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Abstract

Unmanned Aerial Vehicle (UAV) object detection faces significant challenges due
to complex environmental conditions and different imaging conditions. These
factors introduce significant changes in scale and appearance, particularly for
small objects that occupy limited pixels and exhibit limited information, compli-
cating detection tasks. To address these challenges, we propose a Multimodel
Causal Reasoning framework based on YOLO backbone for UAV Object Detec-
tion (MCR-UOD). The key idea is to use the backdoor adjustment to discover
the condition-invariant object representation for easy detection. Specifically, the
YOLO backbone is first adjusted to incorporate the pre-trained vision-language
model. The original category labels are replaced with semantic text prompts, and
the detection head is replaced with text-image contrastive learning. Based on
this backbone, our method consists of two parts. The first part, named language
guided region exploration, discovers the regions with high probability of object
existence using text embeddings based on vision-language model such as CLIP.
Another part is the backdoor adjustment casual reasoning module, which constructs
a confounder dictionary tailored to different imaging conditions to capture global
image semantics and derives a prior probability distribution of shooting conditions.
During causal inference, we use the confounder dictionary and the prior to inter-
vene on local instance features, disentangling condition variations, and obtaining
condition-invariant representations. Experimental results on several public datasets
confirm the state-of-the-art performance of our approach. The code, data and
models will be released upon publication of this paper.

1 Introduction

Deep learning has driven remarkable progress in object detection, with models such as YOLO[15]
and Faster-RCNN[11] achieving strong performance on standard datasets. However, these methods
struggle with Unmanned Aerial Vehicle (UAV) imagery due to unique aerial imaging challenges. The
bird’s-eye view introduces dense and cluttered backgrounds, where target objects are often obscured
by complex environmental patterns. Combined with varying lighting and weather conditions, these
factors create severe interference that disrupts feature learning and localization. Consequently, existing
detectors suffer from high false alarm rates and missed detections, limiting their effectiveness in
critical UAV applications such as surveillance and disaster monitoring. Developing robust algorithms
to overcome these background interference challenges remains an open research problem.
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(a) Previous UAVOD methods (b) The proposed MCR(��� method) 

detector detector

Figure 1: (a) Previous methods do not handle confounders in UAV images, confusing detector. (b)
Our approach removes the confounders via backdoor causal reasoning, enabling a better detector.
The previous methods are mainly divided into three routes. The first focuses on region-based strategies,
selectively up-scaling regions with dense objects to improve detection accuracy [14, 10, 43, 28].
The second route introduces additional network modules, such as attention mechanisms and multi-
scale feature fusion, to enhance feature representations [58, 55, 30, 52]. The final employs data
augmentation techniques to increase data diversity, allowing the models to handle a wider range of
scenarios [42, 54]. Although these methods have made progress, they still have the following aspects
for improvement: 1) Previous works rely solely on single visual features, limiting the improvement
of detector performance; 2) Feature enhancement through attention mechanisms lacks interpretability,
and does not clearly address how confounders like interference caused by redundant background
information or challenging shooting conditions are mitigated.

To address the above issues, we propose the following solutions. First, utilizing a vision-language
model for detection enables the full utilization of multimodal knowledge. By integrating the detection
network with a vision-language model, such as CLIP [34], the ability of the model to understand
and correlate visual and textual information can be improved. This multimodal integration allows
for a more context-aware understanding of the objects in the scenarios, improving the detection
process, especially in scenarios where visual cues alone cannot offer enough discriminate information.
Second, we incorporate causal inference [32, 31], a framework designed to model cause-and-effect
relationships, which allows us to systematically address confounding effects [33]. Specifically, we
focus on intra-class inconsistencies caused by factors such as environment and shooting conditions.
Using causal reasoning, we can effectively eliminate the influence of these confounders, leading
to more robust and accurate object detection, even in challenging environments. Finally, relying
on visual-language models pre-trained on large data, we can construct confounding factors from a
textual perspective that are difficult to capture from an image acquisition perspective. In this way,
the detection model that learns to remove these confounding factors has a stronger and more robust
generalization ability.

Based on the above analysis, we propose a novel method called Multimodal Causal Reasoning for
UAV Object Detection (MCR-UOD). Specifically, this method consists of two modules. The first
is the language-guided region exploration (LGRE) module. This module leverages the synergy
between visual and linguistic information to guide the detection process. By integrating multimodal
knowledge, LGRE endows the model with the ability to focus on object regions, improving detection
accuracy in complex scenarios where visual information is insufficient. It first encodes category
names to features using the CLIP text encoder and then computes the object existence score for each
region in the visual feature map based on these text features, highlighting regions more likely to
contain objects. This process helps to remove the intervention from the background. The second is
the Backdoor Adjustment Causal Reasoning (BACR) module, which aims to construct a confounder
dictionary based on CLIP text embeddings to eliminate the interference of confounders on the objects,
enabling the model to handle intra-class feature inconsistencies due to environment and shooting
condition variations. This module first selects regions based on the object existence scores. Then it
applies a do-operator using the confounder dictionary to enhance the selected features and updates
the confounder dictionary accordingly.

Our contributions can be summarized as follows: (1) We are the first to apply the mathematical
principles of causal inference to UAV object detection. The effects of varying confounders, caused
by environment and shooting conditions, are weakened, allowing the detectors to ensure feature
consistency within the same category, thus enhancing the robustness and accuracy of object detection.
(2) Unlike previous causal inference methods in computer vision problems, we utilize text embeddings
to construct and initialize a confounder dictionary, achieving cross-modal deconfounding. Due to
the diversity of UAV environments and shooting conditions, it is clearly impossible to rely on UAV
images to construct a confounder dictionary. The vision-language model provides the possibility to
construct such a dictionary. (3) Unlike traditional methods that rely solely on visual features, we
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propose a novel approach that leverages multimodal knowledge for UAV object detection. Based
on text embeddings, the detector backbone will focus more on the object regions. So, although our
method is based on the single-stage YOLO backbone, we can still obtain the region of interest and
apply causal reasoning to enhance its features.

