Multimodal Causal Reasoning for UAV Object Detection

Nianxin Li¹, Mao Ye¹*, Lihua Zhou², Shuaifeng Li¹, Song Tang³, Luping Ji¹, Ce Zhu¹

University of Electronic Science and Technology of China

²CAIR, HKSIS, CAS

³University of Shanghai for Science and Technology, China linianxin1220@gmail.com, cvlab.uestc@gmail.com https://github.com/lnxwow/MCR-UOD

Abstract

Unmanned Aerial Vehicle (UAV) object detection faces significant challenges due to complex environmental conditions and different imaging conditions. These factors introduce significant changes in scale and appearance, particularly for small objects that occupy limited pixels and exhibit limited information, complicating detection tasks. To address these challenges, we propose a Multimodel Causal Reasoning framework based on YOLO backbone for UAV Object Detection (MCR-UOD). The key idea is to use the backdoor adjustment to discover the condition-invariant object representation for easy detection. Specifically, the YOLO backbone is first adjusted to incorporate the pre-trained vision-language model. The original category labels are replaced with semantic text prompts, and the detection head is replaced with text-image contrastive learning. Based on this backbone, our method consists of two parts. The first part, named language guided region exploration, discovers the regions with high probability of object existence using text embeddings based on vision-language model such as CLIP. Another part is the backdoor adjustment casual reasoning module, which constructs a confounder dictionary tailored to different imaging conditions to capture global image semantics and derives a prior probability distribution of shooting conditions. During causal inference, we use the confounder dictionary and the prior to intervene on local instance features, disentangling condition variations, and obtaining condition-invariant representations. Experimental results on several public datasets confirm the state-of-the-art performance of our approach. The code, data and models will be released upon publication of this paper.

1 Introduction

Deep learning has driven remarkable progress in object detection, with models such as YOLO[15] and Faster-RCNN[11] achieving strong performance on standard datasets. However, these methods struggle with Unmanned Aerial Vehicle (UAV) imagery due to unique aerial imaging challenges. The bird's-eye view introduces dense and cluttered backgrounds, where target objects are often obscured by complex environmental patterns. Combined with varying lighting and weather conditions, these factors create severe interference that disrupts feature learning and localization. Consequently, existing detectors suffer from high false alarm rates and missed detections, limiting their effectiveness in critical UAV applications such as surveillance and disaster monitoring. Developing robust algorithms to overcome these background interference challenges remains an open research problem.

^{*}Corresponding author.

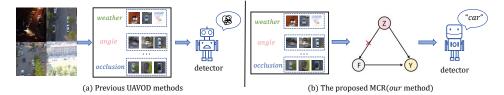


Figure 1: (a) Previous methods do not handle confounders in UAV images, confusing detector. (b) Our approach removes the confounders via backdoor causal reasoning, enabling a better detector. The previous methods are mainly divided into three routes. The first focuses on region-based strategies, selectively up-scaling regions with dense objects to improve detection accuracy [14, 10, 43, 28]. The second route introduces additional network modules, such as attention mechanisms and multiscale feature fusion, to enhance feature representations [58, 55, 30, 52]. The final employs data augmentation techniques to increase data diversity, allowing the models to handle a wider range of scenarios [42, 54]. Although these methods have made progress, they still have the following aspects for improvement: 1) Previous works rely solely on single visual features, limiting the improvement of detector performance; 2) Feature enhancement through attention mechanisms lacks interpretability, and does not clearly address how confounders like interference caused by redundant background information or challenging shooting conditions are mitigated.

To address the above issues, we propose the following solutions. First, utilizing a vision-language model for detection enables the full utilization of multimodal knowledge. By integrating the detection network with a vision-language model, such as CLIP [34], the ability of the model to understand and correlate visual and textual information can be improved. This multimodal integration allows for a more context-aware understanding of the objects in the scenarios, improving the detection process, especially in scenarios where visual cues alone cannot offer enough discriminate information. Second, we incorporate causal inference [32, 31], a framework designed to model cause-and-effect relationships, which allows us to systematically address confounding effects [33]. Specifically, we focus on intra-class inconsistencies caused by factors such as environment and shooting conditions. Using causal reasoning, we can effectively eliminate the influence of these confounders, leading to more robust and accurate object detection, even in challenging environments. Finally, relying on visual-language models pre-trained on large data, we can construct confounding factors from a textual perspective that are difficult to capture from an image acquisition perspective. In this way, the detection model that learns to remove these confounding factors has a stronger and more robust generalization ability.

Based on the above analysis, we propose a novel method called Multimodal Causal Reasoning for UAV Object Detection (MCR-UOD). Specifically, this method consists of two modules. The first is the language-guided region exploration (LGRE) module. This module leverages the synergy between visual and linguistic information to guide the detection process. By integrating multimodal knowledge, LGRE endows the model with the ability to focus on object regions, improving detection accuracy in complex scenarios where visual information is insufficient. It first encodes category names to features using the CLIP text encoder and then computes the object existence score for each region in the visual feature map based on these text features, highlighting regions more likely to contain objects. This process helps to remove the intervention from the background. The second is the Backdoor Adjustment Causal Reasoning (BACR) module, which aims to construct a confounder dictionary based on CLIP text embeddings to eliminate the interference of confounders on the objects, enabling the model to handle intra-class feature inconsistencies due to environment and shooting condition variations. This module first selects regions based on the object existence scores. Then it applies a do-operator using the confounder dictionary to enhance the selected features and updates the confounder dictionary accordingly.

Our contributions can be summarized as follows: (1) We are the first to apply the mathematical principles of causal inference to UAV object detection. The effects of varying confounders, caused by environment and shooting conditions, are weakened, allowing the detectors to ensure feature consistency within the same category, thus enhancing the robustness and accuracy of object detection. (2) Unlike previous causal inference methods in computer vision problems, we utilize text embeddings to construct and initialize a confounder dictionary, achieving cross-modal deconfounding. Due to the diversity of UAV environments and shooting conditions, it is clearly impossible to rely on UAV images to construct a confounder dictionary. The vision-language model provides the possibility to construct such a dictionary. (3) Unlike traditional methods that rely solely on visual features, we

propose a novel approach that leverages multimodal knowledge for UAV object detection. Based on text embeddings, the detector backbone will focus more on the object regions. So, although our method is based on the single-stage YOLO backbone, we can still obtain the region of interest and apply causal reasoning to enhance its features.

2 Related Work

UAV object detection (UAVOD) refers to the task of identifying and localizing objects in UAV-captured images. The existing approaches can be categorized into three main routes. The first is zoom-in strategies, which improve detection accuracy by selectively upscaling regions containing dense or small objects. For example, EVORL employs an evolutionary reinforcement learning mechanism guided by a reward function to determine optimal image patch scales [51], while AdaZoom dynamically adjusts the size and aspect ratio of zoomed regions according to the spatial distribution of small objects [43]. The second route enhances feature representation through additional network modules, such as attention mechanisms or multi-scale fusion. The representative method TPH-YOLOv5 integrates the Transformer and CBAM (Convolutional block Attention Module) to emphasize key regions and improve feature extraction capability [58]. Other works introduce lightweight modules or hierarchical attention to further improve performance [52, 30]. The third route adopts data augmentation techniques to increase sample diversity and improve generalization in different scenarios. These methods generate varied input distributions through weather simulation, viewpoint changes, or domain transfer to train better detectors [42, 54].

