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ABSTRACT

Bayesian optimization devolves the global optimization of a costly objective func-
tion to the global optimization of a sequence of acquisition functions. This inner-
loop optimization can be catastrophically difficult if it involves posterior sample
paths, especially in higher dimensions. We introduce an efficient global opti-
mization strategy for posterior samples based on global rootfinding. It provides
gradient-based optimizers with two sets of judiciously selected starting points, de-
signed to combine exploration and exploitation. The number of starting points
can be kept small without sacrificing optimization quality. Remarkably, even
with just one point from each set, the global optimum is discovered most of the
time. The algorithm scales practically linearly to high dimensions, breaking the
curse of dimensionality. For Gaussian process Thompson sampling (GP-TS), we
demonstrate remarkable improvement in both inner- and outer-loop optimization,
surprisingly outperforming alternatives like EI and GP-UCB in most cases. Our
approach also improves the performance of other posterior sample-based acqui-
sition functions, such as variants of entropy search. Furthermore, we propose a
sample-average formulation of GP-TS, which has a parameter to explicitly con-
trol exploitation and can be computed at the cost of one posterior sample.

1 INTRODUCTION

Bayesian optimization (BO) is a highly successful approach to the global optimization of expensive-
to-evaluate black-box functions, with applications ranging from hyper-parameter training of ma-
chine learning models to scientific discovery and engineering design (Jones et al., 1998; Snoek
et al., 2012; Frazier, 2018; Garnett, 2023). Many BO strategies are also backed by strong theoretical
guarantees on their convergence to the global optimum (Srinivas et al., 2010; Bull, 2011; Russo &
Van Roy, 2014; Chowdhury & Gopalan, 2017).

Consider the global optimization problem minx∈X f(x) where x ∈ X ⊂ Rd represents the vector
of input variables and f(x) ∈ R the objective function which can be evaluated at a significant cost,
subject to observation noise. At its core, BO is a sequential optimization algorithm that uses a
probabilistic model of the objective function to guide its evaluation decisions. Starting with a prior
probabilistic model and some initial data, BO derives an acquisition function α(x) from the posterior
model, which is much easier to evaluate than the objective function and often has easy-to-evaluate
derivatives. The acquisition function is then optimized globally, using off-the-shelf optimizers, to
provide a location to evaluate the objective function. This process is iterated until some predefined
stopping criteria are met.

Effectively there are two nested iterations in BO: the outer-loop seeks to optimize the objective func-
tion f(x), and the inner-loop seeks to optimize the acquisition function α(x) at each BO iteration.
The premise of BO is that the inner-loop optimization can be solved accurately and efficiently, so
that the outer-loop optimization proceeds informatively with a negligible added cost. In fact, the
convergence guarantees of many BO strategies assume exact global optimization of the acquisition
function. However, the efficient and accurate global optimization of acquisition functions is less
trivial than it is often assumed to be (Wilson et al., 2018).

Acquisition functions are, in general, highly non-convex and have many local optima. In addition,
many common acquisition functions are mostly flat surfaces with a few peaks (Rana et al., 2017),
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which take up an overwhelmingly large portion of the domain as the input dimension grows. This
creates a significant challenge for generic global optimization methods.

Some acquisition functions involve sample functions from the posterior model, which need to be
optimized globally. Gaussian process Thompson sampling (GP-TS) (Chowdhury & Gopalan, 2017)
uses posterior sample paths directly as random acquisition functions. In many information-theoretic
acquisition functions such as entropy search (ES) (Hennig & Schuler, 2012), predictive entropy
search (PES) (Hernández-Lobato et al., 2014), max-value entropy search (MES) (Wang & Jegelka,
2017), and joint entropy search (JES) (Tu et al., 2022; Hvarfner et al., 2022), multiple posterior
samples are drawn and optimized to find their global optimum location and/or value. Such acqui-
sition functions are celebrated for their nice properties in BO: TS has strong theoretical guarantees
(Russo & Van Roy, 2014; 2016) and can be scaled to high dimensions (Mutny & Krause, 2018);
information-theoretic acquisition functions are grounded in principles for optimal experimental de-
sign (MacKay, 2003); and both types can be easily parallelized in synchronous batches (Shah &
Ghahramani, 2015; Hernández-Lobato et al., 2017; Kandasamy et al., 2018). However, posterior
sample paths are much more complex than other acquisition functions, as they fluctuate throughout
the design space, and are less smooth than the posterior mean and marginal variance. The latter
are the basis of many acquisition functions, such as expected improvement (EI) (Jones et al., 1998),
probability of improvement (PI) (Kushner, 1964), and upper confidence bound (GP-UCB) (Srini-
vas et al., 2010). As a consequence, posterior sample paths have many more local optima, and the
number scales exponentially with the input dimension.

While there is a rich literature on prior probabilistic models and acquisition functions for BO, global
optimization algorithms for acquisition functions have received little attention. One class of global
optimization methods is derivative-free, such as the dividing rectangles (DIRECT) algorithm (Jones
et al., 1993), covariance matrix adaptation evolution strategy (CMA-ES) algorithms (Hansen et al.,
2003), and genetic algorithms (Mitchell, 1998). Gradient-based multistart optimization, on the other
hand, is often seen as the best practice to reduce the risk of getting trapped in local minima (Kim &
Choi, 2021), and enjoys the efficiency of being embarrassingly parallelizable. For posterior samples,
their global optimization may use joint sampling on a finite set of points (Kandasamy et al., 2018), or
approximate sampling of function realizations followed by gradient-based optimization (Hernández-
Lobato et al., 2014; Mutny & Krause, 2018). The selection of starting points is crucial for the success
of gradient-based multistart optimization. This selection can be deterministic (e.g., grid search),
random (Bergstra & Bengio, 2012; Balandat et al., 2020), or adaptive (Feo & Resende, 1995).

In this paper, we propose an adaptive strategy for selecting starting points for gradient-based mul-
tistart optimization of posterior samples. This algorithm builds on the decomposition of poste-
rior samples by pathwise conditioning, taps into robust software in univariate function computation
based on univariate global rootfinding, and exploits the separability of multivariate GP priors. Our
key contributions include:

• A novel strategy for the global optimization of posterior sample paths. The starting points are
dependent on the posterior sample, so that each is close to a local optimum that is a candidate for
the global optimum. The selection algorithm scales linearly to high dimensions.

• We give empirical results across a diverse set of problems with input dimensions ranging from 2
to 16, establishing the effectiveness of our optimization strategy. Although our algorithm is pro-
posed for the inner-loop optimization of posterior samples, perhaps surprisingly, we see significant
improvement in outer-loop optimization performance, which often allows acquisition functions
based on posterior samples to converge faster than other common acquisition functions.

• A new acquisition function via the posterior sample average that explicitly controls the
exploration–exploitation balance (Chapelle & Li, 2011), and can be generated at the same cost
as one posterior sample.

2 GENERAL BACKGROUND

Gaussian Processes. Consider an unknown function ftrue : X 7→ R, where domainX ⊂ Rd. We can
collect noisy observations of the function through the model yi = ftrue(x

i) + εi, i ∈ {1, · · · , n},
with ε ∼ Nn(0,Σ). To model the function ftrue, we use a Gaussian process (GP) as the prior
probabilistic model: f ∼ π ∈ GP . A GP is a random function f such that for any finite set of
points X = {xi}ni=1, n ∈ N, the values fn = (f(xi))ni=1 have a multivariate Gaussian distribution
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Nn(µn,Kn,n), with mean µn = (µ(xi))ni=1 and covariance Kn,n = [κ(xi,xj)]j∈n
i∈n . Here, µ(x) is

the mean function and κ(x,x′) is the covariance function.

Decoupled Representation of GP Posteriors. Given a dataset D = {(xi, yi)}ni=1, the posterior
model f |D is also a GP. Samples from the posterior have a decoupled representation called pathwise
conditioning, originally proposed in (Wilson et al., 2020; 2021):

(f |D)(x) d
= f(x) + κ·,n(x)(Kn,n +Σ)−1(y − fn − ε), f ∼ π, ε ∼ Nn(0,Σ), (1)

where f(x) is a sample path from the GP prior, κ·,n(x) = (κ(x,xi))ni=1 is the canonical basis,
fn = (f(xi))ni=1, and ε is a sample of the noise. We may interpret fn + ε as a sample from the
prior distribution of the observations y = (yi)ni=1. This representation has its roots in Matheron’s
update rule that transforms a joint distribution of Gaussian variables into a conditional one (see e.g.,
Hoffman & Ribak (1991)). This formula is exact, in that d

= denotes equality in distribution, and it
preserves the differentiability of the prior sample. It is also computationally efficient for posterior
sampling: the cost is independent of the input dimension d, linear in the data size n at evaluation
time, and the weight vector for κ·,n(x) can be solved accurately using an iterative algorithm that
scales linearly with n (Lin et al., 2023).

3 GLOBAL OPTIMIZATION OF POSTERIOR SAMPLE PATHS

In this section, we introduce an efficient algorithm for the global optimization of posterior sample
paths. For this, we exploit the separability of prior samples and useful properties of posterior samples
to judiciously select a set of starting points for gradient-based multistart optimizers.

Assumptions. Following Section 2, we impose a few common assumptions throughout this paper:
(1) the domain is a hypercube: X =

∏d
i=1[xi, xi]; (2) prior covariance is separable: κ(x,x′) =∏d

i=1 κi(xi, x
′
i); (3) prior samples are continuously differentiable: f(x;ω) ∈ C1. Without loss

of generality, we also assume that the prior mean µ(x) = 0: any non-zero mean function can
be subtracted from the data by replacing ftrue with ftrue − µ. While additive and multiplicative
compositions of univariate kernels can be used in the prior (Duvenaud et al., 2013), assumption (2)
is the most popular choice in BO. It is possible to extend our method to generalized additive models.

