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Abstract

Text and vision foundation models can per-001
form many tasks in a zero-shot setting, a de-002
sirable property that enables these systems to003
be applied in general and low-resource settings.004
There has been far less work, however, on the005
zero-shot abilities of ASR foundation models,006
with these systems typically fine-tuned to spe-007
cific tasks or constrained to applications that008
match their training criterion and data anno-009
tation. In this work we investigate the ability010
of Whisper and MMS, ASR foundation mod-011
els trained primarily for speech recognition, to012
perform zero-shot audio classification. We use013
simple template-based text prompts at the de-014
coder and use the resulting decoding probabili-015
ties to generate zero-shot predictions. Without016
training the model on extra data or adding any017
new parameters, we demonstrate that Whisper018
shows promising zero-shot classification per-019
formance on a range of 8 audio-classification020
datasets, outperforming the accuracy of exist-021
ing state-of-the-art zero-shot baselines by an022
average of 9%. One important step to unlock023
the emergent ability is debiasing, where a sim-024
ple unsupervised reweighting method of the025
class probabilities yields consistent significant026
performance gains. We further show that per-027
formance increases with model size, implying028
that as ASR foundation models scale up, they029
may exhibit improved zero-shot performance.030

1 Introduction031

The evolution of large-scale pre-trained foundation032

models has reshaped the way various complex tasks033

are approached. Large language models (LLMs)034

have been trained over massive text corpora (Rad-035

ford et al., 2019; Brown et al., 2020; Chung et al.,036

2022; Touvron et al., 2023) and can be used out of037

the box for diverse NLP tasks. Similarly, vision-to-038

text models, such as those trained to predict image039

captions, have facilitated zero-shot transferability040

for image classification (Li et al., 2017; Radford041
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This a sound
of class_label.

The speaker is
feeling class_label.

This is an audio
of class_label music.

In the audio, class_label 
people are speaking.

 angry / happy / sad / ...

 blues / jazz / pop / ...

 0 / 1 / 2 / 3 / 4 / 5 / ...

 siren / wind / dog / ...

 home / tram / office / ...

 cough / sniff / laugh / ...

Figure 1: This paper looks at zero-shot prompting of
ASR foundation models for audio classification, without
any further training or introducing any new parameters.
We use task-specific prompts and evaluate on various
downstream tasks and datasets.

et al., 2021). A fascinating property of these sys- 042

tems is their emergent abilities, where the systems 043

can be applied effectively to a wide range of tasks 044

that were not seen during training (Bang et al., 045

2023). This shift removes the need for task-specific 046

approaches or further fine-tuning. 047

Despite the progress in text and vision models, 048

there has been limited work done to investigate 049

the general zero-shot ability of speech-based mod- 050

els. Peng et al. (2023) recently demonstrated that 051

Whisper can be prompted for zero-shot task gen- 052

eralization, however their focus is on three forms 053

of speech recognition tasks, and therefore remains 054

close to the original pre-training task domain. Fur- 055

ther, Elizalde et al. (2023) use contrastive pre- 056

training to match representations from audio and 057

text encoders, which can then be used to classify au- 058

dio samples. The Contrastive Language-Audio Pre- 059

training (CLAP) approach, however, was trained 060

in a fashion that matched its downstream evalua- 061

tion tasks, and the further the task domain diverged 062

from the training domain, the worse the task trans- 063

ferability. 064

This work investigates the abilities of Automatic 065

Speech Recognition (ASR) systems when applied 066
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to tasks that they were not explicitly trained on067

