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Abstract

Text classification is a fundamental task in Natural
Language Processing (NLP). Short text classifi-
cation has recently captured much attention due
to its increased amount from various sources with
limited labels and its inherent challenges for its
sparsity in words and semantics. Recent studies
have adopted self-supervised contrastive learning
across different representations to improve per-
formance. However, most of the current models
face several challenges. Firstly, the augmentation
step might not be able to generate positive and
negative samples that are semantically similar and
dissimilar to the anchor respectively. Secondly,
the text data could be enhanced with external aux-
iliary information that might introduce noise to
the sparse text data. In addition, they are lim-
ited in capturing higher-order information such
as group-wise interactions. In this work, we pro-
pose a novel document simplicial complex con-
struction based on text data for a higher-order
message-passing mechanism. We enhance the
short text classification performance by contrast-
ing the structural representation with the sequen-
tial representation generated by the transformer
mechanism for improved outcomes and mitigated
issues. The proposed framework, Contrastive
Learning with Simplicial Convolutional Networks
(C-SCN), leverages the expressive power of graph
neural networks, models higher-order information
beyond pair-wise relations and enriches features
through contrastive learning. Experimental results
on four benchmark datasets demonstrate the capa-
bility of C-SCN to outperform existing models in
analysing sequential and complex short-text data.
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1. Introduction
Text classification is a fundamental task in Natural Lan-
guage Processing (NLP). It involves analysing the content
of texts and determining which predefined category they
belong to based on their representation. Unlike longer texts,
short texts have recently captured much attention, with an
increase in the number appearing in various sources, such
as social media, search snippets, and news feeds. However,
these short texts with a few words pose challenges to the
current models in generating effective representations and
are not usually labelled in real-world cases (Linmei et al.,
2019). Supervised learning on short-text classification has
gained significant attention and has been applied to different
tasks for web reviews (Pang & Lee, 2004), news feeds (Yao
et al., 2019), and medical information (Liu et al., 2020). On
the other hand, data labelling has been expensive, labour-
intensive and time-consuming. Few-shot learning has been
popular with low resources required by training on a few
labelled samples, either with or without pre-training. Fur-
thermore, graph models have been widely used to capture
complex relationships between text data’s structural, seman-
tic, and syntactic meanings. To address the label scarcity
issue, contrastive learning has been adopted to enhance per-
formance. Many researchers (Sun et al., 2022; Wen & Fang,
2023; Liu et al., 2024) have explored the effectiveness of
combining graph models and contrastive learning within the
scope of few-shot learning.

Although they have achieved successful outcomes, some
limitations and challenges still exist. Firstly, the data aug-
menting step and the negative sampling step of contrastive
learning might distort the semantic meaning and introduce
unnecessary noise. For example, removing graph com-
ponents is adopted as a data augmentation strategy, but
it might disrupt the text’s original meaning. An instance
from the Movie Review (MR) dataset (Pang & Lee, 2005):
“there’s not enough to sustain the comedy” while remov-
ing the word “not” reversely changes the meaning of this
short sentence. Furthermore, negative sampling of texts
with different syntaxes while similar semantics might be
designed to be pushed away from each other. Secondly,
some auxiliary information such as entities, latent topics,
and part-of-speech (POS) tags (such as nouns and verbs)
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might be added to graph models for language understanding
and enriching the limited available local context. However,
this step might introduce misinformation, such as pulling
documents that express opposite semantics but similar top-
ics closer. Lastly, graph models are mathematically limited
in modelling higher-order features, such as group-wise in-
teractions among a few nodes and edges expressed in terms
of phrases. For example, the short sentence “It is what it is”
uses repetition to emphasise the acceptance of the status quo.
At the same time, graph models with only nodes and edges
learn pairwise interaction. They need to extend the number
of layers in order for words to incorporate the meaning of
other words further apart. Group-wise phrase “it is” needs
to be linked with “what” to model such repetition.

To address the challenges mentioned above, a novel model
combining higher-order features with contrastive learning
is proposed in this paper called Contrastive Learning with
Simplicial Convolutional Networks (C-SCN) for short-text
classification tasks. Specifically, SCN adopts simplicial
complex to robustly model richer and more complex in-
formation for better document understanding. Document
simplicial complexes are firstly constructed based on text
data, and respective features are defined for simplexes of
different complexities. We further integrate the features
into an inductive message-passing mechanism, considering
long-range structural information for individual document
simplicial complexes. Furthermore, contrastive learning
is embraced to compare the structural representation from
SCN and sequential representation from the transformer
model so that the power of both sides can be combined for
better performance in a few-shot learning setting.

Our work’s key contributions are as follows. Firstly, we pro-
pose the construction of simplicial complexes, an important
concept in algebraic topology, based on text data for the
first time to the best of our knowledge and define features
on 0-simplexes, 1-simplexes and 2-simplexes in the context
of short-text classification in the message-passing mecha-
nism of SCN. Secondly, we extend SCN with contrastive
learning, such as C-SCN, where the power of sequential
representation from the transformer model is integrated to
solve the existing limitations and challenges. Lastly, the ex-
periment with C-SCN in benchmark short text classification
tasks demonstrates better results than competitive baseline
models in the few-shot setting.

The remainder of the paper is organised as follows: Sec-
tion 2 reviews the literature on graph neural networks, con-
trastive learning, and neural networks on simplexes. Section
3 outlines the proposed model structure for message passing
on higher-order structures and contextualises the methods
in text classification. Section 4 introduces four short text
classification task datasets from various domains used in the
experiments. Section 5 presents the performance metrics

compared with other models and ablation studies. Finally,
Section 6 concludes the work and proposes future direc-
tions.