Vision-language model for object detection approach generally falls into two categories. The first focus on mapping language representations to region prompts. Coop optimizes class prompts with contrastive learning to boost the performance of the vision-language model [57]. GLIP treats object detection as an association problem, aligning regions or bounding boxes with corresponding text prompts [18]. The second category integrates the vision-language model into the existing detection framework. DenseCLIP adapts CLIP for dense prediction by integrating feature adaptation and dense semantic guidance to enhance localization and segmentation tasks [35]. ProposalCLIP employs an unsupervised approach to directly label images of objects [36], while RegionCLIP applies region-based pre-training to associate image regions with textual descriptions [56]. YOLO-World uses region-text alignment with CLIP features to enhance open-vocabulary detection, which employs multi-scale feature fusion and query-based decoding to improve generalization to unseen objects [4].

Causal inference is increasingly applied to visual tasks, with methods generally categorized as explicit confounder construction and implicit intervention removal [49, 25]. The former approach builds dictionaries based on object features or relationships and applies do-operation to remove confounding effects [41, 50, 29, 17, 45]. VC R-CNN computes the frequency of occurrence of each category as a prior probability and leverages prototypes to mitigate the negative impact of confounder objects during relational reasoning [41]. MAWCA constructs and updates a confounder dictionary using ROI features, then uses a Transformer during inference to obtain interference-free object features, allowing transfer across different weather conditions [50]. The latter estimates causal effects by using sample augmentation or attention mechanisms to infer results under different interventions and averaging them. CT-MRI achieves single-source domain generation by randomly applying various style augmentations to regions in the image, thereby obtaining domain-invariant features [45]. CIRL learns causal representations that can mimic causal factors based on the ideal properties emphasized, thereby enhancing the robustness of the learned features [27].

3 Preliminaries

Problem statement. Suppose that the UAV object detection training set $D_{train} = \{X_{tr}^i, Y_{tr}^i\}_{i=1}^{N_{tr}}$, where $Y_{tr}^i = (b_{tr}^i, c_{tr}^i)$ represents the boxes and classes of objects in the i-th training image. N_{tr} is the cardinality of the training set. The test set is $D_{test} = \{X_{te}^i, Y_{te}^i\}_{i=1}^{N_{te}}$, where N_{te} is the cardinality of the test set and Y_{te} is unknown. Our goal is to use a vision-language model (CLIP) and casual reasoning to train a better object detector, improving detection performance on UAV images.

Structural causal model. As illustrated in Fig.2, we construct a structural causal model to represent the relationships between variables in the detection process. F denote the features of the objects, Z represent the confounders, and Y are the classification results of the objects; the directed edges

represent the causal relationships between the variables. In the directed acyclic graph, the path $F \to Y$ indicates that the features of objects F directly influence their classification results Y. For instance, distinctive visual patterns (e.g. wheels for cars) causally determine the predictions of the model. The backdoor path $F \leftarrow Z \to Y$ highlights the confounding effect of Z, which introduces spurious associations between features F and predictions Y. For example, Z could represent environmental factors (e.g. lighting, weather), data set biases (e.g. class imbalance), or sensor distortions (e.g. camera noise). These confounders corrupt the feature representation process $(F \leftarrow Z)$ while simultaneously influencing the model's decision $(Z \to Y)$. For example, poor lighting (Z) may degrade visual features (F), making objects harder to recognize, while also skewing label distributions (Y) if certain classes dominate low-light scenarios. Such backdoor paths can lead models to rely on non-causal shortcuts. To address this, we employ a backdoor adjustment to isolate the genuine causal relationship $F \to Y$.

Backdoor adjustment for causal learning. To eliminate the confounding bias introduced by Z, we implement a backdoor adjustment method based on causal inference theory. The core idea is to stratify the data according to the confounder Z and then calculate the weighted average of the predictions in all strata. Formally, the causal effect of F on Y can be estimated as

$$P(Y|do(F)) = \sum_{z} P(Y|F, Z = z)P(Z = z),$$
 (1)

where the do-operator signifies an intervention that removes the influence of Z. Here, P(Y|F,Z=z) represents the prediction conditioned on both features F and a specific value of Z, while P(Z=z) accounts for the prior distribution of the confounder. In practice, we first

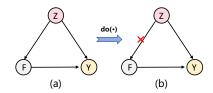


Figure 2: (a) Structural causal model shows the direct effect $F \to Y$ and confounding path $F \leftarrow Z \to Y$; (b) Intervention model where the confounding path $F \leftarrow Z$ is blocked (indicated by \times), enables estimation of the true causal effect $F \to Y$.

discretize continuous confounders (e.g., lighting levels) into interpretable bins with a confounder dictionary Z. Then, we train our model to estimate P(Y|F,Z) and compute P(Z) empirically from the training data. Finally, we aggregated the predictions across all Z strata to obtain an unbiased estimate of P(Y|do(F)). This approach effectively blocks the backdoor path $F \leftarrow Z \rightarrow Y$, ensuring that the learned relationships reflect true causal mechanisms rather than spurious correlations. For further technical details, see Section 4.2.

4 Proposed Method

Overview. As shown in Fig.3, the proposed method consists of two parts: the *Language Guided Region Exploration (LGRE)* module and the *Backdoor Adjustment Causal Reasoning (BACR)* module. The first module selects possible regions where objects may exist, and then the second module refines the features by backdoor adjustment ignoring the effects of confounders. Specifically, for the UAV image X_i , multilevel features $\{C_1, C_2, C_3\}$ can be obtained based on YOLOv8 [40]. Since the challenges of UAVOD stem primarily from small objects, we focus on refining the C_1 layer features. In the *LGRE* module, K category prompts and the corresponding text embeddings $\{e_k\}_{k=1}^K$ are obtained using the CLIP text encoder [39]. K is also the number of categories. Then, the object existence probability map s for each pixel is obtained by taking the product of the text embeddings $\{e\}_{k=1}^K$ and the low-level feature C_1 . In the *BACR* module, the GPT model [1] is used to generate a series of confounder prompts, which are encoded as text embeddings Z to construct and initialize a confounder dictionary. Based on the probability map s, we perform causal interventions on the features with high probability. The modulated features F' are projected back into the original feature map C_1 , resulting in a new feature map C_1^n . Finally, we input $\{C_1^n, C_2, C_3\}$ along with the text embedding E into the contrastive head and the box head to obtain the final detection results.

4.1 Language Guided Region Exploration

In UAVOD, one of the key challenges is to accurately localize small objects, which are often represented in low-level features. To address this issue, we leverage the rich prior knowledge learned by language models to enhance object localization. The core idea is to utilize textual information to guide the model's attention towards regions in the image that are likely to contain objects, improving

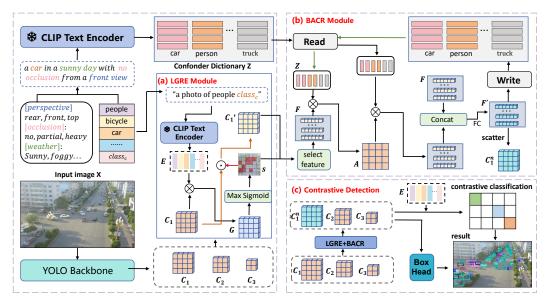


Figure 3: The overall framework of MCR-UOD. (a) Language Guided Region Exploration (LGRE) module computes object existence probability map using CLIP text embeddings and (b) Backdoor Adjustment Causal Reasoning (BACR) module performs causal intervention through cross-attention between selected high-probability pixel-level visual features and confounder dictionary. The deconfounder feature map C_1^m is then fed into detection head.

