches. This leads to a number of benefits, including a simple training method and embarassingly
parallel latent generation. Our work provides a complementary perspective on how latent variable and
synthetic data perspectives can enable both “learning to reason” and “reasoning to learn”.

3 REASONING TO LEARN WITH LATENT THOUGHT MODELS

In this section, we introduce our “reasoning to learn” approach to pretraining LMs. Our key idea is to
model the latent thoughts underlying the human data generation process, and train a latent thought
model both to reason about the latent thoughts underlying pretraining data and to learn from the data
based on the synthesized latent thoughts.

3.1 LATENT THOUGHT MODELS

Learning by decompression Human-written data on the web is a compressed representation of an
underlying thought process. For example, when Geoffrey Hinton wrote “GPT-4 is humanity’s butter-
fly”, he drew upon his knowledge of how GPT-4 was trained on a large corpus of human-generated
data and distilled human intelligence, and analogized this process to a butterfly’s metamorphosis.
Understanding the context and reasoning steps behind the observed data can facilitate deeper under-
standing of the text they generate, but such reasoning traces are usually not explicitly presented in
our pretraining data. Our hypothesis is twofold: augmenting pretraining data with underlying human
thoughts can significantly improve its learning efficiency, and that this ability to infer latent thoughts
can be learned and improved after being trained with these thoughts during pretraining.
Formalizing latent thought models We formalize this from the perspective of latent variable
models, as illustrated in Fig. 2a. We model the human thoughts underlying the observed data X as
the latent Z, and the generative process as a joint distribution p(Z,X) = p(Z)p(X |Z). Instead of
training an LM to directly model the observed data p(X), we train it both to “decompress” the latent
thoughts from the observed data (i.e., approximate posterior q(Z |X)) and to learn from the data
using the synthesized latent thoughts (i.e., p(Z,X)); we call this LM a latent thought model. The
latent thought Z is modeled in the same discrete text space as the observed data X (just as human
thoughts can often be expressed in natural language). By augmenting the data with latent thoughts,
the LM’s learning process resembles the human process of reasoning to learn, where we deliberately
think through the data to better absorb it. Importantly, we view latent thoughts as being encoded in
natural language. This allows us to initialize q(Z | X) using supervision from an existing model
prompted to infer latent reasoning and background context, as well as to jointly model all conditional

3

https://x.com/geoffreyhinton/status/1635739459764322330
https://x.com/geoffreyhinton/status/1635739459764322330

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

You are provided with a pair of web document prefix and suffix. Your task is to insert
latent thoughts between them underlying the creation of the suffix conditioned on the
prefix. The latent thoughts should include: the missing background knowledge and the
reasoning traces underlying each claim (especially, step-by-step derivations or logical
reasoning). [..omit..]

(a) Prompt for GPT-4o-mini to synthesize latent thoughts.

<StartOfLatent><Prior> [..omit..] If the data is not centered, the computed variances
along the axes will be skewed, leading to misleading results in the identification of PCs.
Uncentered data would cause the variance to reflect the mean the data rather than

[..omit..] <EndOfLatent>

The first step, data decentralization
[..omit..] We directly decentralize the data (that is, the mean value of the data is at
the far point). If the data is not decentralized, we cannot find the optimal
dimensionality reduction.

<StartOfLatent><Prior> To find the optimal axis for PCA, we utilize the covariance matrix
of the decentralized data. The eigenvalues of this matrix indicate the amount of variance
captured by each PC, while the corresponding eigenvectors provide the directions. PC1 is
the eigenvector associated with the largest eigenvalue, representing the direction of
maximum variance. [..omit..] <EndOfLatent>

The second step is to find the new most marked axis
How do we find the most standard axis to achieve principal component analysis? That is,
the greater the distance between the projected point and the origin of the coordinate axis
, the better [..omit..]

(b) Example synthetic latent thoughts for a document about PCA’s mathematical derivation.

Figure 3: We use GPT-4o-mini to synthesize latent thoughts to train the initial latent thought model.
The synthetic latents as shown in (b) typically contain the background knowledge and reasoning not
explicitly stated in the raw data, presented in a consistent and clean form. The prompt and example
are simplified for clarity; see Prompt F.1.1 and Appx. G.2 for the full prompt and additional examples.

distributions for Z and X using a single, autoregressive language model. We describe the training
and inference processes for latent thought models in the following.

3.2 TRAINING WITH SYNTHETIC LATENT THOUGHTS

We adopt an autoregressive generative model of latent thoughts that is compatible with standard
language modeling. Given a document X , we randomly chunk it into segments {Xn}Nn=1 at the
sentence boundaries and aim to infer the latent thought Zn underlying each chunk Xn conditioned
on the previous context (see Fig. 2b, top).
Synthesizing latent thoughts for training Human-generated data like internet text does not natu-
rally come with underlying latent thoughts. Therefore, we need to synthesize the latent thought Z
from some surrogate q̃(Z | X) of the true posterior to augment the observed data X for training the
latent thought model. q̃(Z | X) can either be instantiated as a frontier model, or the approximate
posterior model q(Z | X) itself for bootstrapping as in our EM algorithm. For example, we can
prompt GPT-4o-mini (Hurst et al., 2024) to synthesize the latent thoughts by inferring missing
reasoning steps or background knowledge (see Fig. 3 for the prompt and examples).
Training latent thought models We develop a simple method to train both a joint model p(Z,X)
and an approximate posterior model q(Z |X) with only minor modifications to the standard LM
training pipeline (Fig. 2b). Since both Z and X are presented in the same discrete text space, we
train models with standard next-token predictions. Given the synthetic latent thoughts paired with
the observed data {(Zn, Xn)}Nn=1, we train both the joint and the posterior as the same model by
formatting the data as conditional maximum likelihood estimation: we place Zn as the suffix after Xn

in the sequence to train the approximate posterior q(Zn |Xn), and place Zn as the prefix before Xn

to train the joint p(Zn, Xn) (see the bottom of Fig. 2b). We format the data in these two modes with a
random coin flip and use two special tokens <Prior> and <Post> to differentiate them. All latents
are wrapped within the special <StartofLatent> and <EndofLatent> tokens to differentiate
them from the raw observed data (Fig. 3b). The formatted data can be directly fed into the standard
LM pretraining pipeline to train both the joint and the posterior with next-token predictions.

3.3 PREDICTION WITH LATENT THOUGHTS

Since models have been pretrained to utilize latent thoughts to predict the following text, they can
also use them to perform CoT reasoning for problem solving during downstream evaluation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Bootstrapping latent thoughts (BoLT) in an iterative Expectation-Maximization algo-
rithm. In the E-step, we use Monte Carlo sampling as a “policy improvement operator” to obtain
higher-quality latent thoughts. This boosts learning efficiency in the M-step, enabling the training of
more capable LMs that synthesize better latent thoughts.

Reasoning with CoT in the latent space During CoT prompting (Nye et al., 2021; Wei et al.,
2022a), it is common to augment few-shot examples with explicit reasoning chains. For standard LMs,
these thoughts are simply part of the text prompt. However, in the case of latent thought models, we
now have the more natural option of putting the CoT prompts into the latent space Z. We implement
this by changing the formatting of the few-shot examples: given a question Q and its answer A, we
wrap the CoT within the special tokens (<StartofLatent> and <EndofLatent>) and add the
<Prior> prefix to indicate that this reasoning should occur in the latent space for producing the
following answer (see Appx. F.2 for few-shot examples). We find that latent thought models are
highly effective latent CoT reasoners at inference time (see Appx. G.1 for examples), achieving better
downstream performance than when reasoning in the observed text space X .

4 BOOTSTRAPPING LATENT THOUGHT MODELS

The data efficiency of training latent thought models relies on the surrogate posterior q̃(Z | X) used to
synthesize the latent thoughts, which limits the potential of our approach in advancing frontier model
capabilites. To overcome this limitation, we introduce an Expectation-Maximization (EM) algorithm
called Bootstrapping Latent Thoughts (BoLT), illustrated in Fig. 4. The key idea is to instantiate
q̃(Z | X) with a non-parametric, enhanced version of the model’s approximate posterior q(X | Z)
via Monte Carlo sampling. This enables a self-improvement loop, where more effective latents are
synthesized at the E-step, leading to more capable models with improved learning efficiency at the
M-step, which in turn improve latent quality at the next E-step.

4.1 EXPECTATION-MAXIMIZATION WITH MONTE CARLO SAMPLING

At each iteration t in EM, we have access to the current latent thought model Mt. This model
parameterizes both the approximate posterior q(Z |X;Mt) and the joint p(Z,X;Mt) through the
same data formatting and special token usage used during training (Sec. 3.2). A naive instantiation of
EM would be to alternate between sampling latents Z from the current posterior q(Z |X;Mt) in the
E-step and training a model with the sampled latents Z in the M-step. However, it is unclear that
training a model on its self-generated latents can improve it. We address this gap with Monte Carlo
sampling, which induces a surrogate posterior q̃(Z |X;Mt) that is provably better than the current
one to serve as a “policy improvement operator”. We detail the procedure below.
E-step: Synthesizing better latents with Monte Carlo sampling At the E-step, we sample K
latents {Z(k)}Kk=1 from the current posterior q(Z |X;Mt) and compute their importance weights

w(k) = p(Z(k),X;Mt)
q(Z(k) |X;Mt)

. Intuitively, w(k) upweights a latent that is both simple (high p(Z(k);Mt)) and

predictive of the data (high p(X |Z(k);Mt)), and downweights too obvious ones (q(Z(k) |X;Mt)
in the denominator). Then, we resample one latent from the categorical distribution proportional to the
importance weights, i.e., j ∼ Cat(w(k)), and use Z(j) as the final latent. This procedure is known to
sample from a posterior q̃(Z |X;Mt) that achieves the importance-weighted evidence lower bound
(ELBO), which is tighter than the naive ELBO (Burda et al., 2015; Cremer et al., 2017):

log p(X) ≥ E
Z∼q̃

[
log

p(Z,X)

q̃(Z |X)

]
≥ E

Z(k)∼q

[
log

1

K

K∑
k=1

p(Z(k), X)

q(Z(k) |X)

]
≥ E

Z∼q

[
log

p(Z,X)

q(Z |X)

]
(1)

The bound is tighter with more samples K and q̃ approximates the true posterior when K → ∞.
Crucially, this procedure offers a potential way to improve the training efficiency of LMs by scaling
up the inference compute to select a better latent from more samples.
M-step: Training the model with bootstrapped latents At the M-step, we use the latents synthe-
sized by the current modelMt and pair them with the raw data corpus X to train the next model
Mt+1, following the same training procedure in Sec. 3.2. Note that the new posterior q(Z |X;Mt+1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

108 109

Total Training Tokens

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

Pretrained TinyLlama
Latent Thought

Raw-Fresh
Raw-Repeat

WRAP-Orig
WRAP-CoT

Figure 5: Training on raw data augmented with synthetic latent thoughts significantly boosts
LM data efficiency. We study a data-constrained setup where a TinyLlama-1.1B model is continually
pretrained on 480M FineMath tokens with an 8B training token budget. GPT-4o-mini generates
synthetic latent thoughts (as a proxy for human ground-truth thoughts) for the corpus. This augmented
data (“Latent Thought”) leads to substantial gains over both training on 8B unique raw tokens (“Raw-
Fresh”) and paraphrased data with synthetic reasoning traces (“WRAP-CoT”). The synthetic token
budget for all synthetic data methods is fixed to ∼1.1B tokens. The advantages of our method are
even more pronounced under prompt variations (see Fig. D.2) and when normalized by the effective
raw tokens seen by each method (Fig. D.3).

is trained to approximate the improved posterior q̃(Z |X;Mt), and the new joint p(Z,X;Mt+1) is
trained by augmenting the data with bootstrapped latents from q̃(Z |X;Mt).
Full algorithm Our full approach is described in Algorithm 1. Since the initial base LM has not
been trained as a latent thought model, we first train it on a small corpus of warmstart data with
synthetic latent thoughts (synthesized by, e.g., GPT-4o-mini), and then apply our EM algorithm on a
much larger corpus. The warmstart→ iterative EM loop resembles the supervised finetuning→ rein-
forcement learning pipeline (Ouyang et al., 2022) that is widely adopted in LM post-training, though
our approach operates purely on task-agnostic pretraining data instead of supervised data.

5 SYNTHETIC LATENT THOUGHTS IMPROVE LM DATA EFFICIENCY

In this section, we first demonstrate that the data efficiency of LMs can be significantly improved
through joint training on observed data and latent thoughts. We show this by using a capable LM
(GPT-4o-mini) as the surrogate posterior q̃(X |Z) to synthesize latent thoughts to augment a fixed
corpus, and compare its performance against several baseline approaches.

5.1 EXPERIMENTAL SETUP

Continued pretraining on a reasoning-intensive corpus We conduct continued pretraining (CPT)
of TinyLlama-1.1B (Zhang et al., 2024) on a reasoning-intensive corpus FineMath-4+ (Lozhkov
et al., 2024). While reasoning to learn is domain-agnostic, we choose this setup to obtain meaningful
downstream accuracy readouts under an academic budget. We choose TinyLlama-1.1B because it has
not been specifically trained on mathematical reasoning data, enabling clean comparisons. To assess
the data efficiency of various methods, we adopt a data-constrained setup by fixing the total number
of unique “raw” tokens for CPT to 480M. We fix a total CPT compute budget of 8B tokens, with
methods training on additional synthetic data and/or for multiple epochs on raw data.
Synthetic generation of latent thoughts We use GPT-4o-mini as the surrogate posterior q̃(Z |X)
and generate latent thoughts over the CPT corpus. We prompt the model with Prompt F.1.1 and
temperature 0.7. We split each document into chunks of sentences, where each chunk contains a
random number of sentences following a Poisson distribution with a mean of 8, truncated between 1
and 20. We generate one latent for each chunk using the previous L = 3 chunks as the prefix context.
Overall, the token ratio between synthetic and raw tokens is 2.3:1 (∼1.1B synthetic tokens), and
under the 8B token compute budget, we CPT on the thought-augmented data for ∼5 epochs.
Baselines We compare our approach with several natural baselines in the data-constrained regime
using a combination of data repetition and synthetic data generation: 1) Raw-Repeat: We train on the
raw corpus for ∼16 epochs with early stopping; 2) Raw-Fresh: As an anticipated upper bound, we
train on 8B unique tokens without repetition; 3) WRAP-Orig: WRAP (Maini et al., 2024) rephrases
the data in diverse styles, and we prompt GPT-4o-mini to rephrase each document with their prompts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Downstream performance of different methods and ablation studies. For our method,
it is crucial to embed the synthetic thoughts in a latent space Z separate from the observed raw text
X , and to utilize Z for CoT reasoning during downstream evaluation.

Data MATH GSM8K MMLU-STEM

Raw-Repeat 5.74 5.76 27.31
Raw-Fresh 11.18 13.27 30.63
WRAP-Orig 11.06 12.43 31.40
WRAP-CoT 19.36 21.08 34.51

Latent Thought (Ours) 25.38 33.59 35.87
- mixing latents in raw text space during training 22.38 20.17 33.33
- using CoT in raw text space during eval 20.34 22.97 31.78

4) WRAP-CoT: To probe whether the gains of our approach arise from simply including synthetic
reasoning traces in the training data, we develop a WRAP variant that prompts GPT-4o-mini to
rephrase docs with interspersed reasoning steps. For both WRAP baselines, we generated multiple
paraphrases per document based on their synthetic-raw token ratios to match the total synthetic tokens
of our approach. We also tuned the synthetic-raw mixture coefficient and found entirely synthetic
works best (see Figs. D.1a and D.1b). We include more baseline details in Appx. D.1.
Training & Evaluation We CPT using AdamW (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.95, weight decay of 0.01, and a tuned learning rate of 1e-4 (see Appx. D for details). We
evaluate trained LMs on the popular reasoning benchmarks MATH (Hendrycks et al., 2021a), GSM8K
(Cobbe et al., 2021), and MMLU-STEM (Hendrycks et al., 2021b) with few-shot CoT prompting
(Wei et al., 2022a). We use both the default CoT prompts and prompts with CoTs synthesized by
GPT-4o-mini, and report the latter by default as it uniformly performed better across methods (see
Fig. D.2). Few-shot CoTs are placed in the latent space Z for our method, and in the raw text space
X for baselines. We refer the reader to Appx. D.1 for further experimental details.

5.2 RESULTS

Training with synthetic latent thoughts improves data efficiency over baselines Fig. 5 and
Table 1 show downstream performance during CPT for various methods. Training with synthetic
latent thoughts substantially outperforms all baselines, even outperforming training on an equivalent
amount of unique raw tokens (“Raw-Fresh”). While rephrasing-based synthetic data generation
methods do improve over raw data baselines—particularly the variant incorporating reasoning steps
(“WRAP-CoT”)—they still considerably underperform our approach. Moreover, our method is more
robust to prompt variations compared to baselines that suffer considerable degradation with standard
CoT prompts (see Fig. D.2). Notably, since our method trains jointly on synthetic latent thoughts and
raw data (at a 2.3:1 token ratio), it achieves better performance while seeing the raw data fewer times
(3.3x) than the baselines. We include a comparison normalized by the effective raw tokens seen by
each method in Fig. D.3, where our method demonstrates even more significant gains.
Learning and utilizing latent thoughts in a separate latent space is critical A key distinction
between our approach and baselines (such as WRAP-CoT) is that we model thoughts in a latent space
Z separate from the observed text X , which we hypothesize to improve performance by explicitly
handling the language modeling task from the thought process. We ablate this design in Table 1. First,
we demonstrate the importance of jointly modeling thought and document chunk pairs (Z,X). We
test a variant of our approach that does not separate the latent thoughts from the raw text X and mixes
them with randomly sampled (unpaired) text chunks at a 1:1 ratio. This variant (second-to-last row)
performed comparably to WRAP-CoT but significantly worse than our full method, demonstrating
that our gains primarily stem from the latent model design rather than merely from the quality of
the synthetic thought data. Furthermore, we assess the effectiveness of reasoning with CoT in the
latent space during downstream evaluation. For our trained latent thought models, we instead provide
all few-shot CoTs in the raw text space X similar to the baselines and suppress the generation of all
special latent tokens during evaluation. This test-time intervention degrades performance (last row),
demonstrating the benefit of explicitly using latent thoughts during downstream evaluation.

6 LMS CAN SELF-IMPROVE BY BOOTSTRAPPING LATENT THOUGHTS

We have demonstrated that training jointly on raw texts and accompanying latent thoughts synthesized
by a powerful LM significantly improves data efficiency. In this section, we take a step towards LMs
that can self-improve on limited pretraining data, by investigating whether the BoLT algorithm enables
monotonic improvement across iterations. We focus on a scientific setup for understanding whether
BoLT can enable model self-bootstrapping by iteratively generating higher quality latents (see Fig. 6).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10102 × 109 3 × 109 4 × 109 6 × 109

Total Training Tokens

1.40

1.45

1.50

1.55

1.60

1.65

1.70

EL
BO

 w
/ 4

 S
am

pl
es

Validation ELBO

109 1010

Total Training Tokens

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

Iteration 1
Iteration 2

Latent Bootstrap
Iteration 3
Iteration 0 (Warmstart)

Raw Baseline
Raw-Token-Match
Train-FLOP-Match

Figure 7: BoLT bootstraps performance on a fixed corpus. We bootstrap on a fixed corpus of
1.92B raw tokens and warmstart with 240M raw tokens, observing consistent gains in ELBO (left) and
downstream MATH evaluations (see Fig. E.2 for detailed results across prompt variations). Results
are over 5 training runs for bootstrapping and 3 runs for baselines to reduce variability.