2. Literature Review
Graph neural networks (GNN) are powerful deep learning
models to model representations of structural data (Scarselli
et al., 2009). Through a message-passing mechanism, fea-
tures of nodes and edges are aggregated in the neighbour-
hood formed by components in the local document. Texts
could be used to construct different types of graphs, such as
heterogeneous graphs (Yao et al., 2019), knowledge graphs
(Ye et al., 2019), dynamic graphs (Chen et al., 2020), and
hypergraphs (Ding et al., 2020). Early graph neural net-
works, such as Graph Convolutional Networks (GCN) (Kipf
& Welling, 2017), Graph Isomorphism Networks (GIN)
(Xu et al., 2019) and Graph Attention Networks (GAT)
(Veličković et al., 2018), are integrated with the text graphs
for improved results. Recently, model fusion has been
adopted by (Lin et al., 2021) to jointly train the transformer
model BERT with graph models with text data. On the other
hand, graph models are limited in modelling higher-order
information in the group-wise form.

Contrastive learning, unlike traditional supervised learning,
where a label is required for training, is a self-supervised
technique where augmented views of the same object are
used to train a model which could gather positive samples
closer and negative samples further apart (Jaiswal et al.,
2021). With downstream tasks, contrastive learning has
been actively applied in short-text classification scenarios
with few-shot settings. (Sun et al., 2022) integrates the het-
erogeneous graph attention mechanism with neighbouring
contrastive learning to enrich the terms beyond the docu-
ment and extend the relations among documents; (Wen &
Fang, 2023) pre-trains text and graph encoders followed by
few-shot and zero-shot fine-tuning process; (Liu et al., 2024)
innovates in augmented view of graph features through the
singular value decomposition (SVD) of the feature matrix
and in assigning weak labels to document through k-means
clustering. On the other hand, these current methods require
a large amount of resources in preprocessing in the form of
pre-training or enriching text with additional information,
such as entity recognition and POS tagging processes. The
augmented view in contrastive learning might also introduce
unnecessary noise and misleading information.

Topological deep learning combines the techniques from
deep learning and topological tools that structure data man-
ifolds (Zia et al., 2024). Topological representations, in-
cluding cell complexes (Hajij et al., 2020; Giusti et al.,
2023; Bodnar et al., 2022), simplicial complexes (Bodnar,
2022; Schaub et al., 2022), combinatorial complexes (Hajij
et al., 2023), sheaves (Hansen & Ghrist, 2019) and hyper-
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graphs (Feng et al., 2018; Bai et al., 2021), model not only
pair-wise interactions that are present on a graph, but also
higher-order interactions among three elements or more.
Algebraic topology-based methods have achieved notewor-
thy results in protein analysis (Xia & Wei, 2014; Sverris-
son et al., 2021; Wee & Xia, 2022), virus analysis (Chen
et al., 2022), drug design (Cang & Wei, 2017) and mate-
rial property classification (Reiser et al., 2022; Townsend
et al., 2020), where topological representations demonstrate
their robustness against deformation and noise. Extending
from algebraic topology-based methods, TDL employs the
message-passing mechanism on higher-order components,
where the communication of information has been propa-
gated through any neighbourhood relations (Roddenberry
et al., 2021; Bodnar, 2022; Hajij et al., 2023). However,
there is a lack of studies on non-time-series sequential anal-
ysis with TDL on the text data, and we aim to explore its
usage in the new field.

3. Methods
3.1. Simplicial Convolutional Networks (SCN)

We first provide the necessary details related to constructing
document simplicial complexes, followed by the message-
passing mechanism on the higher-order structures.

Definition. (Abstract Simplicial Complex) An abstract sim-
plicial complex is a family of sets K that satisfies the con-
dition: for any set σ ∈ K, every non-empty finite subset
σ′ ⊆ σ must also be in K. Each element of K is called a
simplex. A set σ is referred to as a k-simplex if its cardi-
nality |σ| = k + 1, denoted as σk. All (k − 1)-simplexes,
σk−1, are faces of σk if they are subsets of σk, while all
(k + 1)-simplexes, σk+1, are cofaces of σk if they contain
σk as one of their faces.

Denote Kk the set of k-simplexes for K. K0 will be referred
to as the set of 0-simplexes (nodes). K1 refers to the set of
1-simplexes (edges) and K2 refers to the set of 2-simplexes
(“filled” triangles). For the text classification task, we con-
struct the document as a simplicial complex with initial rep-
resentations of 0-simplexes, 1-simplexes, and 2-simplexes,
as shown in Figure 1. We embrace the bag-of-word model
(Harris, 1954) and treat each word and punctuation as dis-
tinct 0-simplexes initialised from GloVe embeddings (Pen-
nington et al., 2014). The three types of direction of 1-
simplexes follow the sequential order of the tokens in each
text as shown in Figure 1. 2-simplexes are formed when
any three words form a “filled” triangle. We differentiate
their nine identities by the neighbouring 1-simplexes for the
2-simplexes to be formed. An example of the 1-simplex est
is shown in Figure 2 where the types of 2-simplex formed
are determined by the 1-simplex between s and o and the
1-simplex between t and o. It is to be noted that the self-

Figure 1. One document simplicial complex constructed for a doc-
ument example from the Snippets dataset (Phan et al., 2008) with
different types of flow directions. Words and punctuation are to-
kenised into individual 0-simplexes (nodes). 1-simplexes (edges)
are formed if 0-simplexes are next to each other with directions
in chronological order. Lastly, 2-simplexes (triangles) are con-
structed if the three words form a “filled” triangle. Three types of
1-simplexes are illustrated: (1) Forward 1-simplexes are the ones
following the chronological order which points to the word that first
appears in the text; (2) Backward 1-simplexes are 1-simplexes
pointing to the word which is used before and referenced again;
(3) Self-loop 1-simplexes are formed when 1-simplexes connect
the same word.

loop is not considered part of the 2-simplex formation since
we consider unique 0-simplexes appearing in texts. One
target 1-simplex could be part of multiple 2-simplexes. The
1-simplex and 2-simplex embeddings will be initialised ran-
domly, and all embedding matrices are optimised during
training.