during training. It focuses on task transferability068

and examines whether speech foundation models069

such as Whisper (Radford et al., 2023) and MMS070

(Pratap et al., 2023) demonstrate any zero-shot task071

transferability, with a particular focus on zero-shot072

audio classification. We demonstrate that without073

updating or adding any parameters, Whisper can074

be prompted to achieve state-of-the-art zero-shot075

performance for downstream audio classification076

tasks. 8 data sets from 6 downstream tasks are077

used for evaluation (Figure 1) and we show that078

Whisper performs significantly better than random,079

and on average 9.2% higher than the CLAP base-080

line (Elizalde et al., 2023). Further, our work high-081

lights the importance of task calibration for unlock-082

ing the zero-shot capabilities, where unsupervised083

reweighting of the probabilities yields performance084

improvements of up to 25%. We perform abla-085

tions on prompts, model family and model size to086

analyze the observed phenomenon and test the gen-087

eralizability of our proposed zero-shot prompting088

methodology. Further, we provide a preliminary089

investigation of Whisper on audio question answer-090

ing and demonstrate that Whisper can be prompted091

to answer questions on input audio in a zero-shot092

fashion, with performance significantly better than093

random.094

2 Related Work095

Emergent Abilities of LLMs Wei et al. (2022)096

demonstrate that LLMs gain emergent abilities097

where certain task abilities emerge sharply at cer-098

tain model sizes, however, Schaeffer et al. (2023)099

present a contrasting perspective and question100

whether these observations are caused by the choice101

of evaluation metric. Nonetheless, it has been102

demonstrated that if scaled sufficiently, LLMs can103

gain impressive abilities that the model was never104

explicitly trained for. Examples include in-context105

few-shot learning ability (Brown et al., 2020), zero-106

shot task transfer (Radford et al., 2019), and zero-107

shot reasoning abilities (Kojima et al., 2022). In108

this work we refer to emergence as when a model109

acquires an ability that the model wasn’t explicitly110

trained to achieve, and consider similar emergent111

zero-shot task transfer of audio models.112

Prompting LLMs Early forms of prompting em-113

ployed simple keyword-based inputs or fill-in-the-114

blank style prompts (Schick and Schütze, 2021;115

Gao et al., 2021), where impressive few-shot perfor-116

mance was observed by framing new tasks within 117

the format of the pre-training task. For generative 118

transformers, prompting was extended by using 119

natural language prompts to differentiate between 120

tasks (Radford et al., 2019; Sanh et al., 2022) or for 121

providing few-shot examples (Brown et al., 2020). 122

Further developments in the field introduced ad- 123

ditional training stages, such as instruction-tuning 124

(Ouyang et al., 2022) and supervised fine-tuning 125

(Chung et al., 2022), to enhance model alignment 126

and enable better instruction-following abilities of 127

models for zero-shot task completion. 128

Debiasing Zero-Shot Decisions GPT-3 classifica- 129

tion decisions were shown to be sensitive to factors 130

such as the ordering of examples and choice of 131

label words. Zhao et al. (2021) demonstrated that 132

a context-dependent ‘null input’ could be used to 133

debias decisions, which yields substantial perfor- 134

mance gains. Similarly, Liusie et al. (2023) demon- 135

strated that one can apply prior-matching to yield 136

globally all-calibrated predictions which improves 137

zero-shot classification robustness. Debiasing can 138

also be done through prompt design; Guo et al. 139

(2022) search for cloze-style prompts that have 140

stereotypical biases, and fine-tune the models to 141

minimize disagreement. 142

Adapting ASR Foundation Models ASR Foun- 143

dation models have been adapted to downstream 144

tasks through fine-tuning, such as for disfluency 145

removal and spoken grammatical error correction 146

(Bannò et al., 2023), or as an E2E spoken language 147

understanding system (Wang et al., 2023a). Fur- 148

ther, Gong et al. (2023) freeze Whisper and train a 149

lightweight audio tagging model, and demonstrate 150

good performance for downstream audio classifica- 151

tion tasks. Wang et al. (2023b) shows that test-time 152

adaptation of Whisper for Chinese dialect ASR can 153

be achieved with speech-based in-context learning. 154

Lastly, Elizalde et al. (2023) use contrastive pre- 155

training to match representations from audio and 156

text encoders, and fine-tune the representations for 157

downstream audio classification tasks. 158

3 Zero-Shot Classification of ASR 159

Foundation Models 160

This paper investigates the emergent zero-shot au- 161

dio classification abilities of large-scale ASR foun- 162

dation models. These systems are trained specifi- 163

cally for speech recognition and were not explicitly 164

trained for any of the downstream classification 165

tasks considered in this paper. We question whether 166
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Figure 2: ASR foundation models are leveraged for zero-shot audio classification by prompting the decoder to
calculate the log-likelihood of label sequences associated with each class. The log-likelihood for each class is
converted to probabilities and post-processed to a predicted class. This process is displayed for Whisper.

one can use prompting to leverage the implicit167

knowledge learned from pre-training to achieve168

various audio classification tasks.169

3.1 Zero-shot Prompting170

In this work, we use a simple template filling171

prompting strategy, where given an input audio172

sample, we assess the probability of decoding a173

label sequence associated with each classification174

class (as shown in Figure 2). We leverage various175

‘prompts’ by considering different templates to rep-176

resent the label sequences (as shown in Figure 1).177

To convert likelihoods to class probabilities, we178

treat the ASR system as a generative classifier:179

Let Pθ(x|s) represent the likelihood associated180

with ASR decoding the word sequence x∈X given181

an input audio s. Let y ∈ {ω1, ω2, ...ωK} be one182

of K possible output classes, and t(ωk)∈X rep-183

resent a particular mapping of a class to a word184

sequence representing the class. We assume that185

the zero-shot ASR classification probability P̃θ for186

a particular class is proportional to the likelihood187

of generating each respective class label sequence188

given the input audio:189

P̃θ(y = ωk|s) =
Pθ(t(ωk)|s)∑
ωj

Pθ(t(ωj)|s)
(1)190

The model’s prediction is then the class with the191

highest associated probability:192

ŷ = argmax
ω

P̃θ(ω|s) (2)193

3.2 Task Calibration194

A concern with the zero-shot prompting approach195

described above is the potential presence of im-196

plicit biases. Previous works have demonstrated197

that zero-shot generative classifiers may have asso-198

ciated biases that can degrade performance (Zhao199

et al., 2021; Liusie et al., 2023). For example,200

the model may favour words that are common in201

pre-training, which may lead to predictions being 202

skewed towards particular classes. 203

To account for misaligned model probabilities, 204

approaches exist to modify model outputs to be bet- 205

ter aligned of which the most prominent example 206

is model calibration. The objective of model cali- 207

bration is for the top-1 confidences to better reflect 208

the expected accuracy of decisions: 209

1

N

N∑
i=1

Pθ(ŷ
(i)|s(i)) = 1

N

N∑
i=1

δ(ŷ(i)=y(i)) (3) 210

where y(i) is the reference classification label for 211

audio s(i). Model calibration (sometimes referred 212

to as top-label calibration) is typically performed 213

in a post-hoc fashion (Barlow and Brunk, 1972; 214

Platt, 1999; Guo et al., 2017), where it is often 215

assumed that the ordering of the classes is valid 216

and so a monotonic function can be applied to scale 217

probabilities, without altering the ordering. Since 218

these standard model calibration approaches do 219

not change the output prediction order, however, 220

they will be ineffective in cases where the model 221

demonstrates systematic class biases, as the system 222

will remain biased towards particular classes. 223

To address this concern, a different calibration 224

approach is required that can change the ordering 225

of decisions and the top-1 decision. We refer to 226

such an approach as task calibration, since such 227

calibration may be most necessary when there is 228

a mismatch between the training and downstream 229

task. For task calibration, the system should be 230

altered to provide global all-label calibrated deci- 231

sions, such that for each class, the system confi- 232

dence accurately represents the expected accuracy. 233

1

N

N∑
i=1

Pθ(ωk|s(i))=
1

N

N∑
i=1

δ(y(i)=ωk) ∀ωk (4) 234

Note that all-label global calibration is not a suf- 235

ficient condition, and may have limitations. To il- 236

lustrate this, if the labels have a uniform true prior, 237
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the only valid solution with temperature anneal-238