Figure 6: Bootstrapping on fixed data.

Specifically, we fix the training corpus X and retrain the
model Mt from scratch at each iteration. With a limited
amount of fixed data, the final model performance at each
iteration is determined by the quality of synthesized latents
Zt, enabling a controlled study. In Appx. E.2, we also
study a more practical scenario where LMs are continually
bootstrapped from previous models (without retraining from
scratch) and observe similar bootstrapping effects.

6.1 BOOTSTRAPPING ON FIXED DATA

6.1.1 EXPERIMENTAL SETUP

Bootstrapping configuration We use TinyLlama-1.1B as the base modelMb and fix the training
corpus as 1.92B raw tokens from FineMath-4+. For the warmstart dataX0, we use a separate corpus of
240M raw tokens with GPT-4o-mini synthetic latents as Z0 (∼ 550M synthesized tokens), following
Sec. 5.1. We train the warmstart modelM0 for 1 epoch on (X0,Z0). At each bootstrap iteration t,
we use the current trained modelMt−1 to instantiate the posterior q(Z |X;Mt−1) at temperature
1.0, from which we sample latents for each text chunk (with chunks split following Sec. 5.1). We
sample K = 4 latents by default and select one by sampling proportional to their importance weights
(Sec. 4), which we found to provide decent performance gains while maintaining a reasonable cost
for synthetic data generation. The synthetic:raw token ratio is ∼2.4:1, and we train LMs on the
augmented data for 2 epochs at each iteration, corresponding to ∼13B total training tokens.

Evaluation Due to high run-to-run variability, we require high signal-to-noise ratio evaluation
metrics that differentiate model quality across bootstrap iterations. We first use likelihood measures:
we use a holdout set of 1,000 documents from FineMath-4+ to measure test likelihoods. For latent
thought models, we measure the 4-sample ELBO (Burda et al., 2015) as in Eq. (1) for a tighter bound.
While the ELBO could be a loose bound on the true negative log-likelihood (NLL), it serves as a
smooth diagnostic metric to demonstrate that our model self-improves predictably with respect to our
chosen training metric. Second, we use downstream metrics: we evaluate performance on MATH
and GSM8K at each bootstrap iteration with few-shot CoT prompting, following Sec. 5.1. We exclude
MMLU-STEM as performance fell within the noise floor (<28%). Because few-shot prompting
performance may be confounded by the LM’s in-context learning ability (Dominguez-Olmedo et al.,
2025), we also perform finetuning-based evaluations on each benchmark with synthetic CoT traces
that measure the model performance after being finetuned on training splits. For clarity, we plot the
best performance achieved during training for each run. Exact performance curves are in Fig. E.3
with similar relative comparisons. We refer readers to Appx. E.1 for further details.

6.1.2 RESULTS

BoLT enables monotonic self-improvement across multiple iterations Fig. 7 shows the model
performance after each bootstrap iteration. Our results demonstrate that BoLT consistently improves
performance over multiple iterations in both ELBO and MATH accuracy, where more capable models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

generate higher quality latents that further enhance model capabilities. Performance improvements
remain clearly observable on the smoother ELBO and NLL (Fig. E.1) metrics through the fourth
iteration. Downstream MATH performance shows consistent improvement through the third iteration,
with diminishing returns by the fourth. This plateau may be due to the discontinuous nature of
few-shot evaluations (Wei et al., 2022b; Schaeffer et al., 2023) that can mask smaller improvements;
after task-specific finetuning, gains persist through the fourth iteration (Fig. 8). We speculate that the
saturation point could correlate with scale, as our preliminary smaller-scale experiments showed few-
shot performance plateauing after the second iteration. Qualitatively, we observe instances where the
latents at earlier iterations make mistakes that are corrected in later ones (see Example G.3.3).

1 2 3 4
Bootstrap Iteration

0.12

0.14

0.16

0.18

Ac
cu

ra
cy

MATH (Fine-tuned)

1 2 3 4
Bootstrap Iteration

0.30

0.32

0.34

0.36

Ac
cu

ra
cy

GSM8K (Fine-tuned)

Latent Bootstrap
Latent Warmstart

Raw Train-FLOP-Match
Raw Token-Match

Figure 8: The performance gains of BoLT across
multiple iterations and over raw data baselines re-
main robust in finetuning evaluations.

Training on self-generated latents outper-
forms training on raw data We compare
the downstream MATH performance of BoLT-
trained models with those trained on raw data
(Fig. 7). We include a FLOP-matched base-
line trained for the same total training tokens as
ours (3.4× more passes over the corpus), and a
raw token–matched baseline trained on the same
count of raw tokens as ours (2 epochs over the
corpus). BoLT significantly outperforms both
baselines, demonstrating the effectiveness of rea-
soning to learn with self-generated latents for
improved data efficiency. Gains persist in fine-
tuning evaluations on MATH & GSM8K (Fig. 8).
Latent examples are provided in Appx. G.3.

1 2 4 8
Num MC Samples

1.44

1.45

1.45

1.46

1.46

1.47

1.47

EL
BO

 w
/ 4

 S
am

pl
es

Validation ELBO

1 2 4 8
Num MC Samples

0.108

0.110

0.112

0.114

0.116

0.118

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

Figure 9: More Monte Carlo samples lead to im-
proved latent quality and better trained models
(further results in Fig. E.4).

Synthesizing latents with more Monte Carlo
samples improves data quality A key com-
ponent of our approach is the use of Monte
Carlo sampling: we draw multiple samples and
reweight them to select one, inducing an im-
proved posterior and serving as a “policy im-
provement operator”. We study the impact of
the number of MC samples K on latent qual-
ity, synthesizing latents with K = 1, 2, 4, 8 at
the first iteration and training models on data
augmented with them (Fig. 9). We find that the
ELBO and MATH accuracy improve monotonically in the number of MC samples, demonstrating a
potential avenue for scaling inference compute in improving pretraining efficiency.

7 CONCLUSION

We have introduced reasoning to learn—a new approach to data-efficient LM pretraining by deliber-
ately thinking through the observed data. We show that training LMs with synthetic latent thoughts
significantly improves learning efficiency and downstream performance in data-constrained setups.
Moreover, we instantiate an EM algorithm—Bootstrapping Latent Thoughts (BoLT)—which enables
model self-improvement, where more capable models synthesize higher-quality latents that in turn
enable greater learning efficiency. We extensively validate BoLT with continued pretraining on math
data, and show that BoLT demonstrates steeper scaling and consistent downstream gains across
multiple bootstrap iterations. Our work demonstrates the promise of explicit inference of underlying
latent thoughts in improving data efficiency on task-agnostic pretraining data.
Limitations and future work Our work represents a proof-of-concept under a constrained compute
budget, using a 1B parameter model and a few billion tokens of math-specific data. Future work
should validate the approach at larger scales, with general-domain or even multimodal data, to
further explore the potential for unlocking general reasoning capabilities beyond domain-specific
reinforcement learning approaches (Jaech et al., 2024; Guo et al., 2025). We focused on a particular
instantiation of our approach and did not exhaust design choices such as alternative latent structures or
hyperparameter configurations. Moreover, bootstrapping on self-generated data may amplify specific
biases; we observed a case where few-shot performance on GSM8K deteriorates over multiple BoLT
iterations (see Fig. E.5)—such effects warrant more extensive investigation. We provide a detailed
discussion in Appx. C.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

OpenAI. Gpt-4 technical report, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Will we run out of data? limits of llm scaling based on human-generated data. arXiv preprint
arXiv:2211.04325, 2022.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 2022a.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Anton Lozhkov, Loubna Ben Allal, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Finemath:
the finest collection of mathematical content, 2024. URL https://huggingface.co/
datasets/HuggingFaceTB/finemath.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021a.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024a.

10

https://huggingface.co/datasets/HuggingFaceTB/finemath
https://huggingface.co/datasets/HuggingFaceTB/finemath

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024b.

Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly. Rephrasing
the web: A recipe for compute & data-efficient language modeling. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics, 2024.

Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candes, and Tatsunori Hashimoto. Synthetic
continued pretraining. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=07yvxWDSla.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pages 11398–11442. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/giannou23a.html.

Eric Zelikman, Georges Raif Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah Good-
man. Quiet-STar: Language models can teach themselves to think before speaking. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
oRXPiSOGH9.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. 2021.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted autoencoders.
arXiv preprint arXiv:1704.02916, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021b. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Ricardo Dominguez-Olmedo, Florian E. Dorner, and Moritz Hardt. Training on the test task con-
founds evaluation and emergence. In The Thirteenth International Conference on Learning
Representations, 2025.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol

11

https://openreview.net/forum?id=07yvxWDSla
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://proceedings.mlr.press/v202/giannou23a.html
https://openreview.net/forum?id=oRXPiSOGH9
https://openreview.net/forum?id=oRXPiSOGH9
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022b. ISSN 2835-8856.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving> 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
creation with 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Gonzalo Martínez, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juarez, and Rik
Sarkar. Towards understanding the interplay of generative artificial intelligence and the internet. In
International Workshop on Epistemic Uncertainty in Artificial Intelligence, pages 59–73. Springer,
2023.

Rohan Taori and Tatsunori Hashimoto. Data feedback loops: Model-driven amplification of dataset
biases. In International Conference on Machine Learning, pages 33883–33920. PMLR, 2023.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails: Model
collapse as a change of scaling laws. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=KVvku47shW.

Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov, David L
Donoho, and Sanmi Koyejo. Collapse or thrive? perils and promises of synthetic data in a
self-generating world. arXiv preprint arXiv:2410.16713, 2024.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, L. Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan,
and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. ArXiv, abs/1712.01815, 2017a.

12

https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=KVvku47shW

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476 – 482, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=_3ELRdg2sgI.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve, 2022. URL https://arxiv.org/abs/2210.
11610.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Deqian Kong, Minglu Zhao, Dehong Xu, Bo Pang, Shu Wang, Edouardo Honig, Zhangzhang Si,
Chuan Li, Jianwen Xie, Sirui Xie, et al. Scalable language models with posterior inference of
latent thought vectors. arXiv preprint arXiv:2502.01567, 2025.

Matthew Douglas Hoffman, Du Phan, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi,
Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
latent-variable inference. Advances in Neural Information Processing Systems, 36, 2024.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. In The Twelfth
International Conference on Learning Representations, 2024a.

Haolin Chen, Yihao Feng, Zuxin Liu, Weiran Yao, Akshara Prabhakar, Shelby Heinecke, Ricky
Ho, Phil Mui, Silvio Savarese, Caiming Xiong, et al. Language models are hidden reasoners:
Unlocking latent reasoning capabilities via self-rewarding. arXiv preprint arXiv:2411.04282, 2024.

Han Zhong, Yutong Yin, Shenao Zhang, Xiaojun Xu, Yuanxin Liu, Yifei Zuo, Zhihan Liu, Boyi
Liu, Sirui Zheng, Hongyi Guo, et al. Brite: Bootstrapping reinforced thinking process to enhance
language model reasoning. arXiv preprint arXiv:2501.18858, 2025.

Dongwei Jiang, Guoxuan Wang, Yining Lu, Andrew Wang, Jingyu Zhang, Chuyu Liu, Benjamin
Van Durme, and Daniel Khashabi. Rationalyst: Pre-training process-supervision for improving
reasoning. arXiv preprint arXiv:2410.01044, 2024.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio
César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
Phi-2: The surprising power of small language models. Microsoft Research Blog, 1(3):3, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017b.

Arnaud Doucet et al. Sequential Monte Carlo methods in practice, volume 1. Springer, 2001.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

13

https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2210.11610
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

HuggingFace. Math-verify: A robust mathematical expression evaluation system, 2025. URL
https://github.com/huggingface/Math-Verify. Accessed: 2025-02-23.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi Zheng,
Yewei Fang, Yuxiang Huang, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. In First Conference on Language Modeling, 2024b.

14

https://zenodo.org/records/12608602
https://github.com/huggingface/Math-Verify

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Synthetic Data Generation Experiments 25

A.1 Experimental Details . 25

A.2 Additional Results . 25

B Bootstrapping Experiments 28

B.1 Bootstrapping on Fixed Data . 28

B.2 Continual Bootstrapping . 31

C Prompts 33

C.1 Prompts for Synthetic Data Generation 33

C.2 Prompts for Few-Show CoT Evaluation 34

C.2.1 Synthetic Few-Shot CoT Prompts . 34

C.2.2 Standard Few-Shot CoT Prompts . 42

D Examples of Latent Thoughts 46

D.1 Examples of Downstream Transfer of Latent Thoughts 46

D.2 Examples of GPT-4o-mini Synthesized Latent Thoughts 48

D.3 Examples of TinyLlama-1B Self-Generated Latent Thoughts 57

D.4 Failure Examples of Bootstrapped Models on GSM8K 64

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A FULL ALGORITHM

The full algorithm of our approach is described in Algorithm 1. Since the initial base LM has not
been trained as a latent thought model, we first train it on a small corpus of warmstart data with
synthetic latent thoughts (e.g., by GPT-4o-mini). The warmstart→ iterative EM loop resembles the
supervised finetuning→ reinforcement learning pipeline (Ouyang et al., 2022) that is widely adopted
in LM post-training, though our approach operates purely on task-agnostic pretraining data instead
of supervised data. Our algorithm can be instantiated in different setups depending on the sources
of data for bootstrapping: we may either have a new corpus of data Xt at each iteration where we
can initialize the training ofMt fromMt−1, or we may have a fixed corpus (with all Xt being the
same) and retrain the model from scratch on better latents at each iteration; see Algorithm 1 for
details.

Algorithm 1: Bootstrapping Latent Thought Models (BoLT)

Input: Base modelMb, warmstart data (X0,Z0), raw data corpora {Xt}Tt=1
Parameters: EM iterations T , Monte Carlo samples K, context window size L
Output: Bootstrapped modelMT

/* Initialize with warmstart data */
M0 = TrainLM(Mb, (X0,Z0)) . Train with next-token predictions as in Fig. 2b

/* Iteratively train the latent thought model with EM, as illustrated in Fig. 4 */
for t = 1, 2, · · · , T do

/* E-step: synthesize latent thoughts with the current model */
for ∀X ∈ Xt do
{Xn}Nn=1 = ChunkData(X) . Randomly chunk the raw text into N chunks
for n = 1, 2, · · · , N do

Cn = X[n−L:n−1] . Set context window{
Z

(k)
n

}K
k=1
∼ q(Z |Xn, Cn;Mt−1) . Sample latents from the model posterior

w
(k)
n =

p(Z(k)
n ,Xn |Cn;Mt−1)

q(Z
(k)
n |Xn,Cn;Mt−1)

. Weight by the model likelihood

Zn = Z
(j)
n , j ∼ Cat

({
w

(k)
n

}K
k=1

)
. Resample with importance weights

end
(Xt,Zt).append

(
{Xn}Nn=1 , {Zn}

N
n=1

)
. Augment data with synthesized latents

end
/* M-step: train the model with bootstrapped thought data */

Minit =

{
Mb if retrain from scratch
Mt−1 otherwise

Mt = TrainLM(Minit, (Xt,Zt)) . Train with next-token predictions as in Fig. 2b
end
returnMT

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B EXTENDED RELATED WORK

Synthetic data for training LMs Recent work demonstrates the benefits of synthetic data in
improving training efficiency, obtaining strong models at remarkably small data or model scales.
Eldan and Li (2023) synthesize a dataset of short stories with simple words and train very small LMs
to generate coherent stories. Gunasekar et al. (2023) synthesize textbooks and exercises to train a
small LM with strong reasoning performance. Similar approaches have been adopted in follow-up
works pretraining competitive small LMs (Li et al., 2023; Abdin et al., 2024a;b) or post-training LMs
with synthetic supervised data to enhance their reasoning (Liu et al., 2023; Luo et al., 2023; Wei
et al., 2023) or instruction following capabilities (Taori et al., 2023; Xu et al., 2023; Ge et al., 2024).
These approaches carefully curate prompts and/or a seed corpus to promote diversity in the generated
corpus; failure to do so may lead to mode collapse (Martínez et al., 2023; Taori and Hashimoto, 2023;
Alemohammad et al., 2023; Dohmatob et al., 2024; Kazdan et al., 2024). Another paradigm closer
to our work is to augment raw pretraining data by paraphrasing (Maini et al., 2024) or describing
relationships among extracted entities (Yang et al., 2025), which may avoid mode collapse due to the
use of real data as a seed corpus. Our work differs in two key aspects. First, we take a latent variable
perspective that augments (rather than replaces) each document chunk X with latent thoughts Z.
We show this is crucial to downstream performance, outperforming strong synthetic data generation
baselines in Sec. 5.2. Additionally, our work studies bootstrapping of the data generator rather than
the teacher-student distillation settings considered in most synthetic data approaches.
Learning to reason using external supervision An increasingly popular area of work improves
the reasoning capabilities of LMs using external supervision. Most paradigms rely on a verifiable
reward signal, enabling the use of reinforcement learning and/or self-play (Silver et al., 2016; 2017a;
Trinh et al., 2024). This approach has been successfully applied to bootstrap reasoning capabilities in
math and coding tasks with verifiable rewards (Zelikman et al., 2022; Huang et al., 2022; Singh et al.,
2023; Jaech et al., 2024; Guo et al., 2025). An alternative approach uses supervised finetuning data to
internalize verbalized chains-of-thought into continuous hidden states (Deng et al., 2024; Hao et al.,
2024; Kong et al., 2025). Some recent works take a latent variable inference perspective similar to
ours, treating reasoning traces as latent variables and deriving variational inference (Hoffman et al.,
2024; Hu et al., 2024a; Chen et al., 2024; Zhong et al., 2025) or Expectation-Maximization (Singh
et al., 2023) approaches to optimization. Unlike our approach, these methods are domain-specific
and rely on verifiable rewards or other external supervision.
Learning to reason using pretraining data Closer to our setting, other works enhance LM reason-
ing capabilities using pretraining data and no explicit external rewards. Geiping et al. (2025) pretrain
a looped transformer (Dehghani et al., 2019; Giannou et al., 2023) on general web text and find that
the continuous hidden states tend to converge with more applications of the backbone transformer, in
a thought-like process. Closest to our work among these is Zelikman et al. (2024) who propose a
domain-agnostic, post-training method that uses reinforcement learning to learn “thought tokens” to
improve reasoning with pretraining data. While our work is also domain-agnostic and learns latent
thoughts, our goal of leveraging reasoning to improve pretraining data efficiency is distinct and leads
us to consider scalable, synthetic data–based approaches rather than reinforcement learning ones. This
leads to a number of benefits, including a simple training method and embarassingly parallel latent
generation. Our work provides a complementary perspective on how latent variable and synthetic
data perspectives can enable both “learning to reason” and “reasoning to learn”. Lastly, Jiang et al.
(2024) also adopt a synthetic data approach, but focus on generating rationales for pretraining a
process reward model. Our work differs in our application of reasoning as a primitive to enable
data-efficient learning during pretraining, as well as our focus on enabling a model to bootstrap its
own latent thought synthesis abilities.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C DISCUSSION

C.1 BROADER IMPLICATIONS

Learning to reason and reasoning to learn Recent RL-based approaches such as o1 (Jaech et al.,
2024) and R1 (Guo et al., 2025) learn to reason with LMs, using supervised data and verified rewards
to unlock the reasoning capabilities of a strong pretrained model. In contrast, our work demonstrates
the potential of reasoning to learn, by training a model to learn more from observed data by reasoning
through it. We show promising results on one reasoning-heavy domain, but the likelihood-based
supervision makes it applicable to more general domains, and we believe the same approach can
enable more data-efficient learning of capabilities at scale. These two paradigms are complementary,
and the base models trained with our approach may serve as a better starting point for task-specific
RL by transferring their thoughts trained at scale.
Using asynchronous synthetic data generation to improve synchronous training efficiency
Our and recent works (Javaheripi et al., 2023; Maini et al., 2024; Yang et al., 2025) demonstrate
that synthetic data generation can enable improved scaling trends for synchronous pretraining on
centralized compute. Because synthetic data generation can be distributed across disparate resources
(Silver et al., 2017b), this approach shifts a portion of the overall synchronous pretraining compute
to an asynchronous workload. This trend may inspire changes in infrastructure design for LM
pretraining, enabling the effective use of distributed resources with low-bandwidth interconnects.
Additionally, developing more scalable synthetic data generation techniques, such as increasing
Monte Carlo samples in BoLT, could enable another axis for scaling the asynchronous compute used
in pretraining.

