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Abstract

Distributed representations provide a vector space that captures meaningful rela-
tionships between data instances. The distributed nature of these representations,
however, entangles together multiple attributes or concepts of data instances (e.g.,
the topic or sentiment of a text, characteristics of the author (age, gender, etc), etc).
Recent work has proposed the task of concept erasure [50, 52], in which rather than
making a concept predictable, the goal is to remove an attribute from distributed
representations while retaining other information from the original representation
space as much as possible. In this paper, we propose a new distance metric learning-
based objective, the Kernelized Rate-Distortion Maximizer (KRaM), for performing
concept erasure. KRaM fits a transformation of representations to match a specified
distance measure (defined by a labeled concept to erase) using a modified rate-
distortion function. Specifically, KRaM’s objective function aims to make instances
with similar concept labels dissimilar in the learned representation space while
retaining other information. We find that optimizing KRaM effectively erases various
types of concepts—categorical, continuous, and vector-valued variables—from
data representations across diverse domains. We also provide a theoretical analysis
of several properties of KRaM’s objective. To assess the quality of the learned
representations, we propose an alignment score to evaluate their similarity with the
original representation space. Additionally, we conduct experiments to showcase
KRal’s efficacy in various settings, from erasing binary gender variables in word
embeddings to vector-valued variables in GPT-3 representations.

1 Introduction

Learned representations, particularly distributed representations [30], are at the core of machine
learning with applications in natural language [39], images [21], biology [4], physics [3], and several
other domains [40, 48]. These vector-based representations of data instances create an inner product
space where similarities and nearest-neighbor relationships are “meaningful”. However, due to
the distributed nature of these representations, the definition of “meaningful” is often not easily
discernible. In other words, shared properties of data instances nearby in the vector space are
not always evident. These shared properties are often referred to as concepts [31]. For instance,
concepts in representations of images include objects in the image, whether it is indoor or outdoor, etc.
Similarly, concepts in text representations include the topics, and characteristics of the author (e.g.,
geographic location, gender, etc.). For applications that necessitate conditioning on specific attributes
to make or explain predictions, these distributed representations can pose challenges. Consequently,
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a significant body of work has focused on jointly learning representations and disentangling their
underlying concepts [28, 29].

However, state-of-the-art representations for tasks across various domains often come from pre-
trained models (e.g., ViTs [23] for images, GPT [14] for text, among others). In many cases, these
pre-trained representations are utilized directly without fine-tuning the original model, due to factors
such as computational burden or limited model API access [24]. This presents a challenge for fitting
disentangled representations of data instances and their concepts since the model parameters are
frozen. Rather, it presents an opportunity for learning a transformation (or similarly learning a
distance metric) for the pre-trained representations.

While learning such a transformation of pre-trained representations can be used for many applications
(e.g., classification, regression, etc.) that involve disentangling specific concepts from representations,
we focus on the recently proposed task of concept erasure [50]. The objective of concept erasure
is twofold: (1) to learn representations that minimize the classification accuracy (or mean squared
error) for a specific concept variable and (2) to retain as much other information from the original
representations as possible. This becomes possible when the representations are not correlated
with the concept variable. We should note that there are indeed some trivial methods to reduce
the correlation — such as generating random representations or making all representations identical.
However, these solutions fail to retain any information from the original representation space. This
highlights one of the key challenges in concept erasure — retaining information from the original
space while removing a given concept. This challenge is accentuated by the lack of a pre-specified
downstream task for which the representations could be optimized. Instead, objectives for concept
erasure use no supervision (apart from the labels of the concept to erase). This makes it difficult to
use adversarial learning [60] or mutual information estimation [17, 43] methods for concept erasure.

The independence of concept erasure from down-stream tasks makes it amenable to a variety of
applications that use the modified representations. For example, when developing a toxicity classifier
for online comments, an organization may seek to ensure that content from different religious
backgrounds is treated equitably. This can be achieved using concept erasure to remove information
about religion from the text representations [60]. Concept erasure has also shown promise in
interpreting the decision-making of large models by studying counterfactual scenarios where certain
properties of the input are erased from intermediate layers [26].

In this paper, we present a new distance metric learning-based objective for concept erasure. We refer
to our objective, Kernelized Rate-Distortion Maximizer (KRaM). The objective fits a transformation
of representations to match a specified distance measure using a kernelized rate-distortion function,
where the kernel is constructed using concept labels. Specifically, KRaM’s objective function tries to
make instances with similar concept labels dissimilar in the learned representation space (Figure 1).
Empirically, we find that optimizing KRaM results in representations that are uncorrelated with the
concept variable, effectively leading to its erasure. To evaluate the quality of the representations, we
propose a k-nearest neighbour based measure to capture the alignment of the learned representations
with the original representation space. We conduct extensive experiments to demonstrate that
KRaM is capable of erasing various types of concepts—categorical, continuous, and vector-valued
variables—from data representations across a wide range of domains. We also theoretically analyze
several properties of the proposed objective function. Our primary contributions are:

¢ We introduce a novel framework — KRaM, which uses a kernelized formulation of the rate-distortion
function that is able to delete a range of concepts — categorical, continuous, or vector-valued
variables from representations (Section 3).

* We propose a computationally efficient alignment measure, to evaluate how informative the learned
representations are about the original representation space (Section 4).

* We perform a theoretical analysis of KRaM’s objective and alignment measure. We conduct extensive
experiments to showcase the efficacy of KRaM in a range of settings, from erasing binary gender
variables in word embeddings to vector-valued variables in GPT-3 representations (Section 5).

2 Preliminaries & Background

In this section, we first formally describe the concept erasure setup, then discuss some prior concept
erasure techniques, and finally introduce the fundamentals of rate-distortion theory.



Problem Setup. In concept erasure [50, 52], we consider the input representations € A" and the
concept a € A as random variables. We assume access to samples [(x1,a1), (%2, az2), ...] drawn
from the joint distribution P(X,.A). The goal of concept erasure is to learn a function f(-) that
generates representations [f (1), f(z2),...] € Z, such that it is infeasible to predict the concept
labels a € A from Z. In addition to erasing the concept variable, f(x) € Z should retain as much
information about € X’ as possible. We do not impose any constraints on the nature of the concept.
It can be: categorical (a € [k]), continuous (a € R), or vector-valued (a € R%) random variable.

Concept Erasure is also closely related to learning invariant representations with respect to an attribute
through adversarial learning [8, 25, 32, 60]. However, concept erasure differs from adversarial
learning in two key aspects: (a) the input representations x € X remain frozen during the concept
erasure process (only erasure function f is updated), and (b) it does not rely on a specific downstream
task. This setup is beneficial in situations where we can access representations but lack the necessary
resources or infrastructure to train or fine-tune the model that generated them. In the following
section, we describe the details of the proposed concept erasure framework, KRaM.