3.1 TS-ROOTS ALGORITHM

We observe that, given the assumptions, a posterior sample in eq. (1) can be rewritten as:

f̃(x; ω̃) = f(x;ω) + b(x; ω̃), f(x;ω) =

d∏
i=1

fi(xi;ωi), b(x; ω̃) =

n∑
j=1

vjκ(x,x
j). (2)

Here, the prior sample f(x) is a separable function determined by the random bits ω. Data adjust-
ment b(x) is a sum of the canonical basis with coefficients v = (Kn,n +Σ)−1(y − fn − ε). Both
the data adjustment and the posterior sample are determined by the random bits ω̃ = (ω, ε). In the
following, we denote the prior and the posterior samples as fω and f̃ω̃ , respectively. Our goal is to
find the global minimum (x̃⋆

ω̃, f̃
⋆
ω̃) of the posterior sample f̃ω̃(x).

The global minimization of a generic function, in principle, requires finding all its local minima
and then selecting the best among them. However, computationally efficient approaches to this
problem are lacking even in low dimensions and, more pessimistically, the number of local minima
grows exponentially as the domain dimension increases. The core idea of this work is to use the
prior sample fω as a surrogate of the posterior sample f̃ω̃ for global optimization. Another key is
to exploit the separability of the prior sample for efficient representation and ordering of its local
extrema.

We define TS-roots as a global optimization algorithm for GP posterior samples (given the assump-
tions) via gradient-based multistart optimization. The starting points include: (1) a subset Se of the
local minima X̆ω of a corresponding prior sample; and (2) a subset Sx of the observed locations X .
We call Se the exploration set and Sx the exploitation set. Specifically, let

So = argmink
x∈X̆ω

(fω(x), no) (3)
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Algorithm 1 TS-roots: Optimizing posterior samples via rootfinding

Input: prior samples f(x), ε; prior covariances κ(x,x′), Σ; dataset D; set sizes no, ne, nx.
1: So ← minsort(f(x), no) ▷ Smallest no local minima of the prior sample (Algorithm 4)
2: [̃fe, Ie]← mink(f̃(So), ne) ▷ Smallest ne values and indices of the posterior sample in So

3: [̃fx, Ix]← mink(f̃(X), nx) ▷ Smallest nx values and indices of the posterior mean in X
4: Se ← So[Ie, :], Sx ← X[Ix, :] ▷ Starting points: exploration set and exploitation set
5: [x̃⋆, f̃⋆]← minimize(f̃(x), S), S = Se ∪ Sx ▷ Gradient-based multistart optimization

Output: Thompson sample x̃⋆ ▷ Global minimum of the posterior sample

be the no smallest local minima of the prior sample. The set of starting points, S, is defined as:

S = Se ∪ Sx, Se = argmink
x∈So

(f̃ω̃(x), ne), Sx = argmink
x∈X

(f̃ω̃(x), nx). (4)

Algorithm 1 outlines the procedure for TS-roots. Here, ne and nx are imposed to control the cost
of gradient-based multistart optimization, and no is set to limit the number of evaluations of f̃ω̃ in
the determination of Se. Considering the cost difference, we can have no ≫ ne. We observe that
ne and nx can be set to small values, and no to a moderate value, without sacrificing the quality of
optimization, see Appendix D. The TS-roots algorithm scales linearly in d, see Appendix C.5.

3.2 RELATIONS BETWEEN THE LOCAL MINIMA OF PRIOR AND POSTERIOR SAMPLES

Figure 1 shows several posterior samples f̃ω̃ in one and two dimensions, each marked with its local

minima ˘̃
X ω̃ and global minimum x̃⋆

ω̃ . Here the exploration set Se is the local minima X̆ω of fω , and
the exploitation set Sx is the observed locations X . We make the following observations:

(1) The prior sample fω is more complex than the data adjustment b in the sense that it is less smooth
and has more critical points. The comparison of smoothness can be made rigorous in various ways:
for example, for GPs with a Matérn covariance function where the smoothness parameter is finite,
fω is almost everywhere one time less differentiable than b (see e.g., Garnett (2023) Sec. 10.2,
Kanagawa et al. (2018)).
(2) Item (1) implies that when the prior sample fω is added to the smoother landscape of b, each
local minimum x̆ω of fω will be located near a local minimum ˘̃xω̃ of the posterior sample f̃ω̃ . Away
from the observed locations X , each ˘̃xω̃ is closely associated with an x̆ω , with minimal change in
location. In the vicinity of X , an ˘̃xω̃ may have both a data point xi and an x̆ω nearby, but because
of the smoothness difference of fω and b, in most cases the one closest to ˘̃xω̃ is an x̆ω .
(3) It is possible that near X , sharp changes in fω may require sharp adjustments to the data, which
may move some x̆ω by a significant distance, or create new ˘̃xω̃ that are not near any x̆ω or any xi.

(4) Searching from xi with good observed values can discover good ˘̃xω̃ in the vicinity of X , which
can pick up some local minima not readily discovered by X̆ω . This is especially true if fω is
relatively flat near xi.

(5) Since the posterior sample f̃ω̃ adapts to the dataset, searches from xi will tend to converge to a
good ˘̃xω̃ among all the local optima near xi. Even if the searches from X cannot discover all the
local minima in its vicinity, they tend to discover a good subset of them. Therefore, (4) can help
address the issue in (3), if not fully eliminating it. By combining subsets of X̆ω and X , we can
expect that the set of local minima of f̃ω̃ discovered with these starting points includes the global
minimum x̃⋆

ω̃ with a high probability with respect to ω̃.

3.3 A REPRESENTATION OF PRIOR SAMPLE LOCAL MINIMA

For each component function fi(xi;ωi) of the prior sample fω(x), define hi(xi) = f ′i(xi), hi(xi) =
−f ′i(xi), and hi(xi) = f ′′i (xi) for xi ∈ (xi, xi). We call a coordinate ξi ∈ [xi, xi] of mono type
if fi(ξi)hi(ξi) > 0 and call it of mixed type if fi(ξi)hi(ξi) < 0. Let Ξ̊i = {ξi,j}rij=1 be the set

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

 

   

   
 

 

  

GP-TS 
acquisition 

Figure 1: Illustrations of exploration and exploitation sets for the global optimization of GP-TS
acquisition functions in one dimension (top row) and two dimensions (bottom row). Left column:
When the global minimum x̃⋆

ω̃ of the GP-TS acquisition function lies outside the interpolation re-
gion, it is typically identified by starting the gradient-based multistart optimizer at a local minimum
of the prior sample. Right column: When x̃⋆

ω̃ is within the interpolation region, it can be found by
starting the optimizer at either an observed location or a local minimum of the prior sample.

of interior critical points of fi such that ξi,j ∈ (xi, xi) and f ′i(ξi,j) = 0, j ∈ {1, · · · , ri}. Denote
ξi,0 = xi and ξi,ri+1 = xi. Partition the set of candidate coordinates Ξi = {ξi,j}ri+1

j=0 into mono

type Ξ
(0)
i and mixed type Ξ

(1)
i . Proposition 1 gives a representation of the sets of strong local

extrema of the prior sample. Its proof and the set sizes therein are given in Appendix A.

Proposition 1 The set of strong local minima of the prior sample fω(x) can be written as:

X̆ω = X̆−
ω ⊔ X̆+

ω , X̆−
ω = {ξ ∈ Ξ(1) : fω(ξ) < 0}, X̆+

ω = {ξ ∈ Ξ(0) : fω(ξ) > 0}, (5)

where tensor grids Ξ(j) =
∏d

i=1 Ξ
(j)
i , j ∈ {0, 1}. The set X̂ω of strong local maxima of fω(x) has

an analogous representation, and satisfies X̂ω ⊔ X̆ω = Ξ(0) ⊔ Ξ(1), where ⊔ is the disjoint union.

Critical Points of Univariate Functions via Global Rootfinding. To compute the set Ξ̊i of all
critical points of fi is to compute all the roots of the derivative f ′i on the interval [xi, xi]. Since
f ′i is continuous, this can be solved robustly and efficiently by approximating the function with a
Chebyshev or Legendre polynomial and solving a structured eigenvalue problem (see e.g., Trefethen
(2019)). The roots algorithm for global rootfinding based on polynomial approximation is given
as Algorithm 3 in Appendix C.
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3.4 ORDERING OF PRIOR SAMPLE LOCAL MINIMA

While the size of X̆ω grows exponentially in domain dimension d, its representation in eq. (5) en-
ables an efficient algorithm to compute the best subset So (eq. (3)) without enumerating its elements.

With eq. (5), we see that X̆−
ω consists of all the local minima of fω with negative function values.

Consider the case where X̆−
ω has at least no elements so that in the definition of So we can replace

X̆ω with X̆−
ω , which in turn can be replaced with Ξ(1). As we will show later, the problem of finding

the largest elements of |fω(x)| within Ξ(1) is easier than finding the smallest negative elements of
fω(x). Once the former is solved, we can solve the latter simply by removing the positive elements.
Therefore, we convert the problem of eq. (3) into three steps:

1. S(1) = argmaxkx∈Ξ(1)(|fω(x)|, αno), with buffer coefficient α ≥ 1;

2. S̆− = {x ∈ S(1) : fω(x) < 0}, so that S̆− ⊆ X̆−
ω ;

3. So = argminkx∈S̆−(fω(x), no), assuming that |S̆−| ≥ no.

The last two steps are by enumeration and straightforward. The first step can be solved efficiently
using min-heaps, with a time complexity that scales linearly in

∑d
i=1 |Ξ

(1)
i | rather than

∏d
i=1 |Ξ

(1)
i |,

see Appendix B. The coefficient α is chosen so that |S̆−| ≥ no. The case when |X̆−
ω | < no < |X̆ω|

can be handled similarly. If no ≥ |X̆ω|, no subsetting is needed. The overall procedure to compute
So is given in Algorithm 4 in Appendix C.

