
On Investigating the Conservative Property of
Score-Based Generative Models

Chen-Hao Chao 1 Wei-Fang Sun 1 2 Bo-Wun Cheng 1 Chun-Yi Lee 1

Abstract
Existing Score-Based Models (SBMs) can be cat-
egorized into constrained SBMs (CSBMs) or un-
constrained SBMs (USBMs) according to their pa-
rameterization approaches. CSBMs model prob-
ability density functions as Boltzmann distribu-
tions, and assign their predictions as the negative
gradients of some scalar-valued energy functions.
On the other hand, USBMs employ flexible ar-
chitectures capable of directly estimating scores
without the need to explicitly model energy func-
tions. In this paper, we demonstrate that the ar-
chitectural constraints of CSBMs may limit their
modeling ability. In addition, we show that US-
BMs’ inability to preserve the property of conser-
vativeness may lead to degraded performance in
practice. To address the above issues, we propose
Quasi-Conservative Score-Based Models (QCS-
BMs) for keeping the advantages of both CSBMs
and USBMs. Our theoretical derivations demon-
strate that the training objective of QCSBMs can
be efficiently integrated into the training processes
by leveraging the Hutchinson’s trace estimator. In
addition, our experimental results on the CIFAR-
10, CIFAR-100, ImageNet, and SVHN datasets
validate the effectiveness of QCSBMs. Finally,
we justify the advantage of QCSBMs using an
example of a one-layered autoencoder.

1. Introduction
Score-Based Models (SBMs) are parameterized functions
for estimating scores, which are vector fields corresponding
to the gradients of log probability density functions. Based
on their parameterization, SBMs can be categorized into
constrained or unconstrained SBMs (Salimans & Ho, 2021).
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Constrained SBMs (CSBMs), also known as Energy-Based
Models (EBMs), model probability density functions as
Boltzmann distributions, and assign their predictions as
the negative gradients of some scalar-valued energy func-
tions (Salimans & Ho, 2021). CSBMs are able to ensure the
conservativeness of their output vector fields. This property
is essential in guaranteeing that each updates in the sam-
pling process are determined based on the probability ratio
between two consecutive sampling steps (Salimans & Ho,
2021). This, in turn, is necessary to ensure that the sample
distribution converges to the true data distribution. Such
a concept has been explored by the researchers of (Chen
et al., 2014; Alain & Bengio, 2014; Nguyen et al., 2017;
Salimans & Ho, 2021). However, the parameterization of
CSBMs requires specific designs, limiting the choices of
model architectures for SBMs. For example, the authors of
(Vincent, 2011; Kamyshanska & Memisevic, 2013; Saremi,
2019) proposed to construct an SBM as a neural network
with symmetric weights in its linear layer, which hinders its
ability to be extended to more sophisticated architectures.
On the other hand, the authors of (Salimans & Ho, 2021;
Saremi et al., 2018; Song et al., 2019) divided an SBM into
two halves: the first half explicitly parameterizes the neg-
ative energy function, while the second half is generated
by automatic differentiation tools (Martens et al., 2012) to
output the estimated scores. Nevertheless, these methods
require that the output of the first half can only be a scalar,
and the second half has to be generated using automatic
differentiation tools.

In contrast, unconstrained SBMs (USBMs) employ flexi-
ble architectures capable of directly estimating the scores
without explicitly modeling the energy functions. Due to
their architectural flexibility, USBMs have been extensively
utilized in contemporary machine learning tasks such as im-
age generation (Song & Ermon, 2019; Ho et al., 2020; Song
& Ermon, 2020; Song et al., 2021b; Nichol & Dhariwal,
2021). Among these works, Song et al. (2021b) proposed
a unified framework based on a USBM, which achieved
superior performance on several benchmarks. Their success
demonstrated that architectural flexibility can be beneficial
for SBMs. However, in spite of the empirical benefit of em-
ploying USBMs, recent research (Karras et al., 2022) sug-
gests that the non-conservativeness of a USBM can cause
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detrimental effects on its sampling quality. In addition,
our analyses in Section 3 indicate that USBMs’ inability
to ensure conservativeness may lead to degraded sampling
performance.

To preserve both the conservativeness of CSBMs and the
architectural flexibility of USBMs, we propose Quasi-
Conservative Score-Based Models (QCSBMs). Instead of
constraining the model architecture, QCSBMs resort to en-
hancing the conservativeness of USBMs through a regular-
ization loss. Our theoretical derivations demonstrate that
such a regularization term can be integrated into the train-
ing processes of SBMs efficiently through the Hutchinson’s
trace estimator (Hutchinson, 1989). Moreover, our experi-
mental results showcase that the performance of Noise Con-
ditional Score Network++ (NCSN++) (Song et al., 2021b)
can be further improved by incorporating our regularization
method on the CIFAR-10, CIFAR-100 (Krizhevsky & Hin-
ton, 2009), ImageNet-32x32 (Van Oord et al., 2016), and
SVHN (Netzer et al., 2011) datasets.

2. Background and Related Works
In this section, we walk through the background material
and the related works for understanding the contents of this
paper. We first introduce a number of score matching meth-
ods for training an SBM. Next, we describe the sampling
algorithms for generating samples through an SBM. Lastly,
we elaborate on the conservative property of SBMs, and the
differences between CSBMs and USBMs.

2.1. Score Matching Methods

Score matching (Hyvärinen, 2005) describes the learning
process to approximate the score function ∂

∂x log p(x) using
a neural network s(· ; θ) : RD → RD, which is parame-
terized by θ and is trained through minimizing the Explicit
Score Matching (ESM) objective expressed as follows:

LESM(θ) = Ep(x)

[
1

2

∥∥∥∥s(x; θ)− ∂ log p(x)

∂x

∥∥∥∥2
]
. (1)

Eq. (1) involves explicit evaluation of the true score function
∂
∂x log p(x), which is intractable for learning tasks without
the true probability density function p(x). To address this
issue, an alternative method called Implicit Score Matching
(ISM) (Hyvärinen, 2005), which excludes ∂

∂x log p(x) in
the training objective, was introduced to train s(x; θ). ISM
employs an equivalent loss LISM expressed as follows:

LISM(θ) = Ep(x)
[

1

2
‖s(x; θ)‖2 + tr

(
∂s(x; θ)

∂x

)]
, (2)

where ∂
∂xs(x; θ) corresponds to the Jacobian matrix of

s(x; θ), and tr (·) denotes the trace of a matrix. Although

LISM avoids the evaluation of ∂
∂x log p(x), the explicit cal-

culation of tr
(
∂
∂xs(x; θ)

)
in Eq. (2) still requiresD times of

backpropagations (Song et al., 2019), which hinders LISM’s
ability of being utilized in high-dimensional context. To
alleviate it, a scalable objective, called Sliced Score Match-
ing (SSM) (Song et al., 2019) loss, was proposed to ap-
proximate tr

(
∂
∂xs(x; θ)

)
in LISM with the Hutchinson’s

trace estimator (Hutchinson, 1989). Given a vector v drawn
from a distribution pv(v) satisfying Epv(v)

[
vvT

]
= I , the

Hutchinson trace estimator replaces the trace of a square
matrix A with Epv(v)

[
vTAv

]
, which can be derived as:

tr (A) = tr (AI) = tr
(
AEpv(v)[vv

T ]
)

= Epv(v)[tr
(
AvvT

)
] = Epv(v)[v

TAv].
(3)

The above derivation suggests that tr
(
∂
∂xs(x; θ)

)
in Eq. (2)

can be substituted with Epv(v)[vT
∂
∂xs(x; θ)v], resulting in

an equivalent objective LSSM expressed as follows:

LSSM(θ) = Ep(x)pv(v)
[

1

2
‖s(x; θ)‖2 + vT

∂s(x; θ)

∂x
v

]
.

(4)
The vector-Jacobian product vT ∂

∂xs(x; θ) can be calcu-
lated with a single backward propagation using automatic
differentiation (Martens et al., 2012), and the expecta-
tion can be approximated using K independently sam-
pled vectors {v(i)}Ki=1. Therefore, the computation of
Epv(v)

[
vT ∂

∂xs(x; θ)v
]

in Eq. (4) can be less expensive
than tr

(
∂
∂xs(x; θ)

)
in Eq. (2) when K � D. The Denois-

ing Score Matching (DSM) loss is another scalable objective
formulated based on the Parzen density estimator (Vincent,
2011), which further prevents the computational overhead
incurred by the gradient operation in LSSM:

LDSM(θ) = Epσ(x̃|x)p(x)

[
1

2

∥∥∥∥s(x̃; θ)− ∂ log p(x̃|x)

∂x̃

∥∥∥∥2
]
,

(5)
where pσ(x̃|x) , 1

(2π)D/2σD
e

−1

2σ2
‖x̃−x‖2 is is an isotropic

Gaussian smoothing kernel with a standard deviation σ, and
∂
∂x̃ log p(x̃|x) = 1

σ2 (x− x̃). Since the computational cost
of LDSM is relatively low in comparison to the other score
matching losses, it has been widely adopted in contemporary
modeling methods (Song & Ermon, 2019; 2020; Song et al.,
2021b;a) that pursue training efficiency.