C.2 LIMITATIONS

Constrained experimental setup under compute budget Due to our compute budget, our exper-
imental setup was constrained to a 1B parameter LM and continued pretraining on a few billion
tokens of mostly mathematical text. These choices were made to demonstrate a proof-of-concept;
our use of a small model enables faster inference to synthesize billions of latent tokens, while con-
tinued pretraining on reasoning-intensive data enables measurable differences among methods in
downstream evaluations. We are hopeful that future work will test reasoning to learn at larger scales
and on general-domain pretraining data.
Limited exploration of design choices We focused on a particular instantiation of reasoning to
learn without extensive testing of design choices such as: the generative structure of latent thoughts
(currently latents are modeled autoregressively for each text chunk), the initial warmstart data
generated by different models or prompts, more efficient Monte Carlo sampling techniques such
as Sequential Monte Carlo (Doucet et al., 2001), and various hyperparameters like the chunk size,
etc.
Side-effects of bootstrapping Bootstrapping LMs on their own synthetic data at scale may amplify
specific biases and ultimately lead to unintended consequences in model behavior. We observed one
possible example of such side effects: the few-shot CoT performance on GSM8K degraded with
BoLT iterations, though an alternative explanation is that more optimization on mathematical tokens
may degrade the language understanding necessary in GSM8K (see Fig. E.5). Future work should
more extensively investigate the side effects of bootstrapping during pretraining.

C.3 FUTURE DIRECTIONS

Bootstrapping on general-domain pretraining data We believe the most exciting application of
our approach could be in enabling models to self-improve on general-domain pretraining-scale data
without task-specific supervision. This is in stark contrast to the recent approaches which improve
pretrained LMs with reinforcement learning on task-specific labeled data (Jaech et al., 2024; Guo
et al., 2025). By bootstrapping LMs with latent thoughts on pretraining-scale data, we believe it may
be possible for models to acquire more general-domain reasoning capabilities that are useful beyond
specific domains.
Application to general data modalities Our approach is not limited to text data and may be
applied to general data modalities. This is because every piece of human-generated data is a result of
an underlying latent generative process that is typically not observable. For example, when working
with video data, one could train a multimodal latent model to extract the creative intent or emotional
pacing behind scene transitions, rather than focusing solely on pixel-level features. For non-textual
data, these underlying latent structures may be even more obscure, and models trained on such data

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

typically demonstrates much worse data efficiency than LMs (Brooks et al., 2024). Consequently,
augmenting these data modalities with learned latents could possibly yield more pronounced gains in
data efficiency than observed in the text domain.

Hierarchical latent structures Our current instantiation models the latent generation process in
an autoregressive manner, where each latent is generated for a single chunk of text conditioned on
the previous context. While we have demonstrated the effectiveness of this approach on reasoning-
intensive data, this local latent thought structure remains inherently “myopic”. It may not be
sufficiently expressive to capture the hierarchical planning processes that humans employ when
creating complex, long-form content such as research papers, novels, and large-scale codebases.
Future work could explore more sophisticated latent structures that mirror human planning hierarchies,
potentially incorporating both high-level planning and low-level reasoning.

D SYNTHETIC DATA GENERATION EXPERIMENTS

D.1 EXPERIMENTAL DETAILS

Baselines We compare our approach with several natural baselines in the data-constrained regime
(Muennighoff et al., 2024) using a combination of data repetition and synthetic data genera-
tion:

• Raw-Repeat: We train on the raw CPT corpus for ∼16 epochs with early stopping.

• Raw-Fresh: As an anticipated upper bound, we CPT on 8B unique tokens from FineMath-4+,
without any repetition.

• WRAP-Orig: WRAP (Maini et al., 2024) rephrases the data in four diverse styles: easy (with
simple language), hard (with complex language), Wikipedia (high-quality), and question-answer.
We prompt GPT-4o-mini (see Prompt F.1.2) with temperature 0.7 to rephrase each document in
these styles. The average token ratio between synthetic paraphrases and raw tokens is 0.48:1, so
we generate 5 paraphrases per document to approximately match the total synthetic tokens of our
approach. While Maini et al. (2024) found that mixing synthetic and raw data works best, we tuned
the mixture coefficient and found that entirely synthetic works best (see Fig. D.1a).

• WRAP-CoT: To probe whether the gains of our approach arise from simply including synthetic
reasoning traces in the training data, we develop a WRAP variant that prompts GPT-4o-mini to
rephrase documents with interspersed reasoning steps (Prompt F.1.3). This strong WRAP baseline
allows us to assess whether it is key to maintain thoughts in a separate latent space to explain the
corresponding text, rather than directly in the raw text space. The synthetic-raw token ratio is 0.7:1,
so we generate 4 paraphrases per document for a total of ∼1.3B synthetic tokens. As above, we
tuned the synthetic-raw mixture coefficient and found entirely synthetic works best (see Fig. D.1b).

Training We use a cosine learning rate schedule with a 1000 step warmup and peak learning rate
of 1e-4 (tuned over {1e-5, 3e-5, 1e-4, 3e-4, 1e-3} in initial experiments). All models are trained with
sequence length 2048 and batch size 96 on 4 x H200 GPUs.

Evaluation To ensure robust evaluation, we evaluate with two distinct sets of few-shot CoT prompts
(see Appx. F.2): (1) Standard prompts from previous works, i.e., Minerva CoT (Lewkowycz et al.,
2022) for MATH, the default CoT from (Wei et al., 2022a) for GSM8K, and the FLAN CoT (Wei
et al., 2021) for MMLU-STEM; (2) Synthetic CoT prompts, where the CoT traces are synthesized by
GPT-4o-mini using Prompt F.1.1, using the question as the prefix and answer as the suffix. We report
the results with synthetic CoT prompts by default, as they performed better uniformly across methods
(see Fig. D.2). All models are evaluated with a temperature 0.0. We conducted all evaluations using
the LM Evaluation Harness (Gao et al., 2024), and the Math-Verify evaluator (HuggingFace, 2025)
for scoring MATH final answers against the ground-truth.

Tuning the mixing ratio of WRAP baselines We have tuned the ratio of mixing raw data with
paraphrased data for the WRAP baselines, similar to Maini et al. (2024). For each document during
training, we randomly select either the raw data or the paraphrased data according to a fixed mixing
ratio drawn from {0.0, 0.25, 0.5}, where 0.0 means using only paraphrased data without mixing raw
data. The results are shown in Fig. D.1. For both WRAP-Orig and WRAP-CoT, applying no mixing
(ratio=0.0) leads to the best performance, which we used in our experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

108 109

Total Training Tokens

0.02

0.04

0.06

0.08

0.10
Ac

cu
ra

cy

MATH (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.02

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.20

0.22

0.24

0.26

0.28

0.30

Ac
cu

ra
cy

MMLU-STEM (Synthetic Few-Shot CoT)

WRAP-Orig (Mix=0.0) WRAP-Orig (Mix=0.25) WRAP-Orig (Mix=0.5)

(a) WRAP-Orig

108 109

Total Training Tokens

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Ac
cu

ra
cy

MMLU-STEM (Synthetic Few-Shot CoT)

WRAP-CoT (Mix=0.0) WRAP-CoT (Mix=0.25) WRAP-CoT (Mix=0.5)

(b) WRAP-CoT

Figure D.1: Training purely on paraphrased data without mixing raw data generally leads to the best
performance for WRAP baselines.

D.2 ADDITIONAL RESULTS

Evaluation results with different few-shot CoT prompts To facilitate a robust evaluation of
model downstream performance, we have tested each benchmark using two sets of few-shot CoT
prompts. Besides the synthetic CoT prompts that we used by default, we also tested the standard CoT
prompts from previous works – specifically, the Minerva CoT (Lewkowycz et al., 2022) for MATH, the
default CoT from (Wei et al., 2022a) for GSM8K, and the FLAN CoT (Wei et al., 2021) for MMLU-
STEM. See Appx. F.2 for detailed prompts. The evaluation results are shown in Fig. D.2. Our method
demonstrates robust performance across different prompt variations, maintaining consistent gains over
baselines. In contrast, several baselines, most notably WRAP-CoT, exhibit substantial performance
degradation when evaluated with standard prompts, leading to an even wider performance gap
between our method and the baselines.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

108 109

Total Training Tokens

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

MATH (Minerva Few-Shot CoT)

108 109

Total Training Tokens

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

GSM8K (Default Few-Shot CoT)

108 109

Total Training Tokens

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

MMLU-STEM (Synthetic Few-Shot CoT)

108 109

Total Training Tokens

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

MMLU-STEM (FLAN Few-Shot CoT)

Pretrained TinyLlama
Latent Thought

Raw-Fresh
Raw-Repeat

WRAP-Orig
WRAP-CoT

Latent Thought (Mix in Surface)

Figure D.2: Evaluation results with different few-shot CoT prompts: synthetic CoT prompts (left) vs.
standard CoT prompts used in previous works (right). Our method demonstrates robust performance
across different prompt variations and consistent gains over baselines. The performance gap is more
pronounced when using standard CoT prompts due to degradation of the baseline performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Comparison normalized by the effective raw tokens seen by each method Fig. 5 compares
different methods with the same amount of training tokens. However, since different methods produce
different amounts of training tokens per raw document, this means each method processes a different
number of raw documents during training. In particular, our method was trained on 3.3 times more
raw tokens (due to the latent to raw token ratio of 2.3) than the raw data baselines. To provide
a complementary perspective, Fig. D.3 shows performance when methods are normalized by the
effective number of raw tokens seen during training. For WRAP baselines, we computed the effective
raw tokens based on the number of raw tokens that were paraphrased (i.e., training tokens divided by
synthetic-to-raw token ratio). We find that the gains of our method over baselines are more significant,
highlighting the data efficiency of our method.

108 109 1010

Effective Raw Tokens Seen

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

108 109 1010

Effective Raw Tokens Seen

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

MATH (Minerva Few-Shot CoT)

108 109 1010

Effective Raw Tokens Seen

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

108 109 1010

Effective Raw Tokens Seen

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

GSM8K (Default Few-Shot CoT)

108 109 1010

Effective Raw Tokens Seen

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

MMLU-STEM (Synthetic Few-Shot CoT)

108 109 1010

Effective Raw Tokens Seen

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

MMLU-STEM (FLAN Few-Shot CoT)

Pretrained TinyLlama
Latent Thought

Raw-Fresh
Raw-Repeat

WRAP-Orig
WRAP-CoT

Latent Thought (Mix in Surface)

Figure D.3: Comparison normalized by the effective raw tokens seen by each method. Our method
achieves more significant gains over baselines, highlighting its data efficiency.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E BOOTSTRAPPING EXPERIMENTS

E.1 BOOTSTRAPPING ON FIXED DATA

E.1.1 EXPERIMENTAL DETAILS

Bootstrapping configuration We distribute the latent generation workload over a cluster of
H100/200, A100/6000/5000/40, L40, and RTX3090 GPUs. We follow the training configuration in
Sec. 5.1, except we now use batch size 192 on 8 x H200 GPUs for bootstrapping training runs.

Downstream metrics and finetuned evaluation setup We take the training set for MATH &
GSM8K and finetune on this set. We synthetically generate CoT traces for the finetuning set using
our prompt in Prompt F.1.1, by treating the question as the prefix and the answer as the suffix. We
finetune using AdamW with standard hyperparameters β1 = 0.9, β2 = 0.95, weight decay 0, and a
cosine learning rate schedule with a warmup over the first 5% of steps. We split out 10% of the train
set as a validation set and tune hyperparameters to obtain a learning rate of 1e-4, batch size 64, and 5
epochs. We report test accuracy of the final model checkpoint with CoT, using standard sampling
hyperparameters top_k= 50, top_p= 0.9, and temperature 0.6. Due to the small test set size of
GSM8K, we follow Guo et al. (2025) and calculate the mean accuracy over 16 random samples for
each test question to reduce variance.

Reducing run-to-run variability We report means and standard errors over 5 train seeds for
bootstrapping and 3 train seeds for baselines. For finetuning evaluations, standard error is over 3
upstream CPT × 5 downstream finetuning = 15 total seeds.

E.1.2 ADDITIONAL RESULTS

Log-likelihood evaluation In Fig. E.1, we measure the negative log-likelihood (NLL) of latent
thought models at each bootstrapping iteration on a holdout validation set. Note that this is not an
ideal evaluation metric for latent thought models as they are not trained to directly optimize NLL
and the evaluation does not utilize the latent thoughts. Nevertheless, we report it for reference and
to provide a relative comparison across bootstrap iterations as a smooth evaluation metric. Our
results show that latent thought models demonstrate lower NLL over multiple iterations with smooth
and clear gains up to the fourth iteration, which is consistent with the ELBO results in Fig. 7. For
additional context, we also include raw data baselines, which directly optimize NLL during training
and therefore achieve substantially better NLL performance.

109 1010

Total Training Tokens

1.20

1.25

1.30

1.35

1.40

1.45

N
LL

Validation NLL

Iteration 1
Iteration 2

Latent Bootstrap
Iteration 3
Iteration 4

Iteration 0 (Warmstart)
Raw Baseline
Raw-Token-Match
Train-FLOP-Match

Figure E.1: Evaluation results of negative log-likelihood (NLL) on a holdout validation set. Our
latent thought models demonstrate lower NLL over multiple iterations with clear gains, despite not
being directly trained to optimize NLL (unlike raw data baselines).

Detailed evaluation results on MATH In Fig. E.2, we include detailed evaluation results on
MATH on both our synthetic CoT prompt and the standard Minerva CoT prompt. We find that
the gains of latent thought models across multiple bootstrap iterations are robust across prompt
variations. The gains seem to plateau after the third iteration, which might partially be due to the
discrete nature of downstream evaluations. The gains over the baseline of training on raw data is even
more significant on the Minerva CoT prompt, indicating the effectiveness of training models with
self-generated latent thoughts.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

109 1010

Total Training Tokens

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

109 1010

Total Training Tokens

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

MATH (Minerva Few-Shot CoT)

Iteration 1
Iteration 2

Latent Bootstrap
Iteration 3
Iteration 4

Iteration 0 (Warmstart)
Raw Baseline
Raw-Token-Match
Train-FLOP-Match

Figure E.2: Detailed evaluation results on MATH. The gains of latent thought models across multiple
bootstrap iterations are robust across prompt variations, and the gains over the baseline of training on
raw data is more significant on the Minerva CoT prompt.

Exact model performance curves In our main results (Fig. 7), we show the performance curves of
the best model during training at each bootstrap iteration. In Fig. E.3, we show the exact performance
curves of all models during training, which demonstrates a cosnistent relative comparison but with a
slightly larger variance.

10102 × 109 3 × 109 4 × 109 6 × 109

Total Training Tokens

1.40

1.45

1.50

1.55

1.60

1.65

1.70

EL
BO

 w
/ 4

 S
am

pl
es

Validation ELBO

109 1010

Total Training Tokens

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

Iteration 1
Iteration 2

Latent Bootstrap
Iteration 3
Iteration 4

Iteration 0 (Warmstart)
Raw Baseline
Train-FLOP-Match
Raw-Token-Match

Figure E.3: Exact model performance curves during training. We observe a consistent relative
comparison with Fig. 7 but with a slightly larger variance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Additional results on scaling MC samples In Fig. E.4, we include additional results of scaling
MC samples, following the same setup as Fig. 9. The performance gains remain robust across
different prompt variations and when evaluated GSM8K.

1 2 4 8
Num MC Samples

0.110

0.111

0.112

0.113

0.114

0.115

0.116

0.117

0.118

Ac
cu

ra
cy

MATH (Minerva Few-Shot CoT)

1 2 4 8
Num MC Samples

0.11

0.12

0.13

0.14

0.15

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

1 2 4 8
Num MC Samples

0.110

0.115

0.120

0.125

0.130

Ac
cu

ra
cy

GSM8K (Default Few-Shot CoT)

Figure E.4: Additional results on scaling MC samples. The performance gains of increasing MC
samples persist across prompt variations (left) and when evaluated on GSM8K (middle and right).

“Negative” bootstrapping results In Fig. E.5, we include some negative bootstrapping results
where the model performance on GSM8K with few-shot prompting deteriorates over multiple
bootstrap iterations (but still outperforms the raw data baselines), which differs from our results on
MATH (Fig. 7) or on fine-tuning evaluations (Fig. 8, right). A potential explanation for the degradation
could be that as the model optimizes better on the mathematical-heavy FineMath data, it becomes
worse at natural language understanding. We tested this hypothesis on a holdout validation set from
the general-domain DCLM (Li et al., 2024) data, shown in Fig. E.5 (right). We find that models
trained more on FineMath typically get worse on DCLM NLL (as evidenced by bootstrapped models
performing worse than the warmstart model, and the train-FLOP-matched baseline performing worse
than the raw-token-matched baseline). As a result, the bootstrapped models’ worse performance on
GSM8K might be attributed to their decreased natural language understanding capabilities due to
increased optimization on the FineMath training data. We have also included some failure examples
of bootstrapped models on GSM8K in Appx. G.4, where the bootstrapped models made mistake
seemingly due to misinterpretation of the math word problems.