ing is the trivial solution of infinite temperature239

which yields random performance. Therefore one240

has to select approaches that sensibly debias the241

model, and in this work, two particular forms of242

task calibration are considered.243

3.2.1 Prior Matching244

The first task calibration method we consider ap-245

plies global all-label calibration. Following Liusie246

et al. (2023), one can reweight the outputs of the247

classifier by introducing weights α1:K to rescale248

the probabilities.249

P̂θ(ωk|s, α1:K) =
αkP̃θ(ωk|s)∑
j αjP̃θ(ωj |s)

(5)250

Assuming that unsupervised data is available for a251

particular task (or if all the evaluation is available252

as an unsupervised set), the output probabilities253

can be reweighted to ensure that the corresponding254

output prior matches the expected true prior, done255

by finding the weights ᾱ1:K that ensure such a256

prior,257

P̂θ(ωk|α1:K) = Es{P̂θ(ωk|α1:K) } (6)258

259
ᾱ1:K = argmin

α1:K

∑
∀ω

|P̂θ(ω|α1:K)− P (ω)| (7)260

Where P (ω) is the true prior for the considered261

task. In cases where the underlying class distribu-262

tion is not known, the prior can be assumed to be263

uniform, P (ω)= 1
K , which is the assumption made264

throughout this paper. The solution has a single265

free variable, but by constraining α1=1 one can266

find an exact solution that perfectly matches the267

prior, a search which can be done efficiently. Note268

that such a solution (equation 7) satisfies global all-269

label calibration (equation 4), but not necessarily270

top-1 model-calibration (equation 6).271

3.2.2 Null-Input Calibration272

The previous method requires unsupervised data,273

which in some settings can be a drawback. Zhao274

et al. (2021) proposed a data-free method which275

uses a null-input, ϕ, to estimate the weights, which276

Liusie et al. (2023) demonstrate is an approxima-277

tion of prior-matching,278

ᾱk ≈ 1

Es{Pθ(ωk|s)}
≈ 1

Pθ(ωk|ϕ)
(8)279

i.e. the null input is used as the audio input s, and280

with prompting one can get an output probability281

distribution. This may be indicative of bias since 282

the null-input should yield a uniform pmf output, 283

and this is used to correct all downstream decisions. 284

For LLMs, the null-input ϕ is designed to be an 285

input with no information, e.g. an empty string 286

or the input ‘N/A’. For our work, using text-based 287

null-inputs is not applicable. Therefore, for speech 288

recognition models, we propose using two differ- 289

ent forms of null-inputs: using a sequence of all 290

zero vectors as the input of the encoder, or using 291

acoustic features generated from synthetic Gaus- 292

sian white noise with σ = 1. 293

4 Experimental Set Up 294

4.1 Models 295

Two ASR foundation models are considered: Whis- 296

per (Radford et al., 2023) and the Massively Multi- 297

lingual Speech (MMS) model (Pratap et al., 2023). 298

Whisper (Radford et al., 2023) is an encoder- 299

decoder transformer model trained on 680K hours 300

of labelled speech data obtained through large- 301

scale weak supervision. Whisper checkpoints 302

come in varying sizes, ranging from 39M parame- 303

ters (Whisper tiny) to 1.55B parameters (Whisper 304

large), available either as English-only or multilin- 305

gual models. The largest model is only available in 306

the multilingual version. Whisper is trained for au- 307

tomatic speech recognition and voice activity detec- 308

tion, with the multilingual models further trained 309

for speech translation and language identification. 310

MMS (Pratap et al., 2023) is a CTC model which 311

has a decoder that is a simple linear layer map- 312

ping to a set of characters. The model has 1B 313

parameters and is first pre-trained on 491K hours 314

of unlabelled data using self-supervised training. 315

For multilingual speech recognition, the model is 316

further trained on 45K hours of labelled data span- 317

ning 1,107 languages, data collected by aligning 318

New Testament audios and texts. 319

4.2 Datasets 320

We assess our systems across 8 diverse audio clas- 321

sification datasets, encompassing 6 distinct tasks. 322

Sound Event Classification (SEC) comprises of 323

ESC50 (50 environmental sounds) and Urban- 324

Sound8K (10 urban sounds). Acoustic Scene 325

Classification (ASC) uses TUT2017, featuring 15 326

acoustic scenes spanning both outdoor and indoor 327

environments. Vocal Sound Classification (VSC) 328

uses Vocal Sound with 6 distinct human vocal 329
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sound categories. Emotion Recognition (ER) com-330

prises of RAVDESS and CREMA-D, each contain-331

ing speakers expressing 8 and 6 different emotions,332

respectively. Music Genre Classification (MGC)333

uses GTZAN, containing music classified into 10334

genres. Additionally, Speaker Counting (SC) uses335

LibriCount, featuring audio clips with varying336

speaker counts from 0 to 10. Complete dataset337

statistics are outlined in Table 1.338

Task Dataset Utts Avg. Dur. K

SEC ESC50 2,000 5.0 50
UrbanSound8K 8,732 3.6 10

ASC TUT2017 1,620 10.0 15

VSC Vocal Sound 3,594 5.0 6

ER RAVDESS 1,440 3.7 8
CREMA-D 7,442 5.0 6

MGC GTZAN 1,000 30.0 10

SC LibriCount 5,720 5.0 11

Table 1: Test set statistics, displaying the total number
of test utterances, the average duration of each audio
sample (in seconds), and the number of classes K.