4 SAMPLE-AVERAGE POSTERIOR FUNCTION

We finally propose a sample-average posterior function that explicitly controls the exploration–
exploitation balance and, notably, can be generated at the cost of generating one posterior sample.
Let µ̃(x) = κ·,n(x)(Kn,n + Σ)−1y be the posterior mean function. For noiseless observations
with ω̃ = ω, we can rewrite the GP posterior function in eq. (2) as f̃ω(x) = fω(x) + µ̃(x) + ξω(x),
where ξω(x) = −κ·,n(x)K

−1
n,nfn. Define αaTS(x) =

1
Nc

∑Nc
j=1 f̃

j
ω(x) as the sample-average poste-

rior function, where f̃ jω(x) are samples generated from the GP posterior and Nc ∈ N>0. Since
µ̃(x) is deterministic, and the scaled prior sample 1√

Nc
f jω(x) can be written as 1√

Nc
f jω(x)

iid∼
GP(0, 1

Nc
κ(x,x′)), we have αaTS(x) = µ(x) + 1√

Nc
(fω(x) + ξω(x)), where the first and second

terms favor exploitation and exploration, respectively. Thus, we can consider Nc as an exploration–
exploitation control parameter that, at large values, prioritizes exploitation by concentrating the
conditional distribution of the global minimum location, i.e., p(x⋆|D), at the minimum location of
µ̃(x), see Figure 12 in Appendix I. With αaTS(x), we can reproduce f̃ω(x) and the GP mean function
µ̃(x) by setting Nc = 1 and Nc =∞, respectively.

5 RELATED WORKS

Sampling from Gaussian Process Posteriors. A prevalent method to sample GP posteriors with
stationary covariance functions is via weight-space approximations based on Bayesian linear mod-
els of random Fourier features (Rahimi & Recht, 2007). This method, unfortunately, is subject to
the variance starvation problem (Mutny & Krause, 2018; Wilson et al., 2020) which can be miti-
gated using more accurate feature representations (see e.g., Hensman et al. (2018); Solin & Särkkä
(2020)). An alternative is pathwise conditioning (Wilson et al., 2020) that draws GP posterior sam-
ples by updating the corresponding prior samples. The decoupled representation of the pathwise
conditioning can be further reformulated as two stochastic optimization problems for the posterior
mean and an uncertainty reduction term, which are then efficiently solved using stochastic gradient
descent (Lin et al., 2023).

Optimization of Acquisition Functions. While their global optima guarantee the Bayes’ decision
rule, BO acquisition functions are highly non-convex and difficult to optimize (Wilson et al., 2018).
Nevertheless, less attention has been given to the development of robust algorithms for optimizing
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these acquisition functions. For this inner-loop optimization, gradient-based optimizers are often
selected because of their fast convergence and robust performance (Daulton et al., 2020). The im-
plementation of such optimizers is facilitated by Monte Carlo (MC) acquisition functions whose
derivatives are easy to evaluate (Wilson et al., 2018). Gradient-based optimizers also allow multistart
settings that use a set of starting points which can be, for example, midpoints of data points (Jones,
2001), uniformly distributed samples over the input variable space (Frazier, 2018; Ament et al.,
2023), or random points from a Latin hypercube design (Wang et al., 2020). However, multistart-
based methods with random search may have difficulty determining the non-flat regions of acquisi-
tion functions, especially in high dimensions (Rana et al., 2017). The log reformulation approach is
a good solution to the numerical pathology of flat acquisition surface over large regions of the input
variable space (Ament et al., 2023). While this approach works for acquisition functions prone to the
flat surface issue such as the family of EI-based acquisition functions, its performance has yet to be
evaluated for acquisition functions with many local minima like those based on posterior samples.

Posterior Sample-Based Acquisition Functions. As discussed in Section 1, the family of posterior
sample-based acquisition functions is determined from samples of the posterior. GP-TS (Chowd-
hury & Gopalan, 2017) is a notable member that extends the classical TS for finite-armed bandits to
continuous settings of BO (see algorithms in Appendix E). GP-TS prefers exploration by the mech-
anism that iteratively samples a function from the GP posterior of the objective function, optimizes
this function, and selects the resulting solution as the next candidate for objective evaluation. To
further improve the exploitation of GP-TS, the sample mean of MC acquisition functions can be
defined from multiple samples of the posterior (Wilson et al., 2018; Balandat et al., 2020). Different
types of MC acquisition functions can also be used to inject beliefs about functions into the prior
(Hvarfner et al., 2024).

6 RESULTS

We assess the performance of TS-roots in optimizing benchmark functions. We then compare the
quality of solutions to the inner-loop optimization of GP-TS acquisition functions obtained from our
proposed method, a gradient-based multistart optimizer with uniformly random starting points, and
a genetic algorithm. We also show how TS-roots can improve the performance of MES. Finally,
we propose a new sample-average posterior function and show how it affects the performance of
GP-TS. The experimental details for the presented results are in Appendix H.

Optimizing Benchmark Functions. We test the empirical performance of TS-roots on challenging
minimization problems of five benchmark functions: the 2D Schwefel, 4D Rosenbrock, 10D Levy,
16D Ackley, and 16D Powell functions (Surjanovic & Bingham, 2013). The analytical expressions
for these functions and their global minimum are given in Appendix F.

In each optimization iteration, we record the best observed value of the error log(ymin−f⋆) and the
distance log (∥xmin − x⋆∥), where ymin, xmin, f⋆, and x⋆ are the best observation of the objective
function in each iteration, the corresponding location of the observation, the true minimum value of
the objective function, and the true minimum location, respectively. We compare the optimization
results obtained from TS-roots and other BO methods, including GP-TS using decoupling sampling
with random Fourier features (TS-DSRF), GP-TS with random Fourier features (TS-RF), expected
improvement (EI) (Jones et al., 1998), and lower confidence bound (LCB)—the version of GP-UCB
(Srinivas et al., 2010) for minimization problems.

Figure 2 shows the medians and interquartile ranges of solution values obtained from 20 runs of each
of the considered BO methods. The corresponding histories of solution locations are in Figure 9 of
Appendix I. With a fair comparison of outer-loop results (detailed in Appendix H), TS-roots surpris-
ingly shows the best performance on the 2D Schwefel, 16D Ackley, and 16D Powell functions, and
gives competitive results in the 4D Rosenbrock and 10D Levy problems. Notably, TS-roots recom-
mends better solutions than its counterparts, TS-DSRF and TS-RF, in high-dimensional problems
and offers competitive performance in low-dimensional problems. Across all the examples, EI and
LCB tend to perform better in the initial stages, while TS-roots shows fast improvement in later
stages. This is because GP-TS favors exploration, which delays rewards. The exploration phase, in
general, takes longer for higher-dimensional problems.
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Figure 2: Outer-loop optimization results for the (a) 2D Schwefel function, (b) 4D Rosenbrock
function, (c) 10D Levy function, (d) 16D Ackley function, (e) 16D Powell function, and (f) ten-bar
truss problem. The plots are histories of medians and interquartile ranges of solution values from
20 runs of TS-roots, TS-DSRF (i.e., TS using decoupled sampling with random Fourier features),
TS-RF (i.e., TS using random Fourier features), EI, and LCB.

Optimizing Real-world Problem. We implement TS-roots to optimize an engineered ten-bar truss
structure (see Appendix G). Ten design variables of the truss are the cross-sectional areas of the truss
members. The objective is to minimize a weighted sum of the scaled total cross-sectional area and
the scaled vertical displacement at a node of interest.

Figure 2(f) shows the outer-loop optimization results for the truss obtained from 20 runs of each BO
method, where f⋆ is a lower bound of the best objective function value we observed from all runs.
TS-roots provides the best optimization result with rapid convergence.

Optimizing GP-TS Acquisition Functions via Rootfinding. We assess the quality of solutions and
computational cost for the inner-loop optimization of GP-TS acquisition functions by the proposed
global optimization algorithm, referred to as rootfinding hereafter. We do so by computing the opti-
mized values α⋆

k of the GP-TS acquisition functions, the corresponding solution points x⋆
k, and the

CPU times tk required for optimizing the acquisition functions during the optimization process. For
low-dimensional problems of the 2D Schwefel and 4D Rosenbrock functions, we also compute the
exact global solution points xt

k of the GP-TS acquisition functions by starting the gradient-based
optimizer at a large number of initial points (set as 104), which is much larger than the maximum
number of starting points set for TS-roots. For comparison, we extend the same GP-TS acquisi-
tion functions to inner-loop optimization using a gradient-based multistart optimizer with random
starting points (i.e., random multistart) and a genetic algorithm. In each outer-loop optimization
iteration, the number of starting points for the random multistart and the population size of the ge-
netic algorithm are equal to the number of starting points recommended for rootfinding. The same
termination conditions are used for the three algorithms.

Figure 3 shows the comparative performance of the inner-loop optimization for low-dimensional
cases: the 2D Schwefel and 4D Rosenbrock functions. We see that the optimized acquisition func-
tion values and the optimization runtimes by rootfinding and the random multistart algorithm are
almost identical, both of which are much better than those by the genetic algorithm. Rootfinding
gives the best quality of the new solution points in both cases, while the genetic algorithm gives
the worst. Notably in higher-dimensional settings of the 10D Levy, 16D Ackley, and 16D Powell
functions shown in Figure 4, rootfinding performs much better than the random multistart and ge-
netic algorithm in terms of optimized acquisition values and optimization runtimes, which verifies
the importance of the judicious selection of starting points for global optimization of the GP-TS
acquisition functions and the efficiency of rootfinding in high dimensions. The performance of
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(b) 

Figure 3: Inner-loop optimization results by rootfinding, a gradient-based multistart optimizer with
random starting points (random multistart), and a genetic algorithm for (a) the 2D Schwefel and
(b) 4D Rosenbrock functions. The plots are cumulative values of optimized GP-TS acquisition
functions α⋆

k , cumulative distances between new solution points x⋆
k and the true global minima xt

k
of the acquisition functions, and cumulative CPU times tk for optimizing the acquisition functions.
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Figure 4: Inner-loop optimization results by rootfinding, a gradient-based multistart optimizer with
random starting points (random multistart), and a genetic algorithm for (a) the 10D Levy, (b) 16D
Ackley, and (c) 16D Powell functions. The plots are cumulative values of optimized GP-TS acqui-
sition functions α⋆

k and cumulative CPU times tk for optimizing the acquisition functions.

random multistart becomes worse in higher dimensions. Appendix I provides additional results
for gradient-based multistart optimization using two other initialization schemes: uniform grid and
Latin hypercube sampling. Rootfinding outperforms both, especially in higher dimensions.