1 2 3 4
Bootstrap Itereration

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Ac
cu

ra
cy

GSM8K (Synthetic Few-Shot CoT)

1 2 3 4
Bootstrap Itereration

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

N
LL

Validation NLL on DCLM

Latent Bootstrap
Raw Train-FLOP-Match

Latent Warmstart
Raw Token-Match

Figure E.5: “Negative” bootstrapping results. The bootstrapped models’ performance on GSM8K
deteriorates over multiple bootstrap iterations (left), which might be attributed to their decreased
natural language understanding capabilities due to increased optimization on the FineMath training
data, as evidenced by their worse NLL on DCLM (right).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Decomposed ELBO across bootstrap iterations To provide more insights on how the latent
thoughts evolve across bootstrap iterations, we decompose the ELBO objective as follows and
measure each term respectively across bootstrap iterations:

ELBO = Eq(Z|X)[log p(X|Z) + log p(Z)] +H[q(Z|X)]

= Eq(Z|X)[log p(X|Z)]−DKL[q(Z|X)||p(Z)]

Here, the three terms can be interpreted as:

• Utility: log p(X|Z) – how well Z helps predict X ,
• Simplicity: log p(Z) – how well the prior fits Z,
• Diversity: H[q(Z|X)] – the entropy of the thought generator.

In Fig. E.6, we plot each term (measured in nats per sample) over four bootstrapping iterations and
observe the following trends:

• Utility (logP (X|Z)) decreased slightly, from about -1290 to -1320 nats/sample,
• Simplicity (logP (Z)) improved substantially, from about -3090 to -2920 nats/sample,
• Diversity (H[Q(Z|X)]) also decreased slightly, from about 2790 to 2730 nats/sample.

These changes contributed to an overall ELBO improvement from about -1590 to -1510 nats/sample.
This suggests that, in our regime, there remains a large gap between the posterior and the prior, and
the bootstrapping process optimizes for narrowing this gap—i.e., making the latent thoughts more
learnable—while sacrificing a small amount of predictability and diversity. Ultimately, this improves
the overall ELBO and downstream accuracy, and therefore we consider it to be desirable.

1 2 3 4
Bootstrap Itereration

1850

1800

1750

1700

1650

1600

1550

1500

N
at

s

ELBO log p(X|Z) DKL(q(Z|X)||p(Z))

1 2 3 4
Bootstrap Itereration

1425

1400

1375

1350

1325

1300

N
at

s

Conditional Likelihood log p(X|Z)

1 2 3 4
Bootstrap Itereration

3150

3100

3050

3000

2950

N
at

s

Prior Likelihood log p(Z)

1 2 3 4
Bootstrap Itereration

2730

2740

2750

2760

2770

2780

2790

2800

N
at

s

Posterior Entropy log q(Z|X)

1 2 3 4
Bootstrap Itereration

4600

4550

4500

4450

4400

4350

4300

4250

N
at

s

Joint Likelihood log p(Z, X)

1 2 3 4
Bootstrap Itereration

200

250

300

350

400

N
at

s

KL Div DKL(q(Z|X)||p(Z))

Latent Bootstrap Latent Warmstart

Figure E.6: Decomposed ELBO across bootstrap iterations. Latent thought models prioritize mak-
ing the latents simpler and more learnale (higher log p(Z)) while sacrificing a small amount of
predictability (lower log p(X|Z)) and diversity (lower H[q(Z|X)]).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure E.7: Continual bootstrapping: We study a more practical scenario in which an LM is
continually pretrained on a series of corpora, using the model at each iteration to generate latent
thoughts for the subsequent corpus to train itself.

E.2 CONTINUAL BOOTSTRAPPING

Our previous experiment confirms that BoLT leads to iterative improvement of the latent thought
model. However, re-training the latent thought model from scratch at each iteration could be wasteful,
and a more realistic setting would be to perform those experiments as part of continual learning,
where the model updates its latent thought generator as it processes more and more data. We show
that BoLT continues to work in this setting.

E.2.1 EXPERIMENTAL SETUP

Bootstrapping configuration We use TinyLlama-1.1B as the base model Mb and 240M raw
tokens from the FineMath-4+ dataset as the warmstart data X0. We conduct T = 4 bootstrap
iterations, where each iteration t uses a distinct subset of the FineMath-4+ dataset with logarithmically
increasing size as Xt—960M, 960M, 1.92B, and 3.84B raw tokens respectively. Models are trained
for 1 epoch on the warmstart data and 2 epochs on the bootstrap data at each iteration. To mitigate
forgetting and model degradation during continual training, we use the warmup-stable-decay (WSD,
Hu et al., 2024b) schedule. In particular, the learning rate is warmed up for 1000 steps only at the
warmstart stage and then maintained at a constant value until the decay phase. For each training stage
(including both warmstart and bootstrap iterations), we linearly decay the learning rate during the final
15% of training steps, where the final checkpoint is obtained asMt for evaluation and synthetic latent
generation. When trainingMt+1 at next iteration, we initialize both the model and the optimizer states
from the pre-decay checkpoint, and continue training with the same constant learning rate without
re-warming up. The learning rate is set to 3e-5, which was tuned in our preliminary experiments to
mitigate forgetting and achieve stable transitions across iterations. All other configurations follow
Sec. 6.1.1, such as the use of 4 MC samples for synthetic latent generation.
Baseline comparison The key question to answer in this setup is whether iterative improvement
of the latent thought model leads to performance benefits. To understand this, we compare to a
baseline where we stop iterative improvement at time t′, fixing the latent thought generation model.
We investigate this by comparing our bootstrapped models (that use the most recent and capable
modelMt to synthesize latents forMt+1 at each iteration) against the alternatives of fixing the
latent generator at a previous iterationMt′ for training subsequent modelsMt,∀t > t′. We conduct
3 training runs for each training setup to reduce the run-to-run variability and measure the models’
performance at each iteration following the same evaluation protocol described in Sec. 6.1.1.

E.2.2 RESULTS

Continual, iterative improvement of latent thought models Fig. E.8 shows the best model
performance at each bootstrap iteration, comparing the use of the bootstrapped model to generate
latents for the next training corpus, versus the use of models from previous iterations to generate
latents. Our results demonstrate that using the more capable bootstrapped models lead to a steeper
scaling trend in likelihood-based metrics (see Fig. E.8 left for ELBO and Fig. E.9 left for NLL
results), which demonstrates the bootstrapping effects of our approach in improving data scaling with
higher-quality latents. The gains are also reflected in the downstream MATH performance (Fig. E.8
right), where the bootstrapped models consistently outperform the fixed-latent-generator baselines,
with an increasingly pronounced gap in performance at later iterations. We include the detailed model

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1 2 3 4
Bootstrap Iteration

1.32

1.35

1.38

1.40

1.43

1.45

1.48

1.50

1.53
EL

BO
 w

/ 4
 S

am
pl

es
Validation ELBO

1 2 3 4
Bootstrap Iteration

0.085

0.090

0.095

0.100

0.105

0.110

Ac
cu

ra
cy

MATH (Synthetic Few-Shot CoT)

Bootstrapping Latent Generator as t

Fixing Latent Generator as 0

Fixing Latent Generator as 1
Fixing Latent Generator as 2

Figure E.8: BoLT can bootstrap in continual learning settings. We instantiate the setup illustrated
in Fig. E.7 by training on a series of corpora and compare two options: bootstrapping the latent model
across all four iterations (blue), or fixing the latent generator at earlier iterations. Our bootstrapped
models lead to a steeper scaling trend in likelihood-based metrics (left) and consistently outperform
the fixed-latent-generator baselines on downstream MATH performance (right), with gains becoming
more pronounced at later iterations. Results over 3 training runs are reported. Due to the log-sized
scaling of the x-axis, the scaling trends here are comparable to a traditional data-scaling law. See
Fig. E.9 for additional results and Fig. E.10 for detailed evaluations over the training runs.

performance during training runs in Fig. E.10. Collectively, these results demonstrate the potential of
our approach in forming a model self-improvement loop—where the more capable latent thought
models produce higher quality latents that lead to better learning efficiency.
Additional evaluation results In Fig. E.9, we include additional evaluation results of NLL on
the holdout validation set and the MATH performance on the Minerva CoT prompt. We find that
NLL evaluation demonstrates a similar trend as the ELBO evaluation in Fig. E.8 (left), where the
bootstrapped models lead to a steeper scaling trend than the fixed-latent-generator baselines. For
the MATH performance on the Minerva CoT prompt, the bootstrapped models also demonstrate
consistent gains, even though the performance gap at the forth iteration is a bit less pronounced than
using the synthetic CoT prompt (Fig. E.8 right).
Detailed evaluation results during training runs In Fig. E.10, we include the evaluation results
of each model during the training runs. We plot the best model performance during each training run
to denoise the evaluation results and report the average over 3 runs, following the same practice in
Fig. 7. From the plots, we can observe a clear difference of scaling trend between the bootstrapped
models and the fixed-latent-generator baselines, especially for the likelihood-based metrics (top
row).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 2 3 4
Bootstrap Iteration

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1.34

N
LL

Validation NLL

1 2 3 4
Bootstrap Iteration

0.080

0.085

0.090

0.095

0.100

0.105

Ac
cu

ra
cy

MATH (Minerva Few-Shot CoT)

Bootstrapping Latent Generator as t

Fixing Latent Generator as 0

Fixing Latent Generator as 1
Fixing Latent Generator as 2

Figure E.9: Additional evaluation results of NLL on the holdout validation set (left) and MATH per-
formance on the Minerva CoT prompt (right). Similar to our main results (Fig. E.8), the bootstrapped
models lead to a steeper scaling trend in likelihood-based metrics and consistent improvement on
downstream MATH performance.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1010

Total Training Tokens

1.35

1.40

1.45

1.50

1.55

1.60

EL
BO

 w
/ 4

 S
am

pl
es

I II III IV

Validation ELBO

1010

Total Training Tokens

1.20

1.25

1.30

1.35

1.40

N
LL

I II III IV

Validation NLL

1010

Total Training Tokens

0.06

0.07

0.08

0.09

0.10

0.11

Ac
cu

ra
cy

I II III IV

MATH (Synthetic Few-Shot CoT)

1010

Total Training Tokens

0.07

0.08

0.09

0.10

Ac
cu

ra
cy

I II III IV

MATH (Minerva Few-Shot CoT)

Bootstrapping Latent Generator as t

Fixing Latent Generator as 0

Fixing Latent Generator as 1
Fixing Latent Generator as 2

Figure E.10: Detailed evaluation results during training runs. We report the best model performance
during each training run to denoise the results and report the average over 3 runs. The dashed
curves denote the learning rate decay phase of each training run, where the final models are used for
evaluation and latent generation. Models right before the decay phase are used for continual training
at the next iteration.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F PROMPTS

F.1 PROMPTS FOR SYNTHETIC DATA GENERATION

Prompt F.1.1: GPT-4o-mini to generate latent thoughts on warmstart data

System
You are an advanced AI system, highly knowledgeable and capable of deeply understanding
and reasoning through any web document

User
You are provided with a pair of web document prefix and suffix. Your task is to insert
latent thoughts between them underlying the creation of the suffix conditioned on the
prefix. The latent thoughts should include: the missing background knowledge and the
reasoning traces underlying each claim (especially, step-by-step derivations or logical
reasoning).

Prefix
{prefix}

Suffix
{suffix}

Your turn
Now provide the latent thoughts. Use concise, simple, and declarative language. Do not
give any supporting remarks or references to the terms 'prefix' and 'suffix', as this
output will go directly into a computer program. Do not apply any markdown formatting or
text embellishments. Optimize the content to ensure every word is informative, avoid
vague language like 'xxx is essential'. Emphasize on the suffix without repeating the
content in the prefix. Focus on implicit reasoning and background knowledge that is not
explicitly stated in the suffix, and use concrete logical reasoning or mathematical
derivations when applicable.

Prompt F.1.2: GPT-4o-mini to rephrase the data with WRAP (Maini et al., 2024) prompts

Prompt I
For the following website, give me a paraphrase of it using a very small vocabulary and
extremely simple sentences that a toddler will understand.

Website
{text}

Prompt II
For the following website, give me a paraphrase of it using very terse and abstruse
language that only an erudite scholar will understand. Replace simple words and phrases
with rare and complex ones.

Website
{text}

Prompt III
For the following website, give me a diverse paraphrase of it in high quality English
language, as in sentences on Wikipedia.

Website
{text}

Prompt IV
Convert the following website into a conversational format with multiple tags of '
Question:' followed by 'Answer:'.

Website
{text}

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Prompt F.1.3: GPT-4o-mini to rephrase the data with explicit reasoning steps

User
You are provided with the following document. Give me a diverse paraphrase in high
quality English language that preserves all information in the original document. Also,
insert detailed reasoning thoughts (especially, step-by-step mathematical derivations or
logical reasoning). Do not output '## Paraphrased Document'.

Document
{text}

F.2 PROMPTS FOR FEW-SHOW COT EVALUATION

Here we include the detailed prompts used in our few-shot CoT evaluation. In particular, we used
distinct sets of few-shot CoT prompts (see Appx. F.2): (1) Synthetic CoT prompts (Appx. F.2.1)
– where the CoT traces are synthetically generated by GPT-4o-mini using Prompt F.1.1 given the
question as prefix and answer as suffix; (2) Standard prompts from previous works (Appx. F.2.2)
– specifically, the Minerva CoT (Lewkowycz et al., 2022) for MATH, the default CoT from (Wei
et al., 2022a) for GSM8K, and the FLAN CoT (Wei et al., 2021) for MMLU-STEM. We include the
prompts used for our latent thought models for illustration – for baselines we used the exact same
prompts with special latent tokens (i.e., <StartofLatent>, <Prior>, and <EndofLatent>)
removed.

For each prompt, we include the few-shot CoT examples and a randomly sampled test question. For
MATH, we used the same few-shot questions as in the Minerva prompts. For GSM8K, we used a
randomly selected 8 problems from the training set as the few-shot examples in our synthetic CoT
prompt, which aligns better with the actual test problem distribution than the easier problems in the
default CoT prompt. For MMLU-STEM, we randomly selected 4 problems from 4 subjects in our
synthetic CoT prompt, while FLAN CoT prompts use subject-specific few-shot examples for each
subject (we include the one for high school statistics for an example).

F.2.1 SYNTHETIC FEW-SHOT COT PROMPTS

Prompt F.2.1: Synthetic Few-Shot CoT for MATH

Problem:

Find the domain of the expression
√

x−2√
5−x

.

<StartOfLatent><Prior>
To find the domain of the expression, we need to ensure the numerator and denominator
are both defined and the denominator is not zero.

Start with the numerator:
√
x− 2. This square root is defined when the expression inside

is non-negative. Thus, we require:
x - 2 ≥ 0
x ≥ 2.

Next, consider the denominator:
√

5− x. This square root is defined when the expression
inside is non-negative as well, and it must also be strictly positive to avoid division
by zero. Therefore, we need:
5 - x > 0
x < 5.

Now, we combine the two inequalities. From the first inequality, we have x ≥ 2, and
from the second inequality, we have x < 5.

The combined conditions are:
2 ≤ x < 5.

In interval notation, this is expressed as [2, 5).

Thus, the final answer is [2, 5).
The final answer is [2, 5)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

<EndOfLatent>
Final Answer: The final answer is [2, 5). I hope it is correct.

Problem:
If detA = 2 and detB = 12, then find det(AB).

<StartOfLatent><Prior>
To find the determinant of the product of two matrices, we use the property that states
det(AB) = det(A) · det(B). This property holds for any square matrices A and B of the
same size.

Given that detA = 2 and detB = 12, we can directly apply this property.

We calculate:

1. Start with the known determinants: detA = 2 and detB = 12.
2. Multiply these two values together: 2 · 12.
3. Perform the multiplication: 2 · 12 = 24.

Thus, based on these calculations, we conclude that det(AB) = 24.
The final answer is 24

<EndOfLatent>
Final Answer: The final answer is 24. I hope it is correct.

Problem:
Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights
instead, how many times must Terrell lift them in order to lift the same total weight?

<StartOfLatent><Prior>
To determine how many times Terrell must lift the two 15-pound weights to equal the
total weight lifted with the two 20-pound weights, we first calculate the total weight
lifted with the 20-pound weights.

Each 20-pound weight contributes 20 pounds, and since he lifts two weights, the total
weight per lift is 20 pounds + 20 pounds = 40 pounds. He lifts this total 12 times,
resulting in a total weight of 40 pounds * 12 = 480 pounds.

Next, we compute how many times he needs to lift the two 15-pound weights to match this
total weight. Each 15-pound weight contributes 15 pounds, so the total weight per lift
with the 15-pound weights is 15 pounds + 15 pounds = 30 pounds.

To find the number of lifts required to reach the same total weight of 480 pounds, we
set up the equation: 30 pounds * x lifts = 480 pounds, where x represents the number of
lifts.

Solving for x, we divide both sides by 30 pounds:
x = 480 pounds / 30 pounds = 16 lifts.

Thus, Terrell must lift the two 15-pound weights 16 times to equal the total weight he
lifts with the two 20-pound weights.
The final answer is 16

<EndOfLatent>
Final Answer: The final answer is 16. I hope it is correct.

Problem:
If the system of equations

6x− 4y = a,

6y − 9x = b.

has a solution (x, y) where x and y are both nonzero,
find a

b , assuming b is nonzero.

<StartOfLatent><Prior>
To find the ratio a

b , we start with the system of equations given. The first equation is
6x− 4y = a, and the second is 6y − 9x = b.

We can express a in terms of x and y from the first equation:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

a = 6x - 4y.

Next, we rearrange the second equation to express b:
b = 6y - 9x.

To find the ratio a
b , we substitute the expressions we derived:

a
b = 6x−4y

6y−9x.

Next, we need to simplify this expression. We can factor out a common factor in the
numerator and the denominator. First, observe that both a and b can be rewritten in a
way that may reveal their relationship:
In the numerator, we can rearrange it as 6x− 4y = 2(3x− 2y).
In the denominator, we rearrange 6y − 9x = 3(2y − 3x).

Now, substituting these factorizations back into our ratio gives us:
a
b =

2(3x−2y)
3(2y−3x)

.

Next, we can simplify further. Notice that 2y − 3x can be rewritten as −(3x− 2y):
a
b =

2(3x−2y)
3(−(3x−2y))

.

This simplifies to:
a
b = 2

−3 = − 2
3.

Since we assumed b is nonzero, this leads us to conclude that the system of equations
has a specified relationship between a and b when both x and y are nonzero.
The final answer is − 2

3

<EndOfLatent>
Final Answer: The final answer is − 2

3. I hope it is correct.

Problem:
Rationalize the denominator: 1

2
√

7
.

<StartOfLatent><Prior>

Prompt F.2.2: Synthetic Few-Shot CoT for GSM8K

##Problem
Question: Ben works 8-hour shifts in a furniture shop. It takes him 5 hours to build 1
rocking chair. How many chairs can he build in 10 days?
Final Answer:
<StartOfLatent><Prior>
To find out how many rocking chairs Ben can build in 10 days, first determine the total
number of hours he works in that period. Since he works 8-hour shifts, over 10 days, he
works a total of 8 hours/day multiplied by 10 days, which equals 80 hours.

Next, calculate how many rocking chairs Ben can build in those 80 hours. Each rocking
chair takes him 5 hours to complete. To find the total number of chairs, divide the
total hours worked by the time taken to build one chair: 80 hours divided by 5 hours/
chair equals 16 chairs.

Thus, in 10 days, Ben can build 16 rocking chairs. Therefore, the answer is 16.
<EndOfLatent>
The final answer is 16. I hope it is correct.