4.3 Method339

Task Prompt

ER The speaker is feeling class_label.
MGC This is an audio of class_label music.
SC In the audio, class_label people are speaking.
others This is a sound of class_label.

Table 2: Manually designed prompts used for each task.
The bottom prompt is used for SEC, ASC and VSC.

The default prompts used for the different tasks340

are shown in Table 2, which were adapted from341

the prompts of Elizalde et al. (2023). We calculate342

class probabilities using our three methods; the343

base ‘uncalibrated’ probabilities, prior matching,344

and the null-input strategy (both zero-inputs and345

Gaussian white noise).1 For the Gaussian white346

noise null-input, the σ = 1 and the synthetic clips347

are generated to have the same average duration as348

the task’s clips.349

4.4 Baselines350

We compare our performance against AudioCLIP351

(Guzhov et al., 2022) and CLAP (Elizalde et al.,352

2023). CLIP (Radford et al., 2021) is a multimodal353

system that generates representations for images354

1link to code will be available after the anonymity period.

and text, which AudioCLIP extends to also incor- 355

porate the audio modality. They introduce an audio 356

head and perform contrastive learning on AudioSet 357

(a sound event classification dataset) to align the 358

audio embeddings with the other modalities. CLAP 359

adopts a similar approach and aligns a pre-trained 360

text encoder with a pre-trained audio encoder using 361

contrastive learning. The model is trained using 362

a sound event classification dataset and three au- 363

dio captioning datasets. In CLAP, the text encoder 364

uses target sequences written as natural language 365

sentences rather than single-class words. 366

4.5 Supervised Baseline 367

To consider the performance gap between zero-shot 368

Whisper and supervised approaches, we further 369

consider fine-tuning Whisper on training data to 370

obtain an upper bound of supervised model perfor- 371

mance. This is done on TUT and Vocal, which have 372

available training data sets. We perform supervised 373

training with parameter efficient fine-tuning ap- 374

proaches; LoRA (Hu et al., 2021) and soft prompt 375

tuning (SPT) (Lester et al., 2021; Ma et al., 2023). 376

During training, the audio clip is provided to the 377

model encoder and the model decoder is trained to 378

generate the corresponding class label. 379

We note here that unsurprisingly, the zero-shot 380

performance was considerably worse than the su- 381

pervised fine-tuning results. Therefore, although 382

the results section will demonstrate that Whisper 383

can show impressive zero-shot task transfer to un- 384

seen audio classification tasks, in settings where 385

labelled data is available, fine-tuning will yield bet- 386

ter performance. More details on the supervised 387

training details and experimental results can be 388

found in Appendix E. 389

4.6 Evaluation 390

The focus of this work is on zero-shot classification 391

performance and therefore the top-1 accuracy of 392

the test data is used as the main performance metric 393

for all systems. For Whisper and MMS, the test 394

utterances are down-sampled to 16kHz to match 395

the pre-training procedure. CLAP uses a higher 396

sampling rate of 44.1kHz in the audio encoder, 397

which is more computationally expensive. 398

5 Results 399

5.1 Audio Classification Performance 400

Table 3 shows the audio classification results for 401

3 Whisper systems and 1 MMS system for our 402
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Model ESC50 US8K TUT Vocal RAVDESS CREMA-D GTZAN LibriCount Avg.

Baselines (§4.4)
Random 2.0 10.0 6.7 16.7 12.5 16.7 10.0 9.1 10.4
AudioCLIP 69.4 65.3 - - - - - - -
CLAP 82.6 73.2 29.6 49.4 16.0 17.8 25.2 17.9 39.0

Uncalibrated (§3.1)
MMS large (1B) 1.7 9.6 4.9 14.2 13.5 17.2 8.3 8.4 9.7
Whisper medium.en (769M) 27.9 39.5 7.2 59.0 15.3 20.9 15.2 8.2 24.2
Whisper medium (769M) 29.7 45.8 7.5 44.6 16.7 19.9 28.4 9.4 25.2
Whisper large-v2 (1.6B) 38.9 50.5 7.7 60.1 15.1 20.2 38.2 9.2 30.0

Prior-matched (§3.2.1)
MMS large (1B) 2.4 10.9 7.6 11.5 12.2 17.2 10.5 11.5 10.5
Whisper medium.en (769M) 56.2 60.9 18.3 82.8 29.0 22.6 29.7 9.8 38.7
Whisper medium (769M) 57.5 61.6 25.2 82.4 35.0 25.9 48.6 16.3 44.1
Whisper large-v2 (1.6B) 65.4 60.4 26.0 84.9 41.7 28.8 60.9 17.3 48.2

Table 3: Baseline and zero-shot task performance using the default prompts (of Table 2).