2.2. Sampling Process

Given an optimal SBM s(x; θ) = ∂
∂x log p(x), ∀x ∈

RD which minimizes the score-matching objectives (i.e.,
Eqs. (1), (2), (4), and (5)), Langevin dynamics (Roberts &
Tweedie, 1996; Roberts & Rosenthal, 1998) enables p(x) to
be iteratively approximated through the following equation:

xt+1 = xt + αs(x; θ) +
√

2αzt, (6)
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where α is the step size, t is the timestep, zt ∈ RD is a
noise vector sampled from a normal distribution N (0, I).
Under the condition where α → 0 and T → ∞, xT can
be generated as if it is directly sampled from p(x) (Roberts
& Rosenthal, 1998; Welling & Teh, 2011). Despite the
theoretical guarantee of Langevin dynamics, it empirically
suffers from the slow mixing issue as discussed by (Song
& Ermon, 2019), which limits its ability of being utilized
in practical data generation scenarios. To resolve this is-
sue, Song et al. (2021b) proposed to extend Eq. (6) to a
time-inhomogeneous variant by making the noise scale σ,
the score model s(· ; θ), and step size α dependent on t.
Specifically, they consider a continuous sampling process
defined using a stochastic differential equation as follows:

dx = [f(x, t)− g(t)2s(x, t; θ)]dt+ g(t)dw̄, (7)

where dt is an infinitesimal negative timestep, w̄ represents
the Wiener process, f(·, t) is the drift coefficient, and g(t)
is the diffusion coefficient. Contemporary score-based gen-
eration frameworks (Ho et al., 2020; Song et al., 2021b;a;
Nichol & Dhariwal, 2021; Xu et al., 2022) implement such
a sampling process in two different ways according to the
discretization method used. One branch of them (Ho et al.,
2020; Song et al., 2021b) follows the concept of Eq. (6) to
discretize Eq. (7) using equal-sized steps. The other branch
of them (Song et al., 2021a; Xu et al., 2022) leverages an
ordinary differential equation (ODE) solver to solve the
deterministic variant of Eq. (7) using adaptive step sizes.

2.3. Conservativeness and Rotation Density of a
Score-Based Model

A vector field is said to be conservative if it can be written
as the gradient of a scalar-valued function (Im et al., 2016).
As proved in (Im et al., 2016), the output vector field of an
SBM s(· ; θ) is said to be conservative over a smooth and
simply-connected domain S ⊆ RD if and only if its Jaco-
bian is symmetry for all x ∈ S, which can be equivalently
expressed as the zero-rotation-density condition expressed
as follows:

ROTijs(x; θ) ,
∂s(x; θ)i
∂xj

− ∂s(x; θ)j
∂xi

= 0, (8)

where 1 ≤ i, j ≤ D, ROTij is the rotation density opera-
tor (Glötzl & Richters, 2021), and ∂

∂xj
s(x; θ)i corresponds

to the gradient of the i-th element of s(x; θ) with respect to
the j-th element of x. ROTijs(x; θ) in Eq. (8) describes
the infinitesimal circulation of s(x; θ) around x.

For CSBMs, p(x) is modeled as a Boltzman distribution
p(x; θ) = exp (−E(x; θ)) /Z(θ), where exp (·) indicates
the exponential function, E(· ; θ) : RD → R represents
a scalar-valued energy function, and Z(θ) refers to the
partition function. Therefore, the output vector field of

a CSBM can be represented as s(x; θ) = ∂
∂x log p(x; θ) =

− ∂
∂xE(x; θ). This implies that s(x; θ) is conservative. In

other words, s(x; θ) satisfies the zero-rotation-density con-
dition in Eq. (8), since the mixed second derivatives of
E(x; θ) are equivalent (Alain & Bengio, 2014), which can
be shown as the following:

ROTijs(x; θ) =
∂2E(x; θ)

∂xj∂xi
− ∂2E(x; θ)

∂xi∂xj
= 0. (9)

Unlike CSBMs, USBMs aim to directly parameterize the
true score function ∂

∂x log p(x) using a vector-valued func-
tion s(· ; θ) : RD → RD. The conservativeness of USBMs
is not guaranteed, as s(· ; θ) does not necessarily correspond
to the gradients of a scalar-valued function. Although it
is possible to ensure the conservativeness of an USBM un-
der an ideal scenario that s(x; θ) perfectly minimizes the
score matching target, a trained USBM typically contains
approximation errors in practice. This suggests that USBMs
are non-conservative in most cases, and do not satisfy the
zero-rotation-density condition.

3. Motivational Examples
In this section, we demonstrate the importance of preserving
the conservativeness as well as the architectural flexibility
of SBMs. In addition, we provide the motivation behind the
adoption of QCSBMs through two experiments.

3.1. The Influences of Non-Conservativeness on
Sampling Process

The sampling processes described in Section 2.2 are for-
mulated under a premise that s(x; θ) = ∂

∂x log p(x). In
practice, however, a trained USBM contains approximation
errors, which could lead to its failure in preserving the con-
servativeness, as discussed in Section 2.3. In this example,
we inspect the impact of the non-conservativeness of US-
BMs on the sampling process by comparing the sampling
efficiency of a USBM and a CSBM under the same approxi-
mation error ε, i.e., LESM = ε. To quantitatively evaluate
the non-conservativeness of these SBMs, we measure the
magnitude of ROTijs(x; θ) using the asymmetry metric
Asym ∈ [0,∞) defined as:

Ep(x)

[
1

2

D∑
i,j=1

(
ROTijs(x; θ)

)2 ]

= Ep(x)
[

1

2

∥∥J − JT∥∥2
F

]
,

(10)

where J = ∂
∂xs(x), ‖·‖F is the Frobenius norm. Under

a regularity condition that p(x) > 0,∀x ∈ RD, Asym
equals to 0 if and only if s(· ; θ) satisfies the zero-rotation-
density condition (i.e., Proposition A.1). We also mea-
sure its normalized variant NAsym ∈ [0, 1] defined as
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Figure 1. The visualized examples of (a) the conservative sC and (b) the non-conservative sU under different choices of ε. The table on
the right-hand side reports the results measured using the Asym and NAsym metrics as well as the number of sampling steps. For a better
data visualization, the vector fields are normalized with the maximum norm of sU and sC in each plot.

Ep(x)
[∥∥J − JT∥∥2

F
/(4 ‖J‖2F )

]
and derived in Section A.4.

To evaluate the efficiency of the sampling process, we cal-
culate the number of steps required for all sample points
to move to the target during the sampling process. In this
example, the USBM and the CSBM are denoted as sU and
sC, and constructed based on Eq. (A6) presented in Ap-
pendix A.6.1.

For an illustrative purpose, we present the visualization of
the sampling processes as well as the evaluation results un-
der different choices of ε for two specific designs of sU and
sC in Figs. 1 (a) and (b), respectively. As demonstrated
in the visualized trajectories in Fig. 1 (b), the existence
of the non-conservativeness in sU incurs rotational vector
fields tangent to the true score function, leading to ineffi-
cient updates during the sampling processes. In addition, the
evaluation results in terms of Asym, NAsym, and the number
of sampling steps further reveal that sU requires more func-
tion evaluations during the sampling process than sC under
the same score-matching error ε. The above experimental
evidences thus demonstrate that the non-conservativeness
of a USBM may decelerate the sampling processes, which,
in turn, influences the final sampling performance of it.

3.2. The Impacts of Architectural Flexibility on
Modeling Ability and Sampling Performance

To ensure the conservative property of an SBM, previous
works (Saremi et al., 2018; Salimans & Ho, 2021) proposed
to construct the architecture such that its output vector field
can be described as the gradients of a scalar-valued function.
This design, however, potentially limits the modeling ability
of an SBM. In this experiment, we empirically examine the
influence of architectural flexibility on both the training and

sampling processes. For a fair evaluation, a USBM sU and
a CSBM sC are implemented as neural networks consisting
of the same number of parameters. Following the approach
described in (Salimans & Ho, 2021), these two models are
represented as follows:

sU(x, t; θU) =
1

σt
(x− f(x, t; θU)),

sC(x, t; θC) = − 1

2σt

∂ ‖x− f(x, t; θC)‖2

∂x
,

(11)

where f : RD → RD is a neural network, and θU and θC are
the parameters. The former is a USBM similar to that used
in (Song & Ermon, 2019), while the latter corresponds to
its conservative variant explored by Salimans & Ho (2021).
We then compare the conservativeness, the modeling ability,
and the sampling performance of both sU and sC, which
are trained independently on three two-dimensional datasets.
The conservativeness is measured using Asym and NAsym.
The modeling ability of an SBM is evaluated based on its
score-matching and likelihood-matching abilities, which are
quantified using the score-matching error (LESM) and the
negative log likelihood (NLL) metric, respectively. The
sampling performance is evaluated using the Precision and
Recall metrics (Kynkäänniemi et al., 2019), which measures
the distances between the true samples and the generated
samples based on k-nearest neighbor algorithm.