2 Related Work

UAV object detection (UAVOD) refers to the task of identifying and localizing objects in UAV-
captured images. The existing approaches can be categorized into three main routes. The first is
zoom-in strategies, which improve detection accuracy by selectively upscaling regions containing
dense or small objects. For example, EVORL employs an evolutionary reinforcement learning mech-
anism guided by a reward function to determine optimal image patch scales [51], while AdaZoom
dynamically adjusts the size and aspect ratio of zoomed regions according to the spatial distribution of
small objects [43]. The second route enhances feature representation through additional network mod-
ules, such as attention mechanisms or multi-scale fusion. The representative method TPH-YOLOv5
integrates the Transformer and CBAM (Convolutional block Attention Module) to emphasize key
regions and improve feature extraction capability [58]. Other works introduce lightweight modules
or hierarchical attention to further improve performance [52, 30]. The third route adopts data aug-
mentation techniques to increase sample diversity and improve generalization in different scenarios.
These methods generate varied input distributions through weather simulation, viewpoint changes, or
domain transfer to train better detectors [42, 54].

Vision-language model for object detection approach generally falls into two categories. The first
focus on mapping language representations to region prompts. Coop optimizes class prompts with
contrastive learning to boost the performance of the vision-language model [57]. GLIP treats object
detection as an association problem, aligning regions or bounding boxes with corresponding text
prompts [18]. The second category integrates the vision-language model into the existing detection
framework. DenseCLIP adapts CLIP for dense prediction by integrating feature adaptation and dense
semantic guidance to enhance localization and segmentation tasks [35]. ProposalCLIP employs an
unsupervised approach to directly label images of objects [36], while RegionCLIP applies region-
based pre-training to associate image regions with textual descriptions [56]. YOLO-World uses
region-text alignment with CLIP features to enhance open-vocabulary detection, which employs
multi-scale feature fusion and query-based decoding to improve generalization to unseen objects [4].

Causal inference is increasingly applied to visual tasks, with methods generally categorized as
explicit confounder construction and implicit intervention removal [49, 25]. The former approach
builds dictionaries based on object features or relationships and applies do-operation to remove
confounding effects [41, 50, 29, 17, 45]. VC R-CNN computes the frequency of occurrence of
each category as a prior probability and leverages prototypes to mitigate the negative impact of
confounder objects during relational reasoning [41]. MAWCA constructs and updates a confounder
dictionary using ROI features, then uses a Transformer during inference to obtain interference-free
object features, allowing transfer across different weather conditions [50]. The latter estimates
causal effects by using sample augmentation or attention mechanisms to infer results under different
interventions and averaging them. CT-MRI achieves single-source domain generation by randomly
applying various style augmentations to regions in the image, thereby obtaining domain-invariant
features [45]. CIRL learns causal representations that can mimic causal factors based on the ideal
properties emphasized, thereby enhancing the robustness of the learned features [27].

3 Preliminaries

Problem statement. Suppose that the UAV object detection training set Dtrain = {Xi
tr, Y

i
tr}

Ntr
i=1,

where Y i
tr = (bitr, c

i
tr) represents the boxes and classes of objects in the i-th training image. Ntr is

the cardinality of the training set. The test set is Dtest = {Xi
te, Y

i
te}

Nte
i=1, where Nte is the cardinality

of the test set and Yte is unknown. Our goal is to use a vision-language model (CLIP) and casual
reasoning to train a better object detector, improving detection performance on UAV images.

Structural causal model. As illustrated in Fig.2, we construct a structural causal model to represent
the relationships between variables in the detection process. F denote the features of the objects,
Z represent the confounders, and Y are the classification results of the objects; the directed edges
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represent the causal relationships between the variables. In the directed acyclic graph, the path
F → Y indicates that the features of objects F directly influence their classification results Y .
For instance, distinctive visual patterns (e.g. wheels for cars) causally determine the predictions
of the model. The backdoor path F ← Z → Y highlights the confounding effect of Z, which
introduces spurious associations between features F and predictions Y . For example, Z could
represent environmental factors (e.g. lighting, weather), data set biases (e.g. class imbalance), or
sensor distortions (e.g. camera noise). These confounders corrupt the feature representation process
(F ← Z) while simultaneously influencing the model’s decision (Z → Y ). For example, poor
lighting (Z) may degrade visual features (F ), making objects harder to recognize, while also skewing
label distributions (Y ) if certain classes dominate low-light scenarios. Such backdoor paths can lead
models to rely on non-causal shortcuts. To address this, we employ a backdoor adjustment to isolate
the genuine causal relationship F → Y .
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Figure 2: (a) Structural causal model
shows the direct effect F → Y and con-
founding path F ← Z → Y ; (b) Inter-
vention model where the confounding
path F ← Z is blocked (indicated by
×), enables estimation of the true causal
effect F → Y .

Backdoor adjustment for causal learning. To eliminate
the confounding bias introduced by Z, we implement a
backdoor adjustment method based on causal inference
theory. The core idea is to stratify the data according to
the confounder Z and then calculate the weighted average
of the predictions in all strata. Formally, the causal effect
of F on Y can be estimated as

P (Y |do(F )) =
∑
z

P (Y |F,Z = z)P (Z = z), (1)

where the do-operator signifies an intervention that re-
moves the influence of Z. Here, P (Y |F,Z = z) repre-
sents the prediction conditioned on both features F and
a specific value of Z, while P (Z = z) accounts for the
prior distribution of the confounder. In practice, we first
discretize continuous confounders (e.g., lighting levels) into interpretable bins with a confounder
dictionary Z. Then, we train our model to estimate P (Y |F,Z) and compute P (Z) empirically from
the training data. Finally, we aggregated the predictions across all Z strata to obtain an unbiased
estimate of P (Y |do(F )). This approach effectively blocks the backdoor path F ← Z → Y , ensuring
that the learned relationships reflect true causal mechanisms rather than spurious correlations. For
further technical details, see Section 4.2.