TS-roots to Information-Theoretic Acquisition Functions. We show how TS-roots can enhance
the performance of MES (Wang & Jegelka, 2017), which uses information about the maximum func-
tion value f⋆ for conducting BO. One approach to computing MES generates a set of GP posterior
samples using TS-RF and subsequently optimizes the generated functions for samples of f⋆ using a
gradient-based multistart optimizer with a large number of random starting points (Wang & Jegelka,
2017). We hypothesize that high-quality f⋆ samples can improve the performance of MES. Thus,
we assign both TS-roots and TS-RF as the inner workings of MES and then compare the result-
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(a) (b) (c)

Figure 5: Performance of MES-R 10 and MES-R 50 for (a) the 4D Rosenbrock function, (b) the 6D
Hartmann function, and (c) the 10D Levy function when TS-RF and TS-roots are used for generating
random samples from f⋆|D. The plots are histories of medians and interquartile ranges of solutions
from ten runs of each method.

ing optimal solutions. Note that the inner-loop optimization of MES, which strongly influences the
optimization results, is not addressed by TS-roots.

Specifically, we minimize the 4D Rosenbrock, 6D Hartmann, and 10D Levy functions using four
versions of MES, namely MES-R 10, MES-R 50, MES-TS-roots 10, and MES-TS-roots 50. Here,
MES-R (Wang & Jegelka, 2017) and MES-TS-roots correspond to TS-RF and TS-roots, respec-
tively, while 10 and 50 represent the number of random samples f⋆ generated for computing the
MES acquisition function in each iteration.

Figure 5 shows the optimization histories for ten independent runs of each MES method. On the 4D
Rosenbrock and 6D Hartmann functions, MES with TS-roots demonstrates superior optimization
performance and faster convergence compared to MES with TS-RF, especially when 50 samples of
f⋆ are generated. For the 10D Levy function, TS-roots outperforms TS-RF when using 10 samples
of f⋆, while their performance is comparable when 50 samples are used.

Performance of Sample-Average Posterior Functions. We investigate how αaTS(x) influences the
outer-loop optimization results. For this, we set Nc ∈ {1, 10, 50, 100} for TS-roots to optimize the
2D Schwefel, 4D Rosenbrock, and 6D Ackley functions. We observe that increasingNc from 1 to 10
improves TS-roots performance on the 2D Schwefel, 4D Rosenbrock, and 6D Ackley functions (see
Figure 13 in Appendix I). However, further increases in Nc from 10 to 50 and 100 result in slight
declines in solution quality as TS-roots transitions to exploitation. These observations indicate that
there is an optimal value of Nc for each problem at which TS-roots achieves its best performance
by balancing exploitation and exploration. However, identifying the optimal value to maximize the
performance of αaTS(x) for a particular optimization problem remains an open issue.

7 CONCLUSION AND FUTURE WORK

We presented TS-roots, a global optimization strategy for posterior sample paths. It features an
adaptive selection of starting points for gradient-based multistart optimizers, combining exploration
and exploitation. This strategy breaks the curse of dimensionality by exploiting the separability of
Gaussian process priors. Compared with random multistart and a genetic algorithm, TS-roots con-
sistently yields higher-quality solutions in optimizing posterior sample paths, across a range of input
dimensions. It also improves the outer-loop optimization performance of GP-TS and information-
theoretic acquisition functions such as MES for Bayesian optimization. For future work, we aim to
extend TS-roots to other spectral representations per Bochner’s theorem (Mutny & Krause, 2018;
Hensman et al., 2018; Solin & Särkkä, 2020). We also plan to study the ways and the probability of
TS-roots failing to find the global optimum, as well as the impact of subset sizes.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bak-
shy. Unexpected improvements to expected improvement for Bayesian optimization.
In Advances in Neural Information Processing Systems, volume 36, pp. 20577–20612,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/419f72cbd568ad62183f8132a3605a2a-Paper-Conference.pdf.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian opti-
mization. In Advances in Neural Information Processing Systems, volume 33, pp. 21524–
21538, 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

Zachary Battles and Lloyd N. Trefethen. An extension of MATLAB to continuous functions
and operators. SIAM Journal on Scientific Computing, 25(5):1743–1770, 2004. doi: 10.1137/
S1064827503430126.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(10):281–305, 2012. URL http://jmlr.org/papers/
v13/bergstra12a.html.

Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal of Ma-
chine Learning Research, 12(88):2879–2904, 2011. URL http://jmlr.org/papers/
v12/bull11a.html.

Olivier Chapelle and Lihong Li. An empirical evaluation of Thompson sampling. In
Advances in Neural Information Processing Systems, volume 24, pp. 2249–2257,
2011. URL https://papers.nips.cc/paper_files/paper/2011/hash/
e53a0a2978c28872a4505bdb51db06dc-Abstract.html.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Proceedings
of the 34th International Conference on Machine Learning, volume 70, pp. 844–853, 06–11 Aug
2017. URL https://proceedings.mlr.press/v70/chowdhury17a.html.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hyper-
volume improvement for parallel multi-objective bayesian optimization. In Advances
in Neural Information Processing Systems, volume 33, pp. 9851–9864, 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/file/
6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. Struc-
ture discovery in nonparametric regression through compositional kernel search. In Proceedings
of the 30th International Conference on Machine Learning, volume 28, pp. 1166–1174, 2013.
URL http://proceedings.mlr.press/v28/duvenaud13.html.

Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2):109–133, 1995. doi: 10.1007/BF01096763. URL https:
//doi.org/10.1007/BF01096763.

Peter I. Frazier. Bayesian optimization. In Recent Advances in Optimization and Modeling of
Contemporary Problems, INFORMS TutORials in Operations Research, chapter 11, pp. 255–
278. October 2018. doi: 10.1287/educ.2018.0188.

Roman Garnett. Bayesian Optimization. Cambridge University Press, Cambridge, UK, 2023. doi:
10.1017/9781108348973.

I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, Boston,
8th edition, 2014. ISBN 978-0-12-384933-5. doi: 10.1016/C2010-0-64839-5.

Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation, 11(1):1–18, 2003. doi: 10.1162/106365603321828970.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/419f72cbd568ad62183f8132a3605a2a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/419f72cbd568ad62183f8132a3605a2a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v12/bull11a.html
http://jmlr.org/papers/v12/bull11a.html
https://papers.nips.cc/paper_files/paper/2011/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
https://proceedings.mlr.press/v70/chowdhury17a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
http://proceedings.mlr.press/v28/duvenaud13.html
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/BF01096763


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 13(6):1809–1837, 2012. URL https:
//www.jmlr.org/papers/v13/hennig12a.html.

James Hensman, Nicolas Durrande, and Arno Solin. Variational Fourier features for Gaussian pro-
cesses. Journal of Machine Learning Research, 18(151):1–52, 2018. URL http://jmlr.
org/papers/v18/16-579.html.
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José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predic-
tive entropy search for efficient global optimization of black-box functions. In Ad-
vances in Neural Information Processing Systems, volume 27, pp. 918–926, 2014. URL
https://proceedings.neurips.cc/paper_files/paper/2014/hash/
069d3bb002acd8d7dd095917f9efe4cb-Abstract.html.

Yehuda Hoffman and Erez Ribak. Constrained Realizations of Gaussian Fields: A Simple Algo-
rithm. Astrophysical Journal Letters, 380:L5–L8, October 1991. doi: 10.1086/186160. URL
https://ui.adsabs.harvard.edu/abs/1991ApJ...380L...5H.

Carl Hvarfner, Frank Hutter, and Luigi Nardi. Joint entropy search for
maximally-informed Bayesian optimization. In Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 11494–11506, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
4b03821747e89ce803b2dac590f6a39b-Abstract-Conference.html.

Carl Hvarfner, Frank Hutter, and Luigi Nardi. A general framework for user-guided bayesian opti-
mization. In The Twelfth International Conference on Learning Representations, pp. 9851–9864,
2024. URL https://iclr.cc/virtual/2024/poster/18774.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz
constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993. doi: 10.1007/
BF00941892. URL https://doi.org/10.1007/BF00941892.

Donald R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of Global Optimization, 21(4):345–383, 2001. doi: 10.1023/A:1012771025575.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998. doi:
10.1023/A:1008306431147. URL https://doi.org/10.1023/A:1008306431147.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaussian
processes and kernel methods: A review on connections and equivalences, 2018. URL https:
//arxiv.org/abs/1807.02582.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Parallelised
Bayesian optimisation via Thompson sampling. In Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, volume 84, pp. 133–142, 09–11 Apr 2018.
URL https://proceedings.mlr.press/v84/kandasamy18a.html.

Jungtaek Kim and Seungjin Choi. On local optimizers of acquisition functions in Bayesian opti-
mization. In Machine Learning and Knowledge Discovery in Databases, pp. 675–690, 2021. doi:
10.1007/978-3-030-67661-2 40.

Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal Basic Engineering, 86(1):97–106, 1964. doi: 10.1115/1.3653121.

12

https://www.jmlr.org/papers/v13/hennig12a.html
https://www.jmlr.org/papers/v13/hennig12a.html
http://jmlr.org/papers/v18/16-579.html
http://jmlr.org/papers/v18/16-579.html
https://proceedings.mlr.press/v70/hernandez-lobato17a.html
https://proceedings.mlr.press/v70/hernandez-lobato17a.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/069d3bb002acd8d7dd095917f9efe4cb-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/069d3bb002acd8d7dd095917f9efe4cb-Abstract.html
https://ui.adsabs.harvard.edu/abs/1991ApJ...380L...5H
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4b03821747e89ce803b2dac590f6a39b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/4b03821747e89ce803b2dac590f6a39b-Abstract-Conference.html
https://iclr.cc/virtual/2024/poster/18774
https://doi.org/10.1007/BF00941892
https://doi.org/10.1023/A:1008306431147
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1807.02582
https://proceedings.mlr.press/v84/kandasamy18a.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jihao Andreas Lin, Javier Antorán, Shreyas Padhy, David Janz, José Miguel Hernández-Lobato,
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A CHARACTERIZING THE LOCAL MINIMA OF A SEPARABLE FUNCTION

A.1 PROOF OF PROPOSITION 1: A REPRESENTATION OF THE SET OF LOCAL MINIMA

Proposition 1 broadly applies to separable functions on a hypercube. Consider a separable function
f(x) =

∏d
i=1 fi(xi) with domain X =

∏d
i=1[xi, xi], where fi ∈ C1([xi, xi];R). To simplify the

discussion, we further assume that fi is twice differentiable at its interior critical points Ξ̊i. The
gradient of f can be written as:

∇f(x) =
(
f ′i(xi) ·

∏
j ̸=i

fj(xj)
)d
i=1

=

(
f(x) · f

′
i(xi)

fi(xi)

)d

i=1

= f(x) · v(x), (6)

where v(x) =
(
f ′i/fi

)d
i=1

=
(

d
dxi

log fi
)d
i=1

. The Hessian of f can be written as:

∇2f(x) = diag
{
f ′′i (xi)

∏
j ̸=i

fj(xj)
}d

i=1
+
[
f ′i(xi)f

′
j(xj)

∏
k ̸=i,j

fk(xk)
]j ̸=i

i∈d
= f(x) diag(s+vv⊺),

(7)
where s(x) =

(
f ′′i /fi − (f ′i/fi)

2
)d
i=1

=
(

d2

dx2
i
log fi

)d
i=1

.