8 datasets, with comparisons to random perfor-403

mance and relevant baselines. We display our404

zero-shot prompted performance when using ei-405

ther base output ASR likelihoods (§3.1) and when406

post-processing the outputs using prior-matching407

(§3.2.1). We observe the following points:408

1) Whisper performs zero-shot audio classifica-409

tion better than random. Using simple template410

prompts and output likelihoods, Whisper large-v2411

achieves an average zero-shot accuracy of 30%,412

considerably better than the average random perfor-413

mance. Further, increasing parameter size yields a414

performance boost (769M to 1.6B parameters) and415

the multilingual Whisper performs better than the416

English-only model for the medium size.417

2) MMS fails for zero-shot audio classification.418

This could be explained as MMS is trained with419

the CTC loss, and the model may learn to map the420

acoustic features of each frame to characters inde-421

pendently. For Whisper, the attention mechanism422

allows it to attend over the entire input sequence to423

capture high-level audio information.424

3) Prior Matching yields large performance im-425

provements. By reweighting the output probabili-426

ties in an unsupervised fashion (i.e. without using427

the test labels), large performance boosts are ob-428

served for all Whisper systems. Whisper can now429

demonstrate reasonable performance for all 8 tasks,430

and reducing the inherent class bias leads to an431

improvement of average accuracy to 48.2%.432

4) Zero-Shot Whisper outperforms baselines,433

demonstrating our approach is a powerful zero-434

shot audio classification method. Note that CLAP435

is tuned on sound event classification and audio436

captioning datasets, and has therefore been trained437

to be aligned with tasks such as ESC50 and US8K.438

Nonetheless, even including performance on these439

tasks, our approach outperforms CLAP by an av- 440

erage of 9.2%, and has consistent and substantial 441

performance improvements for most out-of-domain 442

tasks. 443

5.2 Robustness to Prompts 444

Table 4 displays RAVDESS performance for dif- 445

ferent prompts, with Whisper large-v2 and prior- 446

matching. The first prompt is the default prompt 447

used for the main experiments, prompts 2-4 contain 448

only the class label, and prompts 5-9 were gener- 449

ated by asking ChatGPT to paraphrase2 prompt 1. 450

The results show that, though zero-shot prompting 451

can work for various prompts, there is considerable 452

prompt sensitivity. Interestingly, although prompts 453

2-4 are closest to the pre-training task of ASR de- 454

coding, we observe that, on average, the natural 455

language prompts demonstrate considerably better 456

performance, implying that the zero-shot ability 457

can be attributed to more than ASR task transfer. 458

Further, ensembling all 9 prompts leads to the best 459

performance of 44.0, a performance boost which 460

was also observed for other tasks, as displayed in 461

Table 5. Complete results for varying prompts for 462

all datasets can be found in Appendix D. 463

5.3 Null-input Performance 464

Prior matching requires a set of unlabelled test 465

data, and is not applicable when a single/few sam- 466

ples have to be classified. In such settings, the 467

null-input approximation (§3.2.2) can be used as a 468

zero-resource debiasing approach, which can use 469

either all-zeros in the encoder input or Gaussian 470

noise. Table 6 demonstrates that, compared to 471

2using the prompt: “Please paraphrase the given prompt
five times with simple language:"
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Prompt Acc

The speaker is feeling class_label. 41.7

class_label 20.7
(class_label) 33.1
[class_label] 32.6

The person talking feels class_label. 38.5
The speaker is experiencing class_label emotions. 20.8
The person speaking is in a class_label mood. 29.9
The speaker’s emotion is class_label. 33.6
The person talking is filled with class_label feelings. 39.7

Ensemble of Prompts 44.0

Table 4: Performance of Whisper large-v2 with different
prompts on RAVDESS (using prior-matched outputs).

Dataset Default Ensemble

ESC50 65.4 67.1
US8K 60.4 67.6
TUT 26.0 25.2
Vocal 84.9 87.3
RAVDESS 41.7 44.0
CREMA-D 28.8 33.1
GTZAN 60.9 60.0
LibriCount 17.3 22.0

Average 48.2 50.8

Table 5: Performance of the default prompt and the
ensemble of 9 prompts on audio classification tasks.

the uncalibrated baseline results, null-input debias-472

ing improves model performance by an average of473

6.7% and 4.8% over all models and tasks for the 2474

methods respectively. These results show that the475

null-input method can provide a performance boost476

via data-free calibration, however, there is still a477

considerable gap with prior-matching performance.478

More detailed results can be found in Appendix A.479

Method medium.en medium large-v2

Uncalibrated 24.2 25.2 30.0

Zero Input 29.8 34.8 34.9
Gaussian Noise 28.5 29.5 35.8

Table 6: Average accuracy of 8 audio classification tasks
with null-input calibration.

5.4 Analysis of Predicted Distribution480

To analyze the performance boost observed from481

debiasing, Figure 3 illustrates the output class distri-482

butions on RAVDESS for the various methods. We483

observe that the uncalibrated outputs are strongly484

dominated by the ‘sad’ class. Using the null-input485

method (where we select to use the zero-input ap-486

proach) still yields relatively imbalanced decisions.487

However, we observe that prior-matching (by de- 488

sign) leads to a more balanced distribution of pre- 489

dictions. Equivalent plots are shown for different 490

datasets in Appendix C. 491

Figure 3: Predicted class distribution for Whisper large-
v2 on RAVDESS. Bar width is proportional to the frac-
tion of decisions per class.

5.5 Ability with Scale 492

Figure 4 illustrates the improvement of average 493

ability over all tasks as the model size increases. 494

We observe a continuous improvement in perfor- 495

mance as the model size increases, and secondly 496

beyond 500M parameters the multilingual models 497

achieve much better performance than the English- 498

only models (when comparing models of similar 499

size). This may be due to the increased training 500

data, as well as the multi-task pre-training criterion 501

(which includes speech translation and language 502

identification as well). 503

102 103

Number of Parameters (millions)

10

15

20

25

30

35

40

45

50

Av
er

ag
e 

Ac
cu

ra
cy

Random
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Figure 4: Parameter size vs average accuracy (with prior-
matching) for different versions of Whisper models.