4 Proposed Method

Overview. As shown in Fig.3, the proposed method consists of two parts: the Language Guided
Region Exploration (LGRE) module and the Backdoor Adjustment Causal Reasoning (BACR) module.
The first module selects possible regions where objects may exist, and then the second module
refines the features by backdoor adjustment ignoring the effects of confounders. Specifically, for the
UAV image Xi, multilevel features {C1, C2, C3} can be obtained based on YOLOv8 [40]. Since
the challenges of UAVOD stem primarily from small objects, we focus on refining the C1 layer
features. In the LGRE module, K category prompts and the corresponding text embeddings {ek}Kk=1
are obtained using the CLIP text encoder [39]. K is also the number of categories. Then, the object
existence probability map s for each pixel is obtained by taking the product of the text embeddings
{e}Kk=1 and the low-level feature C1. In the BACR module, the GPT model [1] is used to generate a
series of confounder prompts, which are encoded as text embeddings Z to construct and initialize
a confounder dictionary. Based on the probability map s, we perform causal interventions on the
features with high probability. The modulated features F ′ are projected back into the original feature
map C1, resulting in a new feature map Cn

1 . Finally, we input {Cn
1 , C2, C3} along with the text

embedding E into the contrastive head and the box head to obtain the final detection results.

4.1 Language Guided Region Exploration

In UAVOD, one of the key challenges is to accurately localize small objects, which are often
represented in low-level features. To address this issue, we leverage the rich prior knowledge learned
by language models to enhance object localization. The core idea is to utilize textual information to
guide the model’s attention towards regions in the image that are likely to contain objects, improving
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Figure 3: The overall framework of MCR-UOD. (a) Language Guided Region Exploration (LGRE)
module computes object existence probability map using CLIP text embeddings and (b) Backdoor
Adjustment Causal Reasoning (BACR) module performs causal intervention through cross-attention
between selected high-probability pixel-level visual features and confounder dictionary. The de-
confounder feature map Cn

1 is then fed into detection head.

the object existence score for different regions of interest. Specifically, we generate K prompts by
constructing descriptive text based on category names, such as ‘a photo of [category]’, and obtain
text embeddings E = {ek}Kk=1 by encoding these prompts using the CLIP text encoder [39], where
E ∈ RK×D1 , and D1 is the dimension of the text embedding. The input image X is encoded by
CSPDarknet [2], generating multi-scale feature maps {C1, C2, C3}. Since the challenges of UAVOD
are primarily stemmed from small objects in low-level features, we focus on C1 ∈ RH×W×D2

accordingly, where H , W and D2 denote height, width, and channel number, respectively. First, the
similarities between pixel-level features in C1 and text embeddings {ek}Kk=1 are calculated to obtain
the score map G as follows,

G = f1(C1)× (f2(E))T , G ∈ RH×W×K (2)

where f1 and f2 represent two fully connected layers, which transform C1 and E into the same
dimension feature space, respectively. Then we calculate the maximum value of G at each pixel and
apply Sigmoid operation as the following,

s(h,w) = σ

(
max

k
G(h,w, k)

)
, s ∈ RH×W×1 (3)

where (h,w) represents the pixel coordinate, and s indicates the likelihood of object existence at
this pixel. According to the object existence probability map s, the regions that are likely to contain
objects can be selected. By perform element-wise multiplication with C1 and s, the original feature
map C1 can be updated as

C ′
1 = C1 ⊙ s, C ′

1 ∈ RH×W×D2 (4)

where ⊙ represents the element-wise multiplication, and C ′
1 is the updated C1 feature map.

4.2 Backdoor Adjustment Causal Reasoning

In LGRE module, the updated low-level features C ′
1 and the corresponding object existence probabil-

ity map s are obtained. We select the highest τ pixel features to form a feature matrix F ∈ RN×D2

based on the probability values as follows,

F = {C ′
1(i)|i ∈ Iτ}, Iτ = TopN (s), N = τ ·HW (5)
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where τ is a threshold hyperparameter, N is the number of selected pixels. This feature matrix
F records the regions that are more likely to contain objects. According to Eq.(1) in Section
3, we implement backdoor adjustment for visual features F using a confounder dictionary Z.
P (Y | F,Z = z) refers to the classification result Y obtained from the features F , given Z = z.
The features F first pass through a function f with cross-attention to the dictionary Z to obtain the
classification logits, which are then passed through a softmax operation to produce the classification
result Y . Therefore:

P (Y | do(F )) =
∑
z

P (Y |F,Z = z)P (Z = z) = Ez[Softmax(f(F, z))]. (6)

We utilize the NWGM [44] method to approximate the aforementioned expectation. In brief, NWGM
efficiently transforms the outer expectation into the Softmax function as follows:

Ez[Softmax(f(F, z))]
NWGM
≈ Softmax(Ez[f(F, z)]). (7)

Thus, the causal intervention is to compute the object probability under different confounder condi-
tions z ∈ Z, blocking the confounding path F ← Z → Y through expectation marginalization.

Confounder dictionary construction. It is extremely difficult to collect confounder images for
different UAV shoot conditions and scenarios. However, by fully utilizing multi-modal knowledge,
we can construct and initialize the confounder dictionary through text prompts. Specifically, we
employ the language model GPT [1] to generate texts of different confounders, such as "a photo of a
car in a rainy day with no occlusion from a rear view". The confounders include weather (sunny,rainy,
foggy, nighttime), occlusion (no, partial, heavy), and perspective (front, side, rear, top). In this way,
we obtain K ×M prompts {PTm}K×M

m=1 , where M is the number of combinations of confounders.
The corresponding text embeddings Z ∈ RS×D2 are obtained using the CLIP text encoder [39].
These embeddings initialize the confounder dictionary, where S = K ×M represents the number
of items in the dictionary. To facilitate subsequent operations, we unify the dimensions of text and
image representations as D2.