the object existence score for different regions of interest. Specifically, we generate K prompts by constructing descriptive text based on category names, such as 'a photo of [category]', and obtain text embeddings $E = \{e_k\}_{k=1}^K$ by encoding these prompts using the CLIP text encoder [39], where $E \in \mathbb{R}^{K \times D_1}$, and D_1 is the dimension of the text embedding. The input image X is encoded by CSPDarknet [2], generating multi-scale feature maps $\{C_1, C_2, C_3\}$. Since the challenges of UAVOD are primarily stemmed from small objects in low-level features, we focus on $C_1 \in \mathbb{R}^{H \times W \times D_2}$ accordingly, where H, W and D_2 denote height, width, and channel number, respectively. First, the similarities between pixel-level features in C_1 and text embeddings $\{e_k\}_{k=1}^K$ are calculated to obtain the score map G as follows,

$$G = f_1(C_1) \times (f_2(E))^T, \quad G \in R^{H \times W \times K}$$
(2)

where f_1 and f_2 represent two fully connected layers, which transform C_1 and E into the same dimension feature space, respectively. Then we calculate the maximum value of G at each pixel and apply Sigmoid operation as the following,

$$s(h, w) = \sigma\left(\max_{k} G(h, w, k)\right), \quad s \in R^{H \times W \times 1}$$
 (3)

where (h,w) represents the pixel coordinate, and s indicates the likelihood of object existence at this pixel. According to the object existence probability map s, the regions that are likely to contain objects can be selected. By perform element-wise multiplication with C_1 and s, the original feature map C_1 can be updated as

$$C_1' = C_1 \odot s, \quad C_1' \in R^{H \times W \times D_2} \tag{4}$$

where \odot represents the element-wise multiplication, and C'_1 is the updated C_1 feature map.

4.2 Backdoor Adjustment Causal Reasoning

In LGRE module, the updated low-level features C_1' and the corresponding object existence probability map s are obtained. We select the highest τ pixel features to form a feature matrix $F \in \mathbb{R}^{N \times D_2}$ based on the probability values as follows,

$$F = \{C'_1(i)|i \in I_\tau\}, \quad I_\tau = Top_N(s), \quad N = \tau \cdot HW$$
(5)

where τ is a threshold hyperparameter, N is the number of selected pixels. This feature matrix F records the regions that are more likely to contain objects. According to Eq.(1) in Section 3, we implement backdoor adjustment for visual features F using a confounder dictionary Z. $P(Y \mid F, Z = z)$ refers to the classification result Y obtained from the features F, given Z = z. The features F first pass through a function f with cross-attention to the dictionary f to obtain the classification logits, which are then passed through a softmax operation to produce the classification result f. Therefore:

$$P(Y \mid do(F)) = \sum_{z} P(Y \mid F, Z = z) P(Z = z) = \mathbb{E}_{z}[Softmax(f(F, z))]. \tag{6}$$

We utilize the NWGM [44] method to approximate the aforementioned expectation. In brief, NWGM efficiently transforms the outer expectation into the Softmax function as follows:

$$\mathbb{E}_{z}[Softmax(f(F,z))] \stackrel{\text{NWGM}}{\approx} Softmax(\mathbb{E}_{z}[f(F,z)]). \tag{7}$$

Thus, the causal intervention is to compute the object probability under different confounder conditions $z \in Z$, blocking the confounding path $F \leftarrow Z \rightarrow Y$ through expectation marginalization.

Confounder dictionary construction. It is extremely difficult to collect confounder images for different UAV shoot conditions and scenarios. However, by fully utilizing multi-modal knowledge, we can construct and initialize the confounder dictionary through text prompts. Specifically, we employ the language model GPT [1] to generate texts of different confounders, such as "a photo of a car in a rainy day with no occlusion from a rear view". The confounders include weather (sunny,rainy, foggy, nighttime), occlusion (no, partial, heavy), and perspective (front, side, rear, top). In this way, we obtain $K \times M$ prompts $\{PT_m\}_{m=1}^{K \times M}$, where M is the number of combinations of confounders. The corresponding text embeddings $Z \in R^{S \times D_2}$ are obtained using the CLIP text encoder [39]. These embeddings initialize the confounder dictionary, where $S = K \times M$ represents the number of items in the dictionary. To facilitate subsequent operations, we unify the dimensions of text and image representations as D_2 .

Causal reasoning. Cross-attention is performed to complete the task in Eq.(6). The selected features F are projected as query embeddings $Q \in R^{N \times D_2}$ via a linear mapping, and the confounder dictionary Z is independently projected as key and value embeddings $K \in R^{S \times D_2}$ and $V \in R^{S \times D_2}$, respectively. Formally,

$$Q = W_q * F + b_{query}, K = W_k * Z + b_{key}, V = W_v * Z + b_{value},$$
(8)

where W_q, W_k , and W_v are the parameters of the linear transformation layers. b_{query}, b_{key} , and b_{value} are the corresponding bias values, respectively. Then we calculate the attention weight matrix A through dot product operation and apply Softmax function for normalization as

$$A = softmax(\frac{QK^T}{\sqrt{D_2}}),\tag{9}$$

 $A \in R^{N \times S}$ assigns soft weights to the probability of each confounder interfering with the feature F, which allows us to approximate the expectation over confounders in the causal prediction formulation Eq.(7). Specifically, we model $\mathbb{E}_z[f(F,z)]$ by fusing the original feature F with a weighted confounder context AV^{\top} . The combined representation is then transformed via a learnable function f_F to produce a refined feature:

$$F' = f_F(Cat(F, AV^T)), \quad F' \in \mathbb{R}^{N \times D_2}.$$
(10)

This enables the network to learn confounder-aware representations while preserving task-relevant information. $f_F \in \mathbb{R}^{2D_2 \times D_2}$ is a fully connected layer, and Cat() denotes the concatenation operation. F' represents the features after applying the do-operator, corresponding to $\mathbb{E}_z[f(F,z)]$ in Equation 6. Subsequently, F' is passed through the classification head to obtain $Softmax(\mathbb{E}_z[f(F,z)])$. We interpolate F' into the feature map C_1' according to the indices I to obtain the final feature C_1^n , which, along with C_2 and C_3 , is fed into the detection head.

Dictionary update. To ensure the effectiveness and representativeness of the confounder dictionary, we continuously update the items in the dictionary during forward propagation of the network. Specifically, we fuse the visual feature F_p at some pixel into the most similar confounder z_i from the confounder dictionary based on the similarity as follows,

$$z_i^{t+1} = \alpha z_i^t + (1 - \alpha) F_p \tag{11}$$

Table 1: Comparison of different approaches on UAVDT and VisDrone. The best and second best values are highlighted in bold and red, respectively.

Method	Backbone	UAVDT			VisDrone		
		AP	AP50	AP75	AP	AP50	AP75
FPN [22] (NeurIPS,2015)	ResNet-50	16.9	30.7	17.2	16.9	30.7	17.2
Faster R-CNN (TPAMI,2017)	ResNet-50	12.1	23.5	10.8	21.8	41.8	20.1
CascadeRCNN [3] (CVPR,2018)	ResNet-50	17.1	30.5	18.6	23.6	38.9	24.6
ClusDet [46] (ICCV,2019)	ResNet-101	13.7	26.5	12.5	32.4	56.2	31.6
DMNet [20] (CVPR,2020)	ResNet-50	14.7	24.6	16.3	28.2	47.6	28.9
GLSAN [5] (TIP,2021)	ResNet-50	17.0	28.1	18.8	30.7	55.4	30.0
AdaZoom [43] (TMM,2022)	ResNet-50	20.1	34.5	21.5	40.3	66.9	41.8
Zoom&Reasoning [10](SPL,2022)	ResNet-50	21.8	34.9	24.8	39.0	66.5	39.7
UFPMPDet [14] (AAAI,2022)	ResNet-50	24.6	38.7	28.0	36.1	57.3	38.2
EVORL [51] (AAAI,2024)	ResNet-50	28.0	43.8	31.5	42.2	66.0	44.5
TPH-YOLOv5 [58] (ICCV,2021)	CSPDarknet	26.9	41.3	32.7	42.1	63.1	45.7
TPH-YOLOv5+ [55] (MDPI,2023)	CSPDarknet	30.1	43.5	34.3x	41.4	61.9	45.0
UAV-YOLOv8 [40] (MDPI,2023)	CSPDarknet	27.3	42.1	30.4	42.7	65.5	44.7
SPAR [19] (AAAI,2025)	CSPDarknet	30.5	43.9	34.7	42.8	66.7	45.1
MCR-UOD (ours)	CSPDarknet	31.4(+1.3)	44.7(+0.8)	35.6(+0.9)	44.6(+1.8)	67.3(+0.4)	47.5(+1.8)

where $\alpha=0.05$ is a trade-off weighting parameter and z_i^{t+1} is the updated confounder.