##Problem
Question: A family has three adults and children, both girls and boys. They went out for
a family trip and prepared 3 dozen boiled eggs for the trip. Every adult got 3 eggs,
and the boys each received 1 more egg than each girl since the girls had some snacks.
How many boys went on the trip if the number of girls was 7 and each girl received an
egg?
Final Answer:
<StartOfLatent><Prior>

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

To determine the number of boys on the trip, we first analyze the information given. We
know there are 7 girls. Each girl received 1 egg. Therefore, the total number of eggs
given to the girls is:

7 girls * 1 egg/girl = 7 eggs.

Next, we find out how many eggs were allocated to the adults. There are 3 adults, and
each received 3 eggs, which results in:

3 adults * 3 eggs/adult = 9 eggs.

Now we calculate the total number of eggs distributed so far:

7 eggs (to girls) + 9 eggs (to adults) = 16 eggs.

Since the family prepared 3 dozen boiled eggs, we find the total number of eggs:

3 dozen = 3 * 12 = 36 eggs.

Now we determine how many eggs remain for the boys:

36 total eggs - 16 eggs already distributed = 20 eggs available for the boys.

According to the problem, each boy received 1 more egg than each girl, which means each
boy received:

1 egg (for the girl) + 1 egg = 2 eggs.

Let B represent the number of boys. The total number of eggs given to the boys can be
expressed as:

B boys * 2 eggs/boy = 2B eggs.

Setting the available eggs for the boys equal to the eggs they received, we have:

2B = 20.

To find B, we solve the equation:

B = 20 / 2 = 10.

Thus, the number of boys who went on the trip is 10. Therefore, the answer is 10.
<EndOfLatent>
The final answer is 10. I hope it is correct.

##Problem
Question: A deep-sea monster rises from the waters once every hundred years to feast on
a ship and sate its hunger. Over three hundred years, it has consumed 847 people. Ships
have been built larger over time, so each new ship has twice as many people as the last
ship. How many people were on the ship the monster ate in the first hundred years?
Final Answer:
<StartOfLatent><Prior>
To find the number of people on the ship the monster ate in the first hundred years, we
need to understand the pattern of ship sizes and the total consumption over three
hundred years.

The monster consumes a ship every hundred years, meaning it consumes a total of three
ships over three hundred years. The problem states that ships have been built larger
over time, specifically that each new ship has twice as many people as the last ship.

Let's denote the number of people on the ship in the first hundred years as x. According
to the problem, the second ship, which the monster eats in the second hundred years,
has twice as many people, or 2x. The third ship has twice the number of people as the
second ship, or 4x.

Now we can express the total number of people consumed over the three hundred years as:
x (first ship) + 2x (second ship) + 4x (third ship) = 847 people.

Combining these terms gives us:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

x + 2x + 4x = 7x.

Setting this equal to the total consumption:
7x = 847.

To find x, we divide both sides by 7:
x = 847 / 7 = 121.

Thus, the number of people on the ship the monster ate in the first hundred years is 121.
Therefore, the answer is 121.
<EndOfLatent>
The final answer is 121. I hope it is correct.

##Problem
Question: Nancy is filling an aquarium for her fish. She fills it halfway and goes to
answer the door. While she's gone, her cat knocks the aquarium over and spills half the
water in it. Then Nancy comes back and triples the amount of water in the aquarium. If
the aquarium is 4 feet long, 6 feet wide, and 3 feet high, how many cubic feet of water
are in the aquarium?
Final Answer:
<StartOfLatent><Prior>
To find the total volume of water in the aquarium, calculate the aquarium's total volume
first. The formula for the volume of a rectangular prism is length multiplied by width
multiplied by height. Here, the dimensions are 4 feet long, 6 feet wide, and 3 feet high.

Calculate the total volume:
Volume = length x width x height
Volume = 4 feet x 6 feet x 3 feet = 72 cubic feet.

Initially, Nancy fills the aquarium halfway. Therefore, the amount of water after she
fills it is:
Half of 72 cubic feet = 72 / 2 = 36 cubic feet.

While Nancy is away, the cat spills half of this amount:
Amount spilled = 36 cubic feet / 2 = 18 cubic feet.
Thus, the remaining water in the aquarium after the spill is:
36 cubic feet - 18 cubic feet = 18 cubic feet.

When Nancy returns, she triples the remaining amount of water. Calculate the new amount
of water:
New amount = 3 x 18 cubic feet = 54 cubic feet.

The final amount of water in the aquarium in cubic feet is 54. Therefore, the answer is
54.
<EndOfLatent>
The final answer is 54. I hope it is correct.

##Problem
Question: There are 30 different nuts in a bowl. If 5/6 of the nuts were eaten, how many
nuts were left?
Final Answer:
<StartOfLatent><Prior>
To determine how many nuts are left after 5/6 of them are eaten, first, calculate how
many nuts were consumed. Start with the total number of nuts, which is 30. To find the
number of nuts eaten, multiply 30 by 5/6.

30 * (5/6) = 25 nuts eaten.

Next, subtract the number of nuts eaten from the total number of nuts to find how many
are left.

30 - 25 = 5 nuts remaining.

Thus, after consuming 5/6 of the nuts, 5 nuts are left in the bowl. Therefore, the
answer is 5.
<EndOfLatent>

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

The final answer is 5. I hope it is correct.

##Problem
Question: Yuan is 7 years older than his brother David and twice his age. How old is
David?
Final Answer:
<StartOfLatent><Prior>
Let Y represent Yuan's age and D represent David's age.

From the information given, we can establish two equations based on the relationships
described.

First, the statement "Yuan is 7 years older than his brother David" can be
mathematically expressed as:
Y = D + 7.

Second, the statement "Yuan is twice his age" translates to:
Y = 2D.

Now, we can set the two equations equal to each other since both represent Yuan's age:
D + 7 = 2D.

To isolate D, we need to rearrange the equation:
7 = 2D - D,
7 = D.

Thus, David's age is determined to be 7 years old. Therefore, the answer is 7.
<EndOfLatent>
The final answer is 7. I hope it is correct.

##Problem
Question: Joey wants to buy the latest released pair of designer High Jump basketball
sneakers. He plans to mow 3 neighbors' lawns for $8 a lawn, sell 2 collectible figures
to his friends for $9 each, and work an after-school job for 10 hours at $5 per hour. If
his earnings just cover the price of the High Jump sneakers, how much do the shoes cost
?
Final Answer:
<StartOfLatent><Prior>
To find the total earnings Joey accumulates, we need to calculate each source of income
step-by-step.

First, calculate the income from mowing lawns. Joey mows 3 lawns at a rate of $8 per
lawn. Therefore, the total income from mowing is:
3 lawns * $8/lawn = $24.

Next, calculate the income from selling collectible figures. Joey sells 2 figures at a
price of $9 each. Thus, the total income from selling figures is:
2 figures * $9/figure = $18.

Now, calculate the income from his after-school job. Joey works for 10 hours at a rate
of $5 per hour. Therefore, his income from the job is:
10 hours * $5/hour = $50.

Now, sum all these earnings to find the total amount Joey has:
$24 (mowing) + $18 (selling figures) + $50 (job) = $92.

Since Joey's total earnings of $92 exactly cover the price of the High Jump basketball
sneakers, it can be concluded that the cost of the sneakers is $92. Therefore, the
answer is 92.
<EndOfLatent>
The final answer is 92. I hope it is correct.

##Problem
Question: Before getting to work, Jess has a few errands to run. Jess has to walk 11
blocks to the store and 6 blocks to the gallery, before walking the final 8 blocks to

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

arrive at work. If Jess has already walked 5 blocks, how many more blocks must she walk
before arriving at work?
Final Answer:
<StartOfLatent><Prior>
To determine the total distance Jess needs to walk to work, first calculate the total
number of blocks from the store and the gallery to work. The distance to the store is 11
blocks, and the distance to the gallery is 6 blocks. Thus, the total distance to work
is the sum of these two distances plus the final stretch to work, which is 8 blocks.

Total distance = 11 blocks (to store) + 6 blocks (to gallery) + 8 blocks (to work) = 25
blocks.

Next, subtract the distance Jess has already walked, which is 5 blocks, from the total
distance calculated.

Remaining distance = Total distance - Distance already walked = 25 blocks - 5 blocks =
20 blocks.

Thus, Jess must walk 20 more blocks to reach work. Therefore, the answer is 20.
<EndOfLatent>
The final answer is 20. I hope it is correct.

##Problem
Question: Marcell and Beatrice are having a contest to see who can eat the most fruit
roll-ups, so they unroll as many as they can find. Unfortunately, someone makes a
mistake and Beatrice's was two roll-ups wide and 24 rolls up long while Marcell's was 3
roll-ups wide and 14 roll-ups long. If they both ate their entire amount, how many did
they eat on average?
Final Answer:
<StartOfLatent><Prior>

Prompt F.2.3: Synthetic Few-Shot CoT for MMLU-STEM

##Problem
Question: A microwave oven is connected to an outlet, 120 V, and draws a current of 2
amps. At what rate is energy being used by the microwave oven?
(A) 10 W
(B) 30 W
(C) 60 W
(D) 240 W
Answer:
<StartOfLatent><Prior>
To determine the rate of energy usage, we apply the formula for electrical power, which
is given by P = V × I, where P is power in watts, V is voltage in volts, and I is
current in amps.

In this scenario, the voltage V is 120 V and the current I is 2 A.

Calculating the power:
P = 120 V × 2 A = 240 W.

This calculation shows that the microwave oven consumes energy at a rate of 240 watts.

Thus, the answer is (D) 240 W.
<EndOfLatent>
The answer is (D) 240W.

##Problem
Question: The variable x varies directly as the square of y, and y varies directly as
the cube of z. If x equals −16 when z equals 2, what is the value of x when z equals 1

2?
(A) -1
(B) 16
(C) − 1

256

(D) 1
16

Answer:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

<StartOfLatent><Prior>
To solve the problem, we need to establish the relationships between the variables x, y,
and z based on the given conditions.

Firstly, since x varies directly as the square of y, we can express this relationship
mathematically as:
x = k1 * y^2, where k1 is a constant.

Next, since y varies directly as the cube of z, we can express this relationship as:
y = k2 * z^3, where k2 is another constant.

Now we can substitute y in the first equation with its expression in terms of z:
x = k1 * (k2 * z^3)^2
x = k1 * k2^2 * z^6.

This shows that x varies directly as the sixth power of z, leading us to express this as
:
x = k * z^6, where k = k1 * k2^2.

Given that x = -16 when z = 2, we can substitute these values into the equation to find
k:
-16 = k * (2^6)
-16 = k * 64
k = -16 / 64
k = -1/4.

Now we have the relationship for x in terms of z:
x = -1/4 * z^6.

Next, we need to find the value of x when z = 1/2. We substitute z = 1/2 into the
equation:
x = -1/4 * (1/2)^6
x = -1/4 * (1/64)
x = -1/256.

Therefore, the value of x when z = 1/2 is -1/256. Thus, the answer is (C) -\frac{1}{256}.

<EndOfLatent>

##Problem
Question: Which expression is equivalent to 5 x 9?
(A) (5 x 4) x (6 x 5)
(B) (5 x 5) + (5 x 4)
(C) (5 x 5) + (5 x 9)
(D) (5 x 9) x (6 x 9)
Answer:
<StartOfLatent><Prior>
To determine which expression is equivalent to 5 x 9, we need to evaluate each option
step by step.

Option (A): (5 x 4) x (6 x 5)
This expression simplifies to 20 x 30, which equals 600. This is not equal to 5 x 9 = 45.

Option (B): (5 x 5) + (5 x 4)
This expression simplifies to 25 + 20, which equals 45. This matches 5 x 9.

Option (C): (5 x 5) + (5 x 9)
This expression simplifies to 25 + 45, which equals 70. This is not equal to 5 x 9.

Option (D): (5 x 9) x (6 x 9)
This expression simplifies to 45 x 54, which equals 2430. This is not equal to 5 x 9.

Thus, the answer is (B) (5 x 5) + (5 x 4).
<EndOfLatent>
The answer is (B) (5 x 5) + (5 x 4).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

##Problem
Question: A new smartwatch is manufactured in one part of a factory, then secured for
shipping in another, independent part of the factory. The weight of the smartwatch has a
mean of 62 grams and a standard deviation of 1.0 grams. The weight of the packaging (
box, user's guide, bubble wrap, etc.) has a mean of 456 grams and a standard deviation
of 6 grams. Together, the distribution of the weight of the smartwatch and its packaging
would have the following mean and standard deviation:
(A) Mean 518 grams; standard deviation 7.0 grams
(B) Mean 518 grams; standard deviation 3.5 grams
(C) Mean 518 grams; standard deviation 6.1 grams
(D) Mean 394 grams; standard deviation 6.1 grams
Answer:
<StartOfLatent><Prior>
To find the combined mean and standard deviation of the smartwatch and packaging, we
start by calculating the mean of the total weight. The mean weight of the smartwatch is
62 grams, and the mean weight of the packaging is 456 grams. The total mean weight is
calculated by adding these two means:

Mean total weight = Mean smartwatch + Mean packaging
Mean total weight = 62 grams + 456 grams = 518 grams.

Next, we need to calculate the standard deviation of the total weight. Since the weights
of the smartwatch and packaging are independent, we can use the formula for the sum of
two independent random variables:

Standard deviation of total weight = sqrt((Standard deviation of smartwatch)^2 + (
Standard deviation of packaging)^2).

The standard deviation of the smartwatch is 1.0 grams, and the standard deviation of the
packaging is 6 grams. Now, we apply the values to the formula:

Standard deviation of total weight = sqrt((1.0 grams)^2 + (6 grams)^2)
= sqrt(1 + 36)
= sqrt(37)
≈ 6.08 grams.

Rounding this value to one decimal place gives us approximately 6.1 grams.

Therefore, the combined mean weight is 518 grams, and the combined standard deviation is
approximately 6.1 grams, which corresponds to option (C). Thus, the answer is (C) Mean
518 grams; standard deviation 6.1 grams.
<EndOfLatent>
The answer is (C) Mean 518 grams; standard deviation 6.1 grams.

##Problem
Question: Mr. Bee's statistics class had a standard deviation of 11.2 on a standardized
test, while Mr. Em's class had a standard deviation of 5.6 on the same test. Which of
the following is the most reasonable conclusion concerning the two classes' performance
on the test?
(A) Mr. Bee's class is less heterogeneous than Mr. Em's.
(B) Mr. Em's class is more homogeneous than Mr. Bee's.
(C) Mr. Bee's class performed twice as well as Mr. Em's.
(D) Mr. Em's class did not do as well as Mr. Bee's.
Answer:
<StartOfLatent><Prior>

F.2.2 STANDARD FEW-SHOT COT PROMPTS

Prompt F.2.4: Minerva Few-Shot CoT for MATH (Lewkowycz et al., 2022)

Problem:

Find the domain of the expression
√

x−2√
5−x

.

<StartOfLatent><Prior>
The expressions inside each square root must be non-negative. Therefore, x− 2 ≥ 0, so
x ≥ 2, and 5− x ≥ 0, so x ≤ 5. Also, the denominator cannot be equal to zero, so 5− x > 0

, which gives x < 5. Therefore, the domain of the expression is [2, 5) .

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

The final answer is [2, 5)

<EndOfLatent>
Final Answer: The final answer is [2, 5). I hope it is correct.

Problem:
If detA = 2 and detB = 12, then find det(AB).

<StartOfLatent><Prior>

We have that det(AB) = (detA)(detB) = (2)(12) = 24 .

The final answer is 24

<EndOfLatent>
Final Answer: The final answer is 24. I hope it is correct.

Problem:
Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights
instead, how many times must Terrell lift them in order to lift the same total weight?

<StartOfLatent><Prior>
If Terrell lifts two 20-pound weights 12 times, he lifts a total of 2 · 12 · 20 = 480 pounds
of weight. If he lifts two 15-pound weights instead for n times, he will lift a total
of 2 · 15 · n = 30n pounds of weight. Equating this to 480 pounds, we can solve for n:

30n = 480

⇒ n = 480/30 = 16

The final answer is 16

<EndOfLatent>
Final Answer: The final answer is 16. I hope it is correct.

Problem:
If the system of equations

6x− 4y = a,

6y − 9x = b.

has a solution (x, y) where x and y are both nonzero,
find a

b , assuming b is nonzero.

<StartOfLatent><Prior>
If we multiply the first equation by − 3

2, we obtain

6y − 9x = −
3

2
a.

Since we also know that 6y − 9x = b, we have

−
3

2
a = b⇒

a

b
= −

2

3
.

The final answer is − 2
3

<EndOfLatent>
Final Answer: The final answer is − 2

3. I hope it is correct.

Problem:
Rationalize the denominator: 1

2
√

7
.

<StartOfLatent><Prior>

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Prompt F.2.5: Default Few-Shot CoT for GSM8K from (Wei et al., 2022a)

##Problem
Q: Olivia has 23.Sheboughtfivebagelsfor3 each. How much money does she have left?
A:
<StartOfLatent><Prior>
Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she
has 23 - 15 dollars left. 23 - 15 is 8.
<EndOfLatent>
The answer is 8.

##Problem
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
A:
<StartOfLatent><Prior>
Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8.
<EndOfLatent>
The answer is 8.

##Problem
Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
A:
<StartOfLatent><Prior>
There are 15 trees originally. Then there were 21 trees after some more were planted. So
there must have been 21 - 15 = 6.
<EndOfLatent>
The answer is 6.

##Problem
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?
A:
<StartOfLatent><Prior>
There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
<EndOfLatent>
The answer is 5.

##Problem
Q: There were nine computers in the server room. Five more computers were installed each
day, from monday to thursday. How many computers are now in the server room?
A:
<StartOfLatent><Prior>
There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5

* 4 = 20 computers were added. 9 + 20 is 29.
<EndOfLatent>
The answer is 29.

##Problem
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2
more. How many golf balls did he have at the end of wednesday?
A:
<StartOfLatent><Prior>
Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35.
After losing 2 more, he had 35 - 2 = 33 golf balls.
<EndOfLatent>
The answer is 33.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

##Problem
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?
A:
<StartOfLatent><Prior>
Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39.
<EndOfLatent>
The answer is 39.

##Problem
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?
A:
<StartOfLatent><Prior>
Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4
more toys. 5 + 4 = 9.
<EndOfLatent>
The answer is 9.

##Problem
Q: Marcell and Beatrice are having a contest to see who can eat the most fruit roll-ups,
so they unroll as many as they can find. Unfortunately, someone makes a mistake and
Beatrice's was two roll-ups wide and 24 rolls up long while Marcell's was 3 roll-ups
wide and 14 roll-ups long. If they both ate their entire amount, how many did they eat
on average?
A:
<StartOfLatent><Prior>

Prompt F.2.6: FLAN Few-Shot CoT for MMLU-STEM from (Wei et al., 2021)

The following are multiple choice questions (with answers) about high school statistics.