Table 1 reports the results of the above setting. The columns
‘Score Error’ and ‘NLL’ in Table 1 demonstrate that the
USBMs consistently deliver better modeling performance
in comparison to the CSBMs, suggesting that their architec-
tural flexibility is indeed beneficial to the training process.
On the other hand, due to the potential impact of their non-
conservativeness, USBMs are unable to consistently achieve
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Table 1. The evaluation results of CSBMs, USBMs, and QCSBMs in terms of their means and confidence intervals of three independent
runs on the ‘8-Gaussian,’ ‘Spirals,’ and ‘Checkerboard’ datasets, which are detailed in Appendix A.6.2. The arrow symbols ↑ / ↓ indicate
that higher / lower values correspond to better performance, respectively.

Dataset Model Asym (↓) NAsym (↓) Score Error (↓) NLL (↓) Precision (↑) Recall (↑)

8-Gaussian
CSBM 0.00±0.00 e-3 0.00±0.00 e-3 4.34±0.06 e-1 5.24±0.03 e+0 0.9107±0.0151 0.9057±0.0094
USBM 1.06±0.16 e-2 1.42±0.43 e-3 4.14±0.13 e-1 5.02±0.03 e+0 0.9453±0.0061 0.8969±0.0191

QCSBM 9.49±3.07 e-3 1.38±0.41 e-3 4.20±0.07 e-1 5.01±0.09 e+0 0.9558±0.0022 0.9116±0.0154

Spirals
CSBM 0.00±0.00 e-1 0.00±0.00 e-2 1.59±0.05 e+0 5.61±0.17 e+0 0.6221±0.0300 0.7725±0.0624
USBM 7.35±0.41 e-1 8.19±1.82 e-2 1.50±0.18 e+0 5.11±0.11 e+0 0.5911±0.0573 0.8230±0.0119

QCSBM 3.18±0.16 e-1 5.73±1.64 e-2 1.56±0.08 e+0 5.04±0.04 e+0 0.6489±0.0167 0.8244±0.0204

Checkerboard
CSBM 0.00±0.00 e-2 0.00±0.00 e-2 7.65±0.36 e-1 5.19±0.08 e+0 0.8990±0.0072 0.9217±0.0309
USBM 1.05±0.18 e-1 2.51±0.43 e-2 6.79±0.27 e-1 5.09±0.02 e+0 0.9209±0.0089 0.9409±0.0302

QCSBM 7.06±0.43 e-2 1.70±0.18 e-2 6.79±0.26 e-1 5.08±0.02 e+0 0.9216±0.0027 0.9496±0.0156

superior results on the precision and recall metrics, as shown
in the last two columns of Table 1. The above observations
thus indicate that the architectural flexibility of a USBM
is crucial to its score-matching and likelihood-matching
abilities. Nevertheless, its non-conservativeness may cause
negative impacts on its sampling performance.

The experimental clues in Sections 3.1 and 3.2 shed light
on two essential issues to be further explored and addressed.
First, although USBMs benefit from their architectural flex-
ibility, their non-conservativeness may lead to degraded
sampling performance. Second, despite that CSBMs are
conservative, their architectural requirement may limit their
modeling abilities in practice. Based on the above observa-
tions, this paper intends to investigate a new type of SBMs,
called Quasi-Conservative Score-based Models (QCSBMs),
which are developed to maintain both the conservativeness
as well as the architectural flexibility. As revealed in Table 1,
QCSBMs are able to achieve improved results in terms of
their conservativeness without sacrificing its modeling abil-
ity. In the next section, we elaborate on the formulation and
implementation of QCSBMs.

4. Methodology
In this section, we introduce QCSBMs and present an effi-
cient implementation of them. In Section 4.1, we describe
the learning objective of QCSBMs, and derive its scalable
variant. In Section 4.2, we detail the training procedure for
QCSBMs, and discuss our implementation of its forward
and backward propagation processes.

4.1. Quasi-Conservative Score-Based Models

Instead of following the concept of CSBMs to ensure the
conservativeness through architectural constraints, QCS-
BMs resort to penalizing the non-conservativeness through

a regularization loss. The training objective for QCSBMs is
defined as LTotal, which is expressed as follows:

LTotal(θ) = LSM(θ) + λLQC(θ), (12)

where LSM can be any one of the score-matching objectives
(i.e., Eqs. (1), (2), (4), or (5)), LQC represents the regular-
ization term reflecting the non-conservativeness, and λ is
a balancing factor. As discussed in Section 3.1, the non-
conservativeness of a USBM can be measured using the
magnitude of its rotation densities in the Frobenius norm
(i.e., Eq. (10)), suggesting a formulation of LQC as:

LQC(θ) = Ep(x)
[

1

2

∥∥J − JT∥∥2
F

]
, (13)

where J = ∂
∂xs(x; θ). This objective function, however,

requires D times of backpropagations to explicitly calcu-
late the Jacobian matrix of s(x; θ). In order to reduce the
computational cost, we first derive an equivalent objective
Ltr
QC, and then utilize the Hutchinson’s trace estimator to

approximate it. The loss Ltr
QC is derived in Appendix A.2.2,

and formulated as follows:

Ltr
QC(θ) = Ep(x)

[
tr
(
JJT

)
− tr (JJ)

]
. (14)

By applying the Hutchinson’s trace estimator to both
tr
(
JJT

)
and tr (JJ) according to Eq. (3), Ltr

QC can be
re-expressed using an unbiased objective Lest

QC, which is
defined as the following:

Lest
QC(θ) = Ep(x)

[
Epv(v)

[
vTJJTv

]
− Epv(v)

[
vTJJv

]]
.

(15)
Since Epv(v)

[
vTJJTv

]
and Epv(v)

[
vTJJv

]
can be si-

multaneously approximated, Lest
QC in Eq. (15) can be rewrit-

ten as a variant L̃est
QC defined as follows:

L̃est
QC(θ) = Ep(x)

[
Epv(v)

[
vTJJTv − vTJJv

]]
.

(16)
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(5) Deriving the secondary component of (4) Deriving the primary component of 

Forward propagation
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Auto. Diff.

Score Matching Objective
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(4)

(5)

Auto. Diff.
(1)

(2)

(3)

Figure 2. The computational graph of LTotal in QCSBMs. The ‘Auto. Diff.’ blocks represent the operation of differentiating uT s(x; θ),
where u is a constant vector with respect to x.

Algorithm 1 Training Procedure of QCSBM
Input: x, v, s(· ; θ), λ
(1) Computing vTJJTv.
vTJ ← ∂

∂x [vT s(x; θ)]

vTJJTv ←
∥∥vTJ∥∥2

(2) Computing vTJJv.
sg
[
vTJ

]
J ← ∂

∂x [sg
[
vTJ

]
s(x; θ)]

sg
[
vTJ

]
Jv ← sg

[
vTJ

]
J · v

(3) Computing LTotal(θ).
L̃est
QC(θ)← vTJJTv − sg

[
vTJ

]
Jv

LSM(θ)← Eq. (1), (2), (4), or (5)
LTotal(θ)← LSM(θ) + λL̃est

QC(θ)

(4) Deriving the primary component of ∂
∂θLTotal(θ).

Perform backpropagation through the blue arrows.

(5) Deriving the secondary component of ∂
∂θLTotal(θ).

Perform backpropagation through the red arrows.

Update θ with ∂
∂θLTotal(θ).

The implementation of Eq. (16) can be more efficient than
that of Eq. (15) as the vector-Jacobian product vTJ in
Eq. (16) can be calculated once and reused in the computa-
tion of both vTJJTv and vTJJv. We provide a detailed
description of such an approach in the following section.

4.2. The Training Procedure of QCSBMs

In this subsection, we walk through the proposed training
procedure of QCSBMs. The training procedure is detailed in
Algorithm 1, and the corresponding computational graph is
illustrated in Fig. 2. For the sake of notational simplicity, we
assume that both the batch size and the number of random
vectors K are 1 in Algorithm 1 and Fig. 2. The entire

Table 2. The NLL, Asym, and NAsym of C-NCSN++, U-NCSN++,
and QC-NCSN++ evaluated on the CIFAR-10, CIFAR-100,
ImageNet-32x32, and SVHN datasets.