Prior Work. Concept erasure was initially introduced by [13] in the context of removing binary
gender labels from GloVe embeddings [46]. Initial works on this problem [13, 49] performed concept
erasure by projecting representations onto the null space of the optimal separating linear subspace for
the categorical concept. Recent work [50] has introduced a generalized objective for this solution,
presenting it as a minimax game between concept identification and nullspace projection, and further
provided a closed-form solution for its relaxed convex version. Nonetheless, these techniques are
limited by two main assumptions: (a) the erasure function f(-) is linear, and (b) the concept variable
is categorical. A linear erasure function ensures that a linear subspace, which could identify the
concept label for instances, does not exist in the learned representation space, Z. Consequently,
it prevents any linear network from extracting the concept labels from the learned representations.
However, it can still be possible for a non-linear network to predict the concept labels by identifying a
non-linear concept subspace. Given that most modern ML architectures rely on non-linear networks,
it is crucial to ensure that the concept is inaccessible to non-linear networks. More recent works
have made progress towards non-linear concept erasure. This has been done either by using a linear
concept erasure after projecting the input into a non-linear feature space [52], or directly utilizing
a non-linear erasure function f using a rate-distortion objective [18]. Despite their potential, these
concept erasure techniques require access to categorical concept labels for all instances. Hence, it
is not possible to erase other forms of concept variables (continuous or vector-valued) using these
techniques without discretization of the concept labels, which often leads to information loss. In
contrast to these techniques, our erasure framework KRaM is able to handle a variety of concept
variables (categorical, continuous, or vector-valued) while performing non-linear concept erasure.
This becomes possible as KRaM presumes access to a kernel matrix that is defined by the concept
labels, and does not impose any additional constraints on the nature of the concept variable. Next, we
discuss the fundamentals of the rate-distortion function that forms a building block of our framework.

Rate Distortion. In information theory [20], the compactness of a distribution is measured by their
coding length — the number of binary bits required to encode it. In lossy data compression, a set of
vectors Z = {zy,...,2,} € R"*4, sampled from a distribution P(Z), is encoded using a coding
scheme, such that the transmitted vectors {Z; }_, can be recovered up to a distortion e. The minimal
number of bits required per vector to encode the sequence Z is defined by the rate-distortion function
R(Z,€). The optimal R(Z, ¢) for vectors Z sampled from a multivariate Gaussian A (0, ) is:

1 d
R(Z,¢) = 3 log, det (I + WZZT> , (D

where n is the number of vectors and d is the dimension of individual vectors. Equation 1 provides
a tight bound even in cases where the underlying distribution P(Z) is degenerate [38]. The rate-
distortion function is also closely tied to the sphere packing problem [38] and represents the volume
(or intrinsic dimension) of a representation set. Recent works like MCR? [59] have built on the rate-
distortion function to learn discriminative representations for classification tasks. Concept erasure
techniques [18, 19], have also used the rate-distortion function to erase categorical variables. Even
though KRaM uses the rate-distortion function similar to these techniques, it is more versatile and
capable of erasing different types of concept variables. KRaM also imposes additional constraints on
the feature space to ensure robust concept erasure, which we discuss in the following section.
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Figure 1: An illustration of concept erasure using KRaM. Input representations are retrieved from a
large language model. The original representations (a) encodes a binary concept variable (the two
classes are shown in @ and @), which we aim to erase. R(Z|K) term forces instances from the same
class to move apart. However, for robust concept erasure the size of the representation space R(Z)
matters, which we illustrate visually in (b), (c), and (d). KRaM enforces the constraint R(Z) = b to
erase the concept while retaining information from original representations.

3 Kernelized Rate-Distortion Maximizer (KRaM)

We proceed by discussing how a concept variable can be erased from a representation set. A concept
cannot be extracted by a predictive network (which is equivalent to erasure) if there is minimal
correlation between the representation set, Z, and the concepts, .4 [58]. Note that distances in the
representation space can be indicative of the concept variable. For example, in Figure 1 (a) we
observe that instances in the original representation space with similar concept labels (shown by their
color @ and @) appear close to each other. Here, the distance between instances is correlated with
the concept label, thereby making it feasible to identify the concept labels via a linear or non-linear
boundary. Ideally, we want a representation space where distances are not reflective of concept labels,
where instances with different concept labels appear together (e.g., Figure 1 (c) & (d)).

The intuition behind our approach, KRaM, is to make the distances in the learned representation space,
Z, uncorrelated with the concept variable, A. Specifically, we try to make instance pairs similar in
the concept space to be distant (or dissimilar) in the learned representation space, Z. We achieve this
by learning an erasure function f (parameterized by a neural network) to transform the input x € X’
into Z. We propose a kernelized formulation of the rate-distortion function to train f:

1 d
R(ZIK) = 3 log, det (I + @ZZT © K) , 2)

where Z = f(X) € R™*4 and the kernel matrix, K € R™*", captures similarities between concept
labels. The entries of the kernel matrix are inversely proportional to the distance between concept
labels K;; o< 1/d(a;, a;), where d(-, -) can be an arbitrary symmetric distance function, such that
d(z,z) = 0. We observe that R(Z|K) is sensitive to the scale of the representations f(z) € Z.
Therefore, we fix the Frobenius norm of the representations using a layer normalization layer [5] to
make f(x) € S%, ensuring that individual instances have an equal impact on the loss.

Next, we discuss how maximizing R(Z|K) (Equation 2) helps in concept erasure. We proceed by
noting that maximizing the standard version of the rate-distortion function (Equation 1) is equivalent
to increasing the covariance of the representations, ZZ”'. In the kernelized rate-distortion function
(Equation 2), we observe that the kernel matrix K assigns higher weights to instance pairs that have
similar concept labels (K;; o 1/d(a;, a;)). Intuitively, this means that maximizing R(Z|K) results
in an increased dissimilarity between instance pairs with similar concept labels, as illustrated by the
arrows in the center of Figure 1(a). This gradually leads to the distances in the learned representation
space Z being unrelated to the concept labels.

However, simply maximizing R(Z|K) may not guarantee robust concept erasure without imposing
additional constraints on the overall feature space. We explain why this happens by considering a
few scenarios. First, consider the scenario where we do not impose any constraints on the feature
space, shown in Figure 1(b). In this scenario, the volume (or intrinsic dimension) of the feature space
(analogous to R(Z) term) also expands as R(Z|K) is maximized (Lemma 1). Here, we observe that
even though the intra-group distances have increased it is still possible to separate the two groups



using a non-linear decision boundary. Second, we consider the scenario where we try to minimize the
volume of the feature space, which is equivalent to minimizing R(Z). This is illustrated in Figure 1(c),
where all instances are pushed together making it hard to predict the concept labels. However, it
also results in a significant loss of information from the original representations (as the volume or
intrinsic dimension collapses). As different instances become almost similar it destroys the unique
features present in Figure 1(a), potentially rendering them ineffective for downstream tasks. Thus, it
appears that the optimal approach is to maintain a constant size of the feature space as illustrated in
Figure 1(d). We verify these scenarios empirically in Section 5.2. With this consideration, we present
the following objective:

max R(Z|K), subjectto R(Z) = b, (3)

where b = R(X) is the initial number of bits required to encode the data and Z = f(X). In practice,
we found that satisfying the equality R(Z) = b using a Lagrangian function hinders the maximization
of R(Z|K). For concept erasure, we only want the feature space volume to be constant and do not
require it to exactly be b. Therefore, we optimize a relaxed version of the objective (Equation 3):

max R(Z|K) — AR(Z) - b], @)

where )\ is a hyperparameter. The second term in Equation 4 penalizes the network, f, if the
overall volume R(Z) deviates too far from b. Depending on the nature of the attribute (categorical,
continuous, or vector-valued), the user can define the kernel matrix K between concept labels.
For categorical concept variables, in our experiments, we use the kernel matrix whose values are
K;; € {0,1}, where K;; = 1if a; = a; otherwise K;; = 0. For continuous and vector-valued
variables, the kernel matrix can be derived from the concept labels by using a suitable kernel function
(e.g., Gaussian, Laplacian, or Cauchy kernels) if it is not specified by the user. In our experiments,
we use a Gaussian (RBF) kernel function for continuous and vector-valued concepts.