An interior point x ∈ intX :=
∏d

i=1(xi, xi) is a strong local minimum of f if and only if∇f(x) =
0 and ∇2f(x) > 0. From eq. (6), the first condition is satisfied in any of the following three cases:
(1) fi(xi) ̸= 0 and f ′i(xi) = 0 for all i ∈ {1, · · · , d}; (2) fi(xi) = 0 for exactly one i ∈ {1, · · · , d}
and f ′i(xi) = 0; or (3) fi(xi) = 0 for all i ∈ I ⊆ {1, · · · , d} where |I| ≥ 2.

In case (1), the Hessian eq. (7) reduces to ∇2f(x) = f(x) · diag{f ′′i (xi)/fi(xi)}di=1, which is
positive definite if and only if one of the following holds: (i) f(x) > 0 and fi(xi)f ′′i (xi) > 0, for
all i ∈ {1, · · · , d}; or (ii) f(x) < 0 and fi(xi)f ′′i (xi) < 0, for all i ∈ {1, · · · , d}.
In case (2), the Hessian reduces to an all-zero matrix except for the ith diagonal entry: [∇2f(x)]i,i =
f ′′i (xi)

∏
j ̸=i fj(xj). Even if this entry is positive, the Hessian is still positive semi-definite, which

means that there is a continuum of weak local minima: {xi} ×
∏

j ̸=i[xj , xj ]. Besides, this case
requires fi and f ′i to have an identical root, which an event with probability zero.

In case (3), let gi(ri) := fi(xi + ri) be a shifted version of fi, i ∈ {1, · · · , d}. Taylor expansion at
r = 0 gives gi(ri) = 0 + g′i(0) ri + o(ri) for all i ∈ I and gj(rj) = gj(0) + O(rj) for all j /∈ I .
We have g(r) :=

∏d
i=1 gi(ri) = c

∏
i∈I ri + o(

∏
i∈I ri) · O(

∏
j /∈I rj), where c =

∏
i∈I g

′
i(0) ·∏

j /∈I gj(0) ̸= 0. This means that there is a continuum of saddle points: {xi}i∈I ×
∏

j /∈I [xj , xj ].

For a boundary point x ∈ ∂X := X \ intX , we partition the index set {1, · · · , d} into L,R, and
I such that xi = xi for all i ∈ L, xi = xi for all i ∈ R, and xi ∈ (xi, xi) for all i ∈ I . Define
∇J := (∂j)j∈J for any subset J of the indices. Then x is a strong local minimum of f if and only
if the following conditions hold: (a) x is a strong local minimum in {xj}j /∈I ×

∏
j∈I [xj , xj ]; (b)

∇Lf(x) > 0; and (c) ∇Rf(x) < 0.

Condition (a) holds if any only if ∇If(x) = 0 and ∇2
If(x) > 0. Based on the previous discussion

on interior local minima, it is equivalent to: (i) f(x) > 0 and fi(xi)f ′′i (xi) > 0, for all i ∈ I; or
(ii) f(x) < 0 and fi(xi)f ′′i (xi) < 0, for all i ∈ I .

From eq. (6), condition (b) is equivalent to: (i) f(x) > 0 and fi(xi)f ′i(xi) > 0, for all i ∈ L; or
(ii) f(x) < 0 and fi(xi)f ′i(xi) < 0, for all i ∈ L.

Similarly, condition (c) is equivalent to: (i) f(x) > 0 and −fi(xi)f ′i(xi) > 0, for all i ∈ R; or
(ii) f(x) < 0 and −fi(xi)f ′i(xi) < 0, for all i ∈ R.

Summarizing the above discussions, we see that there is a unified way to identify the set X̆ of all
strong local minima of f , which is stated in Proposition 1. The discussion for the set X̂ of local
maxima is the exactly the same, except that the signs are flipped. This also means that X̂ and X̆
form a partition of the union Ξ(0) ⊔ Ξ(1) of the two tensor grids.

If fi is not twice differentiable at some interior critical point xi, we may replace f ′′i (xi) > 0 with
the statement that xi is a strong local minimum of fi, and replace f ′′i (xi) < 0 with the statement
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that xi is a strong local maximum of fi. The rest of the discussion still follows. In practice, the
differentiability of the prior sample is not an issue, because it is almost always approximated by a
finite sum of analytic functions, which is again analytic.

A.2 NUMBER OF LOCAL MINIMA OF A SEPARABLE FUNCTION

In proposition 1, each set of candidate coordinates Ξi is partitioned into mixed type and mono type:

Ξ
(1)
i = {ξi,j ∈ Ξi : fi(ξi,j)hi(ξi,j) < 0}, Ξ

(0)
i = {ξi,j ∈ Ξi : fi(ξi,j)hi(ξi,j) > 0}.

Another partition of Ξi is by the sign of the corresponding component function value:
Ξ−
i = {ξi,j ∈ Ξi : fi(ξi,j) < 0}, Ξ+

i = {ξi,j ∈ Ξi : fi(ξi,j) > 0}.
These two partitions create a finer partition of Ξi into four subsets:

Ξ
−(1)
i = Ξ−

i ∩ Ξ
(1)
i , Ξ

−(0)
i = Ξ−

i ∩ Ξ
(0)
i , Ξ

+(1)
i = Ξ+

i ∩ Ξ
(1)
i , Ξ

+(0)
i = Ξ+

i ∩ Ξ
(0)
i .

Denote the sizes of mixed and mono type candidate coordinates as n(1)i = |Ξ(1)
i | and n(0)i = |Ξ(0)

i |,
then the sizes of the two tensor grids Ξ(1) and Ξ(0) can be written as:

N (1) := |Ξ(1)| =
d∏

i=1

n
(1)
i , N (0) := |Ξ(0)| =

d∏
i=1

n
(0)
i .

Define signed sums as the sums of signs of function values on the two tensor grids:

S(1) :=
∑

ξ∈Ξ(1)

sign(f(ξ)), S(0) :=
∑

ξ∈Ξ(0)

sign(f(ξ)).

We now derive efficient formulas to calculate these signed sums, using S(1) as an example. Denote
each coordinate in Ξ

(1)
i as ξ(1)i,j . Denote each point in Ξ(1) as ξ(1)J = (ξ

(1)
i,Ji

)di=1, where multi-index

J = (Ji)
d
i=1 ∈ Π(1) :=

∏d
i=1{1, · · · , n

(1)
i }. The signed sum S(1) can be written as:

S(1) =
∑

J∈Π(1)

sign(f(ξ
(1)
J )) =

∑
J∈Π(1)

sign

( d∏
i=1

fi(ξ
(1)
i,Ji

)

)

=
∑

J∈Π(1)

d∏
i=1

sign(fi(ξ
(1)
i,Ji

)) =

d∏
i=1

n
(1)
i∑

j=1

sign(fi(ξ
(1)
i,j ))

=

d∏
i=1

n
(1)
i∑

j=1

1(fi(ξ
(1)
i,j ) > 0)−

n
(1)
i∑

j=1

1(fi(ξ
(1)
i,j ) < 0)

 =

d∏
i=1

[
|Ξ+(1)

i | − |Ξ−(1)
i |

]
.

A formula for S(0) can be derived analogously. Denote set sizes:

n
−(1)
i = |Ξ−(1)

i |, n
−(0)
i = |Ξ−(0)

i |, n
+(1)
i = |Ξ+(1)

i |, n
+(0)
i = |Ξ+(0)

i |,
then the signed sums can be calculated as:

S(1) =

d∏
i=1

(n
+(1)
i − n−(1)

i ), S(0) =

d∏
i=1

(n
+(0)
i − n−(0)

i ).

The sizes of negative and positive strong local minima of a separable function can be written as:

N̆− := |X̆−| =
∑

ξ∈Ξ(1)

1(f(ξ) < 0) =
1

2
(N (1) − S(1)), (8)

N̆+ := |X̆+| =
∑

ξ∈Ξ(0)

1(f(ξ) > 0) =
1

2
(N (0) + S(0)).

Therefore, the size of the strong local minima of a separable function can be written as:

N̆ := |X̆| = |X̆−|+ |X̆+| = 1

2
(N (1) +N (0) − S(1) + S(0)). (9)
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B ORDERING THE LOCAL MINIMA OF A SEPARABLE FUNCTION

B.1 FILTERING A TENSOR GRID FOR HIGH ABSOLUTE VALUES OF A SEPARABLE
FUNCTION

The step one in Section 3.4 is equivalent to the following problem: given coordinates Zi =
{ζi,1, · · · , ζi,ti} and components values Fi = {fi,1, · · · , fi,ti}, i ∈ {1, · · · , d}, of a separable
function f(x) =

∏d
i=1 fi(xi), find points ζ such that |f(ζ)| are the k largest in the tensor grid

Z =
∏d

i=1 Zi.

Because log |f(x)| = log |
∏d

i=1 fi(xi)| =
∑d

i=1 log |fi(xi)|, we can solve this problem as follows:
define two-dimensional arrays F = [F1, · · · , Fd] and A = log |F |, solve S = maxk sum(A, k),
and return {ζ = (ζ1,I1 , · · · , ζd,Id) : I ∈ S}. Here the maxk sum algorithms finds the combinations
from A that gives the k largest sums, which is described next.