CIFAR-10 ImageNet-32x32

Method NLL Asym NAsym NLL Asym NAsym

C-NCSN++ 5.91 0.00 0.00 5.10 0.00 0.00
U-NCSN++ 3.46 1.88 e8 1.90 e-3 3.96 2.05 e7 7.17 e-4

QC-NCSN++ 3.38 3.49 e7 8.41 e-4 3.83 1.13 e7 5.47 e-4

CIFAR-100 SVHN

Method NLL Asym NAsym NLL Asym NAsym

C-NCSN++ 5.34 0.00 0.00 5.00 0.00 0.00
U-NCSN++ 3.50 2.98 e8 2.25 e-3 2.15 3.06 e7 6.54 e-4

QC-NCSN++ 3.44 9.31 e7 1.44 e-3 2.01 1.69 e7 4.80 e-4

training procedure is divided into five steps, denoted as Steps
(1)∼(5), respectively. Steps (1)∼(3) describe the forward
propagation process of LTotal(θ), which is depicted by the
black arrows in Fig. 2. Steps (4) and (5) correspond to the
backpropagation processes of the two gradient components
comprising ∂

∂θLTotal(θ), which are named the primary and
secondary components, and are depicted as the blue and red
arrows in Fig. 2, respectively. The detailed formulations
for these two components and the rationale behind such a
two-step backpropagation process are further elaborated in
Appendix A.3. Please note that the symbol sg [·] used in
Algorithm 1 represents the ‘stop gradient’ operation, which
is adopted to disconnect the computational graph.

Based on the implementation described in Algorithm 1, the
computation of L̃est

QC can be more efficient than Lest
QC since it

does not require repeatedly calculating the vector-Jacobian
product vTJ during forward propagation. Moreover, unlike
LQC and Ltr

QC, L̃est
QC does not require D times of backward

propagation, which justifies its computational efficiency.

5. Experiments on Real-World Datasets
In this section, we examine the effectiveness of the pro-
posed QCSBMs on four real-world datasets: CIFAR-
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Table 3. The sampling performance and NFE of C-NCSN++, U-
NCSN++, and QC-NCSN++ with an ODE sampler. The arrow
symbols ↑ / ↓ indicate that higher / lower values correspond to
better performance, respectively.

Method NFE (↓) FID (↓) IS (↑) Prec. (↑) Rec. (↑)
CIFAR-10

C-NCSN++ 343 16.66 7.96 0.57 0.60
U-NCSN++ 170 7.48 9.24 0.61 0.62

QC-NCSN++ 124 7.21 9.25 0.61 0.62
ImageNet-32x32

C-NCSN++ 313 24.61 8.56 0.55 0.49
U-NCSN++ 148 17.09 9.80 0.55 0.55

QC-NCSN++ 115 16.62 9.85 0.56 0.55
CIFAR-100

C-NCSN++ 297 21.89 7.84 0.55 0.56
U-NCSN++ 168 8.95 10.09 0.59 0.63

QC-NCSN++ 131 8.90 10.12 0.59 0.64
SVHN

C-NCSN++ 498 24.78 2.76 0.55 0.48
U-NCSN++ 209 16.08 3.17 0.56 0.63

QC-NCSN++ 126 15.15 3.24 0.59 0.65

10, CIFAR-100 (Krizhevsky & Hinton, 2009), ImageNet-
32x32 (Van Oord et al., 2016), and SVHN (Netzer et al.,
2011) datasets. We employ the unconstrained archi-
tecture as well as the training procedure adopted by
NCSN++ (VE) (Song et al., 2021b) as our baseline, and
denote this method as ‘U-NCSN++’ in our experiments.
On the other hand, C-NCSN++ and QC-NCSN++, which
are variants of U-NCSN++ constructed based on Eq. (11)
and regularized by L̃est

QC, are compared against U-NCSN++
using the NLL, Asym, NAsym, Fréchet Inception Distance
(FID) (Heusel et al., 2017), and Inception Score (IS) (Barratt
& Sharma, 2018), Precision, and Recall metrics. The details
of the experimental setups are provided in Appendix A.6.3.

Likelihood and Conservativeness Evaluation. Table 2
reports the evaluation results of U-NCSN++, C-NCSN++,
and QC-NCSN++ in terms of NLL, Asym, and NAsym on
the four real-world datasets. The evaluation results of
C-NCSN++ is inferior to those of U-NCSN++ and QC-
NCSN++ on the NLL metric, which aligns with our obser-
vation in Section 3, suggesting that the modeling flexibility
is influential to the final performance on the NLL metric.
In addition, we observe that the evaluation results on the
NLL metric can be further improved when L̃est

QC is incor-
porated into the training process. As demonstrated in the
table, QC-NCSN++, which achieves superior performance
in terms of Asym and NAsym metrics, also has a noticeable
improvement on the NLL metric.

Sampling with an ODE Solver. In this experiment, we
examine the sampling performance of U-NCSN++, C-
NCSN++, and QC-NCSN++ based on the number of func-

Table 4. The sampling performance and NFE of C-NCSN++, U-
NCSN++, and QC-NCSN++ with the PC sampler. The arrow
symbols ↑ / ↓ indicate that higher / lower values correspond to
better performance, respectively.

Method NFE FID (↓) IS (↑) Prec. (↑) Rec. (↑)
CIFAR-10

C-NCSN++
1,000

10.97 8.58 0.61 0.58
U-NCSN++ 2.50 9.58 0.67 0.60

QC-NCSN++ 2.48 9.70 0.67 0.60
ImageNet-32x32

C-NCSN++
1,000

28.97 8.58 0.61 0.45
U-NCSN++ 19.82 9.89 0.60 0.52

QC-NCSN++ 19.62 9.94 0.61 0.52
CIFAR-100

C-NCSN++
1,000

17.59 8.38 0.60 0.54
U-NCSN++ 2.54 9.63 0.60 0.66

QC-NCSN++ 2.45 9.75 0.61 0.67
SVHN

C-NCSN++
1,000

24.71 2.66 0.61 0.46
U-NCSN++ 14.34 3.10 0.60 0.67

QC-NCSN++ 13.88 3.12 0.61 0.67

tion evaluations (NFE) and the FID/IS/Precision/Recall met-
rics. The sampler is implemented using the RK45 (Dormand
& Prince, 1980) ODE solver. Table 3 presents the evaluation
results of the above setting. It is observed that C-NCSN++
is inferior to U-NCSN++ and QC-NCSN++, suggesting that
modeling errors can be influential to the sampling perfor-
mance. On the other hand, QC-NCSN++ performs compa-
rably to U-NCSN++ in terms of the sampling performance
metrics with fewer function evaluations, indicating that QC-
NCSN++ is able to deliver a better sampling efficiency.

Sampling under a Fixed NFE. In this experiment, we
compare the sampling performance of C-NCSN++, U-
NCSN++, and QC-NCSN++ under a fixed NFE using the
Predictor-Corrector (PC) sampler (Song et al., 2021b). Dif-
ferent from the ODE sampler presented above, PC sam-
pler discretizes the sampling process described Eq. (7) with
equal-sized steps according to a predetermined value of
NFE. Table 4 presents the evaluation results of C-NCSN++,
U-NCSN++, and QC-NCSN++ when NFE is equal to 1,000.
It is observed that QC-NCSN++ demonstrates improved
performance in comparison to C-NCSN++ and U-NCSN++
in terms of the FID/IS/Precion/Recall metrics. The above
experimental results validate the benefit of minimizing the
non-conservativeness of a USBM.

The Effects of Non-Conservativeness during the Sam-
pling Process. To further investigate the influence of
non-conservativeness during the sampling process, we
measure Asym and NAsym on the t-axis, i.e., the non-
conservativeness under different timesteps. As shown in
Fig. 4 (a), QC-NCSN++ delivers lower Asym and NAsym
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Steps Steps Steps
0 2,500 5,000 7,500 10,000

2.00 e-3

4.00 e-3

0.00 e-3
0 2,500 5,000 7,500 10,000 0 2,500 5,000 7,500 10,000

0.60

1.20

0.00

0.96

1.08

0.84

Figure 3. The trends of
∥∥WRT −RWT

∥∥
F

and ‖W −R‖F during the minimization process of LQC. The ‘steps’ on the x-axes refer to
the training steps.