Lemma 1 (General Bounds for R(Z|K)). For any set of representations Z € R"*%, a kernel matrix
K € R™"*™ using a kernel function satisfying k(x,z) = 1 and € > 0, it holds that:

R(2) < R(Z[K) < glogz (14 d/ne?), )
where the first equality is satisfied when K = 117 and the second equality when ZZT = 1.

The detailed proof is provided in Appendix A.1. This result shows that R(Z|K) has a lower bound
equal to the rate-distortion function of the representations with the upper bound being independent
of the kernel matrix. We empirically show that maximizing R(Z|K) also results in an increase in
R(Z) in Section 5.2. Using the results of the above lemma, we can show that the proposed objective
(Equation 4) is bounded in the following corollary.

Corollary 1. Using assumptions in Lemma 1, for \ € [0, 1] the objective function (Equation 4) is
bounded between [—\b, max {(1 + \)U — Ab, (1 — A\)U + Ab}], where U = % log, (1 + d/ne?).

4 Measuring Alignment

A limitation of prior works [18, 49, 50] is the lack of evaluation beyond proxy tasks of how information
preserved by the learned representations Z about the original representations &X', which we refer to
as alignment. An erasure framework that generates random representations is able to erase concept
A perfectly but does not retain any information from X. Therefore, it is important to measure the
alignment as well while optimizing the erasure function f. To this end, we propose a computationally
efficient measure by computing the overlap between k-nearest neighbour sets of X and Z. The
average nearest neighbour overlap across all representations is the alignment score (Ay) for a given
concept erasure function f:

Ar(f) = E_[lknn(z) nknn(f(z))[] /k, ©)
where knn(-) function computes the k-nearest neighbour set of a representation. Alignment scores
lie between Ay (f) € [k/n, 1] (Lemma 2). Notice that this measure is quite similar to non-parametric
approaches for mutual information (MI) estimation [41, 35]. These methods, while leveraging
nearest neighbour information, compute data statistics within a hypercube. However, these MI



estimates are often biased for high-dimensional — k=1% (r=0.95) —— k=70% (r=0.99)

data [27]. In contrast to these methods, we utilize the — k=10% (r=0.98) —— k=90% (r=0.99)
bijective mapping (erasure function f) between X" and k=30% (r=0.99) —— Accuracy
Z (which is not available in the general case of MI k=50% (r=0.99)

estimation) to compute the overlap between nearest 1.0

\4
neighbour sets. The computation of A can be made 0.8
faster using an efficient nearest neighbour data structure
like kd-tree [10]. Note that a similar measure was used ¢ 0.6
to determine the stability of word embeddings [57]. :?? 04

Empirically, we find that Aj is well correlated with
the downstream performance of Z. Specifically, we
perform a synthetic experiment to simulate concept
erasure and assess the efficacy of Ay in capturing the 20 40 60 80 100
alignment of Z, where we sample a representation set Projection Count

(x ~ R190) and their corresponding labels. We remove
information from these representations by projecting
them onto nullspaces of its dominant eigenvectors (de-
tails provided in Algorithm 1). During this process, we
measure the prediction accuracy for the original labels
and Ay, scores (shown in Figure 2). We find the Ay is highly correlated with the prediction accuracy
achieving Pearson correlation scores ~ 0.99 (the average correlation over multiple runs). We also
compare Ay with a few different alignment measures (including MI estimates) and find that our
method outperforms others (more details in Appendix B).

Lemma 2 (Alignment for random representations). Expected alignment score achieved by a concept
erasure framework f that generates random representations is E[A(f)] = k/n.

0.2

0.0

o

Figure 2: Correlation of alignment score,
A (f), with accuracy for a synthetic
dataset. For different k values, Ag(f)
achieve high Pearson correlation ~0.99.

The proof is provided in Appendix A.2. This result shows the importance of choosing k. If k is too
small, the Ay (f) scores may be low for many concept erasure functions. Conversely, if k& & n, then
the A (f) scores will almost always be close to 1. In our experiments (Figure 2), we find that Ay’s
correlation is maximized when k£ = 0.5n.

5 Evaluation

In this section, we provide the specifics of the experimental setup and evaluation results for concept
erasure using KRaM across various datasets. The implementation of KRaM is publicly available at
https://github.com/brcsomnath/KRaM.

Setup. In all settings, we follow the same routine for concept erasure: (a) we obtain representations
either directly from the dataset or an encoder (e.g., BERT, GPT-3), which are kept frozen; (b) we
perform concept erasure in a post-hoc manner to obtain representations f(z) € Z, where f is a
non-linear neural network; and (c) we use f(z) on downstream tasks and report the metrics.

Datasets. We assess the effectiveness of KRaM in erasing 3 types of concept variables: (a) categorical
concepts — we apply KRaM to erase binary gender variables from GloVe embeddings and race from
BERT embeddings for tweets in the DIAL dataset [7]; (b) continuous concepts — we evaluate KRaM
on a synthetic dataset, generated using a continuous latent variable, and UCI Crimes [36]. For these
datasets, we treat one of the latent continuous variables and African American (AAE) population ratio
as the concepts to be erased, respectively; (c) vector-valued concepts — we evaluate on Jigsaw toxicity
detection dataset [ 1], where we consider religion and gender (which are vector-valued variables) as the
concepts to be erased from GPT-3.5 [15] embeddings. We present additional details in Appendix C.1.

Baselines. We compare KRaM with the following baselines: (a) INLP [49] (linear) iteratively projects
representations onto the nullspace of optimal separating linear subspaces; (b) RLACE [50] (linear)
is an extension of INLP that performs concept erasure by solving minimax game; (c) KCE [51]
(non-linear) presents a kernelized version of the minimax game introduced in RLACE; (d) FaRM [18]
(non-linear) employs rate-distortion maximization for erasing categorical concepts ; (€) KRaMjipear US€S
KRaM’s with a linear erasure function f. To the best of our knowledge, there are no existing methods
for continuous or vector-valued concept erasure. For continuous concepts, we normalize the labels
and quantize them into 7, bins (a hyperparameter). We denote a concept erasure method as Methodg
whenever quantization is used. For vector-valued concepts, we extend nullspace projection-based
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Figure 3: Vector-valued concept (religion) erasure performance using KRaM on Jigsaw toxicity dataset.
KRaM achieves better performance (T MSE & | AGDP) than baseline approaches in most settings.

erasure techniques by quantizing each dimension and projecting onto a series of nullspaces. It is
unclear how to utilize non-projection-based methods for vector-valued concept erasure.

Metrics. Following previous work [18, 50], we assess concept erasure quality using the following:

Probing representations. We use a scikit-learn MLP classifier (non-linear) [45] to probe f(x), report
classification accuracy for categorical attributes, MSE for continuous and vector-valued attributes (in
a dimension-wise manner). A better concept erasure method would have low accuracy and a high
MSE for the deleted concept.