Causal reasoning. Cross-attention is performed to complete the task in Eq.(6). The selected features
F are projected as query embeddings Q ∈ RN×D2 via a linear mapping, and the confounder
dictionary Z is independently projected as key and value embeddings K ∈ RS×D2 and V ∈ RS×D2 ,
respectively. Formally,

Q = Wq ∗ F + bquery,K = Wk ∗ Z + bkey, V = Wv ∗ Z + bvalue, (8)

where Wq,Wk, and Wv are the parameters of the linear transformation layers. bquery, bkey, and
bvalue are the corresponding bias values, respectively. Then we calculate the attention weight matrix
A through dot product operation and apply Softmax function for normalization as

A = softmax(
QKT

√
D2

), (9)

A ∈ RN×S assigns soft weights to the probability of each confounder interfering with the feature
F , which allows us to approximate the expectation over confounders in the causal prediction formu-
lation Eq.(7). Specifically, we model Ez[f(F, z)] by fusing the original feature F with a weighted
confounder context AV ⊤. The combined representation is then transformed via a learnable function
fF to produce a refined feature:

F ′ = fF (Cat(F,AV T )), F ′ ∈ RN×D2 . (10)

This enables the network to learn confounder-aware representations while preserving task-relevant in-
formation. fF ∈ R2D2×D2 is a fully connected layer, and Cat() denotes the concatenation operation.
F ′ represents the features after applying the do-operator, corresponding to Ez[f(F, z)] in Equation
6. Subsequently, F ′ is passed through the classification head to obtain Softmax(Ez[f(F, z)]). We
interpolate F ′ into the feature map C ′

1 according to the indices I to obtain the final feature Cn
1 , which,

along with C2 and C3, is fed into the detection head.

Dictionary update. To ensure the effectiveness and representativeness of the confounder dictionary,
we continuously update the items in the dictionary during forward propagation of the network.
Specifically, we fuse the visual feature Fp at some pixel into the most similar confounder zi from the
confounder dictionary based on the similarity as follows,

zt+1
i = αzti + (1− α)Fp (11)
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Table 1: Comparison of different approaches on UAVDT and VisDrone. The best and second best
values are highlighted in bold and red, respectively.

Method Backbone UAVDT VisDrone
AP AP50 AP75 AP AP50 AP75

FPN [22] (NeurIPS,2015) ResNet-50 16.9 30.7 17.2 16.9 30.7 17.2
Faster R-CNN (TPAMI,2017) ResNet-50 12.1 23.5 10.8 21.8 41.8 20.1
CascadeRCNN [3] (CVPR,2018) ResNet-50 17.1 30.5 18.6 23.6 38.9 24.6
ClusDet [46] (ICCV,2019) ResNet-101 13.7 26.5 12.5 32.4 56.2 31.6
DMNet [20] (CVPR,2020) ResNet-50 14.7 24.6 16.3 28.2 47.6 28.9
GLSAN [5] (TIP,2021) ResNet-50 17.0 28.1 18.8 30.7 55.4 30.0
AdaZoom [43] (TMM,2022) ResNet-50 20.1 34.5 21.5 40.3 66.9 41.8
Zoom&Reasoning [10](SPL,2022) ResNet-50 21.8 34.9 24.8 39.0 66.5 39.7
UFPMPDet [14] (AAAI,2022) ResNet-50 24.6 38.7 28.0 36.1 57.3 38.2
EVORL [51] (AAAI,2024) ResNet-50 28.0 43.8 31.5 42.2 66.0 44.5
TPH-YOLOv5 [58] (ICCV,2021) CSPDarknet 26.9 41.3 32.7 42.1 63.1 45.7
TPH-YOLOv5+ [55] (MDPI,2023) CSPDarknet 30.1 43.5 34.3x 41.4 61.9 45.0
UAV-YOLOv8 [40] (MDPI,2023) CSPDarknet 27.3 42.1 30.4 42.7 65.5 44.7
SPAR [19] (AAAI,2025) CSPDarknet 30.5 43.9 34.7 42.8 66.7 45.1
MCR-UOD (ours) CSPDarknet 31.4(+1.3) 44.7(+0.8) 35.6(+0.9) 44.6(+1.8) 67.3(+0.4) 47.5(+1.8)

where α = 0.05 is a trade-off weighting parameter and zt+1
i is the updated confounder.

Remark. Unlike previous methods that rely solely on visual data [41] , we propose a multi-modal
approach that constructs the confounder dictionary using language-generated prompts. These prompts
are encoded via the CLIP text encoder, enabling explicit and controllable modeling of various
confounders. These confounders are difficult to collect on the basis of visual images. Our strategy
improves the adaptability of the dictionary and improves causal reasoning in complex aerial scenarios.

4.3 Detection Head and Loss Function

Following YOLOv8 [40], we use a decoupled head with two 3×3 convolutions to obtain the object
bounding boxes {bj}Jj=1 and object embedding vj , where J denotes the number of objects. Addition-
ally, we replace the original classification head with a text contrastive head. The class probability
vector c is computed as follows,

c = α · vj
||vj ||

· E
T

||E||
+ β (12)

where vj is the object embedding, E is the category text embeddings, || · || is the L2 norm. In addition,
we add an affine transformation, where α is the learnable scaling factor and β is the learnable shifting
factor. Our method follows the same end-to-end training approach as YOLOv8 [40]. Additionally, to
better handle the large number of small objects in UAV images, we replace the original IoU loss with
the more effective WIoU loss [37] as

LWIoU = 1− e−r(h∗w∗) · |B ∩B∗|
|B ∪B∗|

(13)

where B and B∗ represent the predicted bounding box and the ground truth bounding box, respectively.
r = 0.05 is a fixed hyperparameter that controls the decay rate of the weight factor; h∗ and w∗ are
the height and width of B∗, respectively. The overall training loss is

L = LWIoU + LDFL + Lcls (14)

whereLcls is the classification loss, always calculated using cross-entropy, andLDFL is the Distribution
Focal Loss [16], which improves bounding box prediction accuracy by learning a discrete distribution.

Training and test. We integrate the proposed method into the baseline and perform end-to-end
training. During both training and inference, the parameters of the CLIP text encoder are frozen,
while the confounder dictionary Z is continuously updated.