Figure 4. (a) The evaluation results of Asym and NAsym under dif-
ferent timestep t on the CIFAR-10 dataset. (b) Examples generated
by U-NCSN++ and QC-NCSN++ with the same random seed.

under different t in comparison to U-NCSN++. This re-
sult suggests that QC-NCSN++ can be less susceptible to
its non-conservativeness during the sampling process. In
our qualitative comparison presented in Fig. 4 (b), we ob-
serve that some examples generated using QC-NCSN++
have noticeably improved sample quality as compared to
U-NCSN++.

6. QCSBM Implemented as a One-Layered
Autoencoder

A line of research (Vincent, 2011; Kamyshanska & Memise-
vic, 2013; Im et al., 2016; Kamyshanska & Memisevic,
2015) focuses on a type of SBM constructed as a one-
layered autoencoder, in which the property of conserva-
tiveness can be systematically analyzed. Such an SBM is
represented as s(x; θ) = Rh(WTx + b) + c, where h(·)
is an activation function, b, c ∈ RD, R,W ∈ RD×H are
the weights of s(· ; θ) (i.e., θ = {R,W, b, c}), and H is the
width of the hidden-layer. As proved in (Im et al., 2016),
the output vector field of s(· ; θ) is conservative if and only
if WRT = RWT . To ensure the conservativeness of such
an SBM, a number of works (Vincent, 2011; Kamyshanska

& Memisevic, 2013; 2015) follow the concept of CSBMs
and restrict the weights of s(· ; θ) to be ‘tied,’ i.e., W = R.
An SBM with tied weights, however, is only a sufficient
condition for its conservativeness, rather than a necessary
one. This implies that there must exist some conservative
s(· ; θ) that cannot be modeled using tied weights.

Instead of enforcing an SBM’s weights to be tied (i.e.,
W = R), QCSBMs indirectly learn to satisfy the conserva-
tiveness condition (i.e., WRT = RWT ) through minimiz-
ing LQC. Fig. 3 depicts the trends of

∥∥WRT −RWT
∥∥
F

and ‖W −R‖F during the minimization process of LQC.
As the training progresses, the values of

∥∥WRT −RWT
∥∥
F

approach zero, indicating that s(· ; θ) learns to output a con-
servative vector field through minimizing LQC. In contrast,
the values of ‖W −R‖F do not decrease to zero, revealing
that minimizing LQC does not necessarily lead to W = R.
The experimental results thus suggest that QCSBMs can
learn to output conservative vector fields that cannot be
modeled by one-layered autoencoders with tied weights.
This justifies the advantage of QCSBMs over CSBMs, as
QCSBMs provide a more flexible parameterization while
still maintaining their conservativeness. In Appendix A.7.1,
we offer more examples to support this observation.

7. Conclusion
In this paper, we unveiled the underlying issues of CSBMs
and USBMs, and highlighted the importance of preserving
both of the architectural flexibility and the property of con-
servativeness through two motivational experiments. We
proposed a new category of SBMs, named QCSBMs, in
which the magnitudes of their rotation densities are min-
imized through a regularization loss for enhancing their
property of conservativeness. We showed that such a reg-
ularization loss can be reformulated as a scalable variant
based on the Hutchinson’s trace estimator, and demonstrated
that it can be efficiently incorporated into the training pro-
cedure of SBMs. Finally, we validated the effectiveness of
QCSBMs through the experimental results on the real-world
datasets, and showcased the advantage of QCSBMs over
CSBMs using the example of a one-layered autoencoder.
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A. Appendix
In this Appendix, we first provide the definitions for the symbols used in the main manuscript and the Appendix in
Section A.1. Next, we detail the backpropagation processes described in Section 4.2, and provide the derivation for (14) in
Section A.2. Then, we offer a discussion on the optimization process of QCSBMs as well as the normalized asymmetry
metric in Sections A.3 and A.4, respectively. Subsequently, in Section A.5, we describe the approach to extend a QCSBM to
its time-inhomogeneous variant, i.e., QC-NCSN++ described in Section 5 of the main manuscript. Finally, we provide the
detailed experimental configurations in Section A.6, and a number of qualitative and quantitative experimental results in
Section A.7.

A.1. List of Notations

In this section, we offer the list of notations used throughout the main manuscript and the Appendix. These notations and
their descriptions are summarized in Table A1.

Symbol Description

M the dataset size.
D the data dimension.
K the number of random vectors used in the Hutchinson’s trace estimator.
T the number of discretized timesteps for the sampling algorithm.
H the hidden dimension of the one-layered autoencoder described in Section 6.
α the step size used in Langevin dynamics.
ε the score-matching error described in Section 3.1.
σ the standard deviation of a Gaussian distribution.
θ the parameters of an SBM.
x ∈ RD a data sample.
x̃ ∈ RD a perturbed data sample.
z ∈ RD a noise vector used in Langevin dynamics.
v ∈ RD a random vector used in the Hutchinson trace estimator.
b, c ∈ RD the bias of the one-layered autoencoder described in Section 6.
W,R ∈ RD×H the weights of the one-layered autoencoder described in Section 6.
Z(θ) a partition function of a Boltzmann distribution.
E(· ; θ) : RD → R an energy model parameterized by θ.
s(· ; θ) : RD → RD a score model parameterized by θ.
∂
∂x
E(x; θ) the gradient of E(x; θ) w.r.t. x.

∂
∂x
s(x; θ) the Jacobian matrix of s(x; θ).

J the simplified notation for ∂
∂x
s(x; θ).

LESM Explicit Score Matching (ESM) loss defined in Eq. (1).
LISM Implicit Score Matching loss (ISM) loss defined in Eq. (2).
LSSM Sliced Score Matching loss (SSM) loss defined in Eq. (4).
LDSM Denoising Score Matching loss (DSM) loss defined in Eq. (5).
LTotal the total loss of QCSBMs defined in Eq. (12).
LQC the proposed regularization loss defined in Eq. (13).
Ltr

QC the equivalent variant of LQC defined in Eq. (14).
Lest

QC the approximated variant of Ltr
QC defined in Eq. (15).

L̃est
QC the variant of Lest

QC defined in Eq. (16).
uTv = u · v =

∑
i uivi inner product between two vectors u, v.

tr (A) =
∑
iAi,i trace of a matrix A.

‖u‖ =
√∑

i u
2
i Euclidean norm of a vector u.

‖A‖F =
√∑

i,j A
2
i,j Frobenius norm of a matrix A.

exp (·) an exponential function.
sg [·] a stop gradient operator.

Table A1. The list of symbols used in this paper.
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A.2. Derivations

A.2.1. CONSERVATIVENESS OF A SCORE-BASED MODEL

Proposition A.1. Given p(x) > 0,∀x ∈ RD, Asym equals to 0 if and only if ROTijs(x; θ) = 0, ∀ 1 ≤ i, j ≤ D.

Proof.

Ep(x)

[
1

2

D∑
i,j=1

(
ROTijs(x; θ)

)2 ]
= 0

⇔
∫
x∈RD

p(x)
1

2

D∑
i,j=1

(
ROTijs(x; θ)

)2
dx = 0

(1)⇔ 1

2

D∑
i,j=1

(
ROTijs(x; θ)

)2
= 0

⇔ ROTijs(x; θ) = 0, ∀ 1 ≤ i, j ≤ D,

where (1) is due to the assumption of positiveness (i.e., p(x) > 0).

A.2.2. THE DERIVATION OF Ltr
QC IN EQ. (14)

In Section 4.1, we derived the computationally efficient objective L̃est
QC based on the equality LQC = Ltr

QC. To show that the
equivalence holds, we provide a formal derivation as follows.

Proposition A.2. LQC(θ) = Ltr
QC(θ).

Proof.

LQC(θ) = Ep(x)
[

1

2

∥∥J − JT∥∥2
F

]
(1)
= Ep(x)

[
1

2
tr
(
(J − JT )T (J − JT )

)]
= Ep(x)

[
1

2
tr
(
(JT − J)(J − JT )

)]
= Ep(x)

[
1

2
tr
(
JTJ − JTJT + JJT − JJ

)]
= Ep(x)

[
1

2

(
tr
(
JTJ

)
− tr

(
JTJT

)
+ tr

(
JJT

)
− tr (JJ)

)]
(2)
= Ep(x)

[
tr
(
JJT

)
− tr (JJ)

]
= Ltr

QC(θ),

where (1) and (2) are derived based on the properties of the trace operation, i.e., ‖A‖2F = tr
(
ATA

)
and tr (AB) = tr (BA),

respectively.

A.3. A Detailed Description of the Training Process of QCSBMs

The entire training procedure is divided into five steps, denoted as Steps (1)∼(5), respectively. Steps (1)∼(3) describe the
forward propagation process of LTotal(θ), which is depicted by the black arrows in Fig. A1 (a). Steps (4) and (5) correspond
to the backpropagation processes of the two gradient components comprising ∂

∂θLTotal(θ), which are depicted in Fig. A1 (b).
In the following paragraphs, we elaborate on the details of Steps (1)∼(5).