5.6 Audio Question Answering 504

The previous experiments demonstrated that Whis- 505

per can be zero-shot prompted to perform a multi- 506

tude of audio classification tasks with reasonable 507

performance. Here, we provide an initial inves- 508
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tigation into the ability of Whisper for the more509

challenging task of audio question answering.510

Clotho-AQA (Lipping et al., 2022) is a dataset of511

audio clips selected from the Clotho dataset, with512

corresponding questions and answers collected513

through crowd-sourcing. Our experiments focus on514

the yes-no questions of Clotho-AQA, where each515

question is a yes-no question corresponding to an516

input audio sample, with three independent ‘yes’517

or ‘no’ annotations. We consider both the ‘ma-518

jority’ set, where the label is assigned as the most519

select options, and ‘unanimous’ set, where the ques-520

tions are filtered to those where all three annotators521

agree. The processed test sets contain 1,892 and522

1,109 questions for the two parts respectively, with523

a slight class imbalance and 56.4% and 61.7% of524

the questions having the label ‘yes’ respectively.525

Figure 5: Zero-shot audio question answering method.

We prompt Whisper in a similar fashion to the pre-526

vious audio classification approach, however the527

input question is now used as the prompt for the528

decoder. As before, the audio clip is provided to529

the model’s encoder, and the system likelihood of530

generating ‘yes’ and ‘no’ are used as class logits.531

The setup is depicted in Figure 5. The baseline532

from Lipping et al. (2022) is a BiLSTM-based sys-533

tem with a binary classification head, trained in a534

supervised fashion on the labelled training corpus.535

Method Unanimous Majority votes

Lipping et al. (2022) 73.1 63.2

Uncalibrated 64.0 58.8
Zero Input 65.2 60.1
Gaussian Noise 38.6 43.8
Prior-Matched 61.1 58.5

Table 7: Experimental results on Clotho-AQA test set.

Table 7 presents experimental results, where zero-536

shot Whisper achieves an accuracy of 64.0 for the537

unanimous test set. Note that due to class imbal-538

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Whisper large-v2 zero-shot
Random

Figure 6: Precision-Recall curve for Whisper large-v2
prompted for Clotho-AQA. ‘no’, the rarer event, is used
as the positive class for detection.

ance a system that always predicts ‘yes’ will have 539

an accuracy of 61.7%. However, the precision of 540

the proposed method is 65.9% and 60.9% for the 541

‘yes’ and ‘no’ decisions respectively, both signif- 542

icantly above random. Due to this inherent class 543

imbalance, prior matching (which ensures the out- 544

put prior is uniform) degrades performance and 545

yields lower accuracy. Applying the null-input nor- 546

malization techniques can improve performance 547

with zero-input, although Gaussian noise harms 548

performance (as it overcompensates the bias and 549

makes predictions biased to predict mostly ‘no’). 550

Similar observations are found when considering 551

the ‘majority’ processed test data. 552

To confirm the extent to which Whisper is mak- 553

ing informed, rather than random, decisions the 554

precision and recall curve for the rarer class, ‘no’ is 555

shown in Figure 6 on the unanimous set. It is clear 556

that there is significant information in Whisper’s 557

zero-shot predictions and performance is notably 558

better than random at all decision thresholds. 559

6 Conclusions 560

This paper is the first to examine the emer- 561

gent ability of foundation ASR models on audio- 562

classification tasks, that were not seen in train- 563

ing. Over a range of tasks, we show that zero-shot 564

prompting of Whisper can yield effective perfor- 565

mance. Calibration methods can be used to readjust 566

the output distribution for better task alignment, 567

allowing Whisper to achieve better performance 568

compared to previous zero-shot works, and demon- 569

strating its potential for cross-task generalization. 570

8



7 Limitations571

Prior-matching, which yielded considerable gains,572

assumes that the classes are fairly balanced and573

requires unlabelled in-domain data (or a large test574

set to be evaluated). This approach may not apply575

to settings where there are strong class imbalances,576

nor when little data is available.577

8 Ethical Considerations578

This is an introductory study that demonstrates that579

Whisper can be used for zero-shot audio classifica-580

tion tasks. However, the system may not generalize581

well to some tasks not considered in this paper.582

Our zero-shot method should be used with a level583

of caution, especially if leveraging the system for584

real-world applications.585
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A Full Results 774

Model ESC50 US8K TUT Vocal RAVDESS CREMA-D GTZAN LibriCount Avg.

Baselines (§4.4)
Random 2.0 10.0 6.7 16.7 12.5 16.7 10.0 9.1 10.4
AudioCLIP 69.4 65.3 - - - - - - -
CLAP 82.6 73.2 29.6 49.4 16.0 17.8 25.2 17.9 39.0

Uncalibrated (§3.1)
MMS large (1B) 1.7 9.6 4.9 14.2 13.5 17.2 8.3 8.4 9.7
Whisper tiny.en (39M) 3.7 16.4 6.7 16.7 13.3 17.4 13.9 9.3 12.2
Whisper tiny (39M) 4.2 12.9 6.5 17.0 12.4 15.9 13.3 7.8 11.3
Whisper base.en (74M) 5.9 20.4 6.6 35.1 13.2 16.0 13.6 10.2 15.1
Whisper base (74M) 6.8 23.7 6.6 39.0 14.9 16.3 21.7 9.5 17.3
Whisper small.en (244M) 10.3 41.9 7.0 45.0 14.7 14.8 14.6 7.2 19.4
Whisper small (244M) 21.0 39.3 8.2 46.6 15.5 18.9 23.7 9.2 22.8
Whisper medium.en (769M) 27.9 39.5 7.2 59.0 15.3 20.9 15.2 8.2 24.2
Whisper medium (769M) 29.7 45.8 7.5 44.6 16.7 19.9 28.4 9.4 25.2
Whisper large-v1 (1.6B) 33.7 44.8 8.3 58.2 15.0 21.6 35.2 8.2 28.2
Whisper large-v2 (1.6B) 38.9 50.5 7.7 60.1 15.1 20.2 38.2 9.2 30.0
Whisper large-v3 (1.6B) 12.0 38.3 7.0 43.0 13.6 19.5 14.4 9.3 19.6