5 Experiments

Experiment setup. Three public datasets are used for aerial image object detection: VisDrone [8],
UAVDT [7] and HRSC2016 [26]. VisDrone contains 8599 drone-captured images (2000×1500
pixels), split into 6471 for training, 548 for validation, and 1580 for testing. It includes 10 object
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Table 2: Comparison on HRSC2016.
Method AP Method AP
R2PN(GRSL’18) 70.06 RRD(CVPR’18) 84.30
RoIT(CVPR’19) 86.20 R3Det(AAAI’21) 89.26
CSL(ECCV’20) 89.62 ReDet(CVPR’22) 90.46
FSM(TPAMI’25) 91.60 MCR-UOD(ours) 92.04

Table 3: Ablation study of MCR-UOD.
Method AP AP50 AP75
YOLOv8 42.2 64.7 44.5
+WIOU 42.5(+0.3) 65.2(+0.5) 44.7(+0.2)
+WIOU+LGRE 43.6(+1.1) 66.5(+1.3) 45.9(+1.2)
MCR-UOD 44.6(+1.0) 67.3(+0.8) 47.5(+1.6)

categories, mainly vehicles and pedestrians. UAVDT is designed for object detection and tracking,
comprising 24143 training images and 16592 testing images (1024×540 pixels). It features diverse
aerial scenes and is widely used for detecting cars, trucks, and buses. HRSC2016 contains high-
resolution aerial images focused on ship detection, featuring large-scale variations and complex
backgrounds. Object detection models are evaluated using standard metrics [9, 23], including AP
(Average Precision), AP50 and AP75. We chose YOLOv8 [40] as the backbone of our method and
performed all training and validation on two NVIDIA FeForce RTX 3090 GPUs. The number of
training epochs is 75, with a batch size of 4. The initial learning rate lr0 is 0.001; the final learning
rate lrf is 0.01; and the weight decay is 0.0005.

5.1 Comparison with State-of-the-art Methods

Compared methods. To validate the effectiveness of our method, we compare it with several
state-of-the-art approaches proposed in recent years.These methods can be categorized according
to the descriptions in the related works section as follows: zoom-in strategy based methods in-
cluding ClusDet [46], DMNet [20], UFPMP [14], Adazoom [43], Zoom&Reasoning [10]; feature
representation enhanced methods such as FPN [22], TPH-YOLOv5 [58], TPH-YOLOv5++ [55],
SPAR [19],ReDet [12],RoIT [6],R2PN [53],FSM [24],PRD [21]and data augmentation based method
PAOD [13], FSM [24], R3Det [48] and CSL [47] .

Quantitative comparison. Table 1 presents a summary of the comparison results between our
method and nine state-of-the-art approaches on the UAVDT and VisDrone datasets. In terms of
three key evaluation metrics, the proposed method significantly outperforms all models compared.
Specifically, on the VisDrone dataset the proposed MCR-UOD method achieves an AP of 44.6,
representing a 1.8% improvement over the previous best-performance model SPAR; On the UAVDT
dataset, MCR-UOD achieves an AP of 31.4, outperforming TPH-YOLOv5 by 1.3 points. Our method
achieves an AP50 of 44.6, exceeding SPAR by 0.8 points, and an AP75 of 35.6, outperforming
TPH-YOLOv5++ by 0.9 points. These substantial improvements on three metrics demonstrate that
our proposed method excels not only in recognizing object regions but also in achieving accurate
localization. This indicates that the model is capable of learning more discriminative and fine-grained
features, leading to more precise bounding-box regression. Furthermore, on the HRSC2016 dataset,
as shown in Table 2, MCR-UOD achieves an mAP of 91.13, outperforming all existing methods. All
gains come from the LGRE module for precise region attention and the backdoor adjustment for
removing confounding factors, which enhances feature robustness in complex scenes.

Visualization comparisons. Fig. 4 provides a comprehensive visualization of the performance of the
MCR-UOD method on UAVDT and VisDrone, column (a) shows the original images, while columns
(b) and (c) present the detection results of previous state-of-the-art methods, UFPMP and SPAR,
respectively. Column (d) illustrates the detection results of our proposed method, MCR-UOD. The
regions marked with red circles indicate areas where the previous methods failed to detect objects. In
the first row, a truck in a very dark lighting condition is completely missed by the previous methods,
but MCR-UOD successfully detects it. In the second row, due to overexposure in the image, the car
is difficult to detect using previous methods, while our method correctly identifies it. In the third row,
UFPMP and SPAR miss several small objects due to heavy occlusion and their tiny sizes. In contrast,
MCR-UOD successfully identifies these small targets. These improvements can be attributed to the
core design of MCR-UOD, by integrating vision-language models and causal inference, the method
effectively utilizes contextual knowledge and systematically eliminates confounding factors such as
lighting and viewpoint changes.

5.2 Further Studies

Ablation study. Ablation experiments are conducted on VisDrone dataset, as shown in Table 3.
Yolov8 [40] is the baseline model; "+WIOU" is the baseline with WIoU loss; "+WIoU+LGRE" de-
notes using WIOU loss and LGRE module; "MCR-UOD" denotes the complete method. From Table
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(a) Images (b) UFPMP (c) SPAR (d) MCR-UOD

Figure 4: Visualization comparison. (a) shows the original image, while (b), (c), and (d) present the
detection results of UFPMP, SPAR, and our proposed MCR-UOD method, respectively. The red
circles highlight the objects missed by previous state-of-the-art methods but successfully detected by
MCR-UOD. The yellow circles indicate false detections. Zoom in for best view.

Table 4: Performance and efficiency comparison across different YOLO backbones.