B.2 TOP COMBINATIONS WITH THE LARGEST SUMS

Consider this problem: given a two-dimensional array A = [a1, · · · ,ad], ai = [ai,1, · · · , ai,ti ],
with ai,1 ≥ · · · ≥ ai,ti , i ∈ {1, · · · , d}, find k multi-indices of the form I = [I1, · · · , Id] such that
the sums sI :=

∑d
i=1 ai,Ii are the k largest among all combinations I ∈

∏d
i=1{1, · · · , ti}.

An exhaustive search is intractable because the number of all possible combinations grows expo-
nentially as

∏d
i=1 ti. Instead, we use a min-heap to efficiently keep track of the top k combinations.

A min-heap is a complete binary tree, where each node is no greater than its children. The oper-
ations of inserting an element and removing the smallest element from a min-heap can be done in
logarithmic time. Algorithm 2 gives a procedure to solve the above problem using min-heaps.

Algorithm 2 maxk sum: Combinations with the k largest sums

Input: two-dimensional array A; number of top combinations k.
1: Make the array nonpositive by replacing ai with ai − ai,11 for i = 1, · · · , d.
2: Create a min-heap by adding the elements of a1, each considered a combination of length one:

index I1, key a1,I1 .
3: At stage i = 2, · · · , d: create a new min-heap consisting of length-i combinations by adding

each element in ai to each combination in the min-heap at the previous stage: index [I1, · · · , Ii],
key

∑i
j=1 aj,Ij . The size of the min-heap at each stage is capped at k by popping the smallest

sum from the min-heap when necessary.
Output: combinations in the min-heap at stage d.

This algorithm has time complexity O(tk log k), where t =
∑d

i=1 ti ≪
∏d

i=1 ti, and space com-
plexity O(dk). In TS-roots, the cost of maxk sum is small compared with the gradient-based
multistart optimization of the posterior sample.

C ALGORITHMS FOR TS-ROOTS

C.1 SPECTRAL SAMPLING OF SEPARABLE GAUSSIAN PROCESS PRIORS

Per Mercer’s theorem on probability spaces (see e.g., Rasmussen & Williams (2006), Sec 4.3), any
positive definite covariance function that is essentially bounded with respect to some probability
measure µ on a compact domain X has a spectral representation κ(x,x′) =

∑∞
k=0 λkϕk(x)ϕk(x

′),
where (λk, ϕk(x)) is a pair of eigenvalue and eigenfunction of the kernel integral operator. The cor-
responding GP prior can be written as fω(x) =

∑∞
k=0 wk

√
λkϕk(x), where wk

iid∼ N (0, 1) are in-
dependent standard Gaussian random variables. Similar spectral representations exist per Bochner’s
theorem, which may have efficient discretizations (Solin & Särkkä, 2020; Mutny & Krause, 2018).
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Given spectral representations of the univariate component functions of a separable Gaussian Pro-
cess prior, we can accurately approximate the prior sample as:

fω(x) =

d∏
i=1

fi(xi;ωi), fi(xi;ωi) ≈
Ni−1∑
k=0

wi,k

√
λi,kϕi,k(xi). (10)

Here Ni is selected for each variate such that λi,Ni−1/λi,1 ≤ ηi, where ηi is sufficiently small
(see Appendix H for the value used in this study). Using spectral representations of the univariate
components as in eq. (10) is much more efficient than directly using a spectral representation of the
separable GP prior, because the former uses

∑d
i=1Ni univariate terms to exactly represent

∏d
i=1Ni

multivariate terms in the latter.

Spectrum of the Squared Exponential Covariance Function. The univariate squared exponential
(SE) covariance function can be written as κ(x, x′; l) = exp(− 1

2s
2), where the relative distance

s = |x−x′|/l and length scale l ∈ (0,∞). The spectral representation of such a covariance function
per Mercer’s theorem is κ(x, x′) =

∑∞
k=0 λkϕk(x)ϕk(x

′). With a Gaussian measure µ = N (0, σ2)
over the domain X = R, we can write the eigenvalues λk and eigenfunctions ϕk(x) of the kernel
integral operator as follows. (See e.g., Zhu et al. (1998) Sec. 4 and Gradshteyn & Ryzhik (2014)
7.374 eq. 8.)

Define constants a = (2σ2)−1, b = (2l)−1, c =
√
a2 + 4ab, and A = 1

2a + b + 1
2c. For

k ∈ N, the kth eigenvalue is λk =
√

a
A

(
b
A

)k
and the corresponding eigenfunction is ϕk(x) =(

πc
a

)1/4
ψk(
√
cx) exp

(
1
2ax

2
)
, where ψk(x) =

(
π1/22kk!

)−1/2
Hk(x) exp

(
− 1

2x
2
)

and Hk(x) the
kth-order Hermite polynomial defined by Hk(x) = (−1)k exp(x2) dk

dxk exp(−x2).
Figure 6 shows approximations to the SE covariance function by truncated spectral representations
with the first N eigenpairs and by random Fourier features (Rahimi & Recht, 2007) with N basis
functions. The spectral representation per Mercer’s theorem converges quickly to the true covariance
function, while the random Fourier features representation requires a large number of basis functions
and is inaccurate for N < 1000.

(a) (b)

(a) (b)

Figure 6: Approximate SE covariance functions from (a) the spectral representation per Mercer’s
theorem with the first N eigenpairs and (b) the random Fourier features representation with N basis
functions. The plots are generated for l = 1.

C.2 UNIVARIATE GLOBAL ROOTFINDING

Algorithm 3 outlines a method for univariate global rootfinding on an interval by solving an eigen-
value problem. When the orthogonal polynomial basis is the Chebyshev polynomials, the corre-
sponding comrade matrix is called a colleague matrix, and we have the following theorem:

Theorem 1 Let p(x) =
∑m

k=0 akTk(x), am ̸= 0, be a polynomial of degree m, where Tk is the kth
Chebyshev polynomial and ak is the corresponding weight. The roots of p(x) are the eigenvalues of
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Algorithm 3 roots: Univariate global rootfinding on an interval

Input: polynomial p(x) of degree m (or any real function f(x))
1: transform p(x) into an orthogonal polynomial basis p(x) =

∑m
k=0 akTk(x)

(or approximate f(x) on the interval using such a basis)
2: solve all the eigenvalues of the comrade matrix C associated with the polynomial basis

Output: all the real eigenvalues {xi}ri=1 in the interval, which are the roots of p(x) (or f(x))

the following m×m colleague matrix:

C =



0 1
1/2 0 1/2

1/2 0 1/2
. . .

. . .
. . .

1/2
1/2 0

−
1

2am


a0 a1 a2 · · · · · · am−1

 , (11)

where the elements not displayed are zero.

A proof of Theorem 1 is provided in Trefethen (2019), Chapter 18. A classical formula to compute
the weights {ak} requires O(m2) floating point operations, which can be reduced to O(m logm)
using a fast Fourier transform. Since the colleague matrix is tridiagonal except in the final row,
the complexity of computing its eigenvalues can be improved from O(m3) to O(m2) operations,
which can be further improved toO(m) via recursive subdivision of intervals (see Trefethen (2019)).
Specifically, if m > 100, the interval is divided recursively so that on each subinterval the function
can be accurately approximated by a polynomial of degree no greater than 100. The roots al-
gorithm is implemented in the Chebfun package in MATLAB (Battles & Trefethen, 2004) and the
chebpy package in Python (Richardson, 2016); both packages also implement other related programs
such as chebfun for Chebyshev polynomial approximation and diff for differentiation.

C.3 BEST LOCAL MINIMA OF A SEPARABLE FUNCTION

Given the univariate component functions of a separable function, Algorithm 4 finds the subset So
of the local minima of the function with the no smallest function values. This procedure requires the
maxk sum algorithm in Algorithm 2, the roots algorithm in Algorithm 3 and the related programs
chebfun and diff, see also Appendix H.

In Algorithm 4, ξ, f ,h, J, P are two-dimensional arrays, while I,Π(1),Π(0) are matrices. Func-
tion evaluations at Lines 9, 10, 14, 19, 20, and 24 are only notational: the sign and value of the
function can be computed efficiently by multiplying the signs and values of its components at the
selected coordinates. For example, the statement f(ξ(1)(I)) < 0 at Line 9 can be evaluated as
rowXor(P (1)(I)), where P (1) is a two-dimensional array with P (1)

i = Pi(¬Ji), P (1)(I) is a ma-
trix with d columns, and rowXor is row-wise exclusive or operation. Similarly, the statement
f(ξ(1)(I)) at Line 10 can be evaluated as rowProd(f (1)(I)), where rowProd is row products.

C.4 DECOUPLED SAMPLING FROM GAUSSIAN PROCESS POSTERIORS

The decoupled sampling method for GP posteriors (Wilson et al., 2020), together with the spectral
sampling of separable GP priors, is outlined in Algorithm 5.

C.5 COMPUTATIONAL COMPLEXITY OF TS-ROOTS

Per Algorithm 1, the computational cost of the TS-roots method is dominated by a few tasks: (1)
one call of minsort (Algorithm 4); (2) no + n evaluations of the posterior sample path f̃(·); and
(3) ne + nx calls of the gradient-based optimizer minimize.