Downstream metrics. For datasets with a downstream task, we evaluate if the deleted concept still
affects the task by measuring statistical parity. We report DP for categorical concepts, AGDP [33]
(see Appendix C.2) for continuous concepts, and AGDP values for each dimension of vector-valued
concepts. Lower statistical parity scores are expected after concept erasure. However, we note that
concept erasure does not necessarily guarantee fairness [16]. Applying these methods for fairness
would require a more application-specific analysis of the risks and biases.

Alignment. We report the alignment scores (A, for k = 0.5n, therefore A € [0.5,1]) wherever a
downstream task is absent. Higher A, scores are expected. If a downstream task is available, we
probe f(x) for that task, where we expect high accuracy or low MSE scores.

5.1 Main Results

In this section, we report the performance of KRaM in erasing different types of concepts: categorical,
continuous, and vector-valued variables. Note that the primary objective of concept erasure is to
robustly erase the concept variable (by achieving lower probing and fairness metrics) even if that
reduces the utility of the representations to some extent. This is different from adversarial learning
where we try to achieve a balance between fairness and utility. In our experiments, we show KRaM is
able to robustly erase concepts while retaining a significant amount of original information.

Vector-valued Concept Erasure. Erasure of vector-valued concepts is useful when the attribute
to be deleted is not available in the form of a categorical or normalized continuous variable. We
evaluate KRaM on erasing information about religion, a vector-valued concept, in the Jigsaw toxicity
dataset [1], where the downstream task involves detecting whether an online comment is toxic. Each
text is annotated with a vector-valued concept: religion with scores over the categories ({ ‘buddhist’,
‘christian’, ‘hindu’, ‘jewish’, ‘muslim’, ‘others’ }). We obtain text representations from GPT-3.5 API
and use a RBF kernel with a cosine distance function. In Figure 3, we report the MSE and AGDP
scores for KRaM along with other baselines. We observe that KRaM performs the best achieving low
AGDP with high MSE scores across most concept labels. We also observe that the change in toxicity
classification accuracy (93.2% — 92.1%) is minimal during concept erasure. This showcases the
efficacy of KRaM in erasing vector-valued attributes as it achieves up to 76% MSE gains over the best
baselines. We also report the results for vector-valued gender erasure in Appendix D.

Continuous Concept Erasure. We evaluate the efficacy of KRal in erasing continuous concepts
on a synthetic dataset and UCI Crimes. We compare with baseline approaches that use quantized
concept labels. In Table 1 (left), we report the results on the synthetic dataset and observe that
KRaM performs the best in preventing leakage of a (high MSE scores) while achieving considerable
alignment score, Aj. While both FaRM and KRaM utilize non-linear erasure functions, a necessity for
robust concept erasure, they tend to achieve relatively lower A, scores. Despite this, it is important
to note that significant information can still be preserved through non-linear warping, which we show



Synthetic UCI Crimes

Method MSE (a) 1 At Rankt MSE(y)] MSE(a)T AGDP/] AT
Original 0.006 1.0 100 0.046 0.030 0.058 1.0
Random 0.174 0.50 100 0.211 0.251 0.006 0.50
INLPq [49] 0.084 0.85 100 0.055 ¥ 0.056 0.0 0.90
RLACEq [50] 0.021 0.87 100 0.038 0.022 0.051 0.81
FaRM, [18] 0.068 0.74 100 0.050 0.064 ¥ 0.013 ¥ 0.62 ¥
KRaM 0.109 0.67 100 0.069 0.104 0.001 0.59
KRaMjinear 0.083 ¥ 0.75% 100 0.067 0.082 0.022 0.69

Table 1: Continuous concept erasure: We evaluate on the synthetic and UCI Crimes. Post concept
erasure using KRaM, we observe a significant increase in MSE (a) combined with a drop in AGDP.

DiAL Glove

Method Acc. (y) T Acc. (a) ] DP | Acc. (a) | At Rank 1
Original 75.5 87.7 0.26 100.0 1.0 300
Random 50.8 50.5 0.01 50.2 0.50 300
INLP [49] 75.1%® 69.5 0.16 86.3 0.85 210
RLACE [50] 75.5 82.1 0.18 95.5 0.93 300
KCE [51] 75.0 80.1 0.12¥ 63.5%® 0.62 100
FaRM [18] 74.8 54.2 0.09 53.9 0.65 247
KRaM 72.4 54.0 0.08 52.6 0.65 246 ¥
KRaMjinear 75.4 67.5% 0.18 67.0 0.73 ¥ 130

Table 2: Categorical concept erasure: We assess binary gender and race erasure from GloVe and
BERT representations (from DIAL) respectively. We denote the top 3 results for any metric using %,
, and ¥ respectively. Desired trends for all metrics are shown using 1 or |.

in the categorical experiments. Note that linear erasure functions are able to retain nearest neighbour
structures better, thereby achieving higher Ay, scores. In Figure 5, we visualize the UMAP projection
of synthetic data, where the representations’ position is indicative of the latent continuous concept
attribute prior to concept erasure (left). Post concept erasure (right), we observe no such discernible
correlation. For UCI Crimes, we perform erasure for the African-American (AAE) population ratio,
and use the generated representations to predict the normalized number of crimes per capita (y).
Table 1 (right) shows that KRaM generates representations with minimal information about AAE ratio
(high MSE (a)) and low AGDP scores (AGDP ~ 0). These experiments showcase KRaM’s efficacy in
erasing continuous attributes and minimizing their impact on downstream tasks (low AGDP scores).

Categorical Concept Erasure. In Table 2, we evaluate categorical concept erasure on DIAL
tweet classification (race) and GloVe (gender) datasets. For DIAL dataset, we obtain BERT [34]
representations of tweets, perform concept erasure for race (binary) attribute, and use the generated
representations f(x) for sentiment classification. We report the accuracy of predicting sentiment (y),
race (a), and demographic parity (DP) of the predictions in Table 2 (left). We observe that KRaM
performs the best in erasing race attribute (evident from high Acc. (a)) and demographic parity while
attaining comparable accuracy on sentiment classification (Acc. (y)). For GloVe embeddings (Table 2
(right)), we observe that KRaM achieves the state-of-the-art result in suppressing the gender leakage
(probing accuracy for predicting binary gender attribute). We observe that linear techniques INLP and
RLACE, obtain high alignment scores, Ay, but their representations still contain significant gender
information (indicated by high Acc. (a)). This shows a trade-off between information alignment
and concept erasure, where robustly erasing a concept may also result in the removal of other
information. Categorical concept erasure has been extensively studied, and the fact that a general
erasure framework, KRaM, can perform on par with state-of-the-art methods underscores its efficacy.

5.2 Analysis

In this section, we perform several analysis experiments to understand the functioning of KRaM.