Method AP AP50 AP75 Parameters GFLOPs
YOLOv8s 38.2 56.9 41.3 11.14M 28.7
YOLOv8m 40.7 59.6 42.5 25.8M 79.1
YOLOv8l 41.1 62.8 44.0 43.6M 165.4
YOLOv8x 42.2 64.7 44.5 68.2M 258.2
YOLOv8s+MCR-UOD 40.1 60.3 44.9 10.6M 28.4
YOLOv8m+MCR-UOD 21.8 41.8 20.1 23.7M 77.6
YOLOv8l+MCR-UOD 43.2 66.4 45.9 39.5M 159.2
YOLOv8x+MCR-UOD 44.6 67.3 47.5 61.5M 247.6

3, it can be concluded that all modules contribute positively to the final performance. Specifically, the
combined use of LGRE and BACR modules results in significantly improved performance compared
to baseline; the performance values in terms of AP, AP50 and AP75 in VisDrone are all increased.

Computational efficiency. In integrating our method with the backbone, we modify and remove parts
of the C2f module, replace the detection head with a text contrastive detector, achieve a lightweight
design. Please refer to the appendix for details. Experiments are conducted across YOLOv8 variants
(n/s/m/l/x) on VisDrone dataset to explore the speed-accuracy trade-off under different backbone
scales. As shown in Table 4, we present the speed and accuracy comparison between models of
different sizes. From the table, it is evident that compared to the YOLOv8 baseline, the proposed
MCR-UOD achieves faster inference speed and higher detection accuracy across various backbone
scales, demonstrating a better trade-off between performance and efficiency. More experimental
results are shown in the appendix.

t-SNE visualization of the BACR module. To verify the effectiveness of the BACR module, we
visualize category-wise features on the VisDrone dataset using t-SNE [38], as shown in Fig. 5.
Without BACR, features of the same category are scattered and easily confused due to diverse UAV
imaging conditions. In contrast, with BACR, intra-class features become more compact and inter-class
boundaries clearer, demonstrating improved feature discrimination for UAV object detection.

Sensitive analysis. In our method, there are not many parameters. The only adjustable parameter is
τ in Eq.(5). To investigate the impact of different values τ on detection performance, we conducted a
parameter sensitivity analysis as shown in Figure 6. We systematically tested τ values within the
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Figure 5: Visualization of t-SNE with and without BACR module.

Figure 6: Sensitivity analysis of threshold τ .

range [0.4, 0.7]. The results show that both excessively small and large τ values lead to reduced
accuracy. Overly small τ values introduce more false negatives by including inaccurate regions,
while overly large τ values produce false positives by missing valid detection areas. The optimal
performance is achieved at τ=0.55, which is consequently selected for our experiments. At the same
time, we can also observe that as the τ value changes, the performance changes are also flat. It
confirms that the value of τ is not very sensitive to performance.

6 Conclusion

We proposed a new UAV object detection method, called MCR-UOD, which improves the perfor-
mance of UAV object detection through causal inference and multimodal learning. The framework
comprises two key modules: LGRE and BACR. LGRE module leverages a pre-trained vision-
language model, such as CLIP text embeddings to compute text-guided attention maps for high-
lighting possible object regions. The BACR module maintains a dynamic confounder dictionary
for causal intervention. Due to the inability to obtain diversity UAV images under various envi-
ronmental and imaging conditions, the confounder dictionary is constructed and initialized with
Clip text embeddings. Backdoor adjustment is applied based on this confounder dictionary that
can reduce the influence of confounding factors, thus the extracted object features are imaging
condition-invariant and more robust. Experimental results demonstrate that the proposed MCR-UOD
outperforms existing methods while maintaining computational efficiency.
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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of appendix. Moreover, detailed implementation details are provided in main text and
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail
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material.

7. Experiment statistical significance
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information about the statistical significance of the experiments?
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the experiment section of the main text, we provide detailed information
about the computer resources, including the GPU model and memory usage, and also
analyze the detection speed and model parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics in all aspects, ensuring
that ethical considerations are thoroughly addressed and integrated into the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Given the purely academic nature of the research, which does not entail
direct application or deployment, the discussion of broader societal impacts is deemed not
applicable.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper does not involve the release of data or models that are at high risk
for misuse; therefore, the discussion of safeguards is not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the licenses for all used models and datasets in appendix. The
version of models are introduced in implementation details of main text and appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces several new assets, including the detailed algorithm
pipeline and detection results. The link to the full assets—including the complete code,
trained models, comprehensive documentation, and license—will be provided upon the
publication of this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]
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Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use the LLM model to generate prompts for causal reasoning.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Illustration of Backdoor Adjustment

Backdoor adjustment is a core method of causal inference used to eliminate confounding
bias. The key idea is to adjust a set of confounders Z that block all non-causal paths (ack
door) between treatment X and outcome Y , allowing estimation of the causal effect X on
Y .

A.1 Backdoor Adjustment Formula

If the variable set Z satisfies the backdoor criterion, the causal effect of X on Y (Average
Causal Effect, ACE) can be estimated using:

P (Y = y|do(X)) =
∑
z

P (Y = y|X = x, Z = z) · P (Z = z) (15)

where the Z must satisfy the backdoor criterion: 1) Blocks all backdoor paths: Z must block
every path between X and Y that contains an arrow into X. 2) No new bias introduced: Z
must not include any descendants of X.

A.2 Derivation Process.

The backdoor adjustment is derived using causal graph rules and probability theory, with
the following key steps: From intervention to Conditional Probability. The intervention
do(X=x) corresponds to removing all incoming edges to X in the causal graph and fixing
X = x. In this intervention, the distribution of Y depends only on X and its parents. If Z
satisfies the backdoor criterion, the post-intervention distribution can be expressed as:

P (Y |do(X = x)) =
∑
z

P (Y |X = x, Z = z) · P (Z = z|do(X) = x) (16)

Since do(X=x) does not affect Z(because Z is not a descendant of X), we have P (Z =
z|do(X = x)) = P (Z = z),leading to:

P (Y |do(X = x)) =
∑
z

P (Y |X = x, Z = z) · P (Z = z). (17)

A.3 Confounder Dictionary Construction.