First, consider task (2). Evaluating f̃(·) involves evaluating: (i) the prior sample path f(·), which
involves evaluating its d univariate component functions, each with a cost that depends on its spectral
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Algorithm 4 minsort: Best local minima of a separable function

Input: separable function f(x) =
∏d

i=1 fi(xi); set size no; buffer coefficient α (defaults to 3).
1: fi(xi)← chebfun(fi(xi)), i = 1, · · · , d ▷ Construct chebfuns for univariate components
f ′i(xi)← diff(fi(xi)); f ′′i (xi)← diff(f ′i(xi)) ▷ Compute first and second derivatives

2: {ξi,j}rij=1 ← roots (f ′i(xi)), i = 1, · · · , d ▷ Univariate global rootfinding
{ξi,0} ← xi; {ξi,ri+1} ← xi ▷ Include interval lower and upper bounds
ξi ← [ξi,0, ξi,1, · · · , ξi,ri , ξi,ri+1]

⊺ ▷ Candidate coordinate values {Ξi}
3: fi ← fi(ξi), i = 1, · · · , d ▷ Univariate function values
hi,j ← f ′′i (ξi,j), j = 1, · · · , ri ▷ Univariate second derivatives at critical points
hi,0 ← f ′i(ξi,0); hi,ri+1 ← −f ′i(ξi,ri+1) ▷ Univariate inward derivatives at interval ends

4: Ji ← (fi ◦ hi > 0); Pi ← (fi > 0) ▷ Boolean vectors of sign parity and positivity
5: ξ

(0)
i ← ξi(Ji); ξ

(1)
i ← ξi(¬Ji) ▷ Mono and mixed type candidate coordinates: Ξ(0)

i ,Ξ
(1)
i

f
(0)
i ← fi(Ji); f

(1)
i ← fi(¬Ji) ▷ Values at mono and mixed type candidate coordinates

6: n(0)i ← sum(Ji); n
(1)
i ← sum(¬Ji)

n
+(0)
i ← sum(Pi&Ji); n

−(0)
i ← sum((¬Pi)&Ji)

n
+(1)
i ← sum(Pi&(¬Ji)); n

−(1)
i ← sum((¬Pi)&(¬Ji))

N (0) ←
∏d

i=1 n
(0)
i ; N (1) ←

∏d
i=1 n

(1)
i ▷ Sizes of tensor grids

S(0) ←
∏d

i=1(n
+(0)
i − n−(0)

i ); S(1) ←
∏d

i=1(n
+(1)
i − n−(1)

i ) ▷ Signed sums
7: if no ≤ N̆− = 1

2 (N
(1) − S(1)) then

8: [s, I]← maxk sum
(
{log(|f (1)i |)}di=1, αno

)
▷ The αno largest |f | in Ξ(1)

9: I← I[f(ξ(1)(I)) < 0, :] ▷ Multi-indices of best negative local minima
10: [b, I]← mink(f(ξ(1)(I)), no) ▷ The no smallest f in X̆−

11: So ← S−
o = ξ(1)(I[I, :])

12: else
13: Π(1) ←

∏d
i=1{1, · · · , n

(1)
i } ▷ Matrix of index combinations

14: Ĭ− ← Π(1)[f(ξ(1)(Π(1))) < 0, :] ▷ Multi-indices of negative local minima
15: [b, I]← sort(f(ξ(1)(Ĭ−))) ▷ Sort values in ascending order
16: X̆− ← ξ(1)(Ĭ−[I, :]) ▷ Negative local minima
17: if no ≤ N̆ = 1

2 (N
(1) − S(1) +N (0) + S(0)) then

18: [s, I]← maxk sum
(
{log(|f (0)i |)}di=1, α(no − N̆−)

)
▷ Largest |f | in Ξ(0)

19: I← I[f(ξ(0)(I)) > 0, :] ▷ Multi-indices of best positive local minima
20: [b, I]← mink(f(ξ(0)(I)), no − N̆−) ▷ The no − N̆− smallest f in X̆+

21: So ← X̆−⋃S+
o , S

+
o = ξ(0)(I[I, :])

22: else
23: Π(0) ←

∏d
i=1{1, · · · , n

(0)
i } ▷ Matrix of index combinations

24: Ĭ+ ← Π(0)[f(ξ(0)(Π(0))) > 0, :] ▷ Multi-indices of positive local minima
25: [b, I]← sort(f(ξ(0)(Ĭ+))) ▷ Sort values in ascending order
26: So ← X̆−⋃ X̆+, X̆+ = ξ(0)(Ĭ+[I, :]) ▷ All local minima
27: end if
28: end if
Output: So ▷ Candidate exploration set: smallest no local minima in ascending order

representation (Appendix C.1); and (ii) the canonical basis κ·,n(·), which costs O(dn) flops. When
the data size n is large, we can pre-filter the observed locations X by the observations y, which is a
good estimate of f̃(X) depending on the observation noise. We assume that the number of observed
locations after filtering is at most comparable to ne. The cost of task (2) is thus O(nodn) flops.

Now consider task (3). Evaluating the gradient of f̃(·) involves evaluating the gradients of f(·) and
κ·,n(·). Since both f(·) and κ·,n(·) are separable functions, their gradients can be computed at a
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Algorithm 5 Decoupled sampling of Gaussian process posterior

Input: eigenpairs {(λi,k, ϕi,k(x))}k=0,··· ,Ni−1
i=1,··· ,d , data D = {(xj , yj)}nj=1, covariance matrix C =

Kn,n +Σ, canonical basis κ·,n(x) = (κ(x,xj))nj=1.

1: wi,k
iid∼ N (0, 1) ▷ Random coefficients for the prior sample

2: fω(x) =
∏d

i=1

∑Ni−1
k=0 wi,k

√
λi,kϕi,k(xi) ▷ Approximate prior sample

3: fn ← [fω(x
1), · · · , fω(xn)]⊺ ▷ Values of prior sample at observed locations

4: ε ∼ Nn(0,Σ) ▷ Random noise for the posterior sample
5: v← C−1 (y − fn − ε) ▷ Linear solve via factorization (e.g., Cholesky or SVD)

Output: f̃ω̃(x) = fω(x) + v⊺κ·,n(x) ▷ Approximate posterior sample

cost comparable to evaluating their function values. Let Ngrad be the number of gradient evaluations
required by the gradient-based optimizer. The cost of task (3) is thus O((ne + nx)Ngraddn) flops.

For task (1), the cost of the minsort algorithm is dominated by: (i) d calls to chebfun, which
evaluates the univariate components fi(·) at a number of points depending on their complexity;
(ii) d calls to roots (Algorithm 3), which scales linearly with the polynomial degree m of the
chebfun object, itself dependent on the complexity of fi(·); and (iii) at most one call to maxk sum

(Algorithm 2) at a cost ofO(tno log no), where t =
∑d

i=1 ti and ti is two plus the number of critical
points of fi(·) which depends on the complexity of fi(·). The complexity of fi(·), for the SE kernel
for example (see Appendix C.1), can be quantified as the inverse length scale θi = 1/li. We may
define an average complexity as θ = 1

d

∑d
i=1 θi. The cost of task (1) is thus O(dθno log no) flops.

As explained in Appendix D, we can set ne and nx to small values and no to a moderate value,
independent of f̃(·) and thus independent of d, n and θ. The overall cost of TS-roots thus scales
as O(dn+ dθ), which is linear in the input dimension d.

D MINIMUM SIZE OF EXPLORATION AND EXPLOITATION SETS

We conduct an empirical experiment to determine minimal values for ne and nx of TS-roots algo-
rithm, which are the sizes of Se and Sx, respectively. From this experiment, we also recommend a
value for no, which is the size of So. Recall that points in So are sorted in ascending order of prior
sample values, while those in Se and Sx are sorted in ascending order of posterior sample values.

Let Ie and Ix be the sets of indices of points in Se and Sx that converge to the best local minimum of
the posterior sample in each optimization iteration, respectively. Let Io be the set of indices of points
in So associated with Se. Our hypothesis is that we have a high chance of finding a small index value
in either Ie or Ix. If this hypothesis is confirmed, then we can set both ne and nx at very small values,
which significantly accelerate the inner-loop optimization. To confirm our hypothesis, we employ
the following two steps. First, we set ne and nx at large values to mimic the effect of removing
the set size limits, ensuring accurate solution of the global optimization problem. Then, we show
that we have a high chance of finding a small index value from Ie and/or Ix in each optimization
iteration.

We test our hypothesis on the 2D Schwefel, 4D Rosenbrock, 10D Levy, 16D Ackley, 16D Powell
functions. We set no = 5000, ne = nx = 1000, and α = 3 (buffer coefficient). The left and
middle columns of Figure 7 show the smallest index values and the variation of index values from Ie
and/or Ix of starting points that converge to the best local minimum x⋆ of the posterior sample path in
each optimization iteration. The left column also plots the index values from Io corresponding to the
smallest index values from Ie, if exists. The right column shows the histograms of the smallest index
values from Ie and Ix for all iterations considered. These results show that we have a high chance of
finding a small index value from Ie and/or Ix in each iteration. This confirms our hypothesis. In fact,
using the first point in Se and the first point in Se—only two points—we can discover the global
optimum most of the time. Interestingly, the smallest index values appear largely independent of
both the optimization iteration and the input dimension. Furthermore, the results suggest that it is
safe to set no = 500; and for almost exact global optimization, we suggest setting ne = 25 and
nx = 50.
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Figure 7: Left column: Minimum index values and index range of Ie and/or Ix for starting points
that converge to the best local minimum x⋆ of posterior sample in each optimization iteration, and
index values of Io associated with minimum index values from Ie. Middle column: Zoom-in plots
of index values. Right column: Historam of the minimum index values. (a) 2D Schwefel, (b) 4D
Rosenbrock, (c) 10D Levy, (d) 16D Ackley, (e) 16D Powell functions.

E BAYESIAN OPTIMIZATION VIA THOMPSON SAMPLING

A general procedure for sequential optimization is given in Algorithm 6. The initial dataset D0 can
either be empty or contain some observations. In the latter case we can write D0 = {(xi, yi)}n0

i=1,
where n0 ∈ N>0. Three components of this algorithm can be customized: the observation model
Observe(x), the optimization policy Policy(D), and the termination condition.

BO can be seen as an optimization policy for sequential optimization. A formal procedure is given in
Algorithm 7. Three components of this algorithm can be customized: the prior probabilistic model
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Algorithm 6 Sequential optimization (Garnett, 2023)

Input: initial dataset D0

1: k ← 1
2: repeat
3: xk ← Policy(Dk−1)
4: yk ← Observe(xk)
5: Dk ← Dk−1 ∪ {(xk, yk)}
6: until termination condition reached

Output: D

Algorithm 7 Bayesian optimization policy

Input: a prior stochastic process f for the objective function ftrue, current dataset Dk−1

1: determine the posterior fk := f |Dk−1

2: derive an acquisition function αk(x) from fk

3: global optimization xk ← argminx∈X α
k(x)

Output: xk

f , the acquisition function α, and the global optimization algorithm. Any probabilistic model of the
objective function ftrue can be seen as a probability distribution on a function space, and the prior
f is usually specified as a stochastic process such as a GP. The acquisition function α derived from
the posterior f |D can be either deterministic—such as EI and LCB—or stochastic, such as GP-TS.
To simplify notation, we state the global optimization problem of α(x) as minimization rather than
maximization. The two problems are the same with a change of sign to the objective.