Remark. Unlike previous methods that rely solely on visual data [41], we propose a multi-modal approach that constructs the confounder dictionary using language-generated prompts. These prompts are encoded via the CLIP text encoder, enabling explicit and controllable modeling of various confounders. These confounders are difficult to collect on the basis of visual images. Our strategy improves the adaptability of the dictionary and improves causal reasoning in complex aerial scenarios.

4.3 Detection Head and Loss Function

Following YOLOv8 [40], we use a decoupled head with two 3×3 convolutions to obtain the object bounding boxes $\{b_j\}_{j=1}^J$ and object embedding v_j , where J denotes the number of objects. Additionally, we replace the original classification head with a text contrastive head. The class probability vector c is computed as follows,

$$c = \alpha \cdot \frac{v_j}{||v_j||} \cdot \frac{E^T}{||E||} + \beta \tag{12}$$

where v_j is the object embedding, E is the category text embeddings, $||\cdot||$ is the L_2 norm. In addition, we add an affine transformation, where α is the learnable scaling factor and β is the learnable shifting factor. Our method follows the same end-to-end training approach as YOLOv8 [40]. Additionally, to better handle the large number of small objects in UAV images, we replace the original IoU loss with the more effective WIoU loss [37] as

$$\mathcal{L}_{WIoU} = 1 - e^{-r(h^*w^*)} \cdot \frac{|B \cap B^*|}{|B \cup B^*|}$$
 (13)

where B and B^* represent the predicted bounding box and the ground truth bounding box, respectively. r=0.05 is a fixed hyperparameter that controls the decay rate of the weight factor; h^* and w^* are the height and width of B^* , respectively. The overall training loss is

$$\mathcal{L} = \mathcal{L}_{WIoU} + \mathcal{L}_{DFL} + \mathcal{L}_{cls}$$
 (14)

where \mathcal{L}_{cls} is the classification loss, always calculated using cross-entropy, and \mathcal{L}_{DFL} is the Distribution Focal Loss [16], which improves bounding box prediction accuracy by learning a discrete distribution.

Training and test. We integrate the proposed method into the baseline and perform end-to-end training. During both training and inference, the parameters of the CLIP text encoder are frozen, while the confounder dictionary Z is continuously updated.

5 Experiments

Experiment setup. Three public datasets are used for aerial image object detection: VisDrone [8], UAVDT [7] and HRSC2016 [26]. VisDrone contains 8599 drone-captured images (2000×1500 pixels), split into 6471 for training, 548 for validation, and 1580 for testing. It includes 10 object

Table 2: Comparison on HRSC2016.

Method	AP	Method	AP
R2PN(GRSL'18)	70.06	RRD(CVPR'18)	84.30
RoIT(CVPR'19)	86.20	R ³ Det(AAAI'21)	89.26
CSL(ECCV'20)	89.62	ReDet(CVPR'22)	90.46
FSM(TPAMI'25)	91.60	MCR-UOD(ours)	92.04

Table 3: Ablation study of MCR-UOD.

Method	AP	AP50	AP75
YOLOv8	42.2	64.7	44.5
+WIOU	42.5(+0.3)	65.2(+0.5)	44.7(+0.2)
+WIOU+LGRE	43.6(+1.1)	66.5(+1.3)	45.9(+1.2)
MCR-UOD	44.6(+1.0)	67.3(+0.8)	47.5(+1.6)

categories, mainly vehicles and pedestrians. UAVDT is designed for object detection and tracking, comprising 24143 training images and 16592 testing images (1024×540 pixels). It features diverse aerial scenes and is widely used for detecting cars, trucks, and buses. HRSC2016 contains high-resolution aerial images focused on ship detection, featuring large-scale variations and complex backgrounds. Object detection models are evaluated using standard metrics [9, 23], including AP (Average Precision), AP50 and AP75. We chose YOLOv8 [40] as the backbone of our method and performed all training and validation on two NVIDIA FeForce RTX 3090 GPUs. The number of training epochs is 75, with a batch size of 4. The initial learning rate lr_0 is 0.001; the final learning rate lr_1 is 0.01; and the weight decay is 0.0005.

5.1 Comparison with State-of-the-art Methods

Compared methods. To validate the effectiveness of our method, we compare it with several state-of-the-art approaches proposed in recent years. These methods can be categorized according to the descriptions in the related works section as follows: zoom-in strategy based methods including ClusDet [46], DMNet [20], UFPMP [14], Adazoom [43], Zoom&Reasoning [10]; feature representation enhanced methods such as FPN [22], TPH-YOLOv5 [58], TPH-YOLOv5++ [55], SPAR [19], ReDet [12], RoIT [6], R2PN [53], FSM [24], PRD [21] and data augmentation based method PAOD [13], FSM [24], R³Det [48] and CSL [47].

Quantitative comparison. Table 1 presents a summary of the comparison results between our method and nine state-of-the-art approaches on the UAVDT and VisDrone datasets. In terms of three key evaluation metrics, the proposed method significantly outperforms all models compared. Specifically, on the VisDrone dataset the proposed MCR-UOD method achieves an AP of 44.6, representing a 1.8% improvement over the previous best-performance model SPAR; On the UAVDT dataset, MCR-UOD achieves an AP of 31.4, outperforming TPH-YOLOv5 by 1.3 points. Our method achieves an AP50 of 44.6, exceeding SPAR by 0.8 points, and an AP75 of 35.6, outperforming TPH-YOLOv5++ by 0.9 points. These substantial improvements on three metrics demonstrate that our proposed method excels not only in recognizing object regions but also in achieving accurate localization. This indicates that the model is capable of learning more discriminative and fine-grained features, leading to more precise bounding-box regression. Furthermore, on the HRSC2016 dataset, as shown in Table 2, MCR-UOD achieves an mAP of 91.13, outperforming all existing methods. All gains come from the LGRE module for precise region attention and the backdoor adjustment for removing confounding factors, which enhances feature robustness in complex scenes.

Visualization comparisons. Fig. 4 provides a comprehensive visualization of the performance of the MCR-UOD method on UAVDT and VisDrone, column (a) shows the original images, while columns (b) and (c) present the detection results of previous state-of-the-art methods, UFPMP and SPAR, respectively. Column (d) illustrates the detection results of our proposed method, MCR-UOD. The regions marked with red circles indicate areas where the previous methods failed to detect objects. In the first row, a truck in a very dark lighting condition is completely missed by the previous methods, but MCR-UOD successfully detects it. In the second row, due to overexposure in the image, the car is difficult to detect using previous methods, while our method correctly identifies it. In the third row, UFPMP and SPAR miss several small objects due to heavy occlusion and their tiny sizes. In contrast, MCR-UOD successfully identifies these small targets. These improvements can be attributed to the core design of MCR-UOD, by integrating vision-language models and causal inference, the method effectively utilizes contextual knowledge and systematically eliminates confounding factors such as lighting and viewpoint changes.