Comparison with MI estimation techniques. In this experiment, we compare our concept erasure
framework with a few state-of-the-art mutual information (MI) estimation approaches. Essentially,



Original

Dataset Acc. (@)l At WS-3531 :
GloVe 100.0 1.0 0.70
InfoNCE [43] 64.0 0.55 0.19
MINE [9] 76.8 0.54 0.03
CLUB [17] 98.1 0.55 0.06
KNIFE [47] 50.2 0.53 0.10
KRaM 52.6 0.65 0.48

Figure 5: Visualization of UMAP projection of repre-
Figure 4: Comparison of KRaM with state-of- sentations obtained from the synthetic dataset before
the-art mutual information (MI) estimation and after concept erasure. Concept erasure makes the
methods. KRaM achieves a balance between positions of representations uncorrelated with their con-
good concept erasure nearly with high A;. tinuous concept labels (denoted by their color).

the task of concept erasure can be formalized as maximizing the objective: I(Z,X) — I(Z, A),
where I(-, ) denotes the mutual information between two sets. We optimize this objective function
with the following MI estimates: InfoNCE [43], MINE [9], CLUB [17], and KNIFE [47]. In Table 4,
we report the gender accuracy (Acc. (a)), A, and performance on WordSim-353 benchmark [2],
which is also reflective of the alignment, on GloVe dataset. We observe that MI techniques lose
significant information from the original representations achieving near-random A; and WS-353
scores. We believe this happens because MI approaches optimize their estimation parameters along
with the erasure function f, which is difficult.

We observe a unique scenario for the CLUB method, where the Acc. (a) is high and Ay, is low. This
implies that the clusters (related to different genders) may be retained but the nearest neighbour
structure within the clusters is perturbed significantly. Probing for the downstream task (Acc. (a))
may give you the impression that information from the original space is retained, while Ay, provides
a more fine-grained view contradicting such an incorrect conclusion. In general, we find that Ay
values are relatively well correlated with WS-353 scores, which is a good measure of the information
retained in the representation space after erasure. However, computing WS-353 requires additional
annotation that may not be feasible for representation sets other than word embeddings.

We als.O compare KRal with sev'eral other mutugl - \rethod Acc(y)t Acc(a)| DPJ
formation estimation based baselines that use a unique

objective function for controlling information in repre-  Original 75.5 87.7 0.26
sentations. Specifically, we compare with MIFR [55], = MIFR [55] 75.4 68.7 0.21
CCL [56], and ICVAE [42] and report the results on ~ CCL [56] 50.7 52.6 0.01
DIAL dataset in Table 3. Note that all of these meth- _ICVAE [42] 66.5 53.3 0.10
ods work for categorical concepts only, and ICVAE ~ KRaM 724 54.0 0.08

requires access to concept labels for test instances as ] ]
well, a limitation compared to KRaM and the other 1able 3: Comparison of KRaM with mu-
methods. In Table 3, we observe MIFR is unable to tual information based baseline approaches
erase concepts robustly (based on Acc. (a) and DP 0N DIAL dataset. We observe that KRaM
scores). ICVAE and CCL are able to delete concepts achieves a fine balance between concept era-
but at the significant cost of deleting a lot of original Sur¢ and retaining task performance.
information. Loss of information from the original space (low Acc. (y)) using ICVAE and CCL is
quite similar to other MI methods reported in Figure 4. Compared to these methods, KRaM is able to
get similar concept erasure performance while achieving much higher Acc. (y) scores. We report
additional results using these baselines on the GloVe dataset in Appendix D.

Image-based datasets. We perform experiments on image-based datasets to evaluate the efficacy
of KRaM on different domains. We consider two different setups using CelebA [37] and Colored
MNIST [6] datasets. In CelebA, we consider the binary variable attractiveness as the target attribute
and whether the face has makeup applied (binary variable) as the protected attribute. With concept
erasure using KRaM, the accuracy of predicting the makeup attribute dropped from 85.7% to 69.6%.
The demographic parity of the predictions (for attractiveness) also improved from 0.94 to 0.54. This
shows the effectiveness of KRaM in removing the makeup concept.

For Colored MNIST, we follow the setup of [6] to create a biased version of the MNIST dataset [22].
The background color of the digits is made to be well correlated with the digit in the training set.
However, no such correlation exists in the test set. We use a 0.8 correlation between the background
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Figure 6: Evolution of R(Z) and R(Z|K) under different setups. We monitor the impact on the
volume of the overall feature space in different settings of the objective function.

color and the digit label. We treat background color as the concept to be erased. Naively training
a classifier on the images will perform poorly on the test set as the classifier can easily overfit the
background color. The digit information could be predicted with an accuracy of 79.9%. Post-concept
erasure we observe that the classifier’s performance improves from 79.9% to 87.1%. This shows the
effectiveness of KRaM to remove background information and help the classifier generalize better.

Evolution of loss functions. In this experiment, we investigate the evolution of loss terms R(Z)
and R(Z|K) under various settings of the objective function (described in Figure 1) on the synthetic
dataset. In Figure 6 (a), we observe that indeed maximizing the kernelized rate-distortion function
also leads to an increase in R(Z), which can result in the concept variable not being completely
erased. In Figure 6 (b), we examine the scenario where R(Z|K) — R(Z) is maximized, where we
observe indicate a substantial drop in R(Z). This reduction often implies a low intrinsic dimension
and a substantial information loss. In Figure 6 (c), we present the evolution of loss terms for KRaM’s
objective. We notice that R(Z) aligns closely with the initial number of bits, denoted as b. Meanwhile,
the R(Z|K) is maximized to its full extent (similar to Figure 6 (a)). Through these experiments, we
provide empirical verification for the insights discussed in relation to Figure 1.

We conduct additional ablation experiments that involve varying hyperparameters and kernel functions.
The results of these experiments are reported in Appendix D.

6 Conclusion

In this paper, we proposed KRal, a novel framework to robustly perform concept erasure from a
representation set. KRalM uses a kernelized formulation of the rate-distortion function, where the
kernel is created using concept labels. This approach ensures that instances with similar concept
labels become dissimilar in the representation space, which ultimately results in the erasure of the
concept variable. KRaM is a versatile method capable of erasing a wide range of concepts, including
categorical, continuous, and vector-valued variables. We theoretically analyze several properties
of the proposed KRaM objective. Empirical evaluation shows the efficacy of KRaM on a wide range
of setups ranging from gender erasure from GloVe embeddings to vector-valued concept erasure
from GPT-3.5 embeddings. We also propose a heuristic-based measure to capture the information
alignment of the erasure function f by analyzing the k-nearest neighbours of the representations.
While KRaM effectively erases concepts, it does result in the loss of some information from the original
space, as evidenced by the alignment scores. Determining the minimum amount of information that
must be distorted to fully erase a concept remains an open question. Future research could concentrate
on gaining a deeper understanding of this issue and developing techniques that can erase concepts
from representations while having minimal impact on alignment with original representations.
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A Theoretical Proofs

A.1 Proof of Lemma 1

We prove the general bounds for R(Z|K) by independently proving the lower and upper bound using
the following intermediate results.