The message-passing mechanism leverages the connectivity
information in simplicial complexes. For a simplex σk, we
denote its boundary adjacent simplexes B(σk) as the set
of lower-dimensional simplexes σk−1 on the boundary of
σk, its co-boundary adjacent simplexes C(σk) as the set of
higher-dimensional simplexes σk+1 with σk on their bound-
aries, its lower adjacent simplexes N↓(σk) as those with
the same dimension as σk that share a lower-dimensional
simplex σk−1 on their boundary, and its upper adjacent
simplexes N↑(σk) as those with the same dimension as σk

that are on the boundary of the same higher-dimensional
simplex σk+1 (Bodnar et al., 2021).

The hidden representation of simplexes will be initialised
with vectors xσi

for all σk ∈ Kk, k ∈ {0, 1, · · · ,K} and we
set K = 2. That means at the initial state, the layer represen-
tation for simplex σk is h(0)

σk = xσk
for k ∈ {0, 1, · · · ,K}.

The messages are then aggregated according to the neigh-
bourhood in which the simplexes sit: at the state ℓ+1 and for
the target k-simplex σk, the message function M

(ℓ+1)
k col-

lects information from neighbouring simplexes of the same
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Figure 2. 2-simplexes types for a 1-simplex with source 0-simplex
s and target 0-simplex t. For the 1-simplex est with a source 0-
simplex s, a target 0-simplex t and the defined direction from s
to t, nine types of 2-simplexes could define the information flow
through the 2-simplex. For a 0-simplex o that forms a 2-simplex
with the target 1-simplex est, there exist three types of 1-simplexes
between 0-simplex o and 0-simplex s, as well as between 0-simplex
o and 0-simplex t: into, out of or bidirectional, resulting in nine
types of 2-simplex with respect to the 1-simplex est.

dimension σ′
k ∈ N (σk) where N (σk) = N↓(σk)∪N↑(σk),

those of one dimension lower σk−1 ∈ B(σk) and those of
one dimension higher σk+1 ∈ C(σk) as illustrated in Equa-
tion (1). In the context of text classification, we adopt the
message function as a multi-layer perception (MLP) for both
0-simplexes σ0 ∈ K0 and 1-simplex σ1 ∈ K1 updates. The
message passing is set to collect information from neigh-
bouring simplexes and co-boundary adjacent simplexes. For
the aggregation of all the components in the document sim-
plicial complex, we adopt row summation as illustrated in
Equation (2).

For individual σk ∈ Kk and k ∈ {0, 1, · · · ,K},

m(ℓ+1)
σk

= AGG
σ′
k∈N (σk)

σk−1∈B(σk)
σk+1∈C(σk)

(
ϕ
(
M

(ℓ+1)
k (h

(ℓ)
σ′
k
, h(ℓ)

σk−1
, h(ℓ)

σk+1
)
))

(1)

=
∑

σ′
k∈N (σk)

σk+1∈C(σk)∩C(σ′
k)

ϕ
(

MLP(ℓ+1)
k

(
h
(ℓ)
σ′
k
+ h(ℓ)

σk+1

))
(2)

where for k = 0, we do not consider simplex of dimension
(n− 1), h(ℓ)

σk refers to the simplex σk’s feature at the state
ℓ. h(ℓ)

σk+1 is set to a zero vector if C(σk) ∩ C(σ′
k) is empty.

MLP(ℓ+1) refers to trainable multi-layer perception at the
state ℓ+ 1.

Similarly to the GNN framework, the update function
UPDATE(ℓ+1) will synchronise the representation of the
k-simplex to the new state, as shown in Equation (3), and
we adopt the Gated Recurrent Unit (GRU) for the text clas-
sification task.

h(ℓ+1)
σk

= UPDATE(ℓ+1)
k (h(ℓ)

σk
,m(ℓ+1)

σk
) (3)

= GRU(ℓ+1)
k (h(ℓ)

σk
,m(ℓ+1)

σk
) (4)

Lastly, the readout function READOUT will obtain the rep-
resentation for the document simplicial complex by pooling
k-simplexes’ features of the final state L in Equation (5). A
global self-attention mechanism (Lin et al., 2017) is specifi-
cally applied for text data, summarising the 0-simplexes and
1-simplexes. For the final layer representation hL

K of the doc-
ument simplicial complex with 0-simplexes σ0 ∈ K0 and
1-simplexes σ1 ∈ K1, its individual simplex attention score
ασk

is derived with two multi-layer perceptions without bias
denoted by W1 and W2. The final simplex representation
for the document simplicial complex, hL

K, is hence the sum-
mation of the attention score multiplied by the respective
final simplex features hL

σk
for k ∈ {0, 1}.

hL
K = READOUT

(
{h(L)

k |k ∈ {0, 1, · · · ,K}}
)

(5)

=

( ∑
σ0∈K0

ασ0
hL
σ0

)
⊕

( ∑
σ1∈K1

ασ1
hL
σ1

)
(6)

ασk
=

exp
(
tanh(W1h

L
σk
) ·W2

)∑
σ
′
k∈K0

exp
(

tanh(W1hL
σ
′
k

) ·W2

) (7)

where h
(L)
k refers to the final collective representation for

all σk ∈ Kk. Finally, a linear layer with a softmax classifier
will transform the results to the same dimension as the label
set and make predictions. A summary of the proposed SCN
framework is illustrated in Figure 3. With the input sentence
“a thriller without a lot of thrills.”, a simplicial complex
could be constructed with the following components. For
0-simplexes, we have matches v1: “a”, v2: “thriller”, v3:
“without”, v4: “lot”, v5: “of”, v6: “thrills”, and v7: “.”. For
1-simplexes, e1, e2, e4, e5, e6, e7 are forward edges connect-
ing two words, and e3 is a backward edge between “without”
and “a”. Lastly, a 2-simplex τ is a type-4 triangle formed by
the 1-simplexes connecting among the words “a”, “thriller”
and “without”.