##Problem
Question: A new smartwatch is manufactured in one part of a factory, then secured for
shipping in another, independent part of the factory. The weight of the smartwatch has a
mean of 62 grams and a standard deviation of 1.0 grams. The weight of the packaging (
box, user's guide, bubble wrap, etc.) has a mean of 456 grams and a standard deviation
of 6 grams. Together, the distribution of the weight of the smartwatch and its packaging
would have the following mean and standard deviation:
(A) Mean 518 grams; standard deviation 7.0 grams (B) Mean 518 grams; standard deviation
3.5 grams (C) Mean 518 grams; standard deviation 6.1 grams (D) Mean 394 grams; standard
deviation 6.1 grams
Answer:
<StartOfLatent><Prior>
Let's think step by step. Since the weight of the watch and the weight of the packaging
are independent random variables, the mean and variance of their sum is equal to the sum
of their individual means and variances. So the mean is 62 + 456 = 518 grams, and the
variances is 1.0^2 + 6.0^2 = 37, leading to a standard deviation of 6.1 grams. The
answer is (C).
<EndOfLatent>
The answer is (C).

##Problem
Question: After a frost warning was issued, the owner of a large orange grove asked his
workers to spray all his trees with water. The water was supposed to freeze and form a
protective covering of ice around the orange blossom. Nevertheless, the owner suspected
that some trees suffered considerable damage due to the frost. To estimate the
proportion of trees that suffered more than 50 percent damage due to the frost, he took
a random sample of 100 trees from his grove. What is the response variable in this
experiment?

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

(A) The proportion of trees that suffered more than 50 percent damage due to frost. (B)
The number of trees affected by the frost. (C) The number of trees sampled from the
grove. (D) For each sampled tree, whether it suffered more than 50 percent damage or at
most 50 percent damage.
Answer:
<StartOfLatent><Prior>
Let's think step by step. In this experiment, the response variable is what is measured.
For each tree, what is measured is whether or not it suffered more than 50 percent
damage due to the frost. The answer is (D).
<EndOfLatent>
The answer is (D).

##Problem
Question: Suppose X and Y are random variables with E(X) = 37, var(X) = 5, E(Y) = 62,
and var(Y) = 12. What are the expected value and variance of the random variable X + Y?
(A) E(X + Y) = 99, var(X + Y) = 8.5 (B) E(X + Y) = 99, var(X + Y) = 13 (C) E(X + Y) =
99, var(X + Y) = 17 (D) There is insufficient information to answer this question.
Answer:
<StartOfLatent><Prior>
Let's think step by step. While means of sums of random variables add (regardless of
whether the variables are independent) in order to determine the variance of a sum of
random variables, we need to know not just their individual variances but the covariance
of the two variables, which is not given in this problem. The answer is (D).
<EndOfLatent>
The answer is (D).

##Problem
Question: Which of the following sets has the smallest standard deviation? Which has the
largest?
I: {1,2,3}
II: {-10,10}
III: {100}
(A) I, II (B) II, III (C) III, I (D) III, II
Answer:
<StartOfLatent><Prior>
Let's think step by step. The variance of distribution I is the expected squared
deviation from its mean (which is 2), so the variance is 2/3 . The variance of
distribution II is 10^2 (because both elements are 10 away from the mean of zero). The
variance of distribution III is 0, since it has a single entry. So distribution III has
the smallest standard deviation and distribution II has the largest. The answer is (D).
<EndOfLatent>
The answer is (D).

##Problem
Question: Mr. Bee's statistics class had a standard deviation of 11.2 on a standardized
test, while Mr. Em's class had a standard deviation of 5.6 on the same test. Which of
the following is the most reasonable conclusion concerning the two classes' performance
on the test?
(A) Mr. Bee's class is less heterogeneous than Mr. Em's. (B) Mr. Em's class is more
homogeneous than Mr. Bee's. (C) Mr. Bee's class performed twice as well as Mr. Em's. (D)
Mr. Em's class did not do as well as Mr. Bee's.
Answer:
<StartOfLatent><Prior>

G EXAMPLES OF LATENT THOUGHTS

G.1 EXAMPLES OF DOWNSTREAM TRANSFER OF LATENT THOUGHTS

Example G.1.1: Solving algebra problems on MATH

Problem: What is the distance between the two intersections of y = x2 and x+ y = 1?

<StartOfLatent><Prior>

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

To find the distance between the two intersections of the curves y=x^2 and x+y=1, we
first need to determine the points of intersection. Setting the equations equal to each
other gives us x^2 = x + 1. Rearranging this leads to x^2 - x - 1 = 0. We can solve this
quadratic equation using the quadratic formula, x = [1 ± sqrt(1 + 4)] / 2, which
simplifies to x = [1 ± sqrt(5)] / 2. This results in two intersection points: (1 + sqrt
(5))/2 and (1 - sqrt(5))/2.

Next, we need to find the distance between these two points. The distance formula
between two points (x1, y1) and (x2, y2) is given by d = sqrt((x2 - x1)^2 + (y2 - y1)^2).
Substituting our points into this formula, we have d = sqrt(((1 + sqrt(5))/2 - (1 -
sqrt(5))/2)^2 + ((1 + sqrt(5))/2 - (1 - sqrt(5))/2)^2).

Calculating the differences in the x-coordinates and y-coordinates separately, we find:

1. For the x-coordinates: (1 + sqrt(5))/2 - (1 - sqrt(5))/2 = (1 + sqrt(5) - 1 + sqrt(5)
)/2 = (2sqrt(5))/2 = sqrt(5).
2. For the y-coordinates: (1 + sqrt(5))/2 - (1 - sqrt(5))/2 = (1 + sqrt(5) - 1 + sqrt(5)
)/2 = (2sqrt(5))/2 = sqrt(5).

Now, substituting these values back into the distance formula gives us d = sqrt((sqrt(5)
)^2 + (sqrt(5))^2) = sqrt(5 + 5) = sqrt(10).

Thus, the final answer is sqrt(10).
<EndOfLatent>

Final Answer: The final answer is
√

10. I hope it is correct.

Example G.1.2: Solving combinatorial problems on MATH

Problem: Pat is to select six cookies from a tray containing only chocolate chip,
oatmeal, and peanut butter cookies. There are at least six of each of these three kinds
of cookies on the tray. How many
different assortments of six cookies can be selected? (Note that cookies of the same
type are not distinguishable.)

<StartOfLatent><Prior>
To determine the number of different assortments of six cookies from a tray containing
chocolate chip, oatmeal, and peanut butter cookies, we need to consider the constraints
imposed by the requirement of at least six of each type of cookie.

First, we recognize that the total number of cookies is fixed at six. The problem can be
approached using combinatorial methods, specifically the "stars and bars" theorem. This
theorem helps us find the number of ways to distribute indistinguishable objects (the
cookies) into distinguishable boxes (the types of cookies).

Let:
- x = number of chocolate chip cookies
- y = number of oatmeal cookies
- z = number of peanut butter cookies

The total number of cookies is given by the equation:
x + y + z = 6

The stars and bars theorem states that the number of ways to distribute n
indistinguishable objects into k distinguishable boxes is given by the formula:

(n + k - 1) choose (k - 1)

In our case, n = 6 (the total number of cookies) and k = 3 (the types of cookies:
chocolate chip, oatmeal, and peanut butter).

Applying the formula:

(6 + 3 - 1) choose (3 - 1) = 8 choose 2

Calculating this gives:

8 choose 2 = 8! / (2!(8-2)!) = 8! / (2! * 6!) = (8 * 7) / (2 * 1) = 28

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Thus, there are 28 different assortments of six cookies that can be selected from the
tray, ensuring that at least six of each type are included.
<EndOfLatent>

Final Answer: The final answer is 28. I hope it is correct.

Example G.1.3: Solving number theory problems on MATH

Problem: How many positive factors does 48 have?

<StartOfLatent><Prior>
To find the number of positive factors of 48, we start by determining its prime
factorization. The prime factorization of 48 is 2^4 * 3^1.

Next, we apply the formula for finding the number of positive factors from the prime
factorization. For a number expressed as p1^e1 * p2^e2 * ... * pk^ek, the total number
of factors is given by (e1 + 1)(e2 + 1)...(ek + 1).

In the case of 48, we have:
- For the prime factor 2, the exponent is 4.
- For the prime factor 3, the exponent is 1.

Applying the formula: (4 + 1)(1 + 1) = 5 * 2 = 10. Thus, 48 has 10 positive factors.

The final answer is 10.
<EndOfLatent>

Final Answer: The final answer is 10. I hope it is correct.

Example G.1.4: Solving math word problems on GSM8K

Question: Farmer Brown has 60 animals on his farm, all either chickens or cows. He has
twice as many chickens as cows. How many legs do the animals have, all together?

Final Answer:
<StartOfLatent><Prior>
To find the total number of legs, we need to establish the relationship between the
number of chickens and cows. Let the number of cows be represented as C. According to
the problem, the number of
chickens is twice that of cows, so we can express the number of chickens as 2C.

Next, we know that the total number of animals is 60. Therefore, we can set up the
equation:

C + 2C = 60

This simplifies to:

3C = 60

To find C, we divide both sides by 3:

C = 20

Now that we have the number of cows, we can find the number of chickens:

Number of chickens = 2C = 2 * 20 = 40

Now we can calculate the total number of legs. Each chicken has 2 legs, and each cow has
4 legs. The total number of legs can be calculated as follows:

Total legs = Number of chickens * Legs per chicken + Number of cows * Legs per cow

Substituting the known values:

Total legs = 40 * 2 + 20 * 4

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Calculating this gives:

Total legs = 80 + 80 = 160

Thus, the total number of legs is 160.
<EndOfLatent>
The final answer is 160.

G.2 EXAMPLES OF GPT-4O-MINI SYNTHESIZED LATENT THOUGHTS

Example G.2.1: Latent thoughts recover missing background knowledge and reasoning

<StartOfLatent>
Principal Component Analysis (PCA) is a statistical technique used for dimensionality
reduction, which is crucial in data analysis and machine learning. The objective of PCA
is to identify the directions (principal components) in which the variance of the data
is maximized. This process involves transforming the original features into a new set of
uncorrelated features, ordered by the amount of variance they capture.

To begin with, we consider a dataset with multiple dimensions, where each dimension
represents a feature. The first step in PCA is to center the data by subtracting the
mean of each feature from the dataset. This step is vital because it ensures that the
new coordinate system is based around the origin, allowing for a more accurate analysis
of variance.

Next, we compute the covariance matrix of the decentralized data. The covariance matrix
captures the relationships between the different features, indicating how they vary
together. The covariance values reveal the spread and the direction of the data in the
feature space.

Following the covariance matrix calculation, we need to determine the eigenvalues and
eigenvectors of this matrix. The eigenvectors represent the directions of the principal
components, while the eigenvalues indicate the magnitude of variance in those directions.
The larger the eigenvalue, the more significant the corresponding eigenvector is in
explaining the variance in the dataset.

To select the principal components, we rank the eigenvectors based on their eigenvalues
in descending order. The top k eigenvectors, where k is the number of dimensions we wish
to retain, form a new feature space that captures the most variance.

Finally, we project the original, decentralized data onto this new feature space by
multiplying the original data matrix by the matrix of the top k eigenvectors. This
projection results in a reduced dataset that retains the essential characteristics of
the original data while minimizing information loss. The effectiveness of PCA lies in
its ability to simplify complex datasets, making subsequent analyses more manageable and
interpretable.
<EndOfLatent>

The basic idea of PCA

Principal component analysis is to find out the most important aspects in the data and
replace the original data with the most important aspects in the data. To put it bluntly
, it is to reduce the data from n-dimensional to n'-dimensional, and hope that the data
set of n'-dimensional features retains most of the information as much as possible.

PCA mathematical derivation (maximum variance method)

For example, if the data is a two-dimensional plum, we project the original data (blue
dots) onto the new most marked axis (yellow and blue crosshairs). The way to find this
new coordinate axis is to find the point (red point) where the data is projected on the
new coordinate axis and the distance from the origin of the new coordinate axis is the
largest, which is the maximum variance method.

<StartOfLatent>
Decentralization adjusts the data such that its mean is zero, which is crucial for PCA.
If the data is not centered, the computed variances along the axes will be skewed,
leading to misleading results in the identification of principal components. The
principal component should ideally capture the largest variance, and uncentered data

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

would cause the variance to reflect the mean of the data rather than the true
distribution of the data points.

Without decentralization, the projection of the original data onto the new axis would
not accurately reflect the inherent structure of the data, undermining the effectiveness
of dimensionality reduction. Thus, the step of data decentralization is not merely a
preprocessing step; it fundamentally ensures that PCA captures the true variance of the
data, allowing for an accurate reduction in dimensionality while retaining as much
information as possible.
<EndOfLatent>

The first step, data decentralization

The discussion of the new coordinate axis and the old coordinate axis is very
troublesome. We directly decentralize the data (that is, the mean value of the data is
at the far point).

If the data is not decentralized, we cannot find the optimal dimensionality reduction.
This step is necessary

<StartOfLatent>
To find the optimal axis for PCA, we utilize the covariance matrix of the decentralized
data. The eigenvalues of this matrix indicate the amount of variance captured by each
principal component, while the corresponding eigenvectors provide the direction of these
components. The first principal component (PC1) is the eigenvector associated with the
largest eigenvalue, representing the direction of maximum variance.

The distance from the projected data points to the origin of the new axis (PC1) is
calculated as the projection of the original data points onto this axis. The objective
is to maximize the sum of squared distances (

∑
d2i), which mathematically quantifies the

variance captured by the principal component. This optimization problem can be framed as
maximizing the Rayleigh quotient for the covariance matrix, leading to the derivation
of the eigenvalues and eigenvectors.
<EndOfLatent>

The second step is to find the new most marked axis

How do we find the best most standard axis to achieve principal component analysis?
That is, the greater the distance between the projected point and the origin of the
coordinate axis, the better (this is the maximum variance)

As shown in the figure, the red dotted line is the new coordinate axis, we call it PC1;
the green dot is the initial data sample point; the green cross is the point projected
on the new coordinate; d1, d2, d3...d6 are the projected ones The distance from the
point to the far point.

All we need to do is find the largest sum of squares (that's
∑
d2i).

Here comes the math! ! ! !

<StartOfLatent>
To find the optimal new coordinate axis for dimensionality reduction, we must analyze
the relationships among the data points. This involves calculating the correlation
coefficient matrix, which quantifies how much each feature varies with others.

Once we have the correlation matrix, we compute its eigenvalues and eigenvectors. The
eigenvalues indicate the amount of variance captured by each corresponding eigenvector.
The eigenvector with the highest eigenvalue gives us the direction of the axis that
maximizes variance among the data points.

In principal component analysis (PCA), we focus on the principal components (PCs) that
represent the highest variance first. This ensures that we retain the most important
information while reducing dimensions. We select a percentage of these components, based
on the cumulative variance they explain, to maintain a balance between data fidelity
and dimensionality reduction.

By projecting the original data onto these new axes (PC1, PC2, etc.), we can effectively
reduce the number of features while preserving the essential structure and
relationships within the data. The choice of how many components to keep is guided by
examining the explained variance ratios. The goal is to achieve a compact representation
that still captures the underlying patterns in the dataset.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

<EndOfLatent>

As can be seen from the figure above, when we are looking for the best newest axis, we
are actually finding eigenvalues and eigenvectors by finding the data correlation
coefficient matrix

The third step is to choose a few percent of the data you need

When we perform PCA dimensionality reduction to find new coordinates, the number of
coordinates is the same as the number of data features. But we project the data on the
new coordinate axis in order to express the information of the entire data with as few
features as possible.

In the figure below, we can see that we have obtained two coordinate axes, PC1 and PC2,
respectively.

<StartOfLatent>
To understand why the coordinate axes PC1 and PC2 are chosen, we first recognize that
PCA aims to maximize the variance captured by the new axes. The eigenvalues obtained
from the eigenvalue decomposition of the data correlation coefficient matrix indicate
the variance explained by each principal component.

The eigenvector corresponding to the largest eigenvalue defines the direction of PC1,
capturing the most significant variance in the data. The second eigenvector,
corresponding to the second largest eigenvalue, defines PC2 and is orthogonal to PC1,
ensuring that these axes are independent and do not introduce redundancy in the
representation of the data.

The information captured by each principal component can be quantified by the proportion
of the total variance they explain. In this case, PC1 accounts for 83% of the variance,
indicating that it captures the most critical features of the data. PC2, while still
informative, only captures 17% of the variance.

When reducing dimensions, it is logical to prioritize PC1 over PC2 due to its higher
variance contribution. This prioritization allows for a more efficient representation of
the data with fewer dimensions, simplifying analysis while retaining essential
information.

In three dimensions, using only PC1 and PC2 to represent the data can effectively
capture the underlying structure without the noise, as the dimensionality reduction is
inherently aimed at compressing the data while minimizing loss. This approach
demonstrates PCA's effectiveness in unsupervised learning, particularly for data
compression and denoising, making it a widely adopted technique in various practical
applications.
<EndOfLatent>

The two coordinate axes are perpendicular to each other and do not interfere with each
other.
Among them, the information on the data on PC1 accounts for 83%, and the information on
the data on PC2 accounts for 17%. Anyone can see which coordinate axis should be chosen
to represent the information after dimensionality reduction.

When we look at three dimensions, we can see that if we use PC1 and PC2 to reduce the
dimension

As a dimensionality reduction method for unsupervised learning, it only needs eigenvalue
decomposition to compress and denoise data . Therefore, it is widely used in practical
scenarios.

<StartOfLatent>
When performing PCA, we seek to maximize the variance captured by each principal
component. Since variance is central to determining the principal components, squaring
the differences ensures that components capturing larger variances are prioritized. This
aligns with the goal of PCA, which is to identify directions in the data that account
for the greatest amount of variability.

The orthogonality of principal components guarantees that the information captured by
each component is independent of the others. This independence is crucial for effective
dimensionality reduction because it ensures that the chosen components do not overlap in
the information they represent. The simplification of calculations through eigenvalue

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

decomposition further supports this process, as it systematically identifies the
components associated with the highest variance.

In terms of interpretation, while PCA effectively reduces dimensionality and retains the
most significant variance, it also introduces ambiguity regarding the meaning of the
principal components. Each principal component is a linear combination of the original
features, making it challenging to directly interpret their significance in relation to
the original data.

The potential loss of small variance components is another critical consideration.
Although these components may seem less important, they could contain subtle but
meaningful differences in the dataset. Discarding them may lead to overlooking valuable
insights during subsequent analysis.

Lastly, the effectiveness of PCA is contingent on the assumptions of data distribution.
PCA assumes that the data is normally distributed; deviations from this assumption can
lead to suboptimal results. Therefore, understanding the underlying data characteristics
is essential for ensuring PCA's effectiveness in dimensionality reduction and
information retention.
<EndOfLatent>

The main advantages of the PCA algorithm are:

1) Only the variance needs to be used to measure the amount of information, and it is
not affected by factors other than the data set.

2) The principal components are orthogonal to each other, which can eliminate the mutual
influence factors between the original data components.

3) The calculation method is simple, and the main operation is eigenvalue decomposition,
which is easy to implement.

The main disadvantages of the PCA algorithm are:

1) The meaning of each feature dimension of the principal component has a certain degree
of ambiguity, which is not as strong as the interpretation of the original sample
features.