(1) Computing vTJJTv. First, vTJ is computed by performing backpropagation of vT s(x; θ) with respect to x via
automatic differentiation, which is depicted as the upper ‘Auto. Diff.’ block in Fig. A1 (a). Then, vTJJTv is calculated by
taking the squared L2 norm on vTJ according to the relationship:

∥∥vTJ∥∥2 = vTJ(vTJ)T = vTJJTv.
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(a) Forward Propagation (Steps (1)~(3))

USBM

Score Matching Objective

Auto. Diff.
(1)

(2)

(3)

Auto. Diff.

(b) Backward Propagation (Steps (4) and (5))

USBM

Auto. Diff.

Score Matching Objective

Auto. Diff.
(4)

(5)

(ii)

(i)

(iv)

(iii)

(i)

(ii)

(iii)

(iv)

(5) Deriving the secondary component of (4) Deriving the primary component of 

Forward propagation

(2) Computing(1) Computing (3) Computing

Operation The goal of backward propagation

Figure A1. The computational graphs of LTotal in QCSBMs. The upper and lower subplots depict the forward and backward propagation
processes, respectively. The ‘Auto. Diff.’ blocks represent the operation of differentiating uT s(x; θ), where u is a constant vector with
respect to x.

(2) Computing vTJJv. sg
[
vTJ

]
s(x; θ) is first calculated by taking the inner product between sg

[
vTJ

]
and s(x; θ),

where the stop-gradient operator sg [·] is applied to vTJ to detach it from the computational graph built in Step (1). Then,
sg
[
vTJ

]
J is calculated by differentiating sg

[
vTJ

]
s(x; θ) via performing backpropagation. Stopping the gradient of vTJ

is necessary to ensure that the automatic differentiation (i.e., the lower ‘Auto. Diff.’ block in Fig. A1 (a)) excludes the
computational graph used for differentiating vTJ , allowing vTJJ to be correctly derived. Lastly, sg

[
vTJ

]
Jv is obtained

by taking the inner product of sg
[
vTJ

]
J and v.

(3) Computing LTotal(θ). Based on the results of Steps (1) and (2), L̃est
QC(θ) is computed by taking the expectation of

(vTJJTv−sg
[
vTJ

]
Jv). Meanwhile, the score matching loss LSM(θ) can be derived using any one of the Eqs. (1), (2), (4),

and (5). Finally, LTotal(θ) is calculated by adding LSM(θ) and λL̃est
QC(θ), as described in Eq. (12).

(4) Deriving the primary component of ∂
∂θLTotal(θ). Based on the computational graph built in Steps (1)∼(3), the primary

component of ∂
∂θLTotal(θ) is computed by performing backward propagation through the paths in the computational graph

highlighted by the blue arrows in Fig. A1 (b) using automatic differentiation. Note that these gradients are not equal to
∂
∂θLTotal(θ) due to the adoption of the stop-gradient operator sg [·] in Step (2). As a result, an additional secondary gradient
component, which is derived in Step (5), is included to compensate it.

(5) Deriving the secondary component of ∂
∂θLTotal(θ). The secondary component of ∂

∂θLTotal(θ) is derived by performing
backward propagation through the paths in the computational graph highlighted by the red arrows in Fig. A1 (b) using
automatic differentiation. By accumulating the gradients of the primary and the secondary components, the gradients
∂
∂θLTotal(θ) can be correctly calculated.

The Derivation of the primary and secondary components of ∂
∂θLTotal(θ). In Steps (4) and (5), we decompose

∂
∂θLTotal(θ) as the primary and secondary components, and separately derive them. To further elaborate on such a
backward propagation process, we offer a detailed description in this subsection. For the sake of notational simplicity, we
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assume that both the batch size and the number of random vectors K are 1.

According to the rule of sum and the rule of product from vector calculus, the gradient of the total loss ∂
∂θLTotal(θ) can be

decomposed as the sum of ∂
∂θLSM(θ), λ ∂

∂θv
TJJTv,−λ( ∂∂θv

TJ)Jv, and−λvTJ( ∂∂θJv), indexed as (i)∼(iv) respectively.
The derivation is shown as the following:

∂LTotal(θ)

∂θ
=
∂(LSM(θ) + λLest

QC(θ))

∂θ

=
∂LSM(θ)

∂θ
+ λ

∂Lest
QC(θ)

∂θ

=
∂LSM(θ)

∂θ
+ λ

∂(vTJJTv − vTJJv)

∂θ

=
∂LSM(θ)

∂θ
+ λ

∂vTJJTv

∂θ
− λ∂v

TJJv

∂θ

=
∂LSM(θ)

∂θ︸ ︷︷ ︸
(i)

+λ
∂vTJJTv

∂θ︸ ︷︷ ︸
(ii)

+ (−λ)vTJ
∂Jv

∂θ︸ ︷︷ ︸
(iii)

+ (−λ)
∂vTJ

∂θ
Jv︸ ︷︷ ︸

(iv)

.

We name the sum of (i)∼(iii) the primary component of ∂
∂θLTotal(θ), and the term (iv) the secondary component of

∂
∂θLTotal(θ). Such a decomposition suggests that ∂

∂θLTotal(θ) can be separately computed based on the computational
graph built in Steps (1)∼(3) as shown in the upper subplot of Fig. A1. For the primary component, the sum of (i)∼(iii) is
computed by performing backward propagation through the paths in the computational graph highlighted by the blue arrows
in the lower subplot of Fig. A1 using automatic differentiation. For the secondary component, the term (iv) is calculated
by performing backward propagation through the red arrows in the lower subplot of Fig. A1. Through these two steps,
∂
∂θLTotal(θ) can be correctly derived.

A.4. Normalized Asymmetry Metric

In this section, we elaborate on the formulation of the normalized asymmetry metric NAsym and derive a computationally
efficient implementation of it using the Hutchinson’s trace estimator.

Derivation of the NAsym Metric. As described in (Andrilli & Hecker, 2016), any matrix A can be uniquely decomposed
into a symmetric matrix Asym and a skew-symmetric matrix Askew as follows:

A = Asym +Askew =
A+AT

2
+
A−AT

2
. (A1)

Based on Eq. (A1), the Jacobian J of a USBM s(· ; θ) can be written as the sum of a symmetric matrix Jsym = (J + JT )/2
and a skew-symmetric matrix Jskew = (J − JT )/2. Under such a definition, the NAsym metric introduced in Section 3.1
can be formulated as follows:

Ep(x)

[
‖Jskew‖2F
‖J‖2F

]
= Ep(x)

[∥∥ 1
2 (J − JT )

∥∥2
F

‖J‖2F

]
= Ep(x)

[
1

4

∥∥J − JT∥∥2
F

‖J‖2F

]
. (A2)

This metric measures the ratio of the squared Frobenius norm of the skew-symmetric matrix ‖Jskew‖2F to the squared
Frobenius norm of the Jacobian matrix ‖J‖2F , and falls within the range [0, 1]. NAsym = 1 corresponds to the
condition where Jskew dominates J , implying that J is skew-symmetric. On the contrary, NAsym = 0 indicates
that J only contains the symmetric component Jsym, suggesting that J is symmetric. Since the squared Frobe-
nius norm of the skew-symmetric matrix can be written as the sum of the squared rotation densities of s(x; θ), i.e.,
‖Jskew‖2F =

∥∥(J − JT )/2
∥∥2
F

= 1
4

∑D
i,j=1( ∂

∂xj
s(x; θ)i − ∂

∂xi
s(x; θ)j)

2 = 1
4

∑D
i,j=1

(
ROTijs(x; θ)

)2
, NAsym can be

adopted to measure the non-conservativeness of s(· ; θ), as mentioned in Section 3.1.

An Efficient Implementation of NAsym. Since Eq. (A2) involves the explicit calculation of the Jacobian matrix J ,
evaluating the NAsym metric for any single instance requires D times of backward propagations. This indicates that the
evaluation cost could grow significantly when D becomes large. To reduce the evaluation cost, we utilize the Hutchinson’s
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trace estimator to approximate the NAsym metric based on the following derivation:

Ep(x)

[
1

4

∥∥J − JT∥∥2
F

‖J‖2F

]
= Ep(x)

[
1

2

tr
(
JJT

)
− tr (JJ)

tr (JJT )

]

= Ep(x)

[
1

2

Epv(v)[vTJJTv]− Epv(v)[vTJJv]

Epv(v)[vTJJTv]

]
= Ep(x)pv(v)

[
1

2

vTJJTv − vTJJv

vTJJTv

]
.