Assuming message functions are fully connected neural
networks, the SCN could be evaluated with three compo-
nents: feature transformation in neural networks, neigh-
bourhood aggregation and non-linear activation. Assum-
ing that all the layers are of the same size F and the em-
bedding size is fixed with F for 0-simplexes, 1-simplexes
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Figure 3. Message-passing mechanism in Simplicial Convolutional Networks (SCN) up to two-dimension. The above figure illustrates
an example of a simplicial complex for a seven-token sentence with a message-passing mechanism that collects neighbouring information
from the same dimension, one dimension lower and one dimension higher. The input simplicial complex K consists of 0-simplexes
v1, · · · , v7, 1-simplexes e1, · · · , e7 and the 2-simplex τ . Pre-defined and trainable features of different simplexes are used as input on the
left-hand side. SCN leverages neighbouring, boundary and co-boundary simplexes to carry feature information and update the target
0-simplexes and 1-simplexes separately in different layer states. Finally, the features of different simplexes are read out for downstream
tasks.

and 2-simplexes, the features are initialised from all three
kinds of simplexes and the dense matrix multiplication takes
O(|K0|F 2 + |K1|F 2 + |K2|F 2) = O(|K|F 2). The aggre-
gation and update step will take O(|K1|F 2 + |K2|F 2) for
0-simplex and 1-simplex updates. Non-linear activation is
an element-wise function which will take O(|K0|+ |K1|).
As a result, over L layers, the final time complexity is
O(|K0|+ |K1|+ |K1|F 2+ |K2|F 2+ |K|F 2) = O(|K|F 2).

3.2. SCN with Contrastive Learning

To alleviate the abovementioned challenges with contrastive
learning, we adopt a dual-encoder framework inspired by
(Wen & Fang, 2023) where we generate text representations
from transformer blocks and graph representations from
SCN in parallel; hence, the training process could optimise
the contrastive learning and classification task as shown in
Figure 4.

We employ the BERT model (Devlin et al., 2019) as the text
encoder and SCN encoder that digest the document data
xdoc. We denote Zt, Zs ∈ Rγ as the text encoder and SCN
encoder output. MLP(•) is a linear layer that processes the
output to the target space’s dimension γ.

Zt = MLPt(BERT(xdoc)), Zs = MLPsc(SCN(xdoc))
(8)

The constrastive loss is derived by the cross-entropy loss
(CE) between the normalised (norm) text encoder output
and the normalised SCN encoder.

Lcl = CE(norm(Zt), norm(Zs)) (9)

At the same time, we include the training objective against
the ground-truth label y, which is a linear interpolation of
the text encoder and SCN encoder after transformation to
the same dimension as the label space (•̃) inspired by (Lin
et al., 2021).

Z =
1

2

(
softmax(Z̃s) + softmax(Z̃t)

)
(10)

Llabel = CE(Z, y) (11)

The final loss function is the integration of the contrastive
loss with the classification loss.

L = Llabel + η · Lcl (12)

where η is a control parameter.
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Figure 4. The Contrastive Learning with SCN (C-SCN) framework. The transformer encoder and SCN encoder will generate text
representation Zt and document simplicial complex representation Zs respectively. The learned features will be used for contrastive
learning by comparing themselves. Meanwhile, the two representations will contribute to the classification task with equal weights. As a
result, the final loss L includes the contrastive loss Lcl and Llabel.

Table 1. Summary statistics for text Datasets.
Dataset Twitter MR Snippets StackOverflow
# Doc 10,000 10,662 12,340 20,000
# Train 40 40 160 400

Train ratio 0.40% 0.38% 1.30% 2%
# Tokens 12,229 18,337 29,422 11,161

Avg. Length 9.3 20.4 18.0 9.3
# Class 2 2 8 20

Avg. # 1-simplexes 21.87 37.79 30.23 17.24
Avg. # 2-simplexes 0.24 0.74 3.24 0.21

4. Experiments
4.1. Datasets

The experiments are conducted on four datasets for short
text classification tasks. The datasets are briefly introduced
below, and a summary table is reported in Table 1. We
adopt the same data preprocessing techniques as (Wang
et al., 2017) with slight modifications to include punctua-
tion, keep the hashtag messages and add self-connection.
Twitter (Bird et al., 2009) is a binary classification dataset
for sentiments “positive” and “negative” collected by Nat-
ural Language Toolkit. MR (Pang & Lee, 2005) contains
movie review documents from Rotten Tomato with binary
sentiment categories. Snippets (Phan et al., 2008) contains
Google web search text data with eight categories: “busi-
ness”, “computer”, “health”, “sports”, “culture and art”,
“education and science”, “engineering”and “politics and so-
ciety”. StackOverflow (Hamner et al., 2012) contains ques-
tion text from StackOverflow, and we choose the samples
as (Xu et al., 2017) for 20,000 questions with 20 categories.

4.2. Baseline Models

We compare C-SCN with other various types of benchmark
language models for short-text classification as reported
by (Liu et al., 2024). Following with few-shot setting for

short text classification framework ((Sun et al., 2022; Wen
& Fang, 2023; Liu et al., 2024)), from each category, 20
samples are selected randomly to form the train set, another
20 samples are selected randomly to form the validation set,
and the rest are included in the unseen test set.