Collecting confounder images in 218 different images and UAV conditions is extremely
challenging. To address this, we fully leverage multi-modal knowledge by constructing and
initializing the confounder dictionary using textual prompts. Specifically, we employ the
large language model GPT [1] to generate descriptive texts for various confounders, such
as "a photo of a car on a rainy day without occlusion from a rear view." The confounders
include weather conditions (sunny, rainy, foggy, nighttime), occlusion levels (none, partial,
heavy), and viewing perspectives (front, side, rear, top). In this way, we systematically
generate linguistic priors for confounder modeling, thus providing rich semantic support for
downstream tasks, as shown in Table 5.

B More Experiment Results

Evaluation metrics. To evaluate the detection performance of our proposed enhanced
model, we use several metrics: AP, AP50 and AP75 [9, 23]. The following parameters are
utilized: TP (true positives), FP (false positives), and FN (false negatives). Intersection
over Union (IoU) measures the overlap between the predicted bounding box and the ground
truth box. Precision is defined as the ratio of true positive predictions to the total number of
detected samples, calculated as follows:

Precision =
TP

TP + FP
(18)

Recall represents the ratio of true positive predictions to the total number of actual positive
samples, calculated as:

Recall =
TP

TP + FN
(19)
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Table 5: The 36 prompt templates used in our method, each describing a [CLS] token in various UAV
imaging conditions including weather, occlusion, scale, and viewpoint.

# Prompt Template

1 a [CLS] in a sunny scene with no occlusion, viewed from the front at a large scale.
2 a [CLS] in a sunny scene with no occlusion, viewed from the side at a medium scale.
3 a [CLS] in a sunny scene with no occlusion, viewed from the rear at a small scale.
4 a [CLS] in a sunny scene with partial occlusion, viewed from the top at a large scale.
5 a [CLS] in a sunny scene with partial occlusion, viewed from the front at a medium scale.
6 a [CLS] in a sunny scene with partial occlusion, viewed from the side at a small scale.
7 a [CLS] in a sunny scene with heavy occlusion, viewed from the rear at a large scale.
8 a [CLS] in a sunny scene with heavy occlusion, viewed from the top at a medium scale.
9 a [CLS] in a sunny scene with heavy occlusion, viewed from the front at a small scale.

10 a [CLS] in a rainy scene with no occlusion, viewed from the side at a large scale.
11 a [CLS] in a rainy scene with no occlusion, viewed from the rear at a medium scale.
12 a [CLS] in a rainy scene with no occlusion, viewed from the top at a small scale.
13 a [CLS] in a rainy scene with partial occlusion, viewed from the front at a large scale.
14 a [CLS] in a rainy scene with partial occlusion, viewed from the side at a medium scale.
15 a [CLS] in a rainy scene with partial occlusion, viewed from the rear at a small scale.
16 a [CLS] in a rainy scene with heavy occlusion, viewed from the top at a large scale.
17 a [CLS] in a rainy scene with heavy occlusion, viewed from the front at a medium scale.
18 a [CLS] in a rainy scene with heavy occlusion, viewed from the side at a small scale.
19 a [CLS] in a foggy scene with no occlusion, viewed from the rear at a large scale.
20 a [CLS] in a foggy scene with no occlusion, viewed from the top at a medium scale.
21 a [CLS] in a foggy scene with no occlusion, viewed from the front at a small scale.
22 a [CLS] in a foggy scene with partial occlusion, viewed from the side at a large scale.
23 a [CLS] in a foggy scene with partial occlusion, viewed from the rear at a medium scale.
24 a [CLS] in a foggy scene with partial occlusion, viewed from the top at a small scale.
25 a [CLS] in a foggy scene with heavy occlusion, viewed from the front at a large scale.
26 a [CLS] in a foggy scene with heavy occlusion, viewed from the side at a medium scale.
27 a [CLS] in a foggy scene with heavy occlusion, viewed from the rear at a small scale.
28 a [CLS] in a night scene with no occlusion, viewed from the top at a large scale.
29 a [CLS] in a night scene with no occlusion, viewed from the front at a medium scale.
30 a [CLS] in a night scene with no occlusion, viewed from the side at a small scale.
31 a [CLS] in a night scene with partial occlusion, viewed from the rear at a large scale.
32 a [CLS] in a night scene with partial occlusion, viewed from the top at a medium scale.
33 a [CLS] in a night scene with partial occlusion, viewed from the front at a small scale.
34 a [CLS] in a night scene with heavy occlusion, viewed from the side at a large scale.
35 a [CLS] in a night scene with heavy occlusion, viewed from the rear at a medium scale.
36 a [CLS] in a night scene with heavy occlusion, viewed from the top at a small scale.

The average precision (AP) is the area under the precision-recall curve, computed by:

AP =

∫ 1

0

Precision(Recall) d(Recall) (20)

Mean average precision (mAP) is obtained by averaging the AP values across all sample
categories to measure the model’s performance across all categories:

mAP =
1

N

N∑
i=1

APi (21)

Here, APi represents the AP value for category i, and N is the number of categories in the
training dataset (in this paper, N = 10). AP50 denotes the average precision when the IoU
threshold is set to 0.5, while AP75 represents the average precision over IoU thresholds to
0.75.
Confusion matrix. From Fig. 7, it can be seen that the diagonal region of the confusion
matrix for MCR-UOD is darker in color compared to YOLOv8, indicating that our proposed
method has improved the model’s ability to correctly predict object categories. This improve-
ment is particularly notable when detecting smaller objects, such as bicycles, tricycles, and
awning-tricycles, where our method outperforms YOLOv8. Although there are still some
missed detections for these smaller objects in complex backgrounds, our method signifi-
cantly reduces the proportion of objects misclassified as background compared to YOLOv8.
Bicycles, tricycles, and awning-tricycles often appear in dense or occluded environments,
making detection in complex backgrounds challenging. Our method improves the feature
extraction ability and classification mechanisms of the model, leading to better detection
performance and reduced missed detection rates for these small objects. Although the
percentage of correctly predicted small objects still needs improvement, our method shows
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(a) YOLOv8 (b) MCR-UOD

Figure 7: (a) Confusion matrix plot of YOLOv8; (b) confusion matrix plot of our model.