(A3)
The expectation Epv(v)[·] can be approximated using K random vectors. In addition, the terms vTJJTv and vTJJv
in Eq. (A3) can be efficiently calculated based on Steps (1) and (2) described in Section 4.2. This suggests that the
computational cost of evaluating NAsym can be significantly reduced when K � D.

A.5. Time-Inhomogeneous QCSBMs

In this section, we demonstrate how a QCSBM is converted to its time-inhomogeneous variant QC-NCSN++, which was
described in Section 5 of the main manuscript. We first explain the modifications made in the sampling process. Then, we
elaborate on the corresponding adjustments in the score-matching objective and the regularization loss.

Sampling Process. QC-NCSN++ adopts the variance exploding (VE) diffusion process identical to that employed in
NCSN++ (VE) (Song et al., 2021b), which is a time-inhomogeneous sampling algorithm. In this sampling algorithm, the
SBM and the step size are respectively represented as s(· ; θ, σt) and αt = ∂

∂tσ
2
t , where σt is a time-dependent standard

deviation. In C-NCSN++, U-NCSN++, and QC-NCSN++, σt is set to σmin(σmin/σmax)
t
T (Song et al., 2021b), where T is

the total number of timesteps in the sampling process, σmin is a constant representing a minimal noise scale, and σmax is a
constant denoting a maximal noise scale.

Training Objectives. Since the above time-inhomogeneous sampling process requires the SBM s(· ; θ, σt) to be conditioned
on a time-dependent standard deviation σt, the training objectives of s(· ; θ, σt) have to be modified accordingly. For
example, the score-matching objective LDSM used in C-NCSN++, U-NCSN++, and QC-NCSN++ is modified as follows:

EU(t)

[
λ(t)Epσt (x̃|x)p0(x)

[∥∥∥∥s(x̃; θ, σt)−
∂ log pσt(x̃|x)

∂x̃

∥∥∥∥2
]]

, (A4)

where U(t) is a uniform distribution defined on the interval [0, T ], and λ(t) is a time-dependent coefficient for balancing the
loss functions of different t. Meanwhile, the regularization term L̃est

QC used in QC-NCSN++ is adjusted according to λ(t),
which is formulated as follows:

EU(t)
[
λ(t)Epσt (x̃|x)p0(x)

[
Epv(v)

[
vTJJTv − vTJJv

]]]
, (A5)

where J = ∂
∂x̃s(x̃; θ, σt).

A.6. Experimental Setups

In this section, we elaborate on the experimental configurations and provide the detailed hyperparameter setups for the
experiments presented in Sections 3 and 5 of the main manuscript. The code implementation for the experiments is provided
in the following repository: https://github.com/chen-hao-chao/qcsbm.

A.6.1. EXPERIMENTAL SETUPS FOR SECTION 3.1

In Section 3.1, we compare the sampling efficiency of a USBM and a CSBM with an approximation error ε. These SBMs
are formulated based on the following equation:

s(x) =
∂

∂x
log p(x) +

√
2εµ(x)

‖x‖2 p(x)
u(x), (A6)

where p is the target distribution, µ is an arbitrary distribution, and u(x) ∈ RD is a vector function with its norm equal
to the norm of its input (i.e., ‖u(x)‖ = ‖x‖). To show that the SBM s(·) in Eq. (A6) satisfies LESM = ε, we provide the
following proposition.
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Proposition A.3. Given ε > 0, a target distribution p, and an arbitrary pdf µ, s defined in Eq. (A6) satisfies LESM = ε.

Proof.

LESM =

∫
x

p(x)
1

2

∥∥∥∥s(x)− ∂

∂x
log p(x)

∥∥∥∥2 dx
=

∫
x

p(x)
1

2

∥∥∥∥∥ ∂∂x log p(x) +

√
2εµ(x)

‖x‖2 p(x)
u(x)− ∂

∂x
log p(x)

∥∥∥∥∥
2

dx

=

∫
x

p(x)
1

2

∥∥∥∥∥
√

2εµ(x)

‖x‖2 p(x)
u(x)

∥∥∥∥∥
2

dx =

∫
x

p(x)
1

2

2εµ(x)

‖x‖2 p(x)
‖u(x)‖2 dx

=

∫
x

µ(x)
ε ‖u(x)‖2

‖x‖2
dx =

∫
x

µ(x)εdx = ε

In the motivational example presented in Section 3.1, we choose p = N (0;σ2I), and select µ =
1
10

∑10
i=1N ([3 cos( 2iπ

10 ), 3 sin( 2iπ
10 )]T ; I). We consider u(x) = [−x2, x1]T for sU, and u(x) = [x1, x2]T for sC, where

x = [x1, x2]T . In particular, [−x2, x1]T is a rotational vector field with each vector tangent to the true score function
∂
∂x log p(x) = −1/σ2[x1, x2]T . On the other hand, [x1, x2]T is a vector field with each vector pointing to the opposite
direction against the true score function. For an illustrative purpose, we leverage a deterministic variant of Eq. (6) (i.e.,
xt+1 = xt + αts(xt)) as our sampler to generate samples based on sU and sC, and calculate the steps required for all
samples to move to the center of p.

A.6.2. EXPERIMENTAL SETUPS FOR THE MOTIVATIONAL EXAMPLES

8-Gaussian Spirals Checkerboard

Figure A2. The visualizations of the 8-Gaussian, Spi-
rals, and Checkerboard datasets.

Datasets. The motivational experiments in Section 3.2 are per-
formed on the 8-Gaussian, Spirals, and Checkerboard datasets
as shown in Fig. A2 (a). The data points of the 8-Gaussian
dataset are sampled from eight separate Gaussian distribu-
tions centered at (cos(πw4 ), sin(πw4 )), where w ∈ {1, ..., 8}.
The data points of the Spirals dataset are sampled from
two separate curves (−π

√
w cos(π

√
w), π

√
w sin(π

√
w)) and

(π
√
w cos(π

√
w),−π

√
w sin(π

√
w)), where w ∈ [0, 1]. Lastly, the

data points of the Checkerboard dataset are sampled from (4w−2, t−
2s+ b4w − 2cmod 2), where w ∈ [0, 1], t ∈ [0, 1], s ∈ {0, 1}, b·c is a floor function, and mod is the modulo operation.

Training and Implementation Details. The network architecture of f is a three-layered multilayer perceptron (MLP) with
(64, 128, 256) neurons and Swish (Ramachandran et al., 2017) as its activation function. This model architecture is similar
to that used in the two-dimensional experiments of (Chao et al., 2022). The SBMs sU and sC are trained using the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 7.5× 10−4 and a batch size of 5, 000. The balancing factor λ is
fixed to 0.1. The maximal and minimal noise scales σmax and σmin are set to 3 and 0.1, respectively.

Evaluation Method. The asymmetry (Asym) and normalized asymmetry (NAsym) metrics are evaluated on T discretized
timesteps according to the following equations:

1

TM

T∑
t=1

M∑
m=1

tr
(
JJT

)
− tr (JJ) , (A7)

1

TM

T∑
t=1

M∑
m=1

tr
(
JJT

)
− tr (JJ)

tr (JJT )
, (A8)

where J = ∂

∂x̃
(t)
m

s(x̃
(t)
m ; θ, σt), {x̃(t)

m }Mm=1 represents a set of testing data points, and M denotes the size of the testing set.
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On the other hand, the score error is evaluated based on the following formula:

1

TM

T∑
t=1

M∑
m=1

∥∥∥∥∥s(x̃(t)
m ; θ, σt)−

∂ log pσt(x̃
(t)
m )

∂x̃
(t)
m

∥∥∥∥∥
2

, (A9)

where pσt(x̃) =
∫
pσt(x̃|x)p0(x)dx and its closed form is derived according to (Chao et al., 2022). In our implementation,

T and M are set as 10 and 5, 000, respectively.

A.6.3. EXPERIMENTAL SETUPS FOR THE EVALUATIONS ON THE REAL-WORLD DATASETS

Datasets. The experiments presented in Section 5 are performed on the CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
2009), ImageNet-32x32 (Van Oord et al., 2016), and SVHN (Netzer et al., 2011) datasets. The training and test sets of
Cifar-10 and Cifar-100 contain 50,000 and 10,000 images, respectively. The training and test sets of SVHN contain 73,257
and 26,032 images, respectively. On the other hand, the training and the test sets of ImageNet-32x32 consist of 1,281,149
and 49,999 images, respectively.