Traditional Language Models: TF-IDF (Rajaraman & Ull-
man, 2011) refers to the term frequency-inverse document
frequency, and it measures the importance of word tokens
to the document. The features generated are passed in a sup-
port vector machine (SVM) (Crammer & Singer, 2002) for
the classification task. LDA (Blei et al., 2003) refers to La-
tent Dirichlet Allocation and extracts latent topics from the
text through probabilistic models. The features are trained
with SVM for short-text classification. PTE (Tang et al.,
2015) refers to Predictive Text Embedding, which utilises
heterogeneous text networks for embeddings.

Machine Learning Models: CNN (Kim, 2014) refers to Con-
volutional Neural Networks with pre-trained GloVe word
embeddings (Pennington et al., 2014). LSTM (Liu et al.,
2016), which refers to Long-Short Term Memory, is trained
GloVe embeddings. BERT (Devlin et al., 2019), which
refers to the Bidirectional encoder representations from
transformers and its modified version RoBERTa (Zhuang
et al., 2021) leverages pre-training through self-supervised
learning and could be fine-tuned to specific downstream
tasks.

Graph-based Language Models: TL-GNN (Huang et al.,
2019) refers to text-level GNN, which adopts small win-
dows for texts to focus on local features. TextGCN (Yao
et al., 2019), Text Graph Convolutional Network, constructs
individual text graphs with document nodes based on word
co-occurrences and word-document relations. TextING
(Zhang et al., 2020) adopts individual text graphs and in-
ductively trains the model. HyperGAT (Ding et al., 2020),
Hypergraph Attention Networks enhances the expressive
power of graphs on text classification by including high-
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order information and reducing computational resources
needed for training. STGCN (Ye et al., 2020), which refers
to the short text graph convolutional network, integrates
BERT and the bidirectional LSTM in graph models to en-
hance performance on short texts. DADGNN (Liu et al.,
2021), Deep Attention Diffusion Graph Neural Networks,
applies attention diffusion and decoupling techniques target-
ing some limitations of GNN such as oversmoothing and
restricted receptive field.

Graph-based Models with external knowledge beyond docu-
ments or Contrastive Learning: STCKA (Chen et al., 2019)
refers to Short Text Classification with Knowledge-powered
Attention, which utilises attention mechanisms and entity
conceptualisation to enhance text features. HGAT (Linmei
et al., 2019) is known as Heterogeneous Graph Attention
Networks, and its enhanced version incorporates topic and
entity beyond the texts for enriched graphs. SHINE (Wang
et al., 2021) is a hierarchical heterogeneous graph represen-
tation learning method for short text classification which
executes entity and POS tagging for various types of node
features. NC-HGAT (Sun et al., 2022) integrates HGAT
with neighbouring contrastive learning. GIFT (Liu et al.,
2024) is the graph contrastive learning for short text classifi-
cation that employs SVD and k-means clustering methods
in contrastive learning.

4.3. Implementation Details

We include the pseudo-code for C-SCN to enhance the re-
producibility in Algorithm 1.

The 0-simplex embeddings are initialised with GloVe em-
beddings (Pennington et al., 2014). The embedding matrices
for 1-simplexes and 2-simplexes are randomly initialised
and optimised to size 128. The learning rate is 1×10−4, and
the batch size is 128. A dropout rate of 50% is implemented
to reduce the complexity of the model and prevent overfit-
ting problems. The model is trained with the PyTorch Geo-
metric1 package for 100 epochs with early stopping where
the validation loss does not improve for ten epochs. The
best weights are obtained from the model with the best vali-
dation accuracy. Cross-entropy loss is used with an Adam
optimiser. The experiments are conducted ten times with
NVIDIA RTX A6000 with 48GB of memory. We compare
the results with strong baseline models with ten iterations
of different training, validation and test sets. The average
test accuracies and F1 scores are used for comparison.

Unlike many graph models, simplicial-complex-based SCN
is inductive and models message passing among neighbours
of different complexities. The message-passing mechanism
is simplified to sparse-matrix multiplication without explicit

1https://pytorch-geometric.readthedocs.
io/en/latest/index.html

Algorithm 1 Algorithm Pseudo Code for C-SCN.
Input: Text data with words, punctuations and label as
shown in Figure 3.

Simplicial Complex Construction
Tokenised words from the document data xdoc;
Tokenised unique 0-simplex σ0 ∈ K0;
1-simplex indices following the chronological order of to-
kens σ1 ∈ K1;
1-simplex features tokenised to one of the types: forward,
backward, self-loop;
2-simplex features tokenised by the flow directions of com-
ponents;
/* Add higher-order simplexes if

needed. */

Model Construction
Parameters:
Embedding matrices for 0-simplexes, 1-simplexes and 2-

simplexes: E0, E1 and E2;
Number of layers: L;
Message-passing mechanism for 0-simplexes and 1-
simplexes following Equation 2 and Equation 3: MP0,
MP1;

Attention mechanism for 0-simplexes and 1-simplexes fol-
lowing Equation 5: Attn0, Attn1;

Activation function: ϕ;
Transformer model: Transt;
Linear layers that process the output of the transformer and

the SCN to the label space: MLPt, MLPs.
Initialise features: h

(0)
σ0 = E0(σ0)∀σ0 ∈ K0; h

(0)
σ1 =

E1(σ1)∀σ1 ∈ K1; h
(0)
σ2 = E2(σ2)∀σ2 ∈ K1.

for ℓ = 1 to L− 1 do
h
(ℓ)
σ1 = MP1(h

(ℓ−1)
σ1 ,h

(ℓ−1)
σ2 );

h
(ℓ)
σ0 = MP0(h

(ℓ−1)
σ0 ,h

(ℓ−1)
σ1 ).

h
(L)
K =

∑
σ1∈K1

Attn1(h
(L)
σ1 )⊕

∑
σ0∈K0

Attn0(h
(L)
σ0 );

Zt = MLPt(Transt(xdoc)); Zs = MLPs(h
(L)
K );

Z = 1
2 (softmax(Zs) + softmax(Zt));

return ŷ = Z, Zs, Zt.
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source and target 0-simplex materialisation. This means that
the adjacency matrices will not explicitly record the relation-
ship among all the 0-simplexes. Similarly to sparse matrix
expression, the 1-simplex index records the relationship be-
tween source and target 0-simplexes. The SCN model could
digest unseen documents in the test set with its structural
information and 0-simplex attributes.