Lemma 3 (Lower bound for R(Z|K)). For any Z € R™*%, q kernel matrix K € R"*" using a
kernel function satisfying k(x,x) = 1 and € > 0, it holds that:

R(ZIK) = R(2), ©)
where the equality is satisfied only when K = 117

Proof. We start off by writing down the expanded form of R(Z|K) as:
1 d T
R(ZIK) = 3 logydet ( I+ —Z22° 0K . 8)
ne

In the above equation 8, we first note that both ZZ7 and K matrices are positive-semi definite
symmetric matrices. Using Schur product theorem [54], we can show that their hadamard product
ZZT ® K is also positive semi-definite (for d > 1). Next, we utilize the following property for
Hadamard products:

Theorem 7.25 [53]. Given two positive semi-definite square matrices A and B of dimension m. Then,
the following property holds: det(A ® B) > det(A) [] bu
i=1

Applying this property to ZZ7 © K, we get the following result:
det(Z2ZT © K) > det(227), )

where K;; = 1,Vi. Now, since ZZ7 © K and ZZ7T are positive semi-definite, their corresponding
eigenvalues are non-negative, \;(ZZ7 ® K) > 0 and \;(ZZ7) > 0. Since the eigenvalues are
non-negative, we can extend Equation 4 as follows:

H \(22T OK) > H M(2ZT)

11 (1 + %Ai(zzT ® K)) > H (1 + ndEQAi(zzT)>

i (10)
d T d T
det (I+-—Z2ZTOK ) >det (I +-—Z2
ne ne
R(ZIK) > R(Z),

where the second inequality holds because the affine transform of positive variables preserves
inequalities. The equality is satisfied when K = 117" O

Lemma 4 (Upper bound for R(Z|K)). For any Z € R"*%, any kernel matrix K € R™*" using a
kernel function satisfying k(x,x) = 1 and € > 0, it holds that:

R(Z|K) < glog2 (1+d/ne?). (11

Proof. We start by noting that the Hadamard product of two positive semi-definite matrices ZZ7 ©
K € R™*" is positive semi-definite (using the Schur product theorem). We also assume that the
representations z; € Z are unit normalized, thereby the diagonal entries of (ZZ7);, = 1. The
diagonal entries K;; = 1, which implies (ZZT ® K);; = 1. Given these facts, we can write the
following properties of about the eigenvalues of ZZ7 © K:

Ai(22T0K) >0, > X(22T0K) =n, (12)
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where the second property follows from the fact that tr(ZZ7 © K) = n. We are interested in finding
the maximum value of R(Z|K) that can be written as:

R(Z|IK) = %mg2 H (1 + %/\i(ZZT ® K)) . (13)

i=1

To maximize R(Z|K), we need to maximize the product within the logarithm. Each term within the
product 1 + T%Ai(ZZT ® K) > 0 (eigenvalues of a PSD matrix). Using the AM-GM inequality,
the product is maximized when all the individual terms are equal,

N(ZZT OK)=n/n=1. (14)
Substituting this result in Equation 13, we obtain the following upper bound:

R(Z|K) < 7 logy(1 + d/ne?), (15)

where the equality is achieved when ZZ7 = I when all the representations are orthogonal. Note that
this is only possible when d > n.

O

Proof of Lemma 1. By combining the results of Lemma 3 & 4, we get the following:
R(Z) < R(Z|K) < glog2(1 +d/ne?). (16)
This completes the proof. O

A.2 Proof of Lemma 2

Lemma 2 (Alignment for random representations). Expected Ay (f) score achieved by a concept
erasure framework f that generates random representations is E[Ag(f)] = k/n.

Proof. To prove this, we first assume two randomly generated k-nearest neighbour graphs (since

the original representation is uncorrelated with the randomly generated one we can consider it as

random). As it is a kNN graph, for each node has an expected degree E[d] & k, where d is the degree

of the node. Now, let’s consider the probability of a node x; being part of node x:

di

p(z; € knn(z;)) = —
" (17)

E[d;] &k

E[p(z; € knn(z;))] = =,

where d; is the degree of node ¢ and n is the total number of representations. Since computing the
exact probability requires knowledge of the degree of the node, we compute the expectation of the
same. Next, we compute the probability that node ¢ is present in both kNN sets (before and after
debiasing) of node j:

Elknn(xz) Nknn(z)] = E Zp(gcz € knn(z;) A z; € knn(z;))
= STE [p(e; € kam(z;)p(z € knn(z,))]
’ (18)

= ZE [p(zi € knn(z;))] E [p(z; € knn(z;))]

= Z:kQ/n2 = kZ/n,
j=1

where the first step utilizes linearity of expectation, and the second step follows from the fact that the
degree of distribution of X and Z are independent. Replacing the result from Eqn 18 in Eqn 6, we
get E[A,(f)] = k/n. O
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A.3 Additional Theoretical Results

Lemma 3 (Upper Bound of R(Z|K) for categorical concepts). For categorical concept variables
with the kernel values K;; € {0,1}, R(Z|K) is bounded by the sum of rate-distortion functions of
representation set from individual classes Z;

m

1 d T -
R(Z|K) = Z 5 logs det (I + 22, ) < ; R(Z;), (19)

where the equality holds only when ZjZ]T = 0,Vj and m is the number of classes.

Proof. For categorical variables, the kernel function takes the following form:

1, lfCLi = aj

k(%‘?j):{o, o %0 (20)

If the kernel function k(-, -) is of the above form. Using the corresponding kernel matrix K we get,

22T 0 ... 0
0 22T .. 0
Mo+ Lzztox—1+-L | T T 1)
ne ne : : .. :
0 0 ... 22T

where M becomes a block diagonal matrix and Z;’s are representations belonging to class . Using
the determinant property of block diagonal matrices, we have:

= d
log, det(M Z 0g, det ( Z ZT>
o (22)
1 d .
R(ZIK) = Z 5 logy det < + %2 ) .

The individual terms in the above summation are closely related to the rate-distortion function of
representation belonging to each class, j, as shown below:

R(Zj) = %log2 det (I ;4 —Z; ZT) (23)
]

where n; is the number of representations in class j. Note, n; < n, where n is the total number of
representations. Using the property that multiplying a matrix with a scalar is equivalent to multiplying
its eigenvalues with the same scale, and that ZijT is a PSD matrix. We can show:

1 d
R(Z|K) Szi odeet( neQZijT>

(24)

iy

R(ZIK) < ) _R(Z;).

.
I
N

This completes the proof. O

Discussion. Notice that this is closely related to the MCR? objective, which tries to learn discrimina-
tive subspaces for individual classes. For concept erasure, we aim for the opposite effect by making
instances from the same class dissimilar by maximizing their rate-distortion function.
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Algorithm 1 Correlation Computation Routine

1: Input: Input representation set X € R"*¢

2: Y =sgn(XW1Ws) > generate labels using random weights W, € R¥™ 1/, € Rm*!
3: U, 3,V =svd(X)

4: Zp =X > Initializing the representations
5: A ={},scores = {} B> accuracy and alignment sets
6: fori e {1,...,d} do

7: u= % > access the i-th column of V
8: P, =1;—uu” > null space projection matrix
9: Zi = Zi—lpi
10: A= AUacc(Z;,)) I> compute accuracy
11: scores = scores U A (][ P;) > compute alignment scores
12: end for
13: r = Pearson(A, scores) > compute the Pearson correlation

14: return r

B Alignment Scoring

In this section, we present several measures to capture information alignment and compare them with
our proposed metric (in Section 4).

KSG MI estimator [35]. The Kraskov—Stogbauer—Grassberger (KSG) estimator uses the nearest
neighbour information in the joint and marginal space to obtain a mutual information estimate.
Specifically, it computes the number of neighbours around a point within a hypercube in the marginal
spaces. The length of the hypercube is set based on the max-norm distance to the k-th neighbour in
the joint space. The KSG MI estimate between two sets X and Z can be shown as follows:

where 1 (-) is the digamma function, n, and n, are the number of points in the hypercube of the
respective marginal spaces. In our experiment, we use the KSG MI estimator to evaluate the alignment
between representation sets before and after concept erasure.