5.2 Further Studies

Ablation study. Ablation experiments are conducted on VisDrone dataset, as shown in Table 3. Yolov8 [40] is the baseline model; "+WIOU" is the baseline with WIoU loss; "+WIoU+LGRE" denotes using WIOU loss and LGRE module; "MCR-UOD" denotes the complete method. From Table

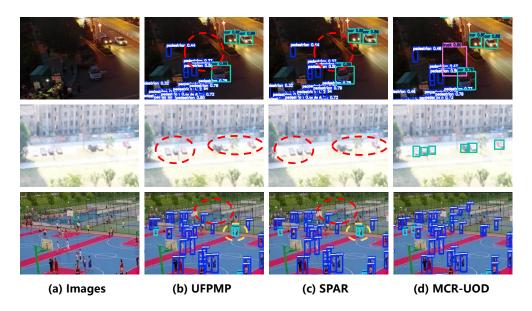


Figure 4: Visualization comparison. (a) shows the original image, while (b), (c), and (d) present the detection results of UFPMP, SPAR, and our proposed MCR-UOD method, respectively. The red circles highlight the objects missed by previous state-of-the-art methods but successfully detected by MCR-UOD. The yellow circles indicate false detections. *Zoom in for best view.*

Table 4: Performance and efficiency comparison across different YOLO backbones.

Method	AP	AP50	AP75	Parameters	GFLOPs
YOLOv8s	38.2	56.9	41.3	11.14M	28.7
YOLOv8m	40.7	59.6	42.5	25.8M	79.1
YOLOv8l	41.1	62.8	44.0	43.6M	165.4
YOLOv8x	42.2	64.7	44.5	68.2M	258.2
YOLOv8s+MCR-UOD	40.1	60.3	44.9	10.6M	28.4
YOLOv8m+MCR-UOD	21.8	41.8	20.1	23.7M	77.6
YOLOv8l+MCR-UOD	43.2	66.4	45.9	39.5M	159.2
YOLOv8x+MCR-UOD	44.6	67.3	47.5	61.5M	247.6

3, it can be concluded that all modules contribute positively to the final performance. Specifically, the combined use of LGRE and BACR modules results in significantly improved performance compared to baseline; the performance values in terms of AP, AP50 and AP75 in VisDrone are all increased.

Computational efficiency. In integrating our method with the backbone, we modify and remove parts of the C2f module, replace the detection head with a text contrastive detector, achieve a lightweight design. Please refer to the appendix for details. Experiments are conducted across YOLOv8 variants (n/s/m/l/x) on VisDrone dataset to explore the speed-accuracy trade-off under different backbone scales. As shown in Table 4, we present the speed and accuracy comparison between models of different sizes. From the table, it is evident that compared to the YOLOv8 baseline, the proposed MCR-UOD achieves faster inference speed and higher detection accuracy across various backbone scales, demonstrating a better trade-off between performance and efficiency. More experimental results are shown in the appendix.

t-SNE visualization of the BACR module. To verify the effectiveness of the BACR module, we visualize category-wise features on the VisDrone dataset using t-SNE [38], as shown in Fig. 5. Without BACR, features of the same category are scattered and easily confused due to diverse UAV imaging conditions. In contrast, with BACR, intra-class features become more compact and inter-class boundaries clearer, demonstrating improved feature discrimination for UAV object detection.

Sensitive analysis. In our method, there are not many parameters. The only adjustable parameter is τ in Eq.(5). To investigate the impact of different values τ on detection performance, we conducted a parameter sensitivity analysis as shown in Figure 6. We systematically tested τ values within the

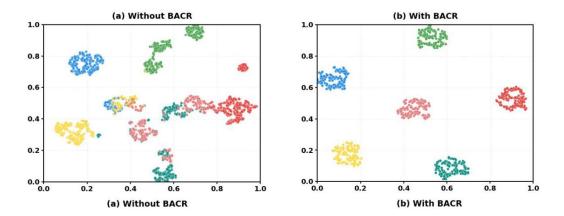


Figure 5: Visualization of t-SNE with and without BACR module.

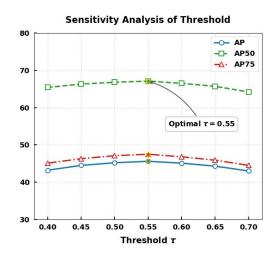


Figure 6: Sensitivity analysis of threshold τ .

range [0.4, 0.7]. The results show that both excessively small and large τ values lead to reduced accuracy. Overly small τ values introduce more false negatives by including inaccurate regions, while overly large τ values produce false positives by missing valid detection areas. The optimal performance is achieved at τ =0.55, which is consequently selected for our experiments. At the same time, we can also observe that as the τ value changes, the performance changes are also flat. It confirms that the value of τ is not very sensitive to performance.

6 Conclusion

We proposed a new UAV object detection method, called MCR-UOD, which improves the performance of UAV object detection through causal inference and multimodal learning. The framework comprises two key modules: LGRE and BACR. LGRE module leverages a pre-trained vision-language model, such as CLIP text embeddings to compute text-guided attention maps for high-lighting possible object regions. The BACR module maintains a dynamic confounder dictionary for causal intervention. Due to the inability to obtain diversity UAV images under various environmental and imaging conditions, the confounder dictionary is constructed and initialized with Clip text embeddings. Backdoor adjustment is applied based on this confounder dictionary that can reduce the influence of confounding factors, thus the extracted object features are imaging condition-invariant and more robust. Experimental results demonstrate that the proposed MCR-UOD outperforms existing methods while maintaining computational efficiency.

Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China (62276048, 62476169, 62476049).

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.
- [3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6154–6162, 2018.
- [4] Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world: Real-time open-vocabulary object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16901–16911, 2024.
- [5] Sutao Deng, Shuai Li, Ke Xie, Wenfeng Song, Xiao Liao, Aimin Hao, and Hong Qin. A global-local self-adaptive network for drone-view object detection. *IEEE Transactions on Image Processing*, 30:1556–1569, 2020.
- [6] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu. Learning roi transformer for oriented object detection in aerial images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2849–2858, 2019.
- [7] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li, Weigang Zhang, Qingming Huang, and Qi Tian. The unmanned aerial vehicle benchmark: Object detection and tracking. In *Proceedings of the European conference on computer vision (ECCV)*, pages 370–386, 2018.
- [8] Dawei Du, Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin Lin, Qinghua Hu, Tao Peng, Jiayu Zheng, Xinyao Wang, Yue Zhang, et al. Visdrone-det2019: The vision meets drone object detection in image challenge results. In *Proceedings of the IEEE/CVF international conference on computer vision workshops*, pages 0–0, 2019.
- [9] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *International journal of computer vision*, 88:303–338, 2010.
- [10] Zuhao Ge, Lizhe Qi, Yuzheng Wang, and Yunquan Sun. Zoom-and-reasoning: Joint fore-ground zoom and visual-semantic reasoning detection network for aerial images. *IEEE Signal Processing Letters*, 29:2572–2576, 2022.
- [11] Ross Girshick. Fast r-cnn. In *Proceedings of the IEEE international conference on computer vision*, pages 1440–1448, 2015.
- [12] Jiaming Han, Jian Ding, Nan Xue, and Gui-Song Xia. Redet: A rotation-equivariant detector for aerial object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2786–2795, 2021.
- [13] Sungeun Hong, Sungil Kang, and Donghyeon Cho. Patch-level augmentation for object detection in aerial images. In *Proceedings of the IEEE/CVF international conference on computer vision workshops*, pages 0–0, 2019.
- [14] Yecheng Huang, Jiaxin Chen, and Di Huang. Ufpmp-det: Toward accurate and efficient object detection on drone imagery. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pages 1026–1033, 2022.