5. Results and Discussion
5.1. Results

The experiment results are reported in Table 2. Compared
with other competitive models, C-SCN has achieved the
best test accuracies and F1 scores, indicating the model’s
ability to capture sentiments and sequential information in
text documents.

We attribute the better performance to the following anal-
ysis. Firstly, we adopt SCN, a higher-order framework
extending the expressive power of GNN. Features assigned
to 0-simplexes, 1-simplexes and 2-simplexes could better
represent the sentence structure and are generalised well
across different contexts. The involvement of 1-simplexes
and 2-simplexes in the message-passing mechanism also
expands the receptive fields of individual 0-simplexes where
long-range information can be transmitted through shallow
neural network layers, thereby enhancing the impact of 0-
simplexes on the entire document. The self-attentive readout
function connects 0-simplexes and 1-simplexes, creating ex-
pressive document-level summaries. This has promoted the
SCN to perform the best in the benchmark datasets among
the graph-based models without external information or
contrastive learning. Secondly, the contrastive learning
framework allows C-SCN to capture both structural and
textual information in the few-shot setting. Both structural
representation and sequential representation are treated as
augmented views of each other. This has contributed to pre-
venting helpful information from being removed, avoiding
introducing noise or external information and combining
the capabilities of both models.

In addition, we see that the large language models, such
as BERT and RoBERTa, which leverage numerous pre-
training, are not performing favourably with a few available
labels. In contrast, graph-based models with external aux-
iliary knowledge or contrastive learning, including HGAT,
SHINE, NC-HGAT, and GIFT, could achieve competitive
results. External auxiliary knowledge, such as entity recog-
nition and POS tagging, might help enrich the semantic and
syntactic meaning of the original text. Still, it might be in-
troducing extra noise and unnecessary messages to the text
data, as shown in the deterioration of results from STGCN to
HGAT. Furthermore, contrastive learning with perturbation
of the graphs might inject misinformation about the text’s

Figure 5. Hyperparameter η sensitivity across different datasets.

meaning, explaining the difference between NC-HGAT and
GIFT. Furthermore, introducing the global network within
the small train set where the connectivity or clustering effect
is explored might not be significant. This could explain why
our model could outperform SHINE and GIFT.

5.2. Ablation Studies

Ablation studies are conducted to remove individual compo-
nents to verify the capability of higher-order simplexes and
contrastive learning in enhancing text understanding. The
results are reported in Table 3. It is observed that removing
contrastive learning deteriorates the results for both SCN
and BERT. Regarding higher-order simplexes, the removal
of any component might deprecate the test accuracies and
F1 scores across all datasets. Moreover, the inclusion of
1-simplexes followed by the inclusion of 2-simplexes im-
proves the results respectively, highlighting the importance
of higher-order simplicial complexes in document under-
standing.

The hyperparameter sensitivity of η is investigated across
different datasets, and the results are visualised in Figure 5.
The control parameter η indicates the weights of contrastive
loss in the model training process. We could observe that
there are various types of impact on test performance. In
general, the test performance varies between the value 0
(no contrastive loss) and 1 (higher weight of contrastive
loss), while η = 1 results in lower performance compared
to the case of no contrastive loss. One explanation for such
variation could be the need to balance the focus between
achieving the correct label and synchronising model weights
between SCN and the transformer model. In our experi-
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Table 2. Results of test accuracy (%) and test F1-score (%) for short text classification where the best results based on 95% confidence in
the pairwise t-tests are in bold, and the second-best results are underlined.

Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
TF-IDF 53.62 52.46 54.29 48.13 64.70 59.17 59.19 59.06

LDA 54.34 53.97 54.40 48.39 62.54 56.4 60.19 59.52
PTE 54.24 53.17 55.02 52.62 63.10 59.11 62.56 61.32
CNN 57.29 56.02 59.06 59.01 77.09 69.28 63.75 61.21

LSTM 60.28 60.22 60.89 60.70 75.89 67.72 61.62 60.49
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26

RoBERTa 56.02 52.29 52.55 51.30 79.55 79.02 69.91 70.35
TL-GNN 59.02 54.56 59.22 59.36 70.25 63.29 62.09 61.91
TextGCN 60.15 59.82 59.12 58.98 77.82 71.95 67.02 66.51
TextING 59.62 59.22 58.89 58.76 71.10 70.65 65.37 64.63

HyperGAT 59.15 55.19 58.65 58.62 70.89 63.42 63.25 62.10
DADGNN 59.51 55.32 58.92 58.86 71.65 70.66 66.26 65.10

STCKA 57.56 57.02 53.25 51.19 68.96 61.27 59.72 59.65
STGCN 64.33 64.29 58.25 58.22 70.01 69.93 69.23 69.10
HGAT 63.21 57.02 62.75 62.36 82.36 74.44 67.35 66.92
SHINE 72.54 72.19 64.58 63.89 82.39 81.62 73.05 72.73

NC-HGAT 63.76 62.94 62.46 62.14 82.42 74.62 67.59 67.02
GIFT 73.16 73.16 65.21 65.16 83.73 82.35 83.07 82.94
SCN 66.13 67.25 61.15 61.93 76.13 75.66 76.85 74.04

C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

Table 3. Results of test accuracy for ablation studies. “C-SCN - 0-simplex” means the 1-simplexes and 2-simplexes are both removed in
the model, whereas “C-SCN - 1-simplex” refers to the removal of 2-simplexes from the model.

Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26
SCN 66.13 67.25 61.15 61.93 76.13 75.66 76.85 74.04

C-SCN - 0-simplex 74.50 74.78 67.48 68.27 84.58 85.13 82.79 82.36
C-SCN - 1-simplex 74.91 75.41 68.54 68.77 84.75 85.32 83.08 82.58

C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87

ments, a grid search is conducted for the best performance
for the best η values.

6. Conclusion
In conclusion, we propose Contrastive Learning with Simpli-
cial Convolutional Networks (C-SCN), which incorporates
higher-order information for sequence analysis and is ap-
plied in short text classification tasks. The model constructs
document simplicial complexes and incorporates the higher-
order simplexes’ message passing with a self-attention read-
out. Furthermore, we integrate the transformer model to
generate augmented views in the contrastive learning frame-
work. Extensive experiments that simulate the lack of la-
bel situation in a few-shot setting indicate that our model

leverages advantages from both structural and sequential
representation, learns long-range information and enhances
textual understanding with contextualised 1-simplexes and
2-simplexes during training.

In the future, we would like to explore the interpretability of
higher-order simplexes and their roles in text understanding.
The impact of the number of 1-simplexes and 2-simplexes
on the performance of C-SCN is also worth attention, and
it could be more inspected within the context of longer
documents. Leveraging SCN’s expressiveness in sequential
analysis could have more applications in other fields, such
as recommender systems and process mining.
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main beneficial to society and uphold data privacy.
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Guzmán-Sáenz, A., Ramamurthy, K. N., Birdal, T., Dey,
T. K., Mukherjee, S., Samaga, S. N., Livesay, N., Wal-
ters, R., Rosen, P., and Schaub, M. T. Topological deep
learning: Going beyond graph data, 2023.

Hamner, B., Fullerton, D., Montrose, K., Chernoff, R., and
Cole, W. Predict closed questions on stack overflow, 2012.
URL https://kaggle.com/competitions/
predict-closed-questions-on-stack-overflow.

10

https://kaggle.com/competitions/predict-closed-questions-on-stack-overflow
https://kaggle.com/competitions/predict-closed-questions-on-stack-overflow


Contrastive Learning with Simplicial Convolutional Networks for Short-Text Classification

Hansen, J. and Ghrist, R. Toward a spectral theory of cellular
sheaves. Journal of Applied and Computational Topology,
3(3-4):315–358, 2019.

Harris, Z. S. Distributional structure. WORD, 10(2-3):
146–162, 1954.

Huang, L., Ma, D., Li, S., Zhang, X., and Wang, H. Text
level graph neural network for text classification. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3444–3450. Association for Com-
putational Linguistics, 2019.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and
Makedon, F. A survey on contrastive self-supervised
learning. Technologies, 9(1), 2021.

Kim, Y. Convolutional neural networks for sentence classifi-
cation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP),
pp. 1746–1751. Association for Computational Linguis-
tics, October 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Lin, Y., Meng, Y., Sun, X., Han, Q., Kuang, K., Li, J., and
Wu, F. BertGCN: Transductive text classification by com-
bining GNN and BERT. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pp.
1456–1462. Association for Computational Linguistics,
2021.

Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B.,
Zhou, B., and Bengio, Y. A structured self-attentive
sentence embedding. In International Conference on
Learning Representations, 2017.

Linmei, H., Yang, T., Shi, C., Ji, H., and Li, X. Heteroge-
neous graph attention networks for semi-supervised short
text classification. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4821–4830,
Hong Kong, China, November 2019. Association for
Computational Linguistics.

Liu, P., Qiu, X., and Huang, X. Recurrent neural network for
text classification with multi-task learning. In Proceed-
ings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, pp. 2873–2879. AAAI
Press, 2016.

Liu, X., You, X., Zhang, X., Wu, J., and Lv, P. Tensor graph
convolutional networks for text classification. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, pp. 8409–8416. AAAI Press, 2020.

Liu, Y., Guan, R., Giunchiglia, F., Liang, Y., and Feng, X.
Deep attention diffusion graph neural networks for text
classification. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp.
8142–8152. Association for Computational Linguistics,
2021.

Liu, Y., Huang, L., Giunchiglia, F., Feng, X., and Guan,
R. Improved graph contrastive learning for short text
classification. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(17):18716–18724, Mar. 2024.

Pang, B. and Lee, L. A sentimental education: Sentiment
analysis using subjectivity summarization based on mini-
mum cuts. In Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, pp. 271–278.
Association for Computational Linguistics, 2004.

Pang, B. and Lee, L. Seeing stars: Exploiting class relation-
ships for sentiment categorization with respect to rating
scales. In Proceedings of the ACL, 2005.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pp.
1532–1543, 2014.

Phan, X.-H., Nguyen, L.-M., and Horiguchi, S. Learning
to classify short and sparse text & web with hidden top-
ics from large-scale data collections. In Proceedings of
the 17th International Conference on World Wide Web,
WWW ’08, pp. 91–100, New York, NY, USA, 2008. As-
sociation for Computing Machinery.

Rajaraman, A. and Ullman, J. D. Data Mining, pp. 1–17.
Cambridge University Press, 2011.

Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou,
C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H.,
Sommer, T., and Friederich, P. Graph neural networks
for materials science and chemistry. Communications
Materials, 3(1):93, 2022.