Zero-Input (§3.2.2)
MMS large (1B) 2.2 11.7 4.2 16.5 12.1 15.9 7.5 10.0 10.0
Whisper tiny.en (39M) 12.7 19.7 7.5 30.9 20.6 18.9 12.8 9.4 16.6
Whisper tiny (39M) 10.5 24.2 7.7 28.0 15.8 17.7 17.7 7.9 16.2
Whisper base.en (74M) 18.9 37.6 14.2 50.9 18.8 21.5 13.6 8.8 23.0
Whisper base (74M) 19.4 36.2 12.1 52.7 14.4 16.5 17.5 11.1 22.5
Whisper small.en (244M) 30.5 47.3 11.4 65.8 14.4 18.5 9.4 6.2 25.4
Whisper small (244M) 30.9 41.0 19.8 54.3 14.7 17.2 38.8 10.1 28.4
Whisper medium.en (769M) 44.1 53.3 21.5 57.2 20.1 21.2 12.2 8.6 29.8
Whisper medium (769M) 45.6 57.1 19.6 67.8 23.3 22.1 24.1 18.5 34.8
Whisper large-v1 (1.6B) 47.1 58.5 24.9 59.3 18.5 26.0 32.8 8.7 34.5
Whisper large-v2 (1.6B) 35.9 52.1 18.0 57.5 29.4 26.5 45.8 13.6 34.9
Whisper large-v3 (1.6B) 23.9 38.4 21.2 60.9 15.7 20.7 11.8 13.9 25.8

Gaussian-Noise (§3.2.2)
MMS large (1B) 2.4 12.6 7.9 13.0 12.7 17.0 14.9 11.9 11.5
Whisper tiny.en (39M) 8.9 20.9 9.6 18.9 17.6 20.4 14.2 8.4 14.9
Whisper tiny (39M) 5.8 19.4 11.8 16.7 13.5 17.1 16.4 7.7 13.6
Whisper base.en (74M) 13.6 29.0 7.7 25.2 15.3 19.6 11.7 10.2 16.5
Whisper base (74M) 17.5 27.6 6.5 39.5 12.8 17.8 12.2 9.0 17.9
Whisper small.en (244M) 29.8 42.0 13.6 59.5 13.1 17.1 11.6 8.9 24.5
Whisper small (244M) 31.2 49.0 14.8 52.5 24.0 21.4 41.6 12.6 30.9
Whisper medium.en (769M) 36.8 45.8 20.0 68.9 17.2 20.4 10.0 8.9 28.5
Whisper medium (769M) 38.3 47.1 15.9 63.0 16.2 20.4 18.6 16.4 29.5
Whisper large-v1 (1.6B) 47.9 58.7 26.1 44.8 18.7 20.1 20.5 9.1 30.7
Whisper large-v2 (1.6B) 43.8 53.2 22.1 62.4 20.4 18.8 50.8 15.0 35.8
Whisper large-v3 (1.6B) 22.9 29.3 14.1 43.1 16.5 17.6 19.4 14.9 22.2

Prior-matched (§3.2.1)
MMS large (1B) 2.4 10.9 7.6 11.5 12.2 17.2 10.5 11.5 10.5
Whisper tiny.en (39M) 17.3 30.4 11.7 41.5 19.6 20.4 19.3 8.8 21.1
Whisper tiny (39M) 14.1 28.5 11.1 36.7 17.6 17.1 25.0 8.0 19.8
Whisper base.en (74M) 24.6 46.2 11.7 58.6 20.3 20.1 25.4 12.3 27.4
Whisper base (74M) 25.7 35.8 11.0 58.0 18.1 17.5 22.9 10.3 24.9
Whisper small.en (244M) 43.7 55.5 15.7 78.8 24.6 18.7 28.1 7.7 34.1
Whisper small (244M) 40.7 57.1 20.0 62.7 32.2 23.8 48.3 12.7 37.2
Whisper medium.en (769M) 56.2 60.9 18.3 82.8 29.0 22.6 29.7 9.8 38.7
Whisper medium (769M) 57.5 61.6 25.2 82.4 35.0 25.9 48.6 16.3 44.1
Whisper large-v1 (1.6B) 62.9 65.7 28.3 85.6 35.1 24.4 54.7 7.3 45.5
Whisper large-v2 (1.6B) 65.4 60.4 26.0 84.9 41.7 28.8 60.9 17.3 48.2
Whisper large-v3 (1.6B) 33.8 43.3 22.3 69.1 31.3 23.7 33.7 17.0 34.3

Table 8: Baseline and zero-shot task performance using the default prompt.

Table 8 extends Table 3 and displays the zero-shot audio classification performance of different versions 775

of the released ASR foundation models. As the results show, Whisper always exhibits better performance 776

than random predictions, indicating that the model acquires the general ability of audio understanding 777

when pre-trained on large-scale datasets. Null-input and prior matching calibration methods consistently 778
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improve the classification accuracy on selected tasks. All three Whisper large models share the same779

structure while the training strategy is slightly different. Compared to large-v1, Whisper large-v2 is trained780

on the data for 2.5 times more epochs with regularization techniques, leading to better audio classification781

accuracy. Nevertheless, the newly released Whisper large-v3 model shows inferior performance, which is782

trained on the combination of 1 million hours of weakly-labelled audio and 4 million hours of audio with783

pseudo labels decoded by large-v2. Results suggest that including pseudo-speech data harms the model’s784

emergent ability for audio classification.785

B Accuracy against Parameter Size786
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Figure 7: Accuracy on individual audio classification tasks across different sizes of Whisper models.