- [15] Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. A review of yolo algorithm developments. *Procedia computer science*, 199:1066–1073, 2022.
- [16] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8. https://github.com/ ultralytics/ultralytics, 2023. Accessed: 2025-04-24.
- [17] Murat Kocaoglu, Christopher Snyder, Alexandros G Dimakis, and Sriram Vishwanath. Causalgan: Learning causal implicit generative models with adversarial training. *arXiv preprint arXiv:1709.02023*, 2017.
- [18] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10965–10975, 2022.
- [19] Nianxin Li, Mao Ye, Lihua Zhou, Song Tang, Yan Gan, Zizhuo Liang, and Xiatian Zhu. Self-prompting analogical reasoning for uav object detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 18412–18420, 2025.
- [20] Weisheng Li, Xiayan Zhang, Yidong Peng, and Meilin Dong. Dmnet: A network architecture using dilated convolution and multiscale mechanisms for spatiotemporal fusion of remote sensing images. *IEEE Sensors Journal*, 20(20):12190–12202, 2020.
- [21] Minghui Liao, Zhen Zhu, Baoguang Shi, Gui-song Xia, and Xiang Bai. Rotation-sensitive regression for oriented scene text detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5909–5918, 2018.
- [22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2117–2125, 2017.
- [23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pages 740–755. Springer, 2014.
- [24] Jin Liu, Zhongyuan Lu, Yaorong Cen, Hui Hu, Zhenfeng Shao, Yong Hong, Ming Jiang, and Miaozhong Xu. Enhancing object detection with fourier series. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- [25] Xinyu Liu, Wuyang Li, and Yixuan Yuan. Decoupled unbiased teacher for source-free domain adaptive medical object detection. *IEEE Transactions on Neural Networks and Learning* Systems, 2023.
- [26] Zikun Liu, Liu Yuan, Lubin Weng, and Yiping Yang. A high resolution optical satellite image dataset for ship recognition and some new baselines. In *International conference on pattern* recognition applications and methods, volume 2, pages 324–331. SciTePress, 2017.
- [27] Fangrui Lv, Jian Liang, Shuang Li, Bin Zang, Chi Harold Liu, Ziteng Wang, and Di Liu. Causality inspired representation learning for domain generalization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 8046–8056, 2022.
- [28] Akhil Meethal, Eric Granger, and Marco Pedersoli. Cascaded zoom-in detector for high resolution aerial images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2046–2055, 2023.
- [29] Cheng Ouyang, Chen Chen, Surui Li, Zeju Li, Chen Qin, Wenjia Bai, and Daniel Rueckert. Causality-inspired single-source domain generalization for medical image segmentation. *IEEE Transactions on Medical Imaging*, 42(4):1095–1106, 2022.
- [30] Daliang Ouyang, Su He, Guozhong Zhang, Mingzhu Luo, Huaiyong Guo, Jian Zhan, and Zhijie Huang. Efficient multi-scale attention module with cross-spatial learning. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2023.

- [31] Judea Pearl. Causal inference in statistics: An overview. 2009.
- [32] Judea Pearl. Causal inference. Causality: objectives and assessment, pages 39–58, 2010.
- [33] Judea Pearl. An introduction to causal inference. *The international journal of biostatistics*, 6(2), 2010.
- [34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PmLR, 2021.
- [35] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 18082–18091, 2022.
- [36] Hengcan Shi, Munawar Hayat, Yicheng Wu, and Jianfei Cai. Proposalclip: Unsupervised opencategory object proposal generation via exploiting clip cues. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9611–9620, 2022.
- [37] Zanjia Tong, Yuhang Chen, Zewei Xu, and Rong Yu. Wise-iou: bounding box regression loss with dynamic focusing mechanism. *arXiv preprint arXiv:2301.10051*, 2023.
- [38] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
- [39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- [40] Gang Wang, Yanfei Chen, Pei An, Hanyu Hong, Jinghu Hu, and Tiange Huang. Uav-yolov8: A small-object-detection model based on improved yolov8 for uav aerial photography scenarios. *Sensors*, 23(16):7190, 2023.
- [41] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. Visual commonsense r-cnn. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10760–10770, 2020.
- [42] Xiaobin Wang, Dekang Zhu, and Ye Yan. Towards efficient detection for small objects via attention-guided detection network and data augmentation. *Sensors*, 22(19):7663, 2022.
- [43] Jingtao Xu, Ya-Li Li, and Shengjin Wang. Adazoom: Towards scale-aware large scene object detection. *IEEE Transactions on Multimedia*, 25:4598–4609, 2022.
- [44] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In *International conference on machine learning*, pages 2048–2057. PMLR, 2015.
- [45] Jiexi Yan, Cheng Deng, Heng Huang, and Wei Liu. Causality-invariant interactive mining for cross-modal similarity learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- [46] Fan Yang, Heng Fan, Peng Chu, Erik Blasch, and Haibin Ling. Clustered object detection in aerial images. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 8311–8320, 2019.
- [47] Xue Yang and Junchi Yan. Arbitrary-oriented object detection with circular smooth label. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16*, pages 677–694. Springer, 2020.
- [48] Xue Yang, Junchi Yan, Ziming Feng, and Tao He. R3det: Refined single-stage detector with feature refinement for rotating object. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 3163–3171, 2021.

- [49] Zhongqi Yue, Qianru Sun, Xian-Sheng Hua, and Hanwang Zhang. Transporting causal mechanisms for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8599–8608, 2021.
- [50] Hua Zhang, Liqiang Xiao, Xiaochun Cao, and Hassan Foroosh. Multiple adverse weather conditions adaptation for object detection via causal intervention. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(3):1742–1756, 2022.
- [51] Jialu Zhang, Xiaoying Yang, Wentao He, Jianfeng Ren, Qian Zhang, Yitian Zhao, Ruibin Bai, Xiangjian He, and Jiang Liu. Scale optimization using evolutionary reinforcement learning for object detection on drone imagery. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 410–418, 2024.
- [52] Yin Zhang, Mu Ye, Guiyi Zhu, Yong Liu, Pengyu Guo, and Junhua Yan. Ffca-yolo for small object detection in remote sensing images. *IEEE Transactions on Geoscience and Remote Sensing*, 62:1–15, 2024.
- [53] Zenghui Zhang, Weiwei Guo, Shengnan Zhu, and Wenxian Yu. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. *IEEE Geoscience and Remote Sensing Letters*, 15(11):1745–1749, 2018.
- [54] Hangyue Zhao, Hongpu Zhang, and Yanyun Zhao. Yolov7-sea: Object detection of maritime uav images based on improved yolov7. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 233–238, 2023.
- [55] Qi Zhao, Binghao Liu, Shuchang Lyu, Chunlei Wang, and Hong Zhang. Tph-yolov5++: Boosting object detection on drone-captured scenarios with cross-layer asymmetric transformer. *Remote Sensing*, 15(6):1687, 2023.
- [56] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pretraining. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 16793–16803, 2022.
- [57] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.
- [58] Xingkui Zhu, Shuchang Lyu, Xu Wang, and Qi Zhao. Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In *Proceedings of* the IEEE/CVF international conference on computer vision, pages 2778–2788, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: As shown in abstract, introduction and contribution. The abstract and introduction accurately outline the main claims, which are substantiated by the results presented in the paper, ensuring that the contributions and scope are clearly communicated.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide limitations at the end of appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide explanations and proofs of the theories related to backdoor adjustment and causal inference in both the main text and the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the proposed method, including every linear connection layer. Additionally, specific details of the prompts and model architecture are included in the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: All the datasets we use are publicly available UAV-related datasets, and the link to the full code will be provided upon the publication of this paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide dataset usage such as training and testing splits in detailed datasets of appendix. Moreover, detailed implementation details are provided in main text and appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report p-value in the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: In the experiment section of the main text, we provide detailed information about the computer resources, including the GPU model and memory usage, and also analyze the detection speed and model parameters.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics in all aspects, ensuring that ethical considerations are thoroughly addressed and integrated into the study.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Given the purely academic nature of the research, which does not entail direct application or deployment, the discussion of broader societal impacts is deemed not applicable.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [No]

Justification: The paper does not involve the release of data or models that are at high risk for misuse; therefore, the discussion of safeguards is not applicable.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We provide the licenses for all used models and datasets in appendix. The version of models are introduced in implementation details of main text and appendix.