Roddenberry, T. M., Glaze, N., and Segarra, S. Princi-
pled simplicial neural networks for trajectory prediction.
In Proceedings of the 38th International Conference on
Machine Learning, volume 139, pp. 9020–9029. PMLR,
2021.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

11



Contrastive Learning with Simplicial Convolutional Networks for Short-Text Classification

Schaub, M. T., Seby, J.-B., Frantzen, F., Roddenberry, T. M.,
Zhu, Y., and Segarra, S. Signal processing on simplicial
complexes. In Higher-Order Systems. Understanding
Complex Systems, pp. 285–309. Springer, Cham, 2022.

Sun, Z., Harit, A., Cristea, A. I., Yu, J., Shi, L., and
Al Moubayed, N. Contrastive learning with heteroge-
neous graph attention networks on short text classifica-
tion. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 1–6, 2022.

Sverrisson, F., Feydy, J., Correia, B. E., and Bronstein,
M. M. Fast end-to-end learning on protein surfaces. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15272–15281, 2021.

Tang, J., Qu, M., and Mei, Q. Pte: Predictive text em-
bedding through large-scale heterogeneous text networks.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’15, pp. 1165–1174, New York, NY, USA, 2015.
Association for Computing Machinery.

Townsend, J., Micucci, C. P., Hymel, J. H., et al. Represen-
tation of molecular structures with persistent homology
for machine learning applications in chemistry. Nature
Communications, 11(1):3230, 2020.
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A. Efficiency Studies
In order to study computational efficiency with the inclusion of higher-order objects, we compute the number of trainable
parameters, as shown in Table 4.

Table 4. Number of trainable parameters.
Twitter MR Snippets StackOverflow

SCN – 0-simplex 3,654,154 6,120,154 9,446,428 3,969,676
SCN – 1-simplex 3,671,050 6,137,050 9,463,324 3,986,572

SCN 3,672,202 6,138,202 9,464,476 3,987,724
C-SCN – 0-simplex 113,236,620 115,702,620 119,029,668 113,554,464
C-SCN – 1-simplex 113,253,516 115,719,516 119,046,564 113,571,360

C-SCN 113,255,568 115,720,668 119,047,716 113,572,512

The time to complete training and evaluation after ten iterations in seconds is also included for analysis, as shown in Table 5.

Table 5. Time to complete training and evaluation after ten iterations.
Twitter MR Snippets StackOverflow

SCN – 0-simplex 639 730 1,009 1,448
SCN – 1-simplex 679 743 1,235 1,728

SCN 750 798 1,279 1,956
C-SCN – 0-simplex 1,015 1,033 1,943 3,080
C-SCN – 1-simplex 1,025 1,152 1,970 3,191

C-SCN 1,040 1,197 2,007 3,384

It is observed that when adding 1-simplexes and 2-simplexes to SCN step-by-step, the average number of trainable parameters
increases by 0.18%, and the time increases by 10.55% on average. For C-SCN, the number of trainable parameters increases
by less than 0.1% on average, and the time for training increases by 3.32% on average. The results demonstrate the
computational efficiency of our model involving higher-order complexes in representation learning.

B. Additional Results for Ablation Studies
Instead of fixed GloVe embedding for word nodes, we compare the results with contextual embeddings (Cont. Emb.) from
the BERT model in Table 4.

It is observed that C-SCN with fixed embeddings achieves better results than the one with contextual embeddings. One
explanation could be the limited number of higher-order objects formed with contextual embeddings. 0-simplexes (nodes),
which refer to the same word, will not be seen as the same 0-simplex at different locations in the document with contextual
embeddings. This will lead to no 2-simplexes formed in the document since one 0-simplex will not be connected again
within the text, limiting the expressiveness of structural representations of the higher-order objects.

Table 6. Results of test accuracy to compare with the separate contrastive loss.
Dataset Twitter MR Snippets StackOverflow
Metrics F1 Acc F1 Acc F1 Acc F1 Acc
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26

C-SCN - Cont. Emb. 74.60 75.01 50.46 55.34 83.31 83.96 82.53 83.00
C-SCN - Sep. Loss 67.54 68.35 53.61 56.79 64.69 64.8 27.01 29.78

SCN - SUM 62.3 63.21 54.99 56.23 77.06 77.05 76.02 73.73
SCN 66.13 67.25 61.15 61.93 76.13 75.66 76.85 74.04

C-SCN - SUM 74.01 74.45 55.51 58.26 77.38 77.92 78.73 77.46
C-SCN 75.61 76.09 69.46 69.87 84.97 85.56 84.15 83.87
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To evaluate the effectiveness of optimising the contrastive loss and objective function together, experiments to separate the
two losses (Sep. Loss) are also conducted. The contrastive loss is first minimised for 100 epochs without labels, and the loss
against the final label is optimised with early stopping. It is observed that with limited training samples (20 samples from
each category), pre-training with a contrastive loss followed by supervised training does not help the model improve. In
detail, the separate contrastive loss could improve BERT’s performance in binary classification in Twitter and MR datasets.
In contrast, it worsens the performance in multi-label classification, and the most deterioration is from the StackOverflow
dataset, which has 20 categories.

We adopted GRU as the UPDATE function to control the amount of information from the previous step and aggregated
neighbourhood information. This is achieved through the reset gate and the reset gate structure in GRU. In contrast, we
study the role of GRU by comparing the performance if we remove GRU as the UPDATE function and replace it with the
sum aggregation (SUM). One challenge we observed without GRU was the overfitting issue on the train set across different
datasets. The results deteriorated when we removed GRU from SCN and C-SCN respectively, illustrating the importance of
GRU in the message-passing mechanism for higher-order complexes.
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