2) Non-principal components with small variance may also contain important information
on sample differences, and discarding due to dimensionality reduction may have an impact
on subsequent data processing.
3) When the data distribution is not a normal distribution, the effect is not very good

<StartOfLatent>
To understand why variance is squared in PCA, we must first recognize that variance is a
measure of the spread of data points in a dataset. Squaring the differences from the
mean when calculating variance emphasizes larger deviations. This is important because
larger deviations contribute more significantly to the overall variability. By squaring
these differences, we ensure that both positive and negative deviations contribute
positively to the variance, which allows us to assess the total spread of the data
accurately. Without squaring, positive and negative distances could nullify each other,
leading to misleading interpretations of data relationships. Squaring transforms all
distances into non-negative values, ensuring that the overall variance remains a measure
of spread without cancellation effects.

Using the correlation coefficient matrix instead of the covariance matrix is fundamental
when attributes have different units. The correlation coefficient standardizes the data
, allowing for comparison across variables that are measured on different scales. This
standardization is achieved by dividing the covariance by the product of the standard
deviations of the two variables involved. Consequently, it enables a clear
interpretation of the strength and direction of relationships without the influence of
differing units.

Dimensioning in PCA is necessary when attributes have different units. If attributes are
in the same unit, covariance can directly reflect the degree of correlation. However,
when units differ, covariance alone is insufficient as it does not convey the actual
strength of the relationship. The correlation coefficient, derived by dividing the
covariance by the standard deviations, effectively normalizes the data, ensuring that
the relationships are comparable. This normalization is vital for accurately assessing
how similar the attributes are in their variations.
<EndOfLatent>

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

question

1. Why square it ?

It is because if the distance is not squared, there will be positive and negative
distances, which will cancel each other out.
2.**Why is the correlation coefficient matrix instead of the covariance matrix? ** You
will know this when you look down

Does PCA need to be dimensioned?

(1) When: when the unit of each attribute is the same (for example, both are kg, both
are meters), each attribute is comparable. Therefore, it is enough to directly calculate
the covariance between attributes. The size of the original covariance does not
indicate the degree of correlation (covariance only indicates positive or negative
correlation),But when the units are the same, we can think that the greater the
covariance, the greater the correlation

(2) When the units of each attribute are different (for example, one is kg and the other
is meter), at this time, due to the different units, the covariance does not indicate
the degree of correlation. At this time, we need to use the correlation coefficient to
describe.

The formula of the correlation coefficient (that is, the correlation coefficient matrix
is divided by two standard deviations, where dividing by the standard deviation is a way
of dimensioning). It eliminates the influence of the range of change of two variables,
but simply reflects the degree of similarity between the two variables per unit change.

Guess you like

Origin blog.csdn.net/CSTGYinZong/article/details/127097464
Recommended
Ranking
Daily

Example G.2.2: Latent thoughts elaborate physical knowledge

<StartOfLatent>
The draining of water creates a vortex due to fluid dynamics principles. In fluid
mechanics, when water flows towards a drain, it encounters resistance and varying
velocity, resulting in a circular motion. The initial swirl can be caused by a small
disturbance, which can be a random fluctuation in water movement. As this disturbance
propagates, it influences adjacent water particles, leading to a self-reinforcing loop
of motion. This phenomenon can be described by the Navier-Stokes equations, which govern
fluid flow and demonstrate how momentum and viscosity interact to create vortices.

In physics, time and space are interwoven in the fabric of the universe, as described by
the theory of relativity. Just as water spirals down a drain, objects in spacetime can
exhibit similar swirling patterns due to gravitational forces. Massive objects, like
planets or stars, warp spacetime around them, creating paths that can be likened to the
water's spiral. The curvature of spacetime can be mathematically represented by Einstein
's field equations, which illustrate how mass influences the geometry of the universe.

The analogy suggests that just as water spirals towards a drain through self-reinforcing
interactions, objects in spacetime move along geodesics-paths determined by the
curvature of spacetime. The motion of celestial bodies can be influenced by the
gravitational pull of nearby masses, creating a dynamic interplay that mirrors the
swirling water. This interconnectedness in physical phenomena reveals deeper insights
into the nature of motion and force, both in fluids and in the cosmos.
<EndOfLatent>

Circling the Drain

In Relativity by Brian Koberlein4 Comments

If you've ever watched water drain from a bathtub, you've seen that it doesn't flow into
the drain in a straight line, but rather swirls around the drain. Contrary to popular

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

belief, this is not due to the rotation of the Earth but rather random currents in the
water. The reason the spiral forms is because it is self-reinforcing. Water near the
drain spirals a bit due to a random current, which drags the water behind it slightly in
the same direction. Over time, the motion builds up until you have a rapid spiral
around the drain.

There is a similar effect with space and time.

<StartOfLatent>
Gravity is a fundamental force that can be understood through the concepts of space and
time. The relationship between mass and the curvature of space-time is a key aspect of
Einstein's General Relativity. When mass is present, it causes a distortion in the
fabric of space-time, resulting in a gravitational field. This distortion leads objects
to follow geodesics, which are the curved paths determined by the curvature of space-
time, rather than straight lines.

The concept of frame dragging is significant in understanding how rotating masses affect
nearby space-time. When a massive object, like Earth, rotates, it imparts motion to the
surrounding space-time. This effect can be quantified through mathematical formulations
derived from the Einstein field equations, which relate the mass-energy content of an
object to the curvature of space-time.

The Lense-Thirring effect specifically describes how the rotation of a massive body
influences the orbits of nearby objects. It can be expressed in terms of the angular
momentum of the rotating mass and its distance from the orbiting object. The
mathematical representation allows for predictions of the precession of orbits in the
vicinity of rotating masses.

While the analogy to water spiraling down a drain illustrates the concept of self-
reinforcement in motion, it is important to clarify that space-time does not exhibit
fluid dynamics. The spiral effect in space-time due to frame dragging is a result of
geometric properties rather than a physical flow. This distinction is crucial for
accurately understanding the implications of relativity in astrophysical contexts.

Through careful measurements and experiments, such as those conducted with satellites
and gyroscopes, the frame dragging effect can be observed, confirming the predictions
made by General Relativity. These observations provide evidence for the intricate
relationship between mass, rotation, and the curvature of space-time, enhancing our
understanding of gravitational phenomena in the universe.
<EndOfLatent>

I've talked before about how gravity is due to a curvature of space and time. The
presence of mass bends space around it, and the resulting curvature means that objects
follow curved paths rather than straight ones. As a result, an object's motion near a
large mass like the Earth looks as if it is due to a force, which we call gravity.

It turns out that the rotation of a mass also distorts space and time. For example, as
the Earth rotates, it drags the nearby space along with it (an effect known as frame
dragging). Just like the drain spiral, this effect builds up, and as a result, space
spirals a bit around the Earth. You have to be a bit careful with this comparison.
Spacetime doesn't "flow" the way water does, but the spiral effect is somewhat similar.

Near the Earth, this frame dragging is very small, but it can be measured through an
effect known as the Lense-Thirring effect.

<StartOfLatent>
The gyroscope experiment measures the effect of frame dragging caused by Earth's
rotation. A gyroscope maintains its axis of rotation due to the conservation of angular
momentum. If frame dragging occurs, the space around the gyroscope changes, altering its
path of motion. This results in precession, where the gyroscope's axis shifts over time.

The measurement intervals in the experiment are likely influenced by the orbital period
of the gyroscope, which can be approximately 1000 days. This period corresponds to the
time it takes for the gyroscope to complete multiple orbits around the Earth, allowing
sufficient time for the frame dragging effects to accumulate.

The Lense-Thirring effect is mathematically modeled using general relativity principles.
The precession rate can be calculated with the formula for frame dragging, which
involves the mass of the rotating body, the distance from the center of mass, and the
angular momentum.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

The agreement between the observed and predicted precession validates the theoretical
framework of general relativity. The consistent measurements reinforce the understanding
of how rotating masses influence spacetime geometry.

The analogy of water spiraling down a drain illustrates the concept of frame dragging
but simplifies complex spacetime dynamics. Understanding these dynamics requires
knowledge of tensor calculus and the geodesic equations governing motion in curved
spacetime.

Overall, the experiment demonstrates a fundamental aspect of general relativity, linking
mass, rotation, and the structure of spacetime, while providing empirical evidence for
theoretical predictions.
<EndOfLatent>

Basically, you put a gyroscope in orbit and see if its axis of rotation changes. If
there is no frame dragging, then the orientation of the gyroscope shouldn't change. If
there is frame dragging, then the spiral twist of space and time will cause the
gyroscope to precess, and its orientation will slowly change over time.

We've actually done this experiment, and you can see the results in the figure below.
The black line represents the change in orientation over time, and the red line is the
predicted change via the Lense-Thirring effect. As you can see, they agree very well.

So the next time you watch water circling the drain, you will know that a similar effect
occurs with space and time itself.

1. Do you know why there is max in measurements roughly every 1000 days?

<StartOfLatent>
The gyroscope's behavior in orbit is influenced by gravitational interactions and the
geometry of spacetime. The concept of frame dragging arises from general relativity,
where massive objects like Earth distort the curvature of spacetime around them. This
distortion affects objects in orbit.

The maximum in measurements every 1000 days can be attributed to the elliptical nature
of the orbit. An elliptical orbit means that the distance between the gyroscope and
Earth varies periodically. The gravitational force experienced by the gyroscope is
strongest when it is closest to Earth, at the perigee of its orbit.

The Lense-Thirring effect predicts that frame dragging will vary depending on the
distance to the massive body. As the gyroscope approaches the perigee, the gravitational
influence increases, leading to a greater precession rate. Thus, the maximum frame
dragging occurs at this closest point, resulting in a peak in the gyroscope's
orientation change.

The period of 1000 days corresponds to the orbital characteristics of the gyroscope,
defined by Kepler's laws of planetary motion. These laws describe how the orbiting body
travels faster when closer to the massive body and slower when farther away. The
relationship between the orbital period and the semi-major axis can be expressed using
Kepler's third law, where the square of the orbital period is proportional to the cube
of the semi-major axis of the orbit.

In summary, the gyroscope's orbit experiences maximum frame dragging as it reaches its
closest point to Earth every 1000 days due to the predictable nature of its elliptical
orbit, influenced by gravitational forces and the curvature of spacetime.
<EndOfLatent>

1. Space has to wind to some local maximum of curvature, and then snap back. Since Earth
's mass is constant, this maximum winding should be predictable.

2. What i think is that , by the time you put the gyroscope in orbit there is a max
distance and a min distance from earth (supposing that orbit is an elipse) . So if the
period is almost 1000 days then every 1000 days it will reach the min distance from
earth where the gravity field is max so the frame dragging should be max .

<StartOfLatent>
The phenomenon of water spiraling down a drain is influenced by various factors beyond
mere random currents. The Coriolis effect, resulting from Earth's rotation, plays a
significant role in determining the direction of fluid motion. The Earth's rotation
creates a force that affects moving objects, including fluids, causing them to follow a

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

curved path rather than a straight line. This effect is more pronounced over larger
distances and timescales, but it can still impact smaller systems like water draining in
a sink.

If the motion were entirely random, one would expect a uniform distribution of spiral
directions. However, the consistent direction observed suggests a systematic influence,
which can be explained by the Coriolis effect. The interaction between the water's
initial velocity, the shape of the drain, and the rotation of the Earth results in a
dominant rotational direction.

Mathematically, the Coriolis force can be expressed as Fc = 2m(v)(Ω) sin(φ), where m is
the mass of the fluid element, v is its velocity, Ω is the angular velocity of the Earth
, and φ is the latitude. This force acts perpendicular to the velocity of the fluid,
leading to a predictable rotation direction.

Moreover, factors such as the geometry of the sink and the initial conditions of the
water's movement can create a bias towards a particular direction of spin. The
conservation of angular momentum further supports this, as any slight initial spin will
be amplified due to the closed system of the drain. Thus, while randomness may
contribute to local turbulence, the underlying forces impart a consistent rotational
behavior that aligns with the Earth's rotation.
<EndOfLatent>

2. If the water spiralling down the drain is just due to "random currents in the water"
and not the Earths rotation, why is the spiral always the same direction of rotation? If
it was truly random, surely it would be 50/50 on direction of rotation?

Example G.2.3: Latent thoughts elaborate mathematical derivations

<StartOfLatent>
To solve the integral of the product of tangent functions, we start by recognizing that
the tangent identity can simplify the problem. The tangent function can be expressed in
terms of sine and cosine. We can also leverage the angle addition formula for tangent.

We define tn = tan(nx). The product of tangents can be expressed using the identity for
tangent of sums:

tanA tanB = tanA+tanB
1 tanA tanB

This allows us to express tan(5x) in terms of tan(3x) and tan(2x):

tan(5x) =
tan(3x)+tan(2x)
1−tan(3x) tan(2x)

Rearranging this gives us:

tan(5x)− tan(3x)− tan(2x) = tan(5x) tan(3x) tan(2x)

This leads to the equation:

t5 − t3 − t2 = t5t3t2

To integrate, we substitute this result back into the integral:∫
tan(5x) tan(3x) tan(2x) dx =

∫
(tan(5x)− tan(3x)− tan(2x)) dx

Now, we can integrate each term separately. The integral of tan(nx) is known:∫
tan(nx) dx = − 1

n log | cos(nx)|+ C

Applying this to our terms yields:

1. For tan(5x):
∫

tan(5x) dx = − 1
5 log | cos(5x)|

2. For tan(3x):
∫

tan(3x) dx = − 1
3 log | cos(3x)|

3. For tan(2x):
∫

tan(2x) dx = − 1
2 log | cos(2x)|

Substituting these results back into the integral, we compile the contributions:

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

∫
tan(5x) tan(3x) tan(2x) dx = − 1

5 log | cos(5x)|+ 1
3 log | cos(3x)| − 1

2 log | cos(2x)|+ C

Finally, we can rearrange this into a single expression if desired, but it is already
presented clearly as separate contributions from each tangent function. The solution is
complete with the integration constants summed together at the end.

<EndOfLatent>

How to find the integral
∫

tan(5x) tan(3x) tan(2x) dx?

Find the integral
∫

tan(5x) tan(3x) tan(2x) dx.

This question is posted in a maths group in Facebook. What way should we use to solve
integral like this? Thanks in advance

Solutions Collecting From Web of "How to find the integral∫
tan(5x) tan(3x) tan(2x) dx?"

Let tn = tan(nx), we have t5 =
t3+t2
1−t3t2

⇐⇒ t5 − t5t3t2 = t3 + t2 =⇒ t5t3t2 = t5 − t3 − t2

∫
tan(5x) tan(3x) tan(2x)dx =

∫
(tan(5x)− tan(3x)− tan(2x)) dx

=
1

2
log cos(2x) +

1

3
log cos(3x)−

1

5
log cos(5x) + const.

Example G.2.4: Latent thoughts demystify complex Mathematica logs

<StartOfLatent>

To evaluate the integral
∫
e3 coth−1(ax)(c− c

ax)3/2 dx, we begin by analyzing the term

e3 coth−1(ax). The hyperbolic cotangent inverse function, coth−1(u), can be expressed in

terms of logarithmic functions: coth−1(u) = 1
2 ln

(
u+1
u−1

)
. This implies that e3 coth−1(ax)

transforms into an exponential function involving ax and logarithmic components.

Next, we need to explore the term (c− c
ax)3/2. This indicates a dependency on x that can

simplify under certain substitutions. Notably, as x approaches infinity, this expression

simplifies to c3/2, suggesting that limits and behavior at infinity might be important
in evaluating the integral.

Rearranging the term yields (c(1− 1
ax))3/2. This opens up a potential substitution where

we let u = ax. Consequently, dx transforms into du
a , leading to a new form of the

integral in terms of u.

The expression requires careful treatment of the limits of integration and potential
singularities, particularly considering the behavior of 1

ax as x approaches zero.

To derive the result, we will apply integration techniques that may include integration

by parts or special functions. The presence of e3 coth−1(ax) suggests that the integral is
non-elementary, potentially requiring numerical methods or special functions for
evaluation.

The final expression involves several terms combined from the integration steps:

1. The first term appears to arise from the integration of the polynomial-like
expression after applying the substitution and integration techniques.
2. The second term involves derivatives of the logarithmic form that comes from
differentiating the exponentiated terms.
3. The third term stems from integrating the product of the hyperbolic function and the
resultant polynomial.

Each of these components is derived by applying the fundamental theorem of calculus,
respecting the chain rule where appropriate, and ensuring all terms are accounted for in
the final assembly of the integral's evaluation.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

This leads to the concluding expression, which captures the complexity of the integral
and reflects the interplay between exponential, logarithmic, and polynomial forms. The
combination of these terms indicates a sophisticated integration process that likely
necessitates verification through differentiation to confirm correctness.
<EndOfLatent>

3.458
∫
e3 coth−1(ax)(c− c

ax)3/2 dx

Optimal. Leaf size=118
c3x

(
1− 1

a2x2

)3/2
(
c− c

ax

)3/2 −
3c2

√
1− 1

a2x2

a
√

c− c
ax

+

3c3/2 tanh−1


√

c

√
1− 1

a2x2√
c− c

ax


a

[Out]

(-3*c^2*Sqrt[1 - 1/(a^2*x^2)])/(a*Sqrt[c - c/(a*x)]) + (c^3*(1 - 1/(a^2*x^2))^(3/2)*x)/(
c - c/(a*x))^(3/2) + (
3*c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/(a*x)]])/a

__

<StartOfLatent>

The integral involves the function e3 coth−1(ax), where the inverse hyperbolic cotangent
function, ArcCoth, is transformed to ArcTanh for simplification in the calculations. The
transformation is made using the identity that relates the two functions, leveraging
properties of hyperbolic functions.

The expression (c− c
ax)3/2 in the integrand indicates that the variable dependencies of c

and a must be handled carefully. This leads to the necessity of simplifying the
expression to isolate the variable x and expressing it in a form amenable to integration.

The optimal antiderivative size of 118 signifies the complexity of the expression being
handled and the efficiency of the algorithm used. The normalized size of 1 indicates
that the final expression is effectively simplified to its most concise form, making it
easier to handle computationally.

The number of steps used, 5, denotes the sequential approach taken to derive the
antiderivative, indicating that multiple integration techniques may have been employed,
such as substitution or integration by parts.

The rules employed, specifically 6177, 863, 865, 875, and 208, correspond to integration
techniques or transformations utilized in the process. Each rule applies specific
mathematical properties or identities that facilitate the evaluation of the integral.

The final expression includes three distinct terms, each derived from different
components of the original integrand. The term involving ArcTanh suggests the
utilization of hyperbolic identities, while the other terms reflect polynomial behavior
modulated by square root functions.

The successful verification of the antiderivative confirms that the computed result
matches the expected behavior of the integral, adhering to the properties of continuous
functions over the specified domain of integration, further supporting the correctness
of the applied rules and techniques.
<EndOfLatent>

Rubi [A] time = 0.214601, antiderivative size = 118, normalized size of antiderivative =
1., number of steps used = 5, number of rules used = 5, integrand size = 24,
number of rules
integrand size = 0.208, Rules used = {6177, 863, 865, 875, 208}

c3x

(
1− 1

a2x2

)3/2
(
c− c

ax

)3/2 −
3c2

√
1− 1

a2x2

a
√

c− c
ax

+

3c3/2 tanh−1


√

c

√
1− 1

a2x2√
c− c

ax


a

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcCoth[a*x])*(c - c/(a*x))^(3/2),x]

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

[Out]

(-3*c^2*Sqrt[1 - 1/(a^2*x^2)])/(a*Sqrt[c - c/(a*x)]) + (c^3*(1 - 1/(a^2*x^2))^(3/2)*x)/(
c - c/(a*x))^(3/2) + (
3*c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/(a*x)]])/a

Rule 6177

G.3 EXAMPLES OF TINYLLAMA-1B SELF-GENERATED LATENT THOUGHTS

Example G.3.1: Models think through the data for learning

<StartOfLatent>
Understanding the concept of factorial requires knowledge of basic arithmetic operations
and the rules governing multiplication. A factorial is defined for a non-negative
integer n, expressed as n!. This definition implies that the result of n! is calculated
by taking n and multiplying it by the next integer down from it, thereby accumulating
all integers from 1 to n.