Degree distribution. In a k-nearest neighbour graph, some nodes are more connected to others
(hub nodes) while others are sparsely connected. Building on our intuition of alignment Ay, using
the nearest neighbour graphs of representations, we can consider changes in its degree distribution,
D(X), during concept erasure to gauge how the underlying structure of the representation set has
changed. We quantify the change using either L1-norm, L2-norm, or KL-divergence between the
normalized degree distributions D(X') and D(Z).

Experiments. We perform experiments in a controlled setup to evaluate the efficacy of the proposed
alignment measures.

(a) Simulated Erasure. In this experiment, we simulate knowledge erasure from a set of synthetic
representations and observe how the alignment scores correlate with the downstream accuracy.
Algorithm 1 shows the details for this process. First, we sample a set of representations from a
uniform distribution X ~ R"*? from a uniform distribution and construct a label set ) (using
randomly sampled weights W, W5). In a way, the label set retains some information about the
original representations that we will probe as erasure happens. Then, we gradually remove information
from representations Z by projecting them onto the nullspace P formed using the eigenvectors u.
After each iteration of projection, we compute the accuracy of predicting )’ and alignment score, A.
We report the Pearson correlation between the accuracies and information alignment in Table 4 (left
side), along with the hyperparameter k& used for each measure. We observe that A, outperforms other
approaches achieving better correlation, which showcases the efficacy of our approach.

(a) Correlated Gaussians. In this experiment, we sample two sets of Gaussians (zero mean) with a
fixed covariance o. In this setup, the mutual information has a closed-form solution:

I(X,2)= —% log(1 — o?). (26)

We use the samples to compute the different alignment measures and investigate if they’re correlated
with the actual mutual information (Equation 26). Note that there does not exist an explicit mapping
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Simulated Erasure Correlated Gaussian

Metric k/n (%) Pearson(r)?t k/n (%) Pearson (r)?1
KSG 10 0.965 0.02 0.989
KL-div (degree) 0.1 0.874 0.2 0.490
L2-norm (degree) 0.1 0.865 0.2 0.458
L1-norm (degree) 0.1 0.905 0.2 0.564
Alignment: Ay, 50 0.994 50 0.969

Table 4: Comparison of A, with other alignment measures on synthetic datasets. We observe that
Ay achieves the best Pearson correlation scores with downstream accuracy on simulated concept
erasure experiments due to the presence of a mapping function f. In a separate experiment, the KSG
estimator shows the highest correlation with MI. A, also achieves a high correlation score, while the
degree distribution-based measures perform poorly due to the lack of a mapping function.

between these samples. In Table 4 (right side), we report the Pearson correlation scores for different
measures. We find that the KSG MI estimator outperforms others, with Aj;, coming in as a close
second. This is because our alignment scores assume a 1-to-1 mapping between the sets, which is
absent in this case. The degree-distribution-based scores suffer even more as their measure is even
more strongly reliant on the mapping. These results show that the alignment score Ay, leverages the
bijective mapping to generate scores that are well correlated with the mutual information but can be
inaccurate in cases where the mapping function is absent.
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C Implementation details

In this section, we provide various implementation details about our experimental setup. Specifically,
we describe the details of the dataset, metrics, and hyperparameters utilized.

C.1 Dataset

In this section, we describe the details of the datasets that were used in the experimental section.

GloVe embeddings [460]. We revisit the problem of deleting gender information (binary attribute)
from word embeddings [13]. Specifically, we consider the GloVe embeddings of the 150k most
frequently occurring words. For training KRaM, we follow the setup of [49, 18] to select the 7500 most
male-biased, female-biased, and neutral words determined by the magnitude of the word vector’s
projection onto the gender direction (the largest principal component of the space of vectors formed
using the difference gendered word vector pairs).

DIAL [12] is a Twitter-based sentiment classification dataset, where each tweet is associated with
sentiment labels and “race” information (binary concept label) of the author. The sentiment concept
labels are “happy” or “sad” and the binary race concept labels are “African-American English” (AAE)
or “Standard American English” (SAE).

Synthetic dataset. We create a dataset where the representations are generated using a continuous
latent variable, a, which serves as our concept label. During data generation, we first sample the latent
variable @ ~ Uni(0, 1), and then sample the high-dimensional representation z ~ A (aly, aly),
where 1, is a vector of ones and [ is the identity matrix. For this dataset, we set the dimension
of the representations to be d = 100. In this setup, we observe that the latent concept label, a, is
being used to scale the underlying isotropic Gaussian distribution. Therefore, post-concept erasure
the representation space should appear like an isotropic Gaussian distribution, which is indeed the
case as shown in Figure 5.

UCI Crimes [36]. This dataset' contains information about US communities in 1990 from various
surveys. The dataset provides 128 attributes (both categorical and continuous variables) from
1,994 different US communities. we concatenate individual attributes of a community to obtain its
representation. The regression task involves predicting the number of violent crimes per capita. We
consider the ratio of African-American (AAE) people (continuous attribute) in a community as the
concept to be erased.

Jigsaw Toxicity Classification [1]. This dataset contains online comments and the binary classi-
fication task involves detecting whether a comment is toxic or not. In this dataset, we consider
two different concepts: religion and race. We consider a vector-valued protected attribute for this
dataset. For the religion concept, we consider an unnormalized vector over the following categories:
{‘buddhist’, ‘christian’, ‘hindu’, jewish’, ‘muslim’, ‘other_religion’}. Similarly, for the gender
we consider the following categories: {‘bisexual’, ‘female’, ‘heterosexual’, ‘homosexual, gay, or
lesbian’, ‘male’, ‘other gender’, ‘other sexual orientation’, ‘transgender’ }. During concept erasure of
either concept, we only consider instances where at least one of the concept categories has a non-zero
value and reserved 20% of the instances as the test set. This resulted in a dataset with a train/test
split of (72k, 18k) for the religion concept and (106k, 26k) for the gender concept. We retrieve text
representations for the comments from GPT-3.5 [15] and perform concept erasure on them.

C.2 Metrics

In this section, we present the details of the fairness metrics used in our experiments.

Demographic Parity (DP). Demographic Parity measures the difference in the probability of a
prediction w.r.t to the protected attribute .A. Formally, it is defined as:

DP = " |p(§ = ylA=a) —p(i = y|A = a), 27)

yey

where a, a are possible values of the binary concept and ) is the set of possible target attribute labels.

"https://archive.ics.uci.edu/ml/datasets/Communities+and-+Crime
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Generalized Demographic Parity (AGDP). Most of the literature on fairness metrics has focused
on categorical variables. We use Generalized Demographic Parity (GDP) [33], which measures the
discrepancy in outcome with respect to a continuous variable. GDP measure extends Demographic
Parity for continuous protected attributes. It is defined as follows:

1
AGDP = / |m(a) — Mayg| P(A = a)da, (28)
0

where m(a) = E[j|A = a] is expected prediction of the model when protected attribute A = a,
Mave = E[y] is overall expected prediction, and P(A = a) is the probability that the protected
attribute takes value a. The probability density P(-) can be measured using a histogram or kernel
method. We used a kernel function to evaluate the probability density.