Training and Implementation Details. C-NCSN++, U-NCSN++, and QC-NCSN++ are implemented using the Pytorch
framework. C-NCSN++, U-NCSN++, and QC-NCSN++ are trained using the Adam optimizer with a learning rate of
2× 10−4. The training procedure of U-NCSN++ requires 600,000 iterations for convergence for the CIFAR-10, CIFAR-100,
and ImageNet-32x32 datasets, while it requires 300,000 iterations for convergence for the SVHN dataset. On the other
hand, the optimization of C-NCSN++ is terminated at the early stage of the training process, since we observed that the
sampling process using ODE sampler of C-NCSN++ optimized according to the aforementioned training length fails to
converge. To address this issue, in our experiments, the training iterations of C-NCSN++ are reduced to 450,000 for the
CIFAR-10 and ImageNet-32x32 datasets, 300,000 for the CIFAR-100 dataset, and 100,000 for the SVHN dataset. The
training procedure of QC-NCSN++ consists of two stages. In the first stage, QC-NCSN++ is optimized in the same manner
as U-NCSN++. In the second stage, the regularization term L̃est

QC is incorporated during the training process, which requires
additional 150,000 iterations for convergence. In the training process, the batch size b is fixed to 128 for C-NCSN++ and
U-NCSN++, while its value is adjusted according to K for QC-NCSN++ for conserving the memory consumption. We
adopt (b,K) = (8, 16) in Table 2, and (b,K) = (128, 1) in Tables 3 and 4 for QC-NCSN++, respectively. The maximal
and minimal noise scales σmax and σmin are set to 50 and 0.01, respectively. The balancing factor λ is set to 0.0001. The
ODE sampler is implemented using the scipy.integrate.solve ivp library.

Evaluation Method. The asymmetry (Asym) and normalized asymmetry (NAsym) metrics are evaluated using Eqs. (A10)
and (A11), respectively. They are formulated as follows:

1

TMK

T∑
t=1

M∑
m=1

K∑
k=1

vTk JJ
Tvk − vTk JJvk, (A10)

1

TMK

T∑
t=1

M∑
m=1

K∑
k=1

vTk JJ
Tvk − vTk JJvk
vTk JJ

Tvk
, (A11)

where J = ∂

∂x̃
(t)
m

s(x̃
(t)
m ; θ, σt), {x̃(t)

m }Mm=1 represents a set of testing data points, and {vk}Kk=1 is a set of i.i.d. samples
drawn from pv. In our implementation, T and K are set as 100 and 1, respectively. The metrics for sampling performance
(i.e., FID, IS, Precision and Recall) are evaluated using the tensorflow gan library as well as the official evaluation
package implemented by (Kynkäänniemi et al., 2019; Naeem et al., 2020).

Table A2. The confidence interval of the evaluation results on
the CIFAR-10 dataset.

NLL FID IS Precision Recall

±0.0014 ±0.0143 ±0.0065 ±0.0024 ±0.0011

Confidence Intervals of the Evaluation Results. Table A2
shows the 95% confidence intervals for the evaluation results
of QC-NCSN++ in terms of the NLL, FID, IS, Precision, and
Recall metrics on the CIFAR-10 dataset. For the evaluation
results of the FID, IS, Precision, and Recall metrics, the PC
sampler with NFE=1,000 is adopted. All of these results are obtained by three times of evaluations.
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Table A4. The time and memory consumption of evaluating the score function, the objective function, and the gradient of the objective
function of C-NCSN++, U-NCSN++, and QC-NCSN++.

Evaluating L(θ) Evaluating ∂
∂θ
L(θ) Evaluating s(x; θ)

Method Model (s(· ; θ)) Objective (L(θ)) Time Memory Time Memory Time Memory

C-NCSN++ Conservative NCSN++ LSM 0.26 s 17.2 GB 1.21 s 19.3 GB 0.25 s 17.2 GB
U-NCSN++ NCSN++ LSM 0.10 s 8.5 GB 0.30 s 8.9 GB 0.10 s 5.5 GB

QC-NCSN++ NCSN++ LTotal 0.36 s 27.6 GB 2.82 s 32.0 GB 0.10 s 5.5 GB

Table A3. A comparison between the results reported
in (Xu et al., 2022) and those reproduced by us for
U-NCSN++.

FID IS NFE

U-NCSN++ (Xu et al., 2022) 7.66 9.17 194
U-NCSN++ (Ours) 7.48 9.24 170

QC-NCSN++ (Ours) 7.21 9.25 124

Sampling performance of U-NCSN++. Table A3 compares the sam-
pling performance of the baseline method (i.e., U-NCSN++) reported
in (Xu et al., 2022) and that reproduced by us on the CIFAR-10 dataset
using an ODE sampler. It is observed that the reproduced results are
improved in terms of the FID, IS, and NFE metrics. This reinforces
our statement in Section 5, as QC-NCSN++ is able to achieve su-
perior results to both the reproduced and reported performance of
U-NCSN++.

A.7. Additional Experimental Results

In this section, we provide a number of additional experimental results. In Section A.7.1, we present additional experimental
results of QCSBMs implemented as one-layered autoencoders to support our observation presented in Section 6 of the main
manuscript. In Section A.7.2, we provide a comparison between C-NCSN++, U-NCSN++, and QC-NCSN++ in terms of
their time and memory consumption for each training and sampling iteration. In Section A.7.3, we demonstrate the impact
of the choices of λ on the performance of QC-NCSN++. Finally, in Section A.7.4, we provide additional qualitative results
on the real-world datasets.

A.7.1. QCSBMS IMPLEMENTED AS ONE-LAYERED AUTOENCODERS

In Section 6, we leveraged the example of an one-layered autoencoder s(x; θ) = Rh(WTx + b) + c to demonstrate
the advantage of QCSBMs over CSBMs. Our experimental results in Fig. 3 reveals that QCSBMs can learn to output
conservative vector fields, which cannot be captured by CSBMs with tied weights (i.e., R = W ). To further solidify
our empirical observation, we provide additional examples in Fig. A4. Fig. A4 depicts the trends of

∥∥WRT −RWT
∥∥
F

and ‖W −R‖F during the minimization process of LQC with four different seeds. As the training progresses, LQC

and
∥∥WRT −RWT

∥∥
F

both approach to zero in all of these four examples. In contrast, the values of ‖W −R‖F do
not approach to zero, and the trends of ‖W −R‖F for these four examples differ. The above experimental evidences
demonstrate that QCSBMs can learn to output conservative vector fields with R 6= W , and thus justify the advantage of
QCSBMs over CSBMs.

A.7.2. A COMPARISON ON THE TIME AND MEMORY CONSUMPTION

In this section, we investigate the time and memory consumption of evaluating the score function, the objective function,
and the gradient of the objective function of C-NCSN++, U-NCSN++, and QC-NCSN++. The gradient operations with
respect to both of the input x and the parameters θ are implemented using the automatic differentiation tool (Griewank &
Walther, 2000) provided in the Pytorch library (Paszke et al., 2019). The results are evaluated on a single NVIDIA V100
GPU with 32 GB memory, and the batch size is fixed at 32. Table A4 reports the evaluation results of the above setting. It is
observed that the training time and memory requirements of C-NCSN++ and QC-NCSN++ are higher than U-NCSN++
as the calculation of the objective L(θ) and its gradients ∂

∂θL(θ) requires additional backward propagation. On the other
hand, the sampling time and memory requirements of U-NCSN++ and QC-NCSN++ are lower than C-NCSN++, since the
gradient operation in evaluating s(· ; θ) of C-NCSN++ is prevented.
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A.7.3. THE IMPACT OF THE CHOICES OF λ ON THE PERFORMANCE OF QC-NCSN++

Table A5. The evaluation results of QC-NCSN++ with differ-
ent choices of λ on the CIFAR-10 dataset.

λ 0.001 0.0005 0.0001 0.00005 0.0

Asym 9.99 e6 2.38 e7 5.03 e7 6.42 e7 1.88 e8

FID 2.75 2.53 2.48 2.48 2.50
IS 9.58 9.64 9.70 9.61 9.58

Based on our preliminary results on the toy environment, we
perform a hyperparameter sweep for λ ={1e-3, 5e-4, 1e-4, 5e-
5}, and report the best results on the real-world experiments.
Table A5 presents the evaluation results of FID and IS under
different choices of λ. In this experiment, the PC sampler is
adopted and NFE is fixed at 1,000. The experimental results
presented on the rows ‘FID’ and ‘IS’ demonstrate that QC-
NCSN++ achieves its best sampling performance when λ is selected as 0.0001. Based on this finding, we choose λ to equal
to 0.0001 throughout the experiments in Section 5.

A.7.4. VISUALIZED EXAMPLES

Fig. A3 depict a few uncurated visualized examples that qualitatively demonstrate the sampling quality of QC-NCSN++ on
the real-world datasets.

Figure A3. A number of visualized examples generated using QC-NCSN++.
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Figure A4. The trends of
∥∥WRT −RWT

∥∥
F

and ‖W −R‖F during the minimization process of LQC. The ‘steps’ on the x-axes refer
to the training steps.
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