Guidelines

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.

- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper introduces several new assets, including the detailed algorithm pipeline and detection results. The link to the full assets—including the complete code, trained models, comprehensive documentation, and license—will be provided upon the publication of this paper.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [No]

Justification: This paper does not involve crowdsourcing experiments or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use the LLM model to generate prompts for causal reasoning.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Illustration of Backdoor Adjustment

Backdoor adjustment is a core method of causal inference used to eliminate confounding bias. The key idea is to adjust a set of confounders Z that block all non-causal paths (ack door) between treatment X and outcome Y, allowing estimation of the causal effect X on Y.

A.1 Backdoor Adjustment Formula

If the variable set Z satisfies the backdoor criterion, the causal effect of X on Y(Average Causal Effect, ACE) can be estimated using:

$$P(Y = y | do(X)) = \sum_{z} P(Y = y | X = x, Z = z) \cdot P(Z = z)$$
 (15)

where the Z must satisfy the backdoor criterion: 1) Blocks all backdoor paths: Z must block every path between X and Y that contains an arrow into X. 2) No new bias introduced: Z must not include any descendants of X.

A.2 Derivation Process.

The backdoor adjustment is derived using causal graph rules and probability theory, with the following key steps: **From intervention to Conditional Probability.** The intervention do(X=x) corresponds to removing all incoming edges to X in the causal graph and fixing X=x. In this intervention, the distribution of Y depends only on X and its parents. If X satisfies the backdoor criterion, the post-intervention distribution can be expressed as:

$$P(Y|do(X = x)) = \sum_{z} P(Y|X = x, Z = z) \cdot P(Z = z|do(X) = x)$$
 (16)

Since do(X=x) does not affect Z(because Z is not a descendant of X), we have P(Z = z|do(X = x)) = P(Z = z), leading to:

$$P(Y|do(X=x)) = \sum_{z} P(Y|X=x, Z=z) \cdot P(Z=z).$$
 (17)

A.3 Confounder Dictionary Construction.

Collecting confounder images in 218 different images and UAV conditions is extremely challenging. To address this, we fully leverage multi-modal knowledge by constructing and initializing the confounder dictionary using textual prompts. Specifically, we employ the large language model GPT [1] to generate descriptive texts for various confounders, such as "a photo of a car on a rainy day without occlusion from a rear view." The confounders include weather conditions (sunny, rainy, foggy, nighttime), occlusion levels (none, partial, heavy), and viewing perspectives (front, side, rear, top). In this way, we systematically generate linguistic priors for confounder modeling, thus providing rich semantic support for downstream tasks, as shown in Table 5.

B More Experiment Results

Evaluation metrics. To evaluate the detection performance of our proposed enhanced model, we use several metrics: AP, AP50 and AP75 [9, 23]. The following parameters are utilized: TP (true positives), FP (false positives), and FN (false negatives). Intersection over Union (IoU) measures the overlap between the predicted bounding box and the ground truth box. Precision is defined as the ratio of true positive predictions to the total number of detected samples, calculated as follows:

$$Precision = \frac{TP}{TP + FP}$$
 (18)

Recall represents the ratio of true positive predictions to the total number of actual positive samples, calculated as:

$$Recall = \frac{TP}{TP + FN} \tag{19}$$

Table 5: The 36 prompt templates used in our method, each describing a [CLS] token in various UAV imaging conditions including weather, occlusion, scale, and viewpoint.

#	Prompt Template
1	a [CLS] in a sunny scene with no occlusion, viewed from the front at a large scale.
2	a [CLS] in a sunny scene with no occlusion, viewed from the side at a medium scale.
3	a [CLS] in a sunny scene with no occlusion, viewed from the rear at a small scale.
4	a [CLS] in a sunny scene with partial occlusion, viewed from the top at a large scale.
5	a [CLS] in a sunny scene with partial occlusion, viewed from the front at a medium scale.
6	a [CLS] in a sunny scene with partial occlusion, viewed from the side at a small scale.
7	a [CLS] in a sunny scene with heavy occlusion, viewed from the rear at a large scale.
8	a [CLS] in a sunny scene with heavy occlusion, viewed from the top at a medium scale.
9	a [CLS] in a sunny scene with heavy occlusion, viewed from the front at a small scale.
10	a [CLS] in a rainy scene with no occlusion, viewed from the side at a large scale.
11	a [CLS] in a rainy scene with no occlusion, viewed from the rear at a medium scale.
12	a [CLS] in a rainy scene with no occlusion, viewed from the top at a small scale.
13	a [CLS] in a rainy scene with partial occlusion, viewed from the front at a large scale.
14	a [CLS] in a rainy scene with partial occlusion, viewed from the side at a medium scale.
15	a [CLS] in a rainy scene with partial occlusion, viewed from the rear at a small scale.
16	a [CLS] in a rainy scene with heavy occlusion, viewed from the top at a large scale.
17	a [CLS] in a rainy scene with heavy occlusion, viewed from the front at a medium scale.
18	a [CLS] in a rainy scene with heavy occlusion, viewed from the side at a small scale.
19	a [CLS] in a foggy scene with no occlusion, viewed from the rear at a large scale.
20	a [CLS] in a foggy scene with no occlusion, viewed from the top at a medium scale.
21	a [CLS] in a foggy scene with no occlusion, viewed from the front at a small scale.
22	a [CLS] in a foggy scene with partial occlusion, viewed from the side at a large scale.
23	a [CLS] in a foggy scene with partial occlusion, viewed from the rear at a medium scale.
24	a [CLS] in a foggy scene with partial occlusion, viewed from the top at a small scale.
25	a [CLS] in a foggy scene with heavy occlusion, viewed from the front at a large scale.
26	a [CLS] in a foggy scene with heavy occlusion, viewed from the side at a medium scale.
27	a [CLS] in a foggy scene with heavy occlusion, viewed from the rear at a small scale.
28	a [CLS] in a night scene with no occlusion, viewed from the top at a large scale.
29 30	a [CLS] in a night scene with no occlusion, viewed from the front at a medium scale.
	a [CLS] in a night scene with no occlusion, viewed from the side at a small scale.
31	a [CLS] in a night scene with partial occlusion, viewed from the rear at a large scale.
32	a [CLS] in a night scene with partial occlusion, viewed from the top at a medium scale.
33	a [CLS] in a night scene with partial occlusion, viewed from the front at a small scale.
34	a [CLS] in a night scene with heavy occlusion, viewed from the side at a large scale.
35 36	a [CLS] in a night scene with heavy occlusion, viewed from the rear at a medium scale.
30	a [CLS] in a night scene with heavy occlusion, viewed from the top at a small scale.

The average precision (AP) is the area under the precision-recall curve, computed by:

$$AP = \int_0^1 \operatorname{Precision}(\operatorname{Recall}) d(\operatorname{Recall})$$
 (20)

Mean average precision (mAP) is obtained by averaging the AP values across all sample categories to measure the model's performance across all categories:

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP_i \tag{21}$$

Here, AP_i represents the AP value for category i, and N is the number of categories in the training dataset (in this paper, N=10). AP50 denotes the average precision when the IoU threshold is set to 0.5, while AP75 represents the average precision over IoU thresholds to 0.75.