C.3 Hyperparameters

In our experiments, we primarily deal with two hyperparameters: regularization constant, A (in Equa-
tion 4), and o, associated with the standard deviation of a Gaussian kernel (k(x,y) = e‘”‘"‘y‘|/"2).
We set these parameters by performing a grid search on the development set using Weights & Bi-
ases [11]. We use a multi-layer neural network with ReLU non-linearity as the erasure function f.
We further perform ablation experiments to understand the impact of these parameters on concept
erasure performance (shown in Figure 8). All networks were trained using a single 22GB NVIDIA
Quadro RTX 6000 GPU and experiments were executed in PyTorch [44] framework.

21



D Additional Results

In this section, we present additional experiments to analyze KRaM’s concept erasure performance.

Vector-valued Concept Erasure. In this section, we present the results of vector-valued gender
concept removal from GPT-3.5 text embeddings from the Jigsaw Toxicity classification dataset. We
report the MSE and AGDP results in Figure 7. We observe that KRaM is able to significantly increase
the gender MSE while simultaneously reducing the AGDP scores. During the debiasing process, we
observe that there is minimal impact on the toxicity classification accuracy (91.9% — 90.1%).

3 Original [ RLACEq 3 INLPq N KRaM [ Original [ RLACE, [ INLP, mEE KRaM
| __0.015
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@ @
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= mem [T < Mem [ e
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BisexualFemale Hetero- Homo- Male Other Other Trans- Bisexual Female Hetero- Homo- Male Other Other Trans-
sexual sexual gender sex. gender sexual sexual gender sex. gender

Figure 7: Vector-valued concept erasure performance using KRaM on Jigsaw toxicity classification
dataset (gender concept). We observe a significant reduction in AGDP scores post erasure of vector-
valued gender concept with negligible impact on toxicity classification performance.

Ablation with different kernels. We perform abla-
tion experiments with different kernel functions used Method MSE(a) 1T Axt
to define the K and observe its impact on the concept

erasure performance. In Table 5, we report the results gﬁn(‘li‘la Jace) 8822 (;gg
for erasing the continuous concept on the synthetic KRaM (Caﬁchy) 0.092 0.63
dataset. Apart from the kernel function, we use the KRaMj,cr (Gaussian) 0.083 0.75
same hyperparameters in all setups. We observe that

PSP op Y KRaM (Gaussian) 0100  0.67

KRaM achieves similar concept erasure performance
using different kernel functions. We observe that us-
ing the Gaussian kernel function in KRaM yields the
best erasure performance and alignment score Ay
improves when we use a linear erasure function f.

Table 5: Ablations with kernel functions: we
observe that KRaM achieves similar perfor-
mance using different kernel functions.

Controlled experiments. In order to better understand concept erasure performance, we evaluate
KRaM on axis-aligned data in a controlled setup. We generate a synthetic two-dimensional dataset
involving two Gaussians centered at (0, 2) and (0, -2) respectively, and identity covariance. We
consider the y-axis as the continuous concept to be deleted. The desired outcome of deleting an
axis-aligned concept in two-dimensional data is that points should lie on a 1D line and the KRaM
output should be least correlated with the axis concept that was deleted. That is a reduction in
dimension such that most of the data variation should be constrained along a single dimension for this
case. We looked at the eigenvalues of both the original data and the concept deleted (by KRaM) output.
The fraction of eigenvalue masses in the original data (65%, 35%) and in the KRaM concept deleted
output the fraction of masses is (99.998%, 0.002%). This shows that KRaM is able to effectively delete
the target concept resulting in a drop in intrinsic data dimension.

Comparison with MI baselines. We present the results on

mutual information (MI) estimation-based baselines on the Method Acc@i At
GloVe dataset. Consistent with the results in Table 3, we Original 100.0 1.0

observe that other MI estimation baselines are either unable MIFR [55] 68.3 0.58
to erase concepts robustly (MIFR) or end up erasing a sig- CCL [56] 56.9 0.56
nificant amount of information along with the concept (CCL ICVAE [42] 51.5 0.50
and ICVAE) in Table 6. In contrast to these approaches, we KRaM 526 0.65

observe that our rate-distortion based framework, KRaM, is
able to achieve a good balance between concept erasure and  Table 6: Comparison of KRaM with MI-
retaining original information (indicated by Ay). based baselines on GloVe dataset. We
observe that KRaM achieves a good bal-
ance between concept erasure and re-
taining original information.

Ablation of parameters. In this experiment, we perform
ablations with several parameters in KRaM and observe how
that affects the concept erasure performance. First, we ex-
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Figure 8: Ablation experiments to study the effect of parameters A (Eqn. 4), r (a scaling factor in
R(Z) = rb), and o (parameter in gaussian kernels) on the performance of concept deletion.

periment with gender removal from GloVe embeddings to understand the impact of A (Eqn. 4). In
Figure 8 (left), we observe that as A increases, concept erasure worsens (1 gender accuracy). This is
expected as the erasure function f is penalized for | R(Z) — b| term more than maximizing R(Z|K)
(which helps in erasure). The alignment scores Ay, stay mostly stable with a minor drop at high A
values. We believe this happens as f aims to match the rate-distortion constant, possibly neglecting
the underlying representation structure. Second, in the same setup, we modify the equality constraint
to be: |R(Z) — rb| and ablate r (shown in Figure 8 (center)). We observe that both alignment
scores and gender accuracy increase with an increase in r, which demonstrates the importance of
this constraint. Even though R(Z|K) is maximized, if the overall feature space expands (high r), the
concept variable can still become distinguishable (high gender accuracy). Third, in Figure 8 (right),
we report the MSE scores on the synthetic dataset for varying o (the parameter in the Gaussian
kernel). In all setups within Figure 8 (right), we notice the same pattern of increasing MSE (a) scores
followed by a decrease. We believe this drop happens with higher o values because distances become
very small and kernel values are similar. This results in the kernel ignoring the similarity of instances
in the concept space.

E Broader Impact & Limitations

In this section, we discuss the broader societal impact and limitations of our framework, KRaM.

Limitations. While erasing sensitive concept attributes can reduce bias and improve privacy, it may
also result in the loss of potentially useful information for the task at hand. This could negatively
impact the utility of the model. The definition of what constitutes a sensitive concept attribute can
vary greatly depending on the cultural, ethical, and legal context. This work assumes that these
sensitive attributes can be clearly defined and agreed upon, which might not always be the case.
Therefore, developers using such erasure frameworks should take care of the societal impact before
utilizing them in the wild.

Negative Usage. KRal s intended to be used in scenarios where the user is already aware of the
concept attribute to be erased. KRaM can only be trained on data where concept labels are annotated
either as categorical, continuous, or vector-valued attributes. One potential misuse of KRaM would be
to define relevant features for a task (e.g., experience for a job application) as a concept to be erased.
In such cases, the classification system may be forced to rely on sensitive demographic information
for predictions. It is possible to flag systems in these cases by evaluating the statistical parity when
the concept attributes have changed.

In general, we hope that our proposed concept erasure framework, KRaM, would encourage others to
develop more robust concept erasure systems that can simultaneously retain a lot of information from
the original representations.
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