Figure 7 shows the performance improvement of Whisper for various sizes, for both the English-only787

and the multilingual systems. In general, we observe better performance as the model size increases. For788

many tasks, we observe that as the number of parameters increases, the multilingual systems begin to789

outperform the English-only systems. However, for some tasks such as ESC50 and US8K, we observe790

comparable performance for the two systems over all model sizes.791

C Distribution of Predicted Classes792

Figure 8: Percentage of model predictions for each class with different calibration methods. On ESC-50, we only
plot the top 15 classes predicted by the uncalibrated results for illustration.
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Figure 8 shows the distribution of predicted classes for all the test samples on each dataset. For the 793

uncalibrated results, the predictions are unevenly distributed among all the classes. Specifically, the 794

system has a strong bias to predict words that are more likely to frequently appear in the pre-training data, 795

such as ‘rain’, ‘train’, or ‘sad’. Certain classes are never predicted due to the bias. This problem can 796

be mitigated with null-input calibration. With prior matching, we can observe more evenly distributed 797

predictions on the test samples. 798

D Robustness to Prompts 799

Prompt ESC50 US8K TUT Vocal

This is a sound of class_label. 65.4 60.4 26.0 84.9

class_label 48.6 54.8 15.7 60.1
(class_label) 68.0 65.5 21.3 86.3
[class_label] 64.3 64.2 16.1 85.9

Listen to the sound, it’s called class_label. 50.3 56.5 16.0 81.7
The noise you hear is from the category class_label. 54.6 55.1 19.3 79.7
This is what we call class_label sound. 45.3 55.7 26.7 69.5
Identify this noise as class_label. 46.6 52.8 13.6 81.6
This sound belongs to the group class_label. 41.4 57.0 15.0 76.1

Ensemble of Prompts 67.1 67.6 25.2 87.3

Table 9: Prompt sensitivity for Sound Event, Vocal Sound and Acoustic Scene Classification.

Prompt RAVDESS CREMA-D

The speaker is feeling class_label. 41.7 28.8

class_label 20.7 18.1
(class_label) 33.1 35.3
[class_label] 32.6 26.6

The person talking feels class_label. 38.5 29.6
The speaker is experiencing class_label emotions. 20.8 20.5
The person speaking is in a class_label mood. 29.9 27.4
The speaker’s emotion is class_label. 33.6 25.1
The person talking is filled with class_label feelings. 39.7 33.0

Ensemble of Prompts 44.0 33.1

Table 10: Prompt sensitivity for Emotion Classification.

Prompt GTZAN

This is an audio of class_label music. 60.9

class_label 39.0
(class_label) 54.6
[class_label] 52.3

Listen to this, it’s class_label music. 48.5
This audio plays class_label music. 38.8

The sound is from class_label music. 49.4
What you’re hearing is class_label music. 58.7

This records class_label music. 40.0

Ensemble of Prompts 60.0

Table 11: Prompts for Music Genre Classification.

Prompt LibriCount

In the audio, class_label people are speaking. 17.3

class_label people speaking 13.0
(class_label people speaking) 15.3
[class_label people speaking] 23.2

You can hear class_label people talking in the audio. 9.2
The audio includes voices of people from class_label. 14.6

In this recording, individuals from class_label are speaking. 13.5
The audio captures conversations of class_label individuals. 11.6

The voices you’re hearing are from class_label people. 17.1

Ensemble of Prompts 22.0

Table 12: Prompts for Speaker Counting.

The above tables show the performance of various decoder prompts for all the considered tasks. We 800

observe that for some tasks, the natural language prompts are able to perform better than the class 801

label-only prompt (TUT, RAVDESS, GTZAN), while for the other datasets, one may observe similar 802

performance between our default prompts and class-only prompts. 803
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E Supervised Training Performance804

Two forms of efficient fine-tuning approaches are805

considered as supervised baselines; LoRA (Hu806

et al., 2021) and soft prompt tuning (SPT) (Lester807

et al., 2021; Ma et al., 2023). During training, the808

audio clip is provided to the model encoder and809

the model is trained to generate the corresponding810

class label in the decoder. For LoRA, we use a rank811

r = 8 and only adapt the attention weights (Hu812

et al., 2021). For SPT, we insert 20 learnable soft813

prompt vectors at the decoder input. This results814

in 940K (0.06%) and 25K (0.002%) learnable pa-815

rameters for LoRA and SPT, respectively. During816

training, we use a batch size of 8, run 4000 train-817

ing steps, use the AdamW optimizer with linear818

decay, and the learning rate is set to 1e−3 and 1e−1819

for LoRA and SPT, respectively. Experiments are820

conducted on Whisper large-v2 for TUT and Vocal,821

which are the only of the considered tasks with822

available training data.823

Method Model TUT Vocal

Zero-shot
Random 6.7 16.7
CLAP 29.6 60.1
Whisper 26.0 84.9

Supervised
CLAP 74.6 97.9
LoRA (Whisper) 62.7 94.5
SPT (Whisper) 59.2 92.6

Table 13: Supervised training results on TUT and Vocal.

Table 13 shows performance on TUT and Vocal,824

where as expected there remains a significant per-825

formance gap between the zero-shot and the su-826

pervised approaches. LoRA shows considerable827

performance improvements while being parameter828

efficient (and only learning 0.06% of parameters).829

Supervised trained CLAP demonstrates better per-830

formance than Whisper, possibly as CLAP gen-831

erates contextual embeddings that may be better832

suited for transferring to tasks, while Whisper is an833

ASR decoding system that typically isn’t finetuned834

for downstream audio classification tasks.835
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