Image YOLOv8 UFPMP  SPAR  MCR-UOD

Figure 8: Visualization of feature maps.

a notable advancement in performance over the traditional YOLOv8 model in complex
scenarios.
Visualization of feature maps. The heatmap visualization of feature maps, shown in Fig. 8,
highlights the superior performance of the MCR-UOD method compared to YOLOv8,
SPAR [19] and UFPMP [14]. The MCR-UOD heatmaps demonstrate more precise and
concentrated activation areas, especially for small objects. This indicates a more refined
understanding and localization of critical features in the image. In contrast, UFPMP and
SPAR, the previous state-of-the-art methods, while effective, show less focus on these
smaller targets. This suggests that MCR-UOD is particularly adapted to capture essential
information, leading to enhanced detection and classification performance, especially in
scenarios involving small objects.
Precision-Confidence curve. Fig. 9(left) presents the Precision-Confidence (PC) curves for
the MCR-UOD method, the baseline YOLOv8 and the state-of-the-arts SPAR and UFPMP.
The MCR-UOD curve consistently demonstrates high precision across various confidence
thresholds, indicating its effectiveness in reducing false positives. In contrast, UFPMP and
SPAR exhibit more variability, reflecting less precision stability with changing confidence
levels. The smooth and upward trend of the MCR-UOD curve highlights its superior
performance and robustness, maintaining a high true positive rate as confidence increases.
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Figure 9: Comparisons of Precision-Confidence and Precision-Recall curves between MCR-UOD
and other SOTA methods.

Table 6: Statistical significance (p-values) of performance differences between MCR-UOD and
SPAR.

Metric SPAR (Mean ± Std) MCR-UOD (Mean ± Std) p-value

AP50 43.90 ± 0.25 44.70 ± 0.31 0.018
AP75 34.70 ± 0.28 35.60 ± 0.34 0.015

This comparison underscores the effectiveness of MCR-UOD in balancing precision and
confidence.
Precision-Recall curve. Fig. 9(right) presents a comparative analysis of Precision-Recall
(PR) curves for the MCR-UOD method, YOLOv8, SPAR and UFPMP. The PR curves
clearly illustrate the performance of each model at different recall levels. Our MCR-UOD
method consistently demonstrates superior precision compared to YOLOv8, SPAR and
UFPMP at various recall rates. This indicates that the MCR-UOD method is more effective
in minimizing false positives while maintaining high recall performance. In particular,
the PR curve for MCR-UOD is higher than those of other methods in the recall spectrum,
reflecting its improved accuracy and robustness in object detection. The area under the PR
curve (AP) for MCR-UOD is significantly larger than that of YOLOv8, SPAR and UFPMP,
further validating the effectiveness of our method. This improvement in AP underscores
MCR-UOD’s ability to achieve better precision and recall balance, particularly in detecting
small objects and handling imbalanced datasets. Overall, the comparison reveals that
MCR-UOD not only surpasses YOLOv8, SPAR and UFPMP in precision but also offers a
more reliable detection performance. This indicates that the proposed MCR-UOD method
provides substantial enhancement in object detection capabilities, making it more suitable
for practical applications where high precision and recall are critical.
Statistical verification. To further validate the performance advantage of our proposed
MCR-UOD framework, we conducted a statistical significance test against SPAR using
the Wilcoxon signed-rank test, as shown in Tabel 6. This test, widely used for paired
comparison without assuming data normality, allows us to assess whether the observed
improvements are statistically meaningful. We perform the analysis on the UAVDT dataset
using two key evaluation metrics: AP50 and AP75. The computed p-values are reported in
the corresponding table. Notably, both p-values are well below the 0.1 significance level,
providing strong evidence that the performance gains of MCR-UOD over SPAR are not due
to random variation. These findings confirm the robustness and consistent superiority of our
causal reasoning approach to enhance UAV-based object detection.

C Model Architecture with YOLOv8

We implemented the proposed MCR-UOD method based on the YOLOv8 detection frame-
work. The overall architecture is illustrated in Figure 10. YOLOv8 adopts a modern and
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Figure 10: The network structure of YOLOv8 with MCR-UOD. The w (width) and r (ratio) are
parameters used to represent the size of the feature map. The size of the model can be controlled by
setting the values of w and r to meet the needs of different application scenarios.

streamlined structure composed of a backbone, neck, and detection head, offering improve-
ments in both detection accuracy and speed over previous YOLO versions such as YOLOv5
and YOLOv7.
In our implementation, we retain the original backbone of YOLOv8 and focus on modifying
the neck and detection head to incorporate our MCR-UOD strategy. As highlighted in the red
box in Figure 10, we replace the last C2f module processing the low-level feature map before
the head with a customized version. Specifically, the input feature C1 is passed through two
newly designed modules: LGRE and BACR. The output of this process, denoted as Cn

1 , is
then fed into the detection head.
Furthermore, we replace the original classification head with a contrastive head based on text
embeddings, as shown in the figure. This change enables the model to perform self-prompted
open-set recognition by leveraging text-based semantic information, allowing its potential
generalization to unseen object categories.

D Limitations

Our method uses multimodal knowledge and causal reasoning to improve object detection
on UAV imagery. Although it shows promising results, there are limitations. First, relying
on CLIP for semantic guidance limits performance due to its representational capacity,
particularly in low-quality or ambiguous images. In addition, prompt design is based on
intuition and heuristics, limiting adaptability. Second, the integration of causal reasoning
with object detection is still in the early stages. Although we use structural equation models
for causal modeling, more research is needed to better link causal structures with image
features, especially in complex environments.

26


	Introduction
	Related Work
	Preliminaries
	Proposed Method
	Language Guided Region Exploration
	Backdoor Adjustment Causal Reasoning
	Detection Head and Loss Function

	Experiments
	Comparison with State-of-the-art Methods
	Further Studies

	Conclusion
	Illustration of Backdoor Adjustment
	Backdoor Adjustment Formula
	Derivation Process.
	Confounder Dictionary Construction.

	More Experiment Results
	Model Architecture with YOLOv8
	Limitations