Confusion matrix. From Fig. 7, it can be seen that the diagonal region of the confusion matrix for MCR-UOD is darker in color compared to YOLOv8, indicating that our proposed method has improved the model's ability to correctly predict object categories. This improvement is particularly notable when detecting smaller objects, such as bicycles, tricycles, and awning-tricycles, where our method outperforms YOLOv8. Although there are still some missed detections for these smaller objects in complex backgrounds, our method significantly reduces the proportion of objects misclassified as background compared to YOLOv8. Bicycles, tricycles, and awning-tricycles often appear in dense or occluded environments, making detection in complex backgrounds challenging. Our method improves the feature extraction ability and classification mechanisms of the model, leading to better detection performance and reduced missed detection rates for these small objects. Although the percentage of correctly predicted small objects still needs improvement, our method shows

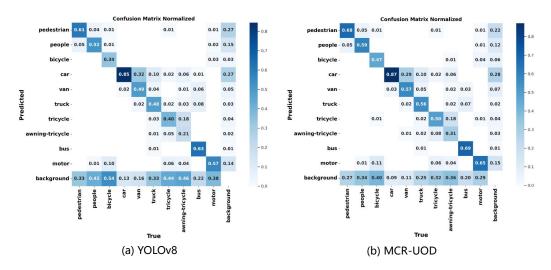


Figure 7: (a) Confusion matrix plot of YOLOv8; (b) confusion matrix plot of our model.

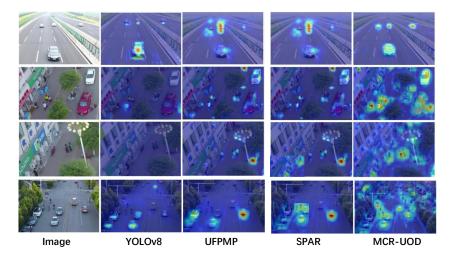


Figure 8: Visualization of feature maps.

a notable advancement in performance over the traditional YOLOv8 model in complex scenarios.

Visualization of feature maps. The heatmap visualization of feature maps, shown in Fig. 8, highlights the superior performance of the MCR-UOD method compared to YOLOv8, SPAR [19] and UFPMP [14]. The MCR-UOD heatmaps demonstrate more precise and concentrated activation areas, especially for small objects. This indicates a more refined understanding and localization of critical features in the image. In contrast, UFPMP and SPAR, the previous state-of-the-art methods, while effective, show less focus on these smaller targets. This suggests that MCR-UOD is particularly adapted to capture essential information, leading to enhanced detection and classification performance, especially in scenarios involving small objects.

Precision-Confidence curve. Fig. 9(left) presents the Precision-Confidence (PC) curves for the MCR-UOD method, the baseline YOLOv8 and the state-of-the-arts SPAR and UFPMP. The MCR-UOD curve consistently demonstrates high precision across various confidence thresholds, indicating its effectiveness in reducing false positives. In contrast, UFPMP and SPAR exhibit more variability, reflecting less precision stability with changing confidence levels. The smooth and upward trend of the MCR-UOD curve highlights its superior performance and robustness, maintaining a high true positive rate as confidence increases.

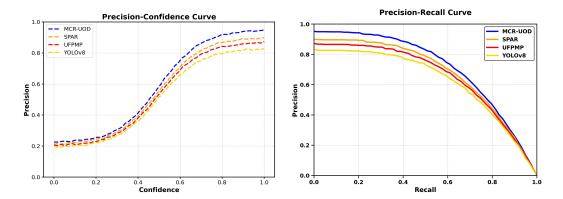


Figure 9: Comparisons of Precision-Confidence and Precision-Recall curves between MCR-UOD and other SOTA methods.

Table 6: Statistical significance (p-values) of performance differences between MCR-UOD and SPAR.

Metric	SPAR (Mean ± Std)	MCR-UOD (Mean ± Std)	p-value
AP50	43.90 ± 0.25	44.70 ± 0.31	0.018
AP75	34.70 ± 0.28	35.60 ± 0.34	0.015

This comparison underscores the effectiveness of MCR-UOD in balancing precision and confidence.

Precision-Recall curve. Fig. 9(right) presents a comparative analysis of Precision-Recall (PR) curves for the MCR-UOD method, YOLOv8, SPAR and UFPMP. The PR curves clearly illustrate the performance of each model at different recall levels. Our MCR-UOD method consistently demonstrates superior precision compared to YOLOv8, SPAR and UFPMP at various recall rates. This indicates that the MCR-UOD method is more effective in minimizing false positives while maintaining high recall performance. In particular, the PR curve for MCR-UOD is higher than those of other methods in the recall spectrum, reflecting its improved accuracy and robustness in object detection. The area under the PR curve (AP) for MCR-UOD is significantly larger than that of YOLOv8, SPAR and UFPMP, further validating the effectiveness of our method. This improvement in AP underscores MCR-UOD's ability to achieve better precision and recall balance, particularly in detecting small objects and handling imbalanced datasets. Overall, the comparison reveals that MCR-UOD not only surpasses YOLOv8, SPAR and UFPMP in precision but also offers a more reliable detection performance. This indicates that the proposed MCR-UOD method provides substantial enhancement in object detection capabilities, making it more suitable for practical applications where high precision and recall are critical.

Statistical verification. To further validate the performance advantage of our proposed MCR-UOD framework, we conducted a statistical significance test against SPAR using the Wilcoxon signed-rank test, as shown in Tabel 6. This test, widely used for paired comparison without assuming data normality, allows us to assess whether the observed improvements are statistically meaningful. We perform the analysis on the UAVDT dataset using two key evaluation metrics: AP50 and AP75. The computed p-values are reported in the corresponding table. Notably, both p-values are well below the 0.1 significance level, providing strong evidence that the performance gains of MCR-UOD over SPAR are not due to random variation. These findings confirm the robustness and consistent superiority of our causal reasoning approach to enhance UAV-based object detection.

C Model Architecture with YOLOv8

We implemented the proposed MCR-UOD method based on the YOLOv8 detection framework. The overall architecture is illustrated in Figure 10. YOLOv8 adopts a modern and

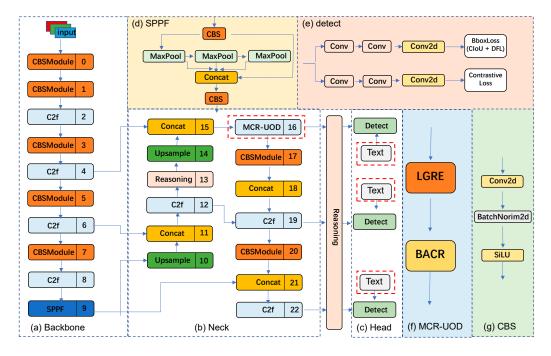


Figure 10: The network structure of YOLOv8 with MCR-UOD. The w (width) and r (ratio) are parameters used to represent the size of the feature map. The size of the model can be controlled by setting the values of w and r to meet the needs of different application scenarios.

streamlined structure composed of a backbone, neck, and detection head, offering improvements in both detection accuracy and speed over previous YOLO versions such as YOLOv5 and YOLOv7.

In our implementation, we retain the original backbone of YOLOv8 and focus on modifying the neck and detection head to incorporate our MCR-UOD strategy. As highlighted in the red box in Figure 10, we replace the last C2f module processing the low-level feature map before the head with a customized version. Specifically, the input feature C_1 is passed through two newly designed modules: LGRE and BACR. The output of this process, denoted as C_1^n , is then fed into the detection head.

Furthermore, we replace the original classification head with a contrastive head based on text embeddings, as shown in the figure. This change enables the model to perform self-prompted open-set recognition by leveraging text-based semantic information, allowing its potential generalization to unseen object categories.

D Limitations

Our method uses multimodal knowledge and causal reasoning to improve object detection on UAV imagery. Although it shows promising results, there are limitations. First, relying on CLIP for semantic guidance limits performance due to its representational capacity, particularly in low-quality or ambiguous images. In addition, prompt design is based on intuition and heuristics, limiting adaptability. Second, the integration of causal reasoning with object detection is still in the early stages. Although we use structural equation models for causal modeling, more research is needed to better link causal structures with image features, especially in complex environments.