To derive n! explicitly, one can compute it using the formula:

n! = n · (n− 1) · (n− 2) · ... · 2 · 1.

This recursive relationship can be visualized as multiplying the number by the number
immediately preceding it, illustrating how each additional integer reduces the result.

The factorial function grows extremely fast, with the value of 1! being 1 and 2! being 2.
This fact showcases the exponential growth of factorials as n increases.

In contexts such as probability, combinatorics, and calculus, the factorial is pivotal
in calculating permutations and combinations, where arrangements and selections from a
set are analyzed. For example, the number of ways to arrange n distinct objects is given
by n!, which explains its widespread application in these fields.

Thus, the factorial concept signifies a foundational element in mathematics, bridging
basic arithmetic with more complex applications in various scientific and mathematical
disciplines. Understanding its calculation and implications is crucial for further
mathematical exploration and real-world problem-solving.
<EndOfLatent>

Factorial number

In mathematics symbolized by placing the "!" (known as the exclamation mark or bang)
after a number, it represents multiplying a number by all whole numbers smaller than it.

Definition

A factorial is defined by the product

n! = 1 · 2 · 3 · · · (n−2) · (n−1) · n

for n ≥ 1.

<StartOfLatent>
The factorial notation represents the product of descending positive integers, which
means for any integer n, the factorial is calculated as n multiplied by the product of
all positive integers from (n-1) down to 1. This can be expressed mathematically as n! =
n x (n-1) x (n-2) x ... x 2 x 1.

For n = 0, the factorial is defined as 0! = 1 because the product of no numbers is 1.
This is a foundational rule in combinatorics, as it ensures that there is one way to
choose zero objects.

To evaluate larger factorials, the recurrence relation is useful. This relation is
derived from the definition of factorial, indicating that n! can be computed directly or
recursively based on smaller factorials. Specifically, it states that n! is equal to n
multiplied by (n-1)!, which means to find the factorial of n, one can take the factorial
of the factorial of (n-1).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

The computational implementation in computer programming languages like Python utilizes
this definition directly for standard input, while Java and C# provide corresponding
classes to facilitate easy access and manipulation of factorial values.

For example, to calculate 5!, one applies the defined multiplication: 5! = 5 x 4 x 3 x 2
x 1, ultimately simplifying to 120. This demonstrates the practical application of the
factorial definition in programming contexts, where efficient computation of large
factorial values is necessary.
<EndOfLatent>

The same written as mathmatical product

n! =
∏n

i=1 i.

and as recurrence relation

n! = n · (n− 1)!

Examples

5! = 5 * 4 * 3 * 2 * 1 = 120
10!

<StartOfLatent>
To derive the value 10!, we need to multiply 10 distinct positive integers: 1, 2, 3, 4,
5, 6, 7, 8, 9, and 10. Each integer contributes to the factorial, which is a product of
all integers from 1 to n. The multiplication of these integers provides the result:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

This demonstrates the factorial's recursive nature, where each factorial is defined from
the product of the integers preceding it. The first factorial starts with 1! equal to
1, establishing the base case. The subsequent calculations follow the established
pattern of multiplication for increasing integers.

The base cases for factorial calculations include:
- n! = n for n = 1, where the product of all integers equals 1.
- n! = 1 for n = 0, as it is defined that 0! = 1.
- n! = 0 for n < 0, as established conventionally in factorial definitions.

In the case of higher-order factorials, the pattern continues with:
- n! = n for odd n, and 1 for n = 0.
- n! = n! div n for n > 0, denoted as n / 1!.

This provides a comprehensive understanding of how factorials are computed across
various integers, including the calculation of 10!, confirming the established sequence
of factorial products.
<EndOfLatent>

= 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3628800

Example G.3.2: Models learn math problem solving with latent thoughts

<StartOfLatent>
To determine the percent increase and decrease, we first need to understand that
percentages represent a portion of a whole, hence percent increase or decrease is a way
to express this portion in terms of 100.

For an increase, the formula is:

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Percent Increase = (New Value - Original Value) / Original Value * 100.

For a decrease, the formula is similar:

Percent Decrease = (Original Value - New Value) / Original Value * 100.

In the calculation of an increase in pay from $10.00 to $12.00, we observe that the
increase is $2.00. Thus, the percent increase can be calculated as follows:

1. Identify the original value (PV = $10.00) and the new value (NPV = $12.00).
2. Calculate the difference: NPV - PV = $12.00 - $10.00 = $2.00.
3. Divide the difference by the original value: $2.00 / $10.00 = 0.2.
4. Multiply by 100 to convert to a percentage: 0.2 * 100 = 20%.

This indicates that Ann's pay increased by 20%.

For the example involving the sale price of $50.00 after a 20% discount, we follow a
similar process. The discount represents a reduction in price, equivalent to a decrease
of $20 from the original price. Therefore, we can calculate:

1. Identify the original price ($50.00) and the discounted price ($50.00 - $20.00 =
$30.00).
2. Calculate the percentage decrease: ($30.00 / $50.00) * 100 = 60%.

This shows that the sale price is 60% of the original price, indicating a substantial
reduction from the original value.
<EndOfLatent>

Calculating Percentage Increase And Decrease

Learn About Calculating Percent Increase And Decrease With The Following Examples And
Interactive Exercises.

Example 1: Ann works in a supermarket for $10.00 per hour. If her pay is increased to
$12.00, then what is her percent increase in pay?

Analysis: When finding the percent increase, we take the absolute value of the
difference and divide it by the original value. The resulting decimal is then converted
to a percent.

Solution:

Answer: The percent increase in Ann's pay is 20%.

<StartOfLatent>
To calculate a percent decrease, it's important to understand the concept of a
percentage as a way to express a number as a fraction of 100. A percent decrease is
essentially finding the remaining value after a certain amount is taken away from a
total.

In the case of the staff at a company, the number of employees decreased from 40 to 29.
To find the percent decrease, we first determine the difference between the new and old
values. This difference is 29 - 40 = -11. The next step involves finding the absolute
value of this difference, which is 11.

To convert this absolute value into a decimal, we divide 11 by 40. This calculation
results in 0.275. To express this decimal as a percent, we multiply 0.275 by 100,
converting it entirely into a percent form. This results in a percent decrease of 27.5%,
indicating that the number of employees has decreased by 27.5% from the original count.

This process illustrates the mechanics of both increasing and decreasing values in terms
of percentages, which is crucial for interpreting life scenarios like salary or
employment changes. Understanding these calculations enables accurate financial planning
and assessment of trends in employment numbers.
<EndOfLatent>

Let's look at an example of percent decrease.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Example 2: The staff at a company went from 40 to 29 employees. What is the percent
decrease in staff?

Analysis: When finding the percent decrease, we take the absolute value of the
difference and divide it by the original value. The resulting decimal is then converted
to a percent.

Solution:

<StartOfLatent>
To determine the percent increase, first identify the original value and the new value.
The original pay is $10.00, and the new pay is $12.00. Calculate the difference between
these amounts: $12.00 - $10.00 = $2.00. Next, divide this difference by the original pay
: $2.00 / $10.00 = 0.2. Multiply the result by 100 to convert it to a percent: 0.2 * 100
= 20%. Thus, Ann's pay increased by 20% during her hourly wage increase.

In the second example, we analyze the staff reduction from 40 to 29. The new value is 29
represent the reduced employees. Subtract the original count from the new count: 29 -
40 = -11. This negative result indicates an increase in the number of staff; therefore,
the percent decrease is calculated as follows: (negative) / (original) = 11 / 40 = 0.275.
Convert this decimal into a percent by multiplying by 100: 0.275 * 100 = 27.5%. Thus,
there was a 27.5% decrease in staff.
<EndOfLatent>

Answer: There was a 27.5% decrease in staff.

Percent increase and percent decrease are measures of percent change, which is the
extent to which something gains or loses value. Percent changes are useful to help
people understand changes in a value over time. Let's look at some more examples of
percent increase and decrease.

In Example 1, we divided by 10, which was the lower number. In Example 2, we divided by
40, which was the higher number. Students often get confused by this. Remember that the
procedure above asked us to divide by the original value. Another way to remember the
procedure is to subtract the old value from the new value and then divide by the old
value. Convert the resulting decimal to a percent. The formula is shown below.

<StartOfLatent>
To find the percent increase in a cost, we first need to understand the concept of
percentage change. The formula for percent increase is:

Percent Increase = (New Value - Original Value) / Original Value * 100.

In the first example, the original quantity of the item is 75 cents per pound, and it
increases to 81 cents per pound. The absolute increase in cost is calculated as:

Absolute Increase = New Value - Original Value = 81 - 75 = 6 cents.

Next, we determine the decimal representation of the increase:

Absolute Increase = 6 cents.

Since we are looking for the percent increase, we divide this absolute increase by the
original quantity:

Percent Increase = (6 cents / 75 cents) * 100 = 0.08 or 8%.

This calculation shows that the cost of the item increased by 8% percentage.

In the second example, when four feet are removed from a 12-foot board, the original
length is 12 feet. We need to find the decrease in length. The length removed is 4 feet.
Therefore, the decrease in length is:

Decrease in Length = Original Length - Removed Length = 12 - 4 = 8 feet.

Next, we calculate the percent decrease in length:

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Percent Decrease = (Decrease in Length / Original Length) * 100 = (8 / 12) * 100 = 66%.

Both calculations show how to calculate percent decrease based on original and new
values. Understanding these steps is crucial for effectively applying percentage
calculations in various contexts.
<EndOfLatent>

Example 3: At a supermarket, a certain item has increased from 75 cents per pound to 81
cents per pound. What is the percent increase in the cost of the item?

Solution:

Answer: There was an 8% increase in the cost of the item.

Example 4: Four feet are cut from a 12-foot board. What is the percent decrease in
length?

Solution:

<StartOfLatent>
To find the percent decrease in length, we start with the original length of the board,
which is 12 feet, and the length after cutting four feet, which is 8 feet. The formula
for percent decrease is given by the expression (original value - adjusted value) /
original value * 100%.

First, calculate the difference between the adjusted value and the original value:

8 feet - 12 feet = -4 feet

Next, divide this difference by the original value:

-4 feet / 12 feet = -0.3333

Now, to convert this decimal to a percentage, multiply by 100%:

-0.3333 * 100% = -33.33%

The result indicates that the length of the board decreased by approximately 33.33% of
its original length. This interpretation of the percent decrease is crucial in various
applications, such as assessing material usage in construction or evaluating changes in
inventory. The negative sign reflects the decrease, while the absolute value of the
calculation provides a clearer understanding of the severity of the change relative to
the original value. The final answer indicates a clear understanding of how percent
decreases are derived from the original and adjusted values.
<EndOfLatent>

Answer: There was a 33.3% decrease in length.

Summary: Percent increase and percent decrease are measures of percent change, which is
the extent to which something gains or loses value. Percent change is useful to help
people understand changes in a value over time. The formula for finding percent change
is:

Example G.3.3: Models made mistakes in the earlier iterations but corrected in later ones

Latent thought at 1st iteration
<StartOfLatent>
The problem requires determining the cost of two appliances: a washer and a dryer. The
costs are related by a linear equation, which can be derived from the information given.

To set up the equation, we define the costs: let the cost of the dryer be represented as
x. Consequently, the cost of the washer, being 91 dollars less than that of the dryer,
can be expressed as y = x + 91.

The total cost of both appliances is given as 659 dollars. This total can be represented
by the equation:

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

x + y = 659.

Substituting the expression for y into the equation gives:

x + (x + 91) = 659.

This combines the costs of the washer and dryer into one equation. Simplifying this
leads to:

2x + 91 = 659.

Next, we isolate the variable x by subtracting 91 from both sides:

2x = 659 - 91,
2x = 578.

Now, divide both sides by 2 to solve for x:

x = 578 / 2,
x = 289.

Thus, the cost of the dryer, which is represented by y, can be calculated as:

y = x + 91,
y = 289 + 91,
y = 380.

The conclusion is that the dryer costs 380 dollars. This approach demonstrates the
systematic use of algebraic representation and substitution to solve for unknown
variables in an equation involving linear relationships.
<EndOfLatent>

Latent thought at 2nd iteration
<StartOfLatent>
To solve for the cost of the dryer, start by defining the variables. Let x represent the
cost of the washer. Since the dryer costs 91 dollars more than the washer, we can
express the dryer's cost as x + 91.

Next, we have the total cost equation:
x + (x + 91) = 659.

This equation represents the basic principle of addition, where we combine the costs of
both washers and drainers to find the total cost.

Now, we simplify the equation:
x + x + 91 = 659,
which combines to:
2x + 91 = 659.

To isolate the cost variable, we first subtract 91 from both sides:
2x = 659 - 91,
which simplifies to:
2x = 568.

Next, we divide both sides by 2 to solve for x:
x = 568 / 2,
resulting in:
x = 284.

Therefore, the dryer costs 284 dollars. It is important to ensure the units are
consistent throughout the calculations to avoid errors, particularly when separating
everyday uses like shoes and utensils. This method exemplifies setting up an equation
based on known relationships and then applying algebraic operations to find unknowns.
<EndOfLatent>

Latent thought at 4th iteration
<StartOfLatent>

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

To find the amount of money spent on the dryer, we start by defining variables for the
costs of the washer and dryer. Let the cost of the washer be represented by x and the
cost of the dryer by y.

We know from the problem statement that the total cost of both items is 659. This gives
us the equation:

x + y = 659.

Next, we know that the washer costs 91 less than the dryer, which can be expressed as
the equation:

y = x + 91.

Now, we have a system of equations:

1. x + y = 659
2. y = x + 91.

To solve for one variable in terms of the other, we can substitute the second equation
into the first equation:

x + (x + 91) = 659.

This simplifies to:

2x + 91 = 659.

Next, we isolate 2x:

2x = 659 - 91.

Calculating the right side gives us:

2x = 568.

Now, we divide both sides by 2 to solve for x:

x = 568 / 2.

This results in:

x = 284.

Now that we have the cost of the washer, we can find the cost of the dryer by
substituting x back into the equation for y:

y = 284 + 91.

Calculating this gives us:

y = 375.

Thus, the dryer costs 375, and the washer costs 284.
<EndOfLatent>

2014-08-08T20:49:07-04:00
a washer and a dryer cost 659 combined. The washer costs 91 less than the dryer, how
much was the dryer?
washer --> x
dryer --> y

x + y = 659
y = x + 91

x + x + 91 = 659

2x = 659 - 91

<StartOfLatent>
[..omit..]

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

<EndOfLatent>

2x = 568 |:2

x = 284
y = x + 91 = 284 + 91 = 375

The dryer costs 375 and washer costs 284

* Brainly User
2014-08-08T20:52:05-04:00

G.4 FAILURE EXAMPLES OF BOOTSTRAPPED MODELS ON GSM8K
Here, we present examples of bootstrapped models (at the fourth iteration) that failed to solve math
word problems seemingly due to misunderstanding the math word problem and that were correctly
solved at earlier iterations. These examples serve as preliminary qualitative observations of the
potential side-effects of bootstrapping but not a rigorous analysis.

Example G.4.1: Failure of bootstrapped models in interpreting the math word problem

##Problem
Question: In a school activity, fifty-four students are to be separated into six groups
of equal size. If the activity requires 12 groups, how many more groups are needed to
form?
Final Answer:

<StartOfLatent><Prior>
To determine how many more groups are needed to form, we first need to understand the
current number of groups. There are 54 students, and we need to form 6 groups.

We start by calculating the current number of groups formed.
Since each group requires 12 students, we divide the total number of students by the
number of students per group:

54 students ÷ 12 students/group = 4.5 groups.

This means that 4 groups have been formed.

Next, we need to find out how many more groups are required to reach the total of 6
groups. We subtract the number of groups formed from the total number of groups needed:

6 groups - 4 groups = 2 more groups.

Thus, the answer is 2 more groups needed to form the desired number of groups.
<EndOfLatent>

The final answer is 2. I hope it is correct.

Example G.4.2: Failure of bootstrapped models in providing the proper answer

##Problem
Question: Mandy owes Benedict $100. They agreed to have monthly interest of 2%. If Mandy
was able to pay it after 3 months, how much should she give to Benedict?
Final Answer:

<StartOfLatent><Prior>
To determine how much Mandy should give to Benedict, we need to calculate the total
interest owed after 3 months. Mandy owes Benedict $100. The interest rate is 2%, which
means the interest for each month is calculated as follows:

Interest for the first month = 2% of $100 = 0.02 * 100 = $2.
Interest for the second month = 2% of $100 = 0.02 * 100 = $2.
Interest for the third month = 2% of $100 = 0.02 * 100 = $2.

Adding these amounts gives the total interest owed after 3 months:

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

Total interest = $2 + $2 + $2 = $6.

Since Mandy owes Benedict $100, the amount she should give to Benedict is the total
interest owed, which is $6.

Thus, the final answer is 6.
<EndOfLatent>

The final answer is 6. I hope it is correct.

Example G.4.3: Failure of bootstrapped models in converting to the final answer

##Problem
Question: Marcell and Beatrice are having a contest to see who can eat the most fruit
roll-ups, so they unroll as many as they can find. Unfortunately, someone makes a
mistake and Beatrice's was two roll-ups wide and 24 rolls up long while Marcell's was 3
roll-ups wide and 14 roll-ups long. If they both ate their entire amount, how many did
they eat on average?
Final Answer:

<StartOfLatent><Prior>
To find the average number of roll-ups eaten by Marcell and Beatrice, we first need to
calculate the total number of roll-ups each person ate. Marcell ate 2 roll-ups wide and
24 roll-ups long, while Beatrice ate 3 roll-ups wide and 14 roll-ups long.

Calculating the total roll-ups for Marcell:
Total roll-ups for Marcell = 2 roll-ups * 24 roll-ups = 48 roll-ups.

Calculating the total roll-ups for Beatrice:
Total roll-ups for Beatrice = 3 roll-ups * 14 roll-ups = 42 roll-ups.

Next, we sum the total roll-ups eaten by both:
Total roll-ups eaten = 48 roll-ups + 42 roll-ups = 90 roll-ups.

Now, to find the average number of roll-ups eaten, we divide the total roll-ups eaten
by the total number of roll-ups eaten:
Average roll-ups eaten = Total roll-ups eaten / Total roll-ups eaten = 90 roll-ups /
90 roll-ups = 1 roll-up.

Thus, the average number of roll-ups eaten by Marcell and Beatrice is 1 roll-up.

<EndOfLatent>

The final answer is 1. I hope it is correct.

65