When applied to BO, GP-TS generates a random acquisition function simply by sampling the pos-
terior model. That is, given the posterior fk at the kth BO iteration, the GP-TS acquisition function
is a random function: αk(x) ∼ fk.

F BENCHMARK FUNCTIONS

The analytical expressions for the benchmark functions used in Section 6 are given below. The
global solutions of these functions are detailed in (Surjanovic & Bingham, 2013).

Schwefel Function:

f(x) = 418.9829d−
d∑

i=1

xi sin
(√
|xi|
)
. (12)

This function is evaluated on X = [−500, 500]d and has a global minimum f⋆ := f(x⋆) = 0 at
x⋆ = [420.9687, · · · , 420.9687]⊺. This function is C1 at x = 0.

Rosenbrock Function:

f(x) =

d−1∑
i=1

[
100(xi+1 − x2i )2 + (xi − 1)2

]
. (13)

This function is evaluated on X = [−5, 10]d and has a global minimum f⋆ = 0 at x⋆ = [1, · · · , 1]⊺.

Levy Function:

f(x) = sin2(πw1) +

d−1∑
i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+ (wd − 1)2

[
1 + sin2(2πwd)

]
, (14)

where wi = 1+ xi−1
4 , i = 1, · · · , d. This function is evaluated on X = [−10, 10]d and has a global

minimum f⋆ = 0 at x⋆ = [1, · · · , 1]⊺.
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Ackley Function:

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1), (15)

where a = 20, b = 0.2, and c = 2π. This function is evaluated on X = [−10, 10]d and has a global
minimum f⋆ = 0 at x⋆ = [0, · · · , 0]⊺. This function not differentiable at x⋆.

Powell Function:

f(x) =

d/4∑
i=1

[
(x4i−3 + 10x4i−2)

2
+ 5 (x4i−1 − x4i)2 + (x4i−2 − 2x4i−1)

4
+ 10 (x4i−3 − x4i)4

]
.

(16)
This function is evaluated on X = [−4, 5]d and has a global minimum f⋆ = 0 at x⋆ = [0, · · · , 0]⊺.

6d Hartmann Function:

f(x) = −
4∑

i=1

ai exp

− 6∑
j=1

Aij(xj − Pij)
2

 , (17)

where
a = [1, 1.2, 3, 3.2]⊺, (18a)

A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , (18b)

P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 (18c)

This function is evaluated on X = [0, 1]6 and has a global minimum f⋆ = −3.32237 at
x⋆ = [0.20169, 0.150011, 0.476874, 0.275332, 0.311625, 0.6573]⊺. The rescaled version f̃(x) =
f(x)−2.58

1.94 (Picheny et al., 2013) is used in the experiments.

G TEN-BAR TRUSS

Consider a ten-bar truss shown in Figure 8. The truss has ten members and is subjected to vertical
load P1 = 60 kN at node 2, vertical load P2 = 40 kN at node 3, and horizontal load P3 = 40
kN at node 3. The Young’s modulus of the truss material E = 200 GPa. The length parameter
L = 1 m. Let A(x) =

∑10
i=1 xi and δ3(x) denote the total area of the cross-sectional areas of the

truss members and the vertical displacement at node 3, respectively, where x = [x1, . . . , x10]
⊺ is

the vector of cross-sectional areas of the truss members. The optimization problem formulated for
the truss is to minimize both A(x) and δ3(x). Since A(x) and δ3(x) are competing, we define the
objective function as a weight-sum of A(x) and δ3(x), such that

f(x) = w1
A(x)

Amax
+ w2

δ3(x)

δmax
, (19)

where x ∈ [1, 20]10 cm2, w1 = 0.6, w2 = 0.4, Amax = 200 cm2, and δmax = 3 cm.

H EXPERIMENTAL DETAILS

Data Generation. We generate 20 initial datasets for each problem. The input observations are
randomly generated using the Latin hypercube sampling (Owen, 1992) within [−1, 1]d, where d
represents the number of input variables. The normalized input observations are transformed into
their real spaces to evaluate the corresponding objective function values which are then standardized
using the z-score for processing optimization. Each BO method in comparison starts from each of
the generated datasets.
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Figure 8: Ten-bar truss. Cross-sectional areas of ten truss members are the input variables xi,
i ∈ {1 . . . , 10}. Known parameters include length L, Young’s modulus of truss material E, and
external loads Pj , j ∈ {1, 2, 3}. The vertical displacement at node 3 is denoted as δ3.

Key Parameters for TS-roots and other BO Methods. We use squared exponential (SE) covari-
ance functions for our experiments. The spectra of univariate SE covariance functions for all prob-
lems (see Appendix C.1) are determined using the Gaussian measure µ = N (0, 1). The num-
ber of terms Ni, i ∈ {1, · · · , d}, of each truncated univariate spectrum is determined such that
λi,Ni−1/λi,1 ≤ ηi, where ηi = 10−16. If Ni > 1000, we set Ni = 1000 to trade off between the
accuracy of truncated spectra and computational cost. We also set no = 500. The maximum size of
the exploration set is ne = 250. The maximum size of the exploitation set is nx = 200.

The number of initial observations is 10d for all problems. The standard deviation of observation
noise σn = 10−6 is applied for standardized output observations. The number of BO iterations for
the 2D Schwefel and 4D Rosenbrock functions is 200, while that for the 10D Levy, 16D Ackley, and
16D Powell functions is 800. Other GP-TS methods for optimization of benchmark test functions
including TS-DSRF (i.e., TS using decoupled sampling with random Fourier features) and TS-RF
(i.e., TS using random Fourier features) are characterized by a total of 2000 random Fourier features.

To ensure a fair comparison of outer-optimization results, we first implement TS-roots and record
the number of starting points used in each optimization iteration. We then apply other BO methods,
each employing a gradient-based multistart optimizer with the same number of random starting
points and identical termination criteria as those used for TS-roots in each iteration.

For the comparative inner-loop optimization performance of the proposed method via rootfinding
with the random multistart and genetic algorithm approaches, we set the same termination tolerance
on the objective function value as the stopping criterion for the methods. In addition, the number
of starting points for the random multistart and the population size of the genetic algorithm are the
same as the number of points in both the exploration and exploitation sets of rootfinding in each
optimization iteration.

Computational Tools. We carry out all experiments, except those for inner-loop optimization, using
a designated cluster at our host institution. This cluster hosts 9984 Intel CPU cores and 327680
Nvidia GPU cores integrated within 188 compute and 20 GPU nodes. The inner-loop optimization
is implemented on a PC with an Intel® CoreTM i7-1165G7 @ 2.80 GHz and 16 GB memory.

For the univariate global rootfinding via Chebyshev polynomials, we use MATLAB’s Chebfun pack-
age (Battles & Trefethen, 2004) and its corresponding implementation in Python, called chebpy
(Richardson, 2016).

I ADDITIONAL RESULTS

Distance to Global Minimum. Figure 9 shows the solution locations from 20 runs of TS-roots,
TS-DSRF, TS-RF, EI, and LCB for the 2D Schwefel, 4D Rosenbrock, 10D Levy, 16D Ackley, 16D
Powell functions.
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Figure 9: Outer-loop optimization results for (a) the 2D Schwefel, (b) 4D Rosenbrock, (c) 10D
Levy, (d) 16D Ackley, (e) 16D Powell functions. The plots are histories of medians and interquartile
ranges of solution locations from 20 runs of TS-roots, TS-DSRF (i.e., TS using decoupled sampling
with random Fourier features), TS-RF (i.e., TS using random Fourier features), EI, and LCB.

Comparison of Inner-loop Optimization Results. Figures 10 and 11 compare the performance of
the inner-loop optimization by three different initialization schemes, i.e., rootfinding, uniform grid,
and Latin hypercube sampling, for low-dimensional cases of the 2D Schwefel and 4D Rosenbrock
functions, and for higher-dimensional cases of the 10D Levy, 16D Ackley, and 16D Powell func-
tions. Rootfinding performs better than the uniform grid and Latin hypercube sampling initialization
schemes, especially in high-dimensional settings.

Sample-average Posterior Function. Figure 12 shows how we can improve the exploitation of
GP-TS when increasing the exploration–exploitation control parameter Nc.

Performance of Sample-average TS-roots. Figure 13 shows the performance of sample-average
TS-roots with different exploration–exploitation control parameters Nc for the 2D Schwefel, 4D
Rosenbrock, and 6D Ackley functions.
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Figure 10: Inner-loop optimization results by three different initialization schemes, i.e., rootfinding,
uniform grid, and Latin hypercube sampling, for (a) the 2D Schwefel and (b) 4D Rosenbrock func-
tions. The plots are cumulative values of optimized GP-TS acquisition functions α⋆

k, cumulative
distances between new solution points x⋆

k and the true global minima xt
k of the acquisition func-

tions, and cumulative CPU times tk for optimizing the acquisition functions.
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(a) (b) (c) 

Figure 11: Inner-loop optimization results by three different initialization schemes, i.e., rootfinding,
uniform grid, and Latin hypercube sampling, for (a) the 10D Levy, (b) 16D Ackley, and (c) 16D
Powell functions. The plots are cumulative values of optimized GP-TS acquisition functions α⋆

k and
cumulative CPU times tk for optimizing the acquisition functions.
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Figure 12: Sample-average posterior function for different values of Nc. The posterior function
approaches the GP mean and the conditional distribution of the solution location p(x⋆|D) is more
concentrated when we increase Nc.

(a) (b) (c)

(a) (b) (c)

Figure 13: Performance of sample-average TS-roots with different control values Nc for (a) the 2D
Schwefel, 4D Rosenbrock, and (b) 6D Ackley functions. The plots are histories of medians and
interquartile ranges of solution values and solution locations from 20 runs of TS-roots for each Nc